xref: /linux/drivers/firewire/core-device.c (revision ce7240e445303de3ca66e6d08f17a2ec278a5bf6)
1 /*
2  * Device probing and sysfs code.
3  *
4  * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 
21 #include <linux/bug.h>
22 #include <linux/ctype.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/errno.h>
26 #include <linux/firewire.h>
27 #include <linux/firewire-constants.h>
28 #include <linux/idr.h>
29 #include <linux/jiffies.h>
30 #include <linux/kobject.h>
31 #include <linux/list.h>
32 #include <linux/mod_devicetable.h>
33 #include <linux/module.h>
34 #include <linux/mutex.h>
35 #include <linux/rwsem.h>
36 #include <linux/slab.h>
37 #include <linux/spinlock.h>
38 #include <linux/string.h>
39 #include <linux/workqueue.h>
40 
41 #include <linux/atomic.h>
42 #include <asm/byteorder.h>
43 
44 #include "core.h"
45 
46 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
47 {
48 	ci->p = p + 1;
49 	ci->end = ci->p + (p[0] >> 16);
50 }
51 EXPORT_SYMBOL(fw_csr_iterator_init);
52 
53 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
54 {
55 	*key = *ci->p >> 24;
56 	*value = *ci->p & 0xffffff;
57 
58 	return ci->p++ < ci->end;
59 }
60 EXPORT_SYMBOL(fw_csr_iterator_next);
61 
62 static const u32 *search_leaf(const u32 *directory, int search_key)
63 {
64 	struct fw_csr_iterator ci;
65 	int last_key = 0, key, value;
66 
67 	fw_csr_iterator_init(&ci, directory);
68 	while (fw_csr_iterator_next(&ci, &key, &value)) {
69 		if (last_key == search_key &&
70 		    key == (CSR_DESCRIPTOR | CSR_LEAF))
71 			return ci.p - 1 + value;
72 
73 		last_key = key;
74 	}
75 
76 	return NULL;
77 }
78 
79 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
80 {
81 	unsigned int quadlets, i;
82 	char c;
83 
84 	if (!size || !buf)
85 		return -EINVAL;
86 
87 	quadlets = min(block[0] >> 16, 256U);
88 	if (quadlets < 2)
89 		return -ENODATA;
90 
91 	if (block[1] != 0 || block[2] != 0)
92 		/* unknown language/character set */
93 		return -ENODATA;
94 
95 	block += 3;
96 	quadlets -= 2;
97 	for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
98 		c = block[i / 4] >> (24 - 8 * (i % 4));
99 		if (c == '\0')
100 			break;
101 		buf[i] = c;
102 	}
103 	buf[i] = '\0';
104 
105 	return i;
106 }
107 
108 /**
109  * fw_csr_string() - reads a string from the configuration ROM
110  * @directory:	e.g. root directory or unit directory
111  * @key:	the key of the preceding directory entry
112  * @buf:	where to put the string
113  * @size:	size of @buf, in bytes
114  *
115  * The string is taken from a minimal ASCII text descriptor leaf after
116  * the immediate entry with @key.  The string is zero-terminated.
117  * Returns strlen(buf) or a negative error code.
118  */
119 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
120 {
121 	const u32 *leaf = search_leaf(directory, key);
122 	if (!leaf)
123 		return -ENOENT;
124 
125 	return textual_leaf_to_string(leaf, buf, size);
126 }
127 EXPORT_SYMBOL(fw_csr_string);
128 
129 static void get_ids(const u32 *directory, int *id)
130 {
131 	struct fw_csr_iterator ci;
132 	int key, value;
133 
134 	fw_csr_iterator_init(&ci, directory);
135 	while (fw_csr_iterator_next(&ci, &key, &value)) {
136 		switch (key) {
137 		case CSR_VENDOR:	id[0] = value; break;
138 		case CSR_MODEL:		id[1] = value; break;
139 		case CSR_SPECIFIER_ID:	id[2] = value; break;
140 		case CSR_VERSION:	id[3] = value; break;
141 		}
142 	}
143 }
144 
145 static void get_modalias_ids(struct fw_unit *unit, int *id)
146 {
147 	get_ids(&fw_parent_device(unit)->config_rom[5], id);
148 	get_ids(unit->directory, id);
149 }
150 
151 static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
152 {
153 	int match = 0;
154 
155 	if (id[0] == id_table->vendor_id)
156 		match |= IEEE1394_MATCH_VENDOR_ID;
157 	if (id[1] == id_table->model_id)
158 		match |= IEEE1394_MATCH_MODEL_ID;
159 	if (id[2] == id_table->specifier_id)
160 		match |= IEEE1394_MATCH_SPECIFIER_ID;
161 	if (id[3] == id_table->version)
162 		match |= IEEE1394_MATCH_VERSION;
163 
164 	return (match & id_table->match_flags) == id_table->match_flags;
165 }
166 
167 static bool is_fw_unit(struct device *dev);
168 
169 static int fw_unit_match(struct device *dev, struct device_driver *drv)
170 {
171 	const struct ieee1394_device_id *id_table =
172 			container_of(drv, struct fw_driver, driver)->id_table;
173 	int id[] = {0, 0, 0, 0};
174 
175 	/* We only allow binding to fw_units. */
176 	if (!is_fw_unit(dev))
177 		return 0;
178 
179 	get_modalias_ids(fw_unit(dev), id);
180 
181 	for (; id_table->match_flags != 0; id_table++)
182 		if (match_ids(id_table, id))
183 			return 1;
184 
185 	return 0;
186 }
187 
188 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
