1 /* 2 * Device probing and sysfs code. 3 * 4 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software Foundation, 18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 19 */ 20 21 #include <linux/bug.h> 22 #include <linux/ctype.h> 23 #include <linux/delay.h> 24 #include <linux/device.h> 25 #include <linux/errno.h> 26 #include <linux/firewire.h> 27 #include <linux/firewire-constants.h> 28 #include <linux/idr.h> 29 #include <linux/jiffies.h> 30 #include <linux/kobject.h> 31 #include <linux/list.h> 32 #include <linux/mod_devicetable.h> 33 #include <linux/module.h> 34 #include <linux/mutex.h> 35 #include <linux/rwsem.h> 36 #include <linux/slab.h> 37 #include <linux/spinlock.h> 38 #include <linux/string.h> 39 #include <linux/workqueue.h> 40 41 #include <linux/atomic.h> 42 #include <asm/byteorder.h> 43 44 #include "core.h" 45 46 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p) 47 { 48 ci->p = p + 1; 49 ci->end = ci->p + (p[0] >> 16); 50 } 51 EXPORT_SYMBOL(fw_csr_iterator_init); 52 53 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value) 54 { 55 *key = *ci->p >> 24; 56 *value = *ci->p & 0xffffff; 57 58 return ci->p++ < ci->end; 59 } 60 EXPORT_SYMBOL(fw_csr_iterator_next); 61 62 static const u32 *search_leaf(const u32 *directory, int search_key) 63 { 64 struct fw_csr_iterator ci; 65 int last_key = 0, key, value; 66 67 fw_csr_iterator_init(&ci, directory); 68 while (fw_csr_iterator_next(&ci, &key, &value)) { 69 if (last_key == search_key && 70 key == (CSR_DESCRIPTOR | CSR_LEAF)) 71 return ci.p - 1 + value; 72 73 last_key = key; 74 } 75 76 return NULL; 77 } 78 79 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size) 80 { 81 unsigned int quadlets, i; 82 char c; 83 84 if (!size || !buf) 85 return -EINVAL; 86 87 quadlets = min(block[0] >> 16, 256U); 88 if (quadlets < 2) 89 return -ENODATA; 90 91 if (block[1] != 0 || block[2] != 0) 92 /* unknown language/character set */ 93 return -ENODATA; 94 95 block += 3; 96 quadlets -= 2; 97 for (i = 0; i < quadlets * 4 && i < size - 1; i++) { 98 c = block[i / 4] >> (24 - 8 * (i % 4)); 99 if (c == '\0') 100 break; 101 buf[i] = c; 102 } 103 buf[i] = '\0'; 104 105 return i; 106 } 107 108 /** 109 * fw_csr_string() - reads a string from the configuration ROM 110 * @directory: e.g. root directory or unit directory 111 * @key: the key of the preceding directory entry 112 * @buf: where to put the string 113 * @size: size of @buf, in bytes 114 * 115 * The string is taken from a minimal ASCII text descriptor leaf after 116 * the immediate entry with @key. The string is zero-terminated. 117 * Returns strlen(buf) or a negative error code. 118 */ 119 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size) 120 { 121 const u32 *leaf = search_leaf(directory, key); 122 if (!leaf) 123 return -ENOENT; 124 125 return textual_leaf_to_string(leaf, buf, size); 126 } 127 EXPORT_SYMBOL(fw_csr_string); 128 129 static void get_ids(const u32 *directory, int *id) 130 { 131 struct fw_csr_iterator ci; 132 int key, value; 133 134 fw_csr_iterator_init(&ci, directory); 135 while (fw_csr_iterator_next(&ci, &key, &value)) { 136 switch (key) { 137 case CSR_VENDOR: id[0] = value; break; 138 case CSR_MODEL: id[1] = value; break; 139 case CSR_SPECIFIER_ID: id[2] = value; break; 140 case CSR_VERSION: id[3] = value; break; 141 } 142 } 143 } 144 145 static void get_modalias_ids(struct fw_unit *unit, int *id) 146 { 147 get_ids(&fw_parent_device(unit)->config_rom[5], id); 148 get_ids(unit->directory, id); 149 } 150 151 static bool match_ids(const struct ieee1394_device_id *id_table, int *id) 152 { 153 int match = 0; 154 155 if (id[0] == id_table->vendor_id) 156 match |= IEEE1394_MATCH_VENDOR_ID; 157 if (id[1] == id_table->model_id) 158 match |= IEEE1394_MATCH_MODEL_ID; 159 if (id[2] == id_table->specifier_id) 160 match |= IEEE1394_MATCH_SPECIFIER_ID; 161 if (id[3] == id_table->version) 162 match |= IEEE1394_MATCH_VERSION; 163 164 return (match & id_table->match_flags) == id_table->match_flags; 165 } 166 167 static bool is_fw_unit(struct device *dev); 168 169 static int fw_unit_match(struct device *dev, struct device_driver *drv) 170 { 171 const struct ieee1394_device_id *id_table = 172 container_of(drv, struct fw_driver, driver)->id_table; 173 int id[] = {0, 0, 0, 0}; 174 175 /* We only allow binding to fw_units. */ 176 if (!is_fw_unit(dev)) 177 return 0; 178 179 get_modalias_ids(fw_unit(dev), id); 180 181 for (; id_table->match_flags != 0; id_table++) 182 if (match_ids(id_table, id)) 183 return 1; 184 185 return 0; 186 } 187 188 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size) 