1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Device probing and sysfs code. 4 * 5 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net> 6 */ 7 8 #include <linux/bug.h> 9 #include <linux/ctype.h> 10 #include <linux/delay.h> 11 #include <linux/device.h> 12 #include <linux/errno.h> 13 #include <linux/firewire.h> 14 #include <linux/firewire-constants.h> 15 #include <linux/jiffies.h> 16 #include <linux/kobject.h> 17 #include <linux/list.h> 18 #include <linux/mod_devicetable.h> 19 #include <linux/module.h> 20 #include <linux/mutex.h> 21 #include <linux/random.h> 22 #include <linux/rwsem.h> 23 #include <linux/slab.h> 24 #include <linux/spinlock.h> 25 #include <linux/string.h> 26 #include <linux/workqueue.h> 27 28 #include <linux/atomic.h> 29 #include <asm/byteorder.h> 30 31 #include "core.h" 32 33 #define ROOT_DIR_OFFSET 5 