189 {
190 	int id[] = {0, 0, 0, 0};
191 
192 	get_modalias_ids(unit, id);
193 
194 	return snprintf(buffer, buffer_size,
195 			"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
196 			id[0], id[1], id[2], id[3]);
197 }
198 
199 static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
200 {
201 	struct fw_unit *unit = fw_unit(dev);
202 	char modalias[64];
203 
204 	get_modalias(unit, modalias, sizeof(modalias));
205 
206 	if (add_uevent_var(env, "MODALIAS=%s", modalias))
207 		return -ENOMEM;
208 
209 	return 0;
210 }
211 
212 struct bus_type fw_bus_type = {
213 	.name = "firewire",
214 	.match = fw_unit_match,
215 };
216 EXPORT_SYMBOL(fw_bus_type);
217 
218 int fw_device_enable_phys_dma(struct fw_device *device)
219 {
220 	int generation = device->generation;
221 
222 	/* device->node_id, accessed below, must not be older than generation */
223 	smp_rmb();
224 
225 	return device->card->driver->enable_phys_dma(device->card,
226 						     device->node_id,
227 						     generation);
228 }
229 EXPORT_SYMBOL(fw_device_enable_phys_dma);
230 
231 struct config_rom_attribute {
232 	struct device_attribute attr;
233 	u32 key;
234 };
235 
236 static ssize_t show_immediate(struct device *dev,
237 			      struct device_attribute *dattr, char *buf)
238 {
239 	struct config_rom_attribute *attr =
240 		container_of(dattr, struct config_rom_attribute, attr);
241 	struct fw_csr_iterator ci;
242 	const u32 *dir;
243 	int key, value, ret = -ENOENT;
244 
245 	down_read(&fw_device_rwsem);
246 
247 	if (is_fw_unit(dev))
248 		dir = fw_unit(dev)->directory;
249 	else
250 		dir = fw_device(dev)->config_rom + 5;
251 
252 	fw_csr_iterator_init(&ci, dir);
253 	while (fw_csr_iterator_next(&ci, &key, &value))
254 		if (attr->key == key) {
255 			ret = snprintf(buf, buf ? PAGE_SIZE : 0,
256 				       "0x%06x\n", value);
257 			break;
258 		}
259 
260 	up_read(&fw_device_rwsem);
261 
262 	return ret;
263 }
264 
265 #define IMMEDIATE_ATTR(name, key)				\
266 	{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }
267 
268 static ssize_t show_text_leaf(struct device *dev,
269 			      struct device_attribute *dattr, char *buf)
270 {
271 	struct config_rom_attribute *attr =
272 		container_of(dattr, struct config_rom_attribute, attr);
273 	const u32 *dir;
274 	size_t bufsize;
275 	char dummy_buf[2];
276 	int ret;
277 
278 	down_read(&fw_device_rwsem);
279 
280 	if (is_fw_unit(dev))
281 		dir = fw_unit(dev)->directory;
282 	else
283 		dir = fw_device(dev)->config_rom + 5;
284 
285 	if (buf) {
286 		bufsize = PAGE_SIZE - 1;
287 	} else {
288 		buf = dummy_buf;
289 		bufsize = 1;
290 	}
291 
292 	ret = fw_csr_string(dir, attr->key, buf, bufsize);
293 
294 	if (ret >= 0) {
295 		/* Strip trailing whitespace and add newline. */
296 		while (ret > 0 && isspace(buf[ret - 1]))
297 			ret--;
298 		strcpy(buf + ret, "\n");
299 		ret++;
300 	}
301 
302 	up_read(&fw_device_rwsem);
303 
304 	return ret;
305 }
306 
307 #define TEXT_LEAF_ATTR(name, key)				\
308 	{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
309 
310 static struct config_rom_attribute config_rom_attributes[] = {
311 	IMMEDIATE_ATTR(vendor, CSR_VENDOR),
312 	IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
313 	IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
314 	IMMEDIATE_ATTR(version, CSR_VERSION),
315 	IMMEDIATE_ATTR(model, CSR_MODEL),
316 	TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
317 	TEXT_LEAF_ATTR(model_name, CSR_MODEL),
318 	TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
319 };
320 
321 static void init_fw_attribute_group(struct device *dev,
322 				    struct device_attribute *attrs,
323 				    struct fw_attribute_group *group)
324 {
325 	struct device_attribute *attr;
326 	int i, j;
327 
328 	for (j = 0; attrs[j].attr.name != NULL; j++)
329 		group->attrs[j] = &attrs[j].attr;
330 
331 	for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
332 		attr = &config_rom_attributes[i].attr;
333 		if (attr->show(dev, attr, NULL) < 0)
334 			continue;
335 		group->attrs[j++] = &attr->attr;
336 	}
337 
338 	group->attrs[j] = NULL;
339 	group->groups[0] = &group->group;
340 	group->groups[1] = NULL;
341 	group->group.attrs = group->attrs;
342 	dev->groups = (const struct attribute_group **) group->groups;
343 }
344 
345 static ssize_t modalias_show(struct device *dev,
346 			     struct device_attribute *attr, char *buf)
347 {
348 	struct fw_unit *unit = fw_unit(dev);
349 	int length;
350 
351 	length = get_modalias(unit, buf, PAGE_SIZE);
352 	strcpy(buf + length, "\n");
353 
354 	return length + 1;
355 }
356 
357 static ssize_t rom_index_show(struct device *dev,
358 			      struct device_attribute *attr, char *buf)
359 {