189 { 190 int id[] = {0, 0, 0, 0}; 191 192 get_modalias_ids(unit, id); 193 194 return snprintf(buffer, buffer_size, 195 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X", 196 id[0], id[1], id[2], id[3]); 197 } 198 199 static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env) 200 { 201 struct fw_unit *unit = fw_unit(dev); 202 char modalias[64]; 203 204 get_modalias(unit, modalias, sizeof(modalias)); 205 206 if (add_uevent_var(env, "MODALIAS=%s", modalias)) 207 return -ENOMEM; 208 209 return 0; 210 } 211 212 struct bus_type fw_bus_type = { 213 .name = "firewire", 214 .match = fw_unit_match, 215 }; 216 EXPORT_SYMBOL(fw_bus_type); 217 218 int fw_device_enable_phys_dma(struct fw_device *device) 219 { 220 int generation = device->generation; 221 222 /* device->node_id, accessed below, must not be older than generation */ 223 smp_rmb(); 224 225 return device->card->driver->enable_phys_dma(device->card, 226 device->node_id, 227 generation); 228 } 229 EXPORT_SYMBOL(fw_device_enable_phys_dma); 230 231 struct config_rom_attribute { 232 struct device_attribute attr; 233 u32 key; 234 }; 235 236 static ssize_t show_immediate(struct device *dev, 237 struct device_attribute *dattr, char *buf) 238 { 239 struct config_rom_attribute *attr = 240 container_of(dattr, struct config_rom_attribute, attr); 241 struct fw_csr_iterator ci; 242 const u32 *dir; 243 int key, value, ret = -ENOENT; 244 245 down_read(&fw_device_rwsem); 246 247 if (is_fw_unit(dev)) 248 dir = fw_unit(dev)->directory; 249 else 250 dir = fw_device(dev)->config_rom + 5; 251 252 fw_csr_iterator_init(&ci, dir); 253 while (fw_csr_iterator_next(&ci, &key, &value)) 254 if (attr->key == key) { 255 ret = snprintf(buf, buf ? PAGE_SIZE : 0, 256 "0x%06x\n", value); 257 break; 258 } 259 260 up_read(&fw_device_rwsem); 261 262 return ret; 263 } 264 265 #define IMMEDIATE_ATTR(name, key) \ 266 { __ATTR(name, S_IRUGO, show_immediate, NULL), key } 267 268 static ssize_t show_text_leaf(struct device *dev, 269 struct device_attribute *dattr, char *buf) 270 { 271 struct config_rom_attribute *attr = 272 container_of(dattr, struct config_rom_attribute, attr); 273 const u32 *dir; 274 size_t bufsize; 275 char dummy_buf[2]; 276 int ret; 277 278 down_read(&fw_device_rwsem); 279 280 if (is_fw_unit(dev)) 281 dir = fw_unit(dev)->directory; 282 else 283 dir = fw_device(dev)->config_rom + 5; 284 285 if (buf) { 286 bufsize = PAGE_SIZE - 1; 287 } else { 288 buf = dummy_buf; 289 bufsize = 1; 290 } 291 292 ret = fw_csr_string(dir, attr->key, buf, bufsize); 293 294 if (ret >= 0) { 295 /* Strip trailing whitespace and add newline. */ 296 while (ret > 0 && isspace(buf[ret - 1])) 297 ret--; 298 strcpy(buf + ret, "\n"); 299 ret++; 300 } 301 302 up_read(&fw_device_rwsem); 303 304 return ret; 305 } 306 307 #define TEXT_LEAF_ATTR(name, key) \ 308 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key } 309 310 static struct config_rom_attribute config_rom_attributes[] = { 311 IMMEDIATE_ATTR(vendor, CSR_VENDOR), 312 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION), 313 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID), 314 IMMEDIATE_ATTR(version, CSR_VERSION), 315 IMMEDIATE_ATTR(model, CSR_MODEL), 316 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR), 317 TEXT_LEAF_ATTR(model_name, CSR_MODEL), 318 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION), 319 }; 320 321 static void init_fw_attribute_group(struct device *dev, 322 struct device_attribute *attrs, 323 struct fw_attribute_group *group) 324 { 325 struct device_attribute *attr; 326 int i, j; 327 328 for (j = 0; attrs[j].attr.name != NULL; j++) 329 group->attrs[j] = &attrs[j].attr; 330 331 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) { 332 attr = &config_rom_attributes[i].attr; 333 if (attr->show(dev, attr, NULL) < 0) 334 continue; 335 group->attrs[j++] = &attr->attr; 336 } 337 338 group->attrs[j] = NULL; 339 group->groups[0] = &group->group; 340 group->groups[1] = NULL; 341 group->group.attrs = group->attrs; 342 dev->groups = (const struct attribute_group **) group->groups; 343 } 344 345 static ssize_t modalias_show(struct device *dev, 346 struct device_attribute *attr, char *buf) 347 { 348 struct fw_unit *unit = fw_unit(dev); 349 int length; 350 351 length = get_modalias(unit, buf, PAGE_SIZE); 352 strcpy(buf + length, "\n"); 353 354 return length + 1; 355 } 356 357 static ssize_t rom_index_show(struct device *dev, 358 struct device_attribute *attr, char *buf) 359 { 360 struct fw_device *device = fw_device(dev->parent); 361 struct fw_unit *unit = fw_unit(dev); 362 363 return