360 	struct fw_device *device = fw_device(dev->parent);
361 	struct fw_unit *unit = fw_unit(dev);
362 
363 	return snprintf(buf, PAGE_SIZE, "%d\n",
364 			(int)(unit->directory - device->config_rom));
365 }
366 
367 static struct device_attribute fw_unit_attributes[] = {
368 	__ATTR_RO(modalias),
369 	__ATTR_RO(rom_index),
370 	__ATTR_NULL,
371 };
372 
373 static ssize_t config_rom_show(struct device *dev,
374 			       struct device_attribute *attr, char *buf)
375 {
376 	struct fw_device *device = fw_device(dev);
377 	size_t length;
378 
379 	down_read(&fw_device_rwsem);
380 	length = device->config_rom_length * 4;
381 	memcpy(buf, device->config_rom, length);
382 	up_read(&fw_device_rwsem);
383 
384 	return length;
385 }
386 
387 static ssize_t guid_show(struct device *dev,
388 			 struct device_attribute *attr, char *buf)
389 {
390 	struct fw_device *device = fw_device(dev);
391 	int ret;
392 
393 	down_read(&fw_device_rwsem);
394 	ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
395 		       device->config_rom[3], device->config_rom[4]);
396 	up_read(&fw_device_rwsem);
397 
398 	return ret;
399 }
400 
401 static int units_sprintf(char *buf, const u32 *directory)
402 {
403 	struct fw_csr_iterator ci;
404 	int key, value;
405 	int specifier_id = 0;
406 	int version = 0;
407 
408 	fw_csr_iterator_init(&ci, directory);
409 	while (fw_csr_iterator_next(&ci, &key, &value)) {
410 		switch (key) {
411 		case CSR_SPECIFIER_ID:
412 			specifier_id = value;
413 			break;
414 		case CSR_VERSION:
415 			version = value;
416 			break;
417 		}
418 	}
419 
420 	return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
421 }
422 
423 static ssize_t units_show(struct device *dev,
424 			  struct device_attribute *attr, char *buf)
425 {
426 	struct fw_device *device = fw_device(dev);
427 	struct fw_csr_iterator ci;
428 	int key, value, i = 0;
429 
430 	down_read(&fw_device_rwsem);
431 	fw_csr_iterator_init(&ci, &device->config_rom[5]);
432 	while (fw_csr_iterator_next(&ci, &key, &value)) {
433 		if (key != (CSR_UNIT | CSR_DIRECTORY))
434 			continue;
435 		i += units_sprintf(&buf[i], ci.p + value - 1);
436 		if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
437 			break;
438 	}
439 	up_read(&fw_device_rwsem);
440 
441 	if (i)
442 		buf[i - 1] = '\n';
443 
444 	return i;
445 }
446 
447 static struct device_attribute fw_device_attributes[] = {
448 	__ATTR_RO(config_rom),
449 	__ATTR_RO(guid),
450 	__ATTR_RO(units),
451 	__ATTR_NULL,
452 };
453 
454 static int read_rom(struct fw_device *device,
455 		    int generation, int index, u32 *data)
456 {
457 	u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
458 	int i, rcode;
459 
460 	/* device->node_id, accessed below, must not be older than generation */
461 	smp_rmb();
462 
463 	for (i = 10; i < 100; i += 10) {
464 		rcode = fw_run_transaction(device->card,
465 				TCODE_READ_QUADLET_REQUEST, device->node_id,
466 				generation, device->max_speed, offset, data, 4);
467 		if (rcode != RCODE_BUSY)
468 			break;
469 		msleep(i);
470 	}
471 	be32_to_cpus(data);
472 
473 	return rcode;
474 }
475 
476 #define MAX_CONFIG_ROM_SIZE 256
477 
478 /*
479  * Read the bus info block, perform a speed probe, and read all of the rest of
480  * the config ROM.  We do all this with a cached bus generation.  If the bus
481  * generation changes under us, read_config_rom will fail and get retried.
482  * It's better to start all over in this case because the node from which we
483  * are reading the ROM may have changed the ROM during the reset.
484  * Returns either a result code or a negative error code.
485  */
486 static int read_config_rom(struct fw_device *device, int generation)
487 {
488 	struct fw_card *card = device->card;
489 	const u32 *old_rom, *new_rom;
490 	u32 *rom, *stack;
491 	u32 sp, key;
492 	int i, end, length, ret;
493 
494 	rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
495 		      sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
496 	if (rom == NULL)
497 		return -ENOMEM;
498 
499 	stack = &rom[MAX_CONFIG_ROM_SIZE];
500 	memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
501 
502 	device->max_speed = SCODE_100;
503 
504 	/* First read the bus info block. */
505 	for (i = 0; i < 5; i++) {
506 		ret = read_rom(device, generation, i, &rom[i]);
507 		if (ret != RCODE_COMPLETE)
508 			goto out;
509 		/*
510 		 * As per IEEE1212 7.2, during initialization, devices can
511 		 * reply with a 0 for the first quadlet of the config
512 		 * rom to indicate that they are booting (for example,
513 		 * if the firmware is on the disk of a external
514 		 * harddisk).  In that case we just fail, and the
515 		 * retry mechanism will try again later.
516 		 */
517 		if (i == 0 && rom[i] == 0) {
518 			ret = RCODE_BUSY;
519 			goto out;
520 		}
521 	}
522 
523 	device->max_speed = device->node->max_speed;
524 
525 	/*
526 	 * Determine the speed of
527 	 *   - devices with link speed less than PHY speed,
528 	 *   - devices with 1394b PHY (unless only connected to 1394a PHYs),
529 	 *   - all devices if there are 1394b repeaters.
530 	 * Note, we cannot use the bus info block's link_spd as starting point
531 	 * because some buggy firmwares set it lower than necessary and because
532 	 * 1394-1995 nodes do not have the field.
533 	 */
534 	if ((rom[2] & 0x7) < device->max_speed ||
535 	    device->max_speed == SCODE_BETA ||
536 	    card->beta_repeaters_present) {
537 		u32 dummy;
538 
539 		/* for S1600 and S3200 */
540 		if (device->max_speed == SCODE_BETA)
541 			device->max_speed = card->link_speed;
542 
543 		while (device->max_speed > SCODE_100) {
544 			if (read_rom(device, generation, 0, &dummy) ==
545 			    RCODE_COMPLETE)
546 				break;
547 			device->max_speed--;
548 		}
549 	}
550 
551 	/*
552 	 * Now parse the config rom.  The config rom is a recursive
553 	 * directory structure so we parse it using a stack of
554 	 * references to the blocks that make up the structure.  We
555 	 * push a reference to the root directory on the stack to
556 	 * start things off.
557 	 */
558 	length = i;
559 	sp = 0;
560 	stack[sp++] = 0xc0000005;
561 	while (sp > 0) {
562 		/*
563 		 * Pop the next block reference of the stack.  The
564 		 * lower 24 bits is the offset into the config rom,
565 		 * the upper 8 bits are the type of the reference the
566 		 * block.
567 		 */
568 		key = stack[--sp];
569 		i = key & 0xffffff;
570 		if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
571 			ret = -ENXIO;
572 			goto out;
573 		}
574 
575 		/* Read header quadlet for the block to get the length. */
576 		ret = read_rom(device, generation, i, &rom[i]);
577 		if (ret != RCODE_COMPLETE)
578 			goto out;
579 		end = i + (rom[i] >> 16) + 1;
580 		if (end > MAX_CONFIG_ROM_SIZE) {
581 			/*
582 			 * This block extends outside the config ROM which is
583 			 * a firmware bug.  Ignore this whole block, i.e.
584 			 * simply set a fake block length of 0.
585 			 */
586 			fw_err(card, "skipped invalid ROM block %x at %llx\n",
587 			       rom[i],
588 			       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
589 			rom[i] = 0;
590 			end = i;
591 		}
592 		i++;
593 
594 		/*
595 		 * Now read in the block.  If this is a directory
596 		 * block, check the entries as we read them to see if
597 		 * it references another block, and push it in that case.
598 		 */
599 		for (; i < end; i++) {
600 			ret = read_rom(device, generation, i, &rom[i]);
601 			if (ret != RCODE_COMPLETE)
602 				goto out;
603 
604 			if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
605 				continue;
606 			/*
607 			 * Offset points outside the ROM.  May be a firmware
608 			 * bug or an Extended ROM entry (IEEE 1212-2001 clause
609 			 * 7.7.18).  Simply overwrite this pointer here by a
610 			 * fake immediate entry so that later iterators over
611 			 * the ROM don't have to check offsets all the time.
612 			 */
613 			if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
614 				fw_err(card,
615 				       "skipped unsupported ROM entry %x at %llx\n",
616 				       rom[i],
617 				       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
618 				rom[i] = 0;
619 				continue;
620 			}
621 			stack[sp++] = i + rom[i];
622 		}
623 		if (length < i)
624 			length = i;
625 	}
626 
627 	old_rom = device->config_rom;
628 	new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
629 	if (new_rom == NULL) {
630 		ret = -ENOMEM;
631 		goto out;
632 	}
633 
634 	down_write(&fw_device_rwsem);
635 	device->config_rom = new_rom;
636 	device->config_rom_length = length;
637 	up_write(&fw_device_rwsem);
638 
639 	kfree(old_rom);
640 	ret = RCODE_COMPLETE;
641 	device->max_rec	= rom[2] >> 12 & 0xf;
642 	device->cmc	= rom[2] >> 30 & 1;
643 	device->irmc	= rom[2] >> 31 & 1;
644  out:
645 	kfree(rom);
646 
647 	return ret;
648 }
649 
650 static void fw_unit_release(struct device *dev)
651 {
652 	struct fw_unit *unit = fw_unit(dev);
653 
654 	fw_device_put(fw_parent_device(unit));
655 	kfree(unit);
656 }
657 
658 static struct device_type fw_unit_type = {
659 	.uevent		= fw_unit_uevent,
660 	.release	= fw_unit_release,
661 };
662 
663 static bool is_fw_unit(struct device *dev)
664 {
665 	return dev->type == &fw_unit_type;
666 }
667 
668 static void create_units(struct fw_device *device)
669 {
670 	struct fw_csr_iterator ci;
671 	struct fw_unit *unit;
672 	int key, value, i;
673 
674 	i = 0;
675 	fw_csr_iterator_init(&ci, &device->config_rom[5]);
676 	while (fw_csr_iterator_next(&ci, &key, &value)) {
677 		if (key != (CSR_UNIT | CSR_DIRECTORY))
678 			continue;
679 
680 		/*
681 		 * Get the address of the unit directory and try to
682 		 * match the drivers id_tables against it.