snprintf(buf, PAGE_SIZE, "%d\n", 364 (int)(unit->directory - device->config_rom)); 365 } 366 367 static struct device_attribute fw_unit_attributes[] = { 368 __ATTR_RO(modalias), 369 __ATTR_RO(rom_index), 370 __ATTR_NULL, 371 }; 372 373 static ssize_t config_rom_show(struct device *dev, 374 struct device_attribute *attr, char *buf) 375 { 376 struct fw_device *device = fw_device(dev); 377 size_t length; 378 379 down_read(&fw_device_rwsem); 380 length = device->config_rom_length * 4; 381 memcpy(buf, device->config_rom, length); 382 up_read(&fw_device_rwsem); 383 384 return length; 385 } 386 387 static ssize_t guid_show(struct device *dev, 388 struct device_attribute *attr, char *buf) 389 { 390 struct fw_device *device = fw_device(dev); 391 int ret; 392 393 down_read(&fw_device_rwsem); 394 ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n", 395 device->config_rom[3], device->config_rom[4]); 396 up_read(&fw_device_rwsem); 397 398 return ret; 399 } 400 401 static int units_sprintf(char *buf, const u32 *directory) 402 { 403 struct fw_csr_iterator ci; 404 int key, value; 405 int specifier_id = 0; 406 int version = 0; 407 408 fw_csr_iterator_init(&ci, directory); 409 while (fw_csr_iterator_next(&ci, &key, &value)) { 410 switch (key) { 411 case CSR_SPECIFIER_ID: 412 specifier_id = value; 413 break; 414 case CSR_VERSION: 415 version = value; 416 break; 417 } 418 } 419 420 return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version); 421 } 422 423 static ssize_t units_show(struct device *dev, 424 struct device_attribute *attr, char *buf) 425 { 426 struct fw_device *device = fw_device(dev); 427 struct fw_csr_iterator ci; 428 int key, value, i = 0; 429 430 down_read(&fw_device_rwsem); 431 fw_csr_iterator_init(&ci, &device->config_rom[5]); 432 while (fw_csr_iterator_next(&ci, &key, &value)) { 433 if (key != (CSR_UNIT | CSR_DIRECTORY)) 434 continue; 435 i += units_sprintf(&buf[i], ci.p + value - 1); 436 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1)) 437 break; 438 } 439 up_read(&fw_device_rwsem); 440 441 if (i) 442 buf[i - 1] = '\n'; 443 444 return i; 445 } 446 447 static struct device_attribute fw_device_attributes[] = { 448 __ATTR_RO(config_rom), 449 __ATTR_RO(guid), 450 __ATTR_RO(units), 451 __ATTR_NULL, 452 }; 453 454 static int read_rom(struct fw_device *device, 455 int generation, int index, u32 *data) 456 { 457 u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4; 458 int i, rcode; 459 460 /* device->node_id, accessed below, must not be older than generation */ 461 smp_rmb(); 462 463 for (i = 10; i < 100; i += 10) { 464 rcode = fw_run_transaction(device->card, 465 TCODE_READ_QUADLET_REQUEST, device->node_id, 466 generation, device->max_speed, offset, data, 4); 467 if (rcode != RCODE_BUSY) 468 break; 469 msleep(i); 470 } 471 be32_to_cpus(data); 472 473 return rcode; 474 } 475 476 #define MAX_CONFIG_ROM_SIZE 256 477 478 /* 479 * Read the bus info block, perform a speed probe, and read all of the rest of 480 * the config ROM. We do all this with a cached bus generation. If the bus 481 * generation changes under us, read_config_rom will fail and get retried. 482 * It's better to start all over in this case because the node from which we 483 * are reading the ROM may have changed the ROM during the reset. 484 * Returns either a result code or a negative error code. 485 */ 486 static int read_config_rom(struct fw_device *device, int generation) 487 { 488 struct fw_card *card = device->card; 489 const u32 *old_rom, *new_rom; 490 u32 *rom, *stack; 491 u32 sp, key; 492 int i, end, length, ret; 493 494 rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE + 495 sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL); 496 if (rom == NULL) 497 return -ENOMEM; 498 499 stack = &rom[MAX_CONFIG_ROM_SIZE]; 500 memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE); 501 502 device->max_speed = SCODE_100; 503 504 /* First read the bus info block. */ 505 for (i = 0; i < 5; i++) { 506 ret = read_rom(device, generation, i, &rom[i]); 507 if (ret != RCODE_COMPLETE) 508 goto out; 509 /* 510 * As per IEEE1212 7.2, during initialization, devices can 511 * reply with a 0 for the first quadlet of the config 512 * rom to indicate that they are booting (for example, 513 * if the firmware is on the disk of a external 514 * harddisk). In that case we just fail, and the 515 * retry mechanism will try again later. 516 */ 517 if (i == 0 && rom[i] == 0) { 518 ret = RCODE_BUSY; 519 goto out; 520 } 521 } 522 523 device->max_speed = device->node->max_speed; 524 525 /* 526 * Determine the speed of 527 * - devices with link speed less than PHY speed, 528 * - devices with 1394b PHY (unless only connected to 1394a PHYs), 529 * - all devices if there are 1394b repeaters. 