683 		 */
684 		unit = kzalloc(sizeof(*unit), GFP_KERNEL);
685 		if (unit == NULL) {
686 			fw_err(device->card, "out of memory for unit\n");
687 			continue;
688 		}
689 
690 		unit->directory = ci.p + value - 1;
691 		unit->device.bus = &fw_bus_type;
692 		unit->device.type = &fw_unit_type;
693 		unit->device.parent = &device->device;
694 		dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
695 
696 		BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
697 				ARRAY_SIZE(fw_unit_attributes) +
698 				ARRAY_SIZE(config_rom_attributes));
699 		init_fw_attribute_group(&unit->device,
700 					fw_unit_attributes,
701 					&unit->attribute_group);
702 
703 		if (device_register(&unit->device) < 0)
704 			goto skip_unit;
705 
706 		fw_device_get(device);
707 		continue;
708 
709 	skip_unit:
710 		kfree(unit);
711 	}
712 }
713 
714 static int shutdown_unit(struct device *device, void *data)
715 {
716 	device_unregister(device);
717 
718 	return 0;
719 }
720 
721 /*
722  * fw_device_rwsem acts as dual purpose mutex:
723  *   - serializes accesses to fw_device_idr,
724  *   - serializes accesses to fw_device.config_rom/.config_rom_length and
725  *     fw_unit.directory, unless those accesses happen at safe occasions
726  */
727 DECLARE_RWSEM(fw_device_rwsem);
728 
729 DEFINE_IDR(fw_device_idr);
730 int fw_cdev_major;
731 
732 struct fw_device *fw_device_get_by_devt(dev_t devt)
733 {
734 	struct fw_device *device;
735 
736 	down_read(&fw_device_rwsem);
737 	device = idr_find(&fw_device_idr, MINOR(devt));
738 	if (device)
739 		fw_device_get(device);
740 	up_read(&fw_device_rwsem);
741 
742 	return device;
743 }
744 
745 struct workqueue_struct *fw_workqueue;
746 EXPORT_SYMBOL(fw_workqueue);
747 
748 static void fw_schedule_device_work(struct fw_device *device,
749 				    unsigned long delay)
750 {
751 	queue_delayed_work(fw_workqueue, &device->work, delay);
752 }
753 
754 /*
755  * These defines control the retry behavior for reading the config
756  * rom.  It shouldn't be necessary to tweak these; if the device
757  * doesn't respond to a config rom read within 10 seconds, it's not
758  * going to respond at all.  As for the initial delay, a lot of
759  * devices will be able to respond within half a second after bus
760  * reset.  On the other hand, it's not really worth being more
761  * aggressive than that, since it scales pretty well; if 10 devices
762  * are plugged in, they're all getting read within one second.
763  */
764 
765 #define MAX_RETRIES	10
766 #define RETRY_DELAY	(3 * HZ)
767 #define INITIAL_DELAY	(HZ / 2)
768 #define SHUTDOWN_DELAY	(2 * HZ)
769 
770 static void fw_device_shutdown(struct work_struct *work)
771 {
772 	struct fw_device *device =
773 		container_of(work, struct fw_device, work.work);
774 	int minor = MINOR(device->device.devt);
775 
776 	if (time_before64(get_jiffies_64(),
777 			  device->card->reset_jiffies + SHUTDOWN_DELAY)
778 	    && !list_empty(&device->card->link)) {
779 		fw_schedule_device_work(device, SHUTDOWN_DELAY);
780 		return;
781 	}
782 
783 	if (atomic_cmpxchg(&device->state,
784 			   FW_DEVICE_GONE,
785 			   FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
786 		return;
787 
788 	fw_device_cdev_remove(device);
789 	device_for_each_child(&device->device, NULL, shutdown_unit);
790 	device_unregister(&device->device);
791 
792 	down_write(&fw_device_rwsem);
793 	idr_remove(&fw_device_idr, minor);
794 	up_write(&fw_device_rwsem);
795 
796 	fw_device_put(device);
797 }
798 
799 static void fw_device_release(struct device *dev)
800 {
801 	struct fw_device *device = fw_device(dev);
802 	struct fw_card *card = device->card;
803 	unsigned long flags;
804 
805 	/*
806 	 * Take the card lock so we don't set this to NULL while a
807 	 * FW_NODE_UPDATED callback is being handled or while the
808 	 * bus manager work looks at this node.
809 	 */
810 	spin_lock_irqsave(&card->lock, flags);
811 	device->node->data = NULL;
812 	spin_unlock_irqrestore(&card->lock, flags);
813 
814 	fw_node_put(device->node);
815 	kfree(device->config_rom);
816 	kfree(device);
817 	fw_card_put(card);
818 }
819 
820 static struct device_type fw_device_type = {
821 	.release = fw_device_release,
822 };
823 
824 static bool is_fw_device(struct device *dev)
825 {
826 	return dev->type == &fw_device_type;
827 }
828 
829 static int update_unit(struct device *dev, void *data)
830 {
831 	struct fw_unit *unit = fw_unit(dev);
832 	struct fw_driver *driver = (struct fw_driver *)dev->driver;
833 
834 	if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
835 		device_lock(dev);
836 		driver->update(unit);
837 		device_unlock(dev);
838 	}
839 
840 	return 0;
841 }
842 
843 static void fw_device_update(struct work_struct *work)
844 {
845 	struct fw_device *device =
846 		container_of(work, struct fw_device, work.work);
847 
848 	fw_device_cdev_update(device);
849 	device_for_each_child(&device->device, NULL, update_unit);
850 }
851 
852 /*
853  * If a device was pending for deletion because its node went away but its
854  * bus info block and root directory header matches that of a newly discovered
855  * device, revive the existing fw_device.
856  * The newly allocated fw_device becomes obsolete instead.
857  */
858 static int lookup_existing_device(struct device *dev, void *data)
859 {
860 	struct fw_device *old = fw_device(dev);
861 	struct fw_device *new = data;
862 	struct fw_card *card = new->card;
863 	int match = 0;
864 
865 	if (!is_fw_device(dev))
866 		return 0;
867 
868 	down_read(&fw_device_rwsem); /* serialize config_rom access */
869 	spin_lock_irq(&card->lock);  /* serialize node access */
870 
871 	if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
872 	    atomic_cmpxchg(&old->state,
873 			   FW_DEVICE_GONE,
874 			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
875 		struct fw_node *current_node = new->node;
876 		struct fw_node *obsolete_node = old->node;
877 
878 		new->node = obsolete_node;
879 		new->node->data = new;
880 		old->node = current_node;
881 		old->node->data = old;
882 
883 		old->max_speed = new->max_speed;
884 		old->node_id = current_node->node_id;
885 		smp_wmb();  /* update node_id before generation */
886 		old->generation = card->generation;
887 		old->config_rom_retries = 0;
888 		fw_notice(card, "rediscovered device %s\n", dev_name(dev));
889 
890 		PREPARE_DELAYED_WORK(&old->work, fw_device_update);
891 		fw_schedule_device_work(old, 0);
892 
893 		if (current_node == card->root_node)
894 			fw_schedule_bm_work(card, 0);
895 
896 		match = 1;
897 	}
898 
899 	spin_unlock_irq(&card->lock);
900 	up_read(&fw_device_rwsem);
901 
902 	return match;
903 }
904 
905 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
906 
907 static void set_broadcast_channel(struct fw_device *device, int generation)
908 {
909 	struct fw_card *card = device->card;
910 	__be32 data;
911 	int rcode;
912 
913 	if (!card->broadcast_channel_allocated)
914 		return;
915 
916 	/*
917 	 * The Broadcast_Channel Valid bit is required by nodes which want to
918 	 * transmit on this channel.  Such transmissions are practically
919 	 * exclusive to IP over 1394 (RFC 2734).  IP capable nodes are required
920 	 * to be IRM capable and have a max_rec of 8 or more.  We use this fact
921 	 * to narrow down to which nodes we send Broadcast_Channel updates.
922 	 */
923 	if (!device->irmc || device->max_rec < 8)
924 		return;
925 
926 	/*
927 	 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
928 	 * Perform a read test first.
929 	 */
930 	if (device->bc_implemented == BC_UNKNOWN) {
931 		rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
932 				device->node_id, generation, device->max_speed,
933 				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
934 				&data, 4);
935 		switch (rcode) {
936 		case RCODE_COMPLETE:
937 			if (data & cpu_to_be32(1 << 31)) {
938 				device->bc_implemented = BC_IMPLEMENTED;
939 				break;
940 			}
941 			/* else fall through to case address error */
942 		case RCODE_ADDRESS_ERROR:
943 			device->bc_implemented = BC_UNIMPLEMENTED;
944 		}
945 	}
946 
947 	if (device->bc_implemented == BC_IMPLEMENTED) {
948 		data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
949 				   BROADCAST_CHANNEL_VALID);
950 		fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
951 				device->node_id, generation, device->max_speed,
952 				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
953 				&data, 4);
954 	}
955 }
956 
957 int fw_device_set_broadcast_channel(struct device *dev, void *gen)
958 {
959 	if (is_fw_device(dev))
960 		set_broadcast_channel(fw_device(dev), (long)gen);
961 
962 	return 0;
963 }
964 
965 static void fw_device_init(struct work_struct *work)
966 {
967 	struct fw_device *device =
968 		container_of(work, struct fw_device, work.work);
969 	struct fw_card *card = device->card;
970 	struct device *revived_dev;
971 	int minor, ret;
972 
973 	/*
974 	 * All failure paths here set node->data to NULL, so that we
975 	 * don't try to do device_for_each_child() on a kfree()'d
976 	 * device.