530 * Note, we cannot use the bus info block's link_spd as starting point 531 * because some buggy firmwares set it lower than necessary and because 532 * 1394-1995 nodes do not have the field. 533 */ 534 if ((rom[2] & 0x7) < device->max_speed || 535 device->max_speed == SCODE_BETA || 536 card->beta_repeaters_present) { 537 u32 dummy; 538 539 /* for S1600 and S3200 */ 540 if (device->max_speed == SCODE_BETA) 541 device->max_speed = card->link_speed; 542 543 while (device->max_speed > SCODE_100) { 544 if (read_rom(device, generation, 0, &dummy) == 545 RCODE_COMPLETE) 546 break; 547 device->max_speed--; 548 } 549 } 550 551 /* 552 * Now parse the config rom. The config rom is a recursive 553 * directory structure so we parse it using a stack of 554 * references to the blocks that make up the structure. We 555 * push a reference to the root directory on the stack to 556 * start things off. 557 */ 558 length = i; 559 sp = 0; 560 stack[sp++] = 0xc0000005; 561 while (sp > 0) { 562 /* 563 * Pop the next block reference of the stack. The 564 * lower 24 bits is the offset into the config rom, 565 * the upper 8 bits are the type of the reference the 566 * block. 567 */ 568 key = stack[--sp]; 569 i = key & 0xffffff; 570 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) { 571 ret = -ENXIO; 572 goto out; 573 } 574 575 /* Read header quadlet for the block to get the length. */ 576 ret = read_rom(device, generation, i, &rom[i]); 577 if (ret != RCODE_COMPLETE) 578 goto out; 579 end = i + (rom[i] >> 16) + 1; 580 if (end > MAX_CONFIG_ROM_SIZE) { 581 /* 582 * This block extends outside the config ROM which is 583 * a firmware bug. Ignore this whole block, i.e. 584 * simply set a fake block length of 0. 585 */ 586 fw_err(card, "skipped invalid ROM block %x at %llx\n", 587 rom[i], 588 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM); 589 rom[i] = 0; 590 end = i; 591 } 592 i++; 593 594 /* 595 * Now read in the block. If this is a directory 596 * block, check the entries as we read them to see if 597 * it references another block, and push it in that case. 598 */ 599 for (; i < end; i++) { 600 ret = read_rom(device, generation, i, &rom[i]); 601 if (ret != RCODE_COMPLETE) 602 goto out; 603 604 if ((key >> 30) != 3 || (rom[i] >> 30) < 2) 605 continue; 606 /* 607 * Offset points outside the ROM. May be a firmware 608 * bug or an Extended ROM entry (IEEE 1212-2001 clause 609 * 7.7.18). Simply overwrite this pointer here by a 610 * fake immediate entry so that later iterators over 611 * the ROM don't have to check offsets all the time. 612 */ 613 if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) { 614 fw_err(card, 615 "skipped unsupported ROM entry %x at %llx\n", 616 rom[i], 617 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM); 618 rom[i] = 0; 619 continue; 620 } 621 stack[sp++] = i + rom[i]; 622 } 623 if (length < i) 624 length = i; 625 } 626 627 old_rom = device->config_rom; 628 new_rom = kmemdup(rom, length * 4, GFP_KERNEL); 629 if (new_rom == NULL) { 630 ret = -ENOMEM; 631 goto out; 632 } 633 634 down_write(&fw_device_rwsem); 635 device->config_rom = new_rom; 636 device->config_rom_length = length; 637 up_write(&fw_device_rwsem); 638 639 kfree(old_rom); 640 ret = RCODE_COMPLETE; 641 device->max_rec = rom[2] >> 12 & 0xf; 642 device->cmc = rom[2] >> 30 & 1; 643 device->irmc = rom[2] >> 31 & 1; 644 out: 645 kfree(rom); 646 647 return ret; 648 } 649 650 static void fw_unit_release(struct device *dev) 651 { 652 struct fw_unit *unit = fw_unit(dev); 653 654 fw_device_put(fw_parent_device(unit)); 655 kfree(unit); 656 } 657 658 static struct device_type fw_unit_type = { 659 .uevent = fw_unit_uevent, 660 .release = fw_unit_release, 661 }; 662 663 static bool is_fw_unit(struct device *dev) 664 { 665 return dev->type == &fw_unit_type; 666 } 667 668 static void create_units(struct fw_device *device) 669 { 670 struct fw_csr_iterator ci; 671 struct fw_unit *unit; 672 int key, value, i; 673 674 i = 0; 675 fw_csr_iterator_init(&ci, &device->config_rom[5]); 676 while (fw_csr_iterator_next(&ci, &key, &value)) { 677 if (key != (CSR_UNIT | CSR_DIRECTORY)) 678 continue; 679 680 /* 681 * Get the address of the unit directory and try to 682 * match the drivers id_tables against it. 683 */ 684 unit = kzalloc(sizeof(*unit), GFP_KERNEL); 685 if (unit == NULL) { 686 fw_err(device->card, "out of memory for unit\n"); 687 continue; 688 } 689 690 unit->directory = ci.p + value - 1; 691 