977 	 */
978 
979 	ret = read_config_rom(device, device->generation);
980 	if (ret != RCODE_COMPLETE) {
981 		if (device->config_rom_retries < MAX_RETRIES &&
982 		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
983 			device->config_rom_retries++;
984 			fw_schedule_device_work(device, RETRY_DELAY);
985 		} else {
986 			if (device->node->link_on)
987 				fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
988 					  device->node_id,
989 					  fw_rcode_string(ret));
990 			if (device->node == card->root_node)
991 				fw_schedule_bm_work(card, 0);
992 			fw_device_release(&device->device);
993 		}
994 		return;
995 	}
996 
997 	revived_dev = device_find_child(card->device,
998 					device, lookup_existing_device);
999 	if (revived_dev) {
1000 		put_device(revived_dev);
1001 		fw_device_release(&device->device);
1002 
1003 		return;
1004 	}
1005 
1006 	device_initialize(&device->device);
1007 
1008 	fw_device_get(device);
1009 	down_write(&fw_device_rwsem);
1010 	ret = idr_pre_get(&fw_device_idr, GFP_KERNEL) ?
1011 	      idr_get_new(&fw_device_idr, device, &minor) :
1012 	      -ENOMEM;
1013 	up_write(&fw_device_rwsem);
1014 
1015 	if (ret < 0)
1016 		goto error;
1017 
1018 	device->device.bus = &fw_bus_type;
1019 	device->device.type = &fw_device_type;
1020 	device->device.parent = card->device;
1021 	device->device.devt = MKDEV(fw_cdev_major, minor);
1022 	dev_set_name(&device->device, "fw%d", minor);
1023 
1024 	BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1025 			ARRAY_SIZE(fw_device_attributes) +
1026 			ARRAY_SIZE(config_rom_attributes));
1027 	init_fw_attribute_group(&device->device,
1028 				fw_device_attributes,
1029 				&device->attribute_group);
1030 
1031 	if (device_add(&device->device)) {
1032 		fw_err(card, "failed to add device\n");
1033 		goto error_with_cdev;
1034 	}
1035 
1036 	create_units(device);
1037 
1038 	/*
1039 	 * Transition the device to running state.  If it got pulled
1040 	 * out from under us while we did the intialization work, we
1041 	 * have to shut down the device again here.  Normally, though,
1042 	 * fw_node_event will be responsible for shutting it down when
1043 	 * necessary.  We have to use the atomic cmpxchg here to avoid
1044 	 * racing with the FW_NODE_DESTROYED case in
1045 	 * fw_node_event().
1046 	 */
1047 	if (atomic_cmpxchg(&device->state,
1048 			   FW_DEVICE_INITIALIZING,
1049 			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1050 		PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1051 		fw_schedule_device_work(device, SHUTDOWN_DELAY);
1052 	} else {
1053 		fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1054 			  dev_name(&device->device),
1055 			  device->config_rom[3], device->config_rom[4],
1056 			  1 << device->max_speed);
1057 		device->config_rom_retries = 0;
1058 
1059 		set_broadcast_channel(device, device->generation);
1060 	}
1061 
1062 	/*
1063 	 * Reschedule the IRM work if we just finished reading the
1064 	 * root node config rom.  If this races with a bus reset we
1065 	 * just end up running the IRM work a couple of extra times -
1066 	 * pretty harmless.
1067 	 */
1068 	if (device->node == card->root_node)
1069 		fw_schedule_bm_work(card, 0);
1070 
1071 	return;
1072 
1073  error_with_cdev:
1074 	down_write(&fw_device_rwsem);
1075 	idr_remove(&fw_device_idr, minor);
1076 	up_write(&fw_device_rwsem);
1077  error:
1078 	fw_device_put(device);		/* fw_device_idr's reference */
1079 
1080 	put_device(&device->device);	/* our reference */
1081 }
1082 
1083 /* Reread and compare bus info block and header of root directory */
1084 static int reread_config_rom(struct fw_device *device, int generation,
1085 			     bool *changed)
1086 {
1087 	u32 q;
1088 	int i, rcode;
1089 
1090 	for (i = 0; i < 6; i++) {
1091 		rcode = read_rom(device, generation, i, &q);
1092 		if (rcode != RCODE_COMPLETE)
1093 			return rcode;
1094 
1095 		if (i == 0 && q == 0)
1096 			/* inaccessible (see read_config_rom); retry later */
1097 			return RCODE_BUSY;
1098 
1099 		if (q != device->config_rom[i]) {
1100 			*changed = true;
1101 			return RCODE_COMPLETE;
1102 		}
1103 	}
1104 
1105 	*changed = false;
1106 	return RCODE_COMPLETE;
1107 }
1108 
1109 static void fw_device_refresh(struct work_struct *work)
1110 {
1111 	struct fw_device *device =
1112 		container_of(work, struct fw_device, work.work);
1113 	struct fw_card *card = device->card;
1114 	int ret, node_id = device->node_id;
1115 	bool changed;
1116 
1117 	ret = reread_config_rom(device, device->generation, &changed);
1118 	if (ret != RCODE_COMPLETE)
1119 		goto failed_config_rom;
1120 
1121 	if (!changed) {
1122 		if (atomic_cmpxchg(&device->state,
1123 				   FW_DEVICE_INITIALIZING,
1124 				   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1125 			goto gone;
1126 
1127 		fw_device_update(work);
1128 		device->config_rom_retries = 0;
1129 		goto out;
1130 	}
1131 
1132 	/*
1133 	 * Something changed.  We keep things simple and don't investigate
1134 	 * further.  We just destroy all previous units and create new ones.