unit->device.bus = &fw_bus_type; 692 unit->device.type = &fw_unit_type; 693 unit->device.parent = &device->device; 694 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++); 695 696 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) < 697 ARRAY_SIZE(fw_unit_attributes) + 698 ARRAY_SIZE(config_rom_attributes)); 699 init_fw_attribute_group(&unit->device, 700 fw_unit_attributes, 701 &unit->attribute_group); 702 703 if (device_register(&unit->device) < 0) 704 goto skip_unit; 705 706 fw_device_get(device); 707 continue; 708 709 skip_unit: 710 kfree(unit); 711 } 712 } 713 714 static int shutdown_unit(struct device *device, void *data) 715 { 716 device_unregister(device); 717 718 return 0; 719 } 720 721 /* 722 * fw_device_rwsem acts as dual purpose mutex: 723 * - serializes accesses to fw_device_idr, 724 * - serializes accesses to fw_device.config_rom/.config_rom_length and 725 * fw_unit.directory, unless those accesses happen at safe occasions 726 */ 727 DECLARE_RWSEM(fw_device_rwsem); 728 729 DEFINE_IDR(fw_device_idr); 730 int fw_cdev_major; 731 732 struct fw_device *fw_device_get_by_devt(dev_t devt) 733 { 734 struct fw_device *device; 735 736 down_read(&fw_device_rwsem); 737 device = idr_find(&fw_device_idr, MINOR(devt)); 738 if (device) 739 fw_device_get(device); 740 up_read(&fw_device_rwsem); 741 742 return device; 743 } 744 745 struct workqueue_struct *fw_workqueue; 746 EXPORT_SYMBOL(fw_workqueue); 747 748 static void fw_schedule_device_work(struct fw_device *device, 749 unsigned long delay) 750 { 751 queue_delayed_work(fw_workqueue, &device->work, delay); 752 } 753 754 /* 755 * These defines control the retry behavior for reading the config 756 * rom. It shouldn't be necessary to tweak these; if the device 757 * doesn't respond to a config rom read within 10 seconds, it's not 758 * going to respond at all. As for the initial delay, a lot of 759 * devices will be able to respond within half a second after bus 760 * reset. On the other hand, it's not really worth being more 761 * aggressive than that, since it scales pretty well; if 10 devices 762 * are plugged in, they're all getting read within one second. 763 */ 764 765 #define MAX_RETRIES 10 766 #define RETRY_DELAY (3 * HZ) 767 #define INITIAL_DELAY (HZ / 2) 768 #define SHUTDOWN_DELAY (2 * HZ) 769 770 static void fw_device_shutdown(struct work_struct *work) 771 { 772 struct fw_device *device = 773 container_of(work, struct fw_device, work.work); 774 int minor = MINOR(device->device.devt); 775 776 if (time_before64(get_jiffies_64(), 777 device->card->reset_jiffies + SHUTDOWN_DELAY) 778 && !list_empty(&device->card->link)) { 779 fw_schedule_device_work(device, SHUTDOWN_DELAY); 780 return; 781 } 782 783 if (atomic_cmpxchg(&device->state, 784 FW_DEVICE_GONE, 785 FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE) 786 return; 787 788 fw_device_cdev_remove(device); 789 device_for_each_child(&device->device, NULL, shutdown_unit); 790 device_unregister(&device->device); 791 792 down_write(&fw_device_rwsem); 793 idr_remove(&fw_device_idr, minor); 794 up_write(&fw_device_rwsem); 795 796 fw_device_put(device); 797 } 798 799 static void fw_device_release(struct device *dev) 800 { 801 struct fw_device *device = fw_device(dev); 802 struct fw_card *card = device->card; 803 unsigned long flags; 804 805 /* 806 * Take the card lock so we don't set this to NULL while a 807 * FW_NODE_UPDATED callback is being handled or while the 808 * bus manager work looks at this node. 809 */ 810 spin_lock_irqsave(&card->lock, flags); 811 device->node->data = NULL; 812 spin_unlock_irqrestore(&card->lock, flags); 813 814 fw_node_put(device->node); 815 kfree(device->config_rom); 816 kfree(device); 817 fw_card_put(card); 818 } 819 820 static struct device_type fw_device_type = { 821 .release = fw_device_release, 822 }; 823 824 static bool is_fw_device(struct device *dev) 825 { 826 return dev->type == &fw_device_type; 827 } 828 829 static int update_unit(struct device *dev, void *data) 830 { 831 struct fw_unit *unit = fw_unit(dev); 832 struct fw_driver *driver = (struct fw_driver *)dev->driver; 833 834 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) { 835 device_lock(dev); 836 driver->update(unit); 837 device_unlock(dev); 838 } 839 840 return 0; 841 } 842 843 static void fw_device_update(struct work_struct *work) 844 { 845 struct fw_device *device = 846 container_of(work, struct fw_device, work.work); 847 848 fw_device_cdev_update(device); 849 device_for_each_child(&device->device, NULL, update_unit); 850 } 851 852 /* 853 * If a device was pending for deletion because its node went away but its 854 * bus info block and root directory header matches that of a newly discovered 855 * device, revive the existing fw_device. 856 * The newly allocated fw_device becomes obsolete instead. 857 */ 858 static int lookup_existing_device(struct device *dev, void *data) 859 { 860 struct fw_device *old = fw_device(dev); 861 struct fw_device *new = data; 862 struct fw_card *card = new->card; 863 int match = 0; 864 865 if (!is_fw_device(dev)) 866 return 0; 867 868 down_read(&fw_device_rwsem); /* serialize config_rom access */ 869 spin_lock_irq(&card->lock); /* serialize node access */ 870 871 if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 && 872 atomic_cmpxchg(&old->state, 873 FW_DEVICE_GONE, 874 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) { 875 struct fw_node *current_node = new->node; 876 struct fw_node *obsolete_node = old->node; 877 878 new->node = obsolete_node; 879 new->node->data = new; 880 old->node = current_node; 881 old->node->data = old; 882 883 old->max_speed = new->max_speed; 884 old->node_id = current_node->node_id; 885 smp_wmb(); /* update node_id before generation */ 886 old->generation = card->generation; 887 old->config_rom_retries = 0; 888 fw_notice(card, "rediscovered device %s\n", dev_name(dev)); 889 890 PREPARE_DELAYED_WORK(&old->work, fw_device_update); 891 fw_schedule_device_work(old, 0); 892 893 if (current_node == card->root_node) 894 fw_schedule_bm_work(card, 0); 895 896 match = 1; 897 } 898 899 spin_unlock_irq(&card->lock); 900 up_read(&fw_device_rwsem); 901 902 return match; 903 } 904 905 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, }; 906 907 static void set_broadcast_channel(struct fw_device *device, int generation) 908 { 909 struct fw_card *card = device->card; 910 __be32 data; 911 int rcode; 912 913 if (!card->broadcast_channel_allocated) 914 return; 915 916 /* 917 * The Broadcast_Channel Valid bit is required by nodes which want to 918 * transmit on this channel. Such transmissions are practically 919 * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required 920 * to be IRM capable and have a max_rec of 8 or more. We use this fact 921 * to narrow down to which nodes we send Broadcast_Channel updates. 922 */ 923 if (!device->irmc || device->max_rec < 8) 924 return; 925 926 /* 927 * Some 1394-1995 nodes crash if this 1394a-2000 register is written. 928 * Perform a read test first. 929 */ 930 if (device->bc_implemented == BC_UNKNOWN) { 931 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST, 932 device->node_id, generation, device->max_speed, 933 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL, 934 &data, 4); 935 switch (rcode) { 936 case RCODE_COMPLETE: 937 if (data & cpu_to_be32(1 << 31)) { 938 device->bc_implemented = BC_IMPLEMENTED; 939 break; 940 } 941 /* else fall through to case address error */ 942 case RCODE_ADDRESS_ERROR: 943 device->bc_implemented = BC_UNIMPLEMENTED; 944 } 945 } 946 947 if (device->bc_implemented == BC_IMPLEMENTED) { 948 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL | 949 BROADCAST_CHANNEL_VALID); 950 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST, 951 device->node_id, generation, device->max_speed, 952 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL, 953 &data, 4); 954 } 955 } 956 957 int fw_device_set_broadcast_channel(struct device *dev, void *gen) 958 { 959 if (is_fw_device(dev)) 960 set_broadcast_channel(fw_device(dev), (long)gen); 961 962 return 0; 963 } 964 965 static void fw_device_init(struct work_struct *work) 966 { 967 struct fw_device *device = 968 container_of(work, struct fw_device, work.work); 969 struct fw_card *card = device->card; 970 struct device *revived_dev; 971 int minor, ret; 972 973 /* 974 * All failure paths here set node->data to NULL, so that we 975 * don't try to do device_for_each_child() on a kfree()'d 976 * device. 977 */ 978 979 ret = read_config_rom(device, device->generation); 980 if (ret != RCODE_COMPLETE) { 981 if (device->config_rom_retries < MAX_RETRIES && 982 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) { 983 device->config_rom_retries++; 984 fw_schedule_device_work(device, RETRY_DELAY); 985 } else { 986 if (device->node->link_on) 987 fw_notice(card, "giving up on node %x: reading config rom failed: %s\n", 988 device->node_id, 989 fw_rcode_string(ret)); 990 if (device->node == card->root_node) 991 fw_schedule_bm_work(card, 0); 992 fw_device_release(&device->device); 993 } 994 return; 995 } 996 997 revived_dev = device_find_child(card->device, 998 device, lookup_existing_device); 999 if (revived_dev) { 1000 put_device(revived_dev); 1001 fw_device_release(&device->device); 1002 1003 return; 1004 } 1005 1006 device_initialize(&device->device); 1007 1008 fw_device_get(device); 1009 down_write(&fw_device_rwsem); 1010 ret = idr_pre_get(&fw_device_idr, GFP_KERNEL) ? 