1135 	 */
1136 	device_for_each_child(&device->device, NULL, shutdown_unit);
1137 
1138 	ret = read_config_rom(device, device->generation);
1139 	if (ret != RCODE_COMPLETE)
1140 		goto failed_config_rom;
1141 
1142 	fw_device_cdev_update(device);
1143 	create_units(device);
1144 
1145 	/* Userspace may want to re-read attributes. */
1146 	kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1147 
1148 	if (atomic_cmpxchg(&device->state,
1149 			   FW_DEVICE_INITIALIZING,
1150 			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1151 		goto gone;
1152 
1153 	fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1154 	device->config_rom_retries = 0;
1155 	goto out;
1156 
1157  failed_config_rom:
1158 	if (device->config_rom_retries < MAX_RETRIES &&
1159 	    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1160 		device->config_rom_retries++;
1161 		fw_schedule_device_work(device, RETRY_DELAY);
1162 		return;
1163 	}
1164 
1165 	fw_notice(card, "giving up on refresh of device %s: %s\n",
1166 		  dev_name(&device->device), fw_rcode_string(ret));
1167  gone:
1168 	atomic_set(&device->state, FW_DEVICE_GONE);
1169 	PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1170 	fw_schedule_device_work(device, SHUTDOWN_DELAY);
1171  out:
1172 	if (node_id == card->root_node->node_id)
1173 		fw_schedule_bm_work(card, 0);
1174 }
1175 
1176 void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1177 {
1178 	struct fw_device *device;
1179 
1180 	switch (event) {
1181 	case FW_NODE_CREATED:
1182 		/*
1183 		 * Attempt to scan the node, regardless whether its self ID has
1184 		 * the L (link active) flag set or not.  Some broken devices
1185 		 * send L=0 but have an up-and-running link; others send L=1
1186 		 * without actually having a link.
1187 		 */
1188  create:
1189 		device = kzalloc(sizeof(*device), GFP_ATOMIC);
1190 		if (device == NULL)
1191 			break;
1192 
1193 		/*
1194 		 * Do minimal intialization of the device here, the
1195 		 * rest will happen in fw_device_init().
1196 		 *
1197 		 * Attention:  A lot of things, even fw_device_get(),
1198 		 * cannot be done before fw_device_init() finished!
1199 		 * You can basically just check device->state and
1200 		 * schedule work until then, but only while holding
1201 		 * card->lock.
1202 		 */
1203 		atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1204 		device->card = fw_card_get(card);
1205 		device->node = fw_node_get(node);
1206 		device->node_id = node->node_id;
1207 		device->generation = card->generation;
1208 		device->is_local = node == card->local_node;
1209 		mutex_init(&device->client_list_mutex);
1210 		INIT_LIST_HEAD(&device->client_list);
1211 
1212 		/*
1213 		 * Set the node data to point back to this device so
1214 		 * FW_NODE_UPDATED callbacks can update the node_id
1215 		 * and generation for the device.
1216 		 */
1217 		node->data = device;
1218 
1219 		/*
1220 		 * Many devices are slow to respond after bus resets,
1221 		 * especially if they are bus powered and go through
1222 		 * power-up after getting plugged in.  We schedule the
1223 		 * first config rom scan half a second after bus reset.
1224 		 */
1225 		INIT_DELAYED_WORK(&device->work, fw_device_init);
1226 		fw_schedule_device_work(device, INITIAL_DELAY);
1227 		break;
1228 
1229 	case FW_NODE_INITIATED_RESET:
1230 	case FW_NODE_LINK_ON:
1231 		device = node->data;
1232 		if (device == NULL)
1233 			goto create;
1234 
1235 		device->node_id = node->node_id;
1236 		smp_wmb();  /* update node_id before generation */
1237 		device->generation = card->generation;
1238 		if (atomic_cmpxchg(&device->state,
1239 			    FW_DEVICE_RUNNING,
1240 			    FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1241 			PREPARE_DELAYED_WORK(&device->work, fw_device_refresh);
1242 			fw_schedule_device_work(device,
1243 				device->is_local ? 0 : INITIAL_DELAY);
1244 		}
1245 		break;
1246 
1247 	case FW_NODE_UPDATED:
1248 		device = node->data;
1249 		if (device == NULL)
1250 			break;
1251 
1252 		device->node_id = node->node_id;
1253 		smp_wmb();  /* update node_id before generation */
1254 		device->generation = card->generation;
1255 		if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1256 			PREPARE_DELAYED_WORK(&device->work, fw_device_update);
1257 			fw_schedule_device_work(device, 0);
1258 		}
1259 		break;
1260 
1261 	case FW_NODE_DESTROYED:
1262 	case FW_NODE_LINK_OFF:
1263 		if (!node->data)
1264 			break;
1265 
1266 		/*
1267 		 * Destroy the device associated with the node.  There
1268 		 * are two cases here: either the device is fully
1269 		 * initialized (FW_DEVICE_RUNNING) or we're in the
1270 		 * process of reading its config rom
1271 		 * (FW_DEVICE_INITIALIZING).  If it is fully
1272 		 * initialized we can reuse device->work to schedule a
1273 		 * full fw_device_shutdown().  If not, there's work
1274 		 * scheduled to read it's config rom, and we just put
1275 		 * the device in shutdown state to have that code fail
1276 		 * to create the device.
1277 		 */
1278 		device = node->data;
1279 		if (atomic_xchg(&device->state,
1280 				FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1281 			PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1282 			fw_schedule_device_work(device,
1283 				list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1284 		}
1285 		break;
1286 	}
1287 }
1288