1011 idr_get_new(&fw_device_idr, device, &minor) : 1012 -ENOMEM; 1013 up_write(&fw_device_rwsem); 1014 1015 if (ret < 0) 1016 goto error; 1017 1018 device->device.bus = &fw_bus_type; 1019 device->device.type = &fw_device_type; 1020 device->device.parent = card->device; 1021 device->device.devt = MKDEV(fw_cdev_major, minor); 1022 dev_set_name(&device->device, "fw%d", minor); 1023 1024 BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) < 1025 ARRAY_SIZE(fw_device_attributes) + 1026 ARRAY_SIZE(config_rom_attributes)); 1027 init_fw_attribute_group(&device->device, 1028 fw_device_attributes, 1029 &device->attribute_group); 1030 1031 if (device_add(&device->device)) { 1032 fw_err(card, "failed to add device\n"); 1033 goto error_with_cdev; 1034 } 1035 1036 create_units(device); 1037 1038 /* 1039 * Transition the device to running state. If it got pulled 1040 * out from under us while we did the intialization work, we 1041 * have to shut down the device again here. Normally, though, 1042 * fw_node_event will be responsible for shutting it down when 1043 * necessary. We have to use the atomic cmpxchg here to avoid 1044 * racing with the FW_NODE_DESTROYED case in 1045 * fw_node_event(). 1046 */ 1047 if (atomic_cmpxchg(&device->state, 1048 FW_DEVICE_INITIALIZING, 1049 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) { 1050 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown); 1051 fw_schedule_device_work(device, SHUTDOWN_DELAY); 1052 } else { 1053 fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n", 1054 dev_name(&device->device), 1055 device->config_rom[3], device->config_rom[4], 1056 1 << device->max_speed); 1057 device->config_rom_retries = 0; 1058 1059 set_broadcast_channel(device, device->generation); 1060 } 1061 1062 /* 1063 * Reschedule the IRM work if we just finished reading the 1064 * root node config rom. If this races with a bus reset we 1065 * just end up running the IRM work a couple of extra times - 1066 * pretty harmless. 1067 */ 1068 if (device->node == card->root_node) 1069 fw_schedule_bm_work(card, 0); 1070 1071 return; 1072 1073 error_with_cdev: 1074 down_write(&fw_device_rwsem); 1075 idr_remove(&fw_device_idr, minor); 1076 up_write(&fw_device_rwsem); 1077 error: 1078 fw_device_put(device); /* fw_device_idr's reference */ 1079 1080 put_device(&device->device); /* our reference */ 1081 } 1082 1083 /* Reread and compare bus info block and header of root directory */ 1084 static int reread_config_rom(struct fw_device *device, int generation, 1085 bool *changed) 1086 { 1087 u32 q; 1088 int i, rcode; 1089 1090 for (i = 0; i < 6; i++) { 1091 rcode = read_rom(device, generation, i, &q); 1092 if (rcode != RCODE_COMPLETE) 1093 return rcode; 1094 1095 if (i == 0 && q == 0) 1096 /* inaccessible (see read_config_rom); retry later */ 1097 return RCODE_BUSY; 1098 1099 if (q != device->config_rom[i]) { 1100 *changed = true; 1101 return RCODE_COMPLETE; 1102 } 1103 } 1104 1105 *changed = false; 1106 return RCODE_COMPLETE; 1107 } 1108 1109 static void fw_device_refresh(struct work_struct *work) 1110 { 1111 struct fw_device *device = 1112 container_of(work, struct fw_device, work.work); 1113 struct fw_card *card = device->card; 1114 int ret, node_id = device->node_id; 1115 bool changed; 1116 1117 ret = reread_config_rom(device, device->generation, &changed); 1118 if (ret != RCODE_COMPLETE) 1119 goto failed_config_rom; 1120 1121 if (!changed) { 1122 if (atomic_cmpxchg(&device->state, 1123 FW_DEVICE_INITIALIZING, 1124 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) 1125 goto gone; 1126 1127 fw_device_update(work); 1128 device->config_rom_retries = 0; 1129 goto out; 1130 } 1131 1132 /* 1133 * Something changed. We keep things simple and don't investigate 1134 * further. We just destroy all previous units and create new ones. 1135 */ 1136 device_for_each_child(&device->device, NULL, shutdown_unit); 1137 1138 ret = read_config_rom(device, device->generation); 1139 if (ret != RCODE_COMPLETE) 1140 goto failed_config_rom; 1141 1142 fw_device_cdev_update(device); 1143 create_units(device); 1144 1145 /* Userspace may want to re-read attributes. */ 1146 kobject_uevent(&device->device.kobj, KOBJ_CHANGE); 1147 1148 if (atomic_cmpxchg(&device->state, 1149 FW_DEVICE_INITIALIZING, 1150 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) 1151 goto gone; 1152 1153 fw_notice(card, "refreshed device %s\n", dev_name(&device->device)); 1154 device->config_rom_retries = 0; 1155 goto out; 1156 1157 failed_config_rom: 1158 if (device->config_rom_retries < MAX_RETRIES && 1159 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) { 1160 device->config_rom_retries++; 1161 fw_schedule_device_work(device, RETRY_DELAY); 1162 return; 1163 } 1164 1165 fw_notice(card, "giving up on refresh of device %s: %s\n", 1166 dev_name(&device->device), fw_rcode_string(ret)); 1167 gone: 1168 atomic_set(&device->state, FW_DEVICE_GONE); 1169 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown); 1170 fw_schedule_device_work(device, SHUTDOWN_DELAY); 1171 out: 1172 if (node_id == card->root_node->node_id) 1173 fw_schedule_bm_work(card, 0); 1174 } 1175 1176 void fw_node_event(struct fw_card *card, struct fw_node *node, int event) 1177 { 1178 struct fw_device *device; 1179 1180 switch (event) { 1181 case FW_NODE_CREATED: 1182 /* 1183 * Attempt to scan the node, regardless whether its self ID has 1184 * the L (link active) flag set or not. Some broken devices 1185 * send L=0 but have an up-and-running link; others send L=1 1186 * without actually having a link. 1187 */ 1188 create: 1189 device = kzalloc(sizeof(*device), GFP_ATOMIC); 1190 if (device == NULL) 1191 break; 1192 1193 /* 1194 * Do minimal intialization of the device here, the 1195 * rest will happen in fw_device_init(). 1196 * 1197 * Attention: A lot of things, even fw_device_get(), 1198 * cannot be done before fw_device_init() finished! 1199 * You can basically just check device->state and 1200 * schedule work until then, but only while holding 1201 * card->lock. 1202 */ 1203 atomic_set(&device->state, FW_DEVICE_INITIALIZING); 1204 device->card = fw_card_get(card); 1205 device->node = fw_node_get(node); 1206 device->node_id = node->node_id; 1207 device->generation = card->generation; 1208 device->is_local = node == card->local_node; 1209 mutex_init(&device->client_list_mutex); 1210 INIT_LIST_HEAD(&device->client_list); 1211 1212 /* 1213 * Set the node data to point back to this device so 1214 * FW_NODE_UPDATED callbacks can update the node_id 1215 * and generation for the device. 1216 */ 1217 node->data = device; 1218 1219 /* 1220 * Many devices are slow to respond after bus resets, 1221 * especially if they are bus powered and go through 1222 * power-up after getting plugged in. We schedule the 1223 * first config rom scan half a second after bus reset. 1224 */ 1225 INIT_DELAYED_WORK(&device->work, fw_device_init); 1226 fw_schedule_device_work(device, INITIAL_DELAY); 1227 break; 1228 1229 case FW_NODE_INITIATED_RESET: 1230 case FW_NODE_LINK_ON: 1231 device = node->data; 1232 if (device == NULL) 1233 goto create; 1234 1235 device->node_id = node->node_id; 1236 smp_wmb(); /* update node_id before generation */ 1237 device->generation = card->generation; 1238 if (atomic_cmpxchg(&device->state, 1239 FW_DEVICE_RUNNING, 1240 FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) { 1241 PREPARE_DELAYED_WORK(&device->work, fw_device_refresh); 1242 fw_schedule_device_work(device, 1243 device->is_local ? 0 : INITIAL_DELAY); 1244 } 1245 break; 1246 1247 case FW_NODE_UPDATED: 1248 device = node->data; 1249 if (device == NULL) 1250 break; 1251 1252 device->node_id = node->node_id; 1253 smp_wmb(); /* update node_id before generation */ 1254 device->generation = card->generation; 1255 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) { 1256 PREPARE_DELAYED_WORK(&device->work, fw_device_update); 1257 fw_schedule_device_work(device, 0); 1258 } 1259 break; 1260 1261 case FW_NODE_DESTROYED: 1262 case FW_NODE_LINK_OFF: 1263 if (!node->data) 1264 break; 1265 1266 /* 1267 * Destroy the device associated with the node. There 1268 * are two cases here: either the device is fully 1269 * initialized (FW_DEVICE_RUNNING) or we're in the 1270 * process of reading its config rom 1271 * (FW_DEVICE_INITIALIZING). If it is fully 1272 * initialized we can reuse device->work to schedule a 1273 * full fw_device_shutdown(). If not, there's work 1274 * scheduled to read it's config rom, and we just put 1275 * the device in shutdown state to have that code fail 1276 * to create the device. 1277 */ 1278 device = node->data; 1279 if (atomic_xchg(&device->state, 1280 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) { 1281 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown); 1282 fw_schedule_device_work(device, 1283 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY); 1284 } 1285 break; 1286 } 1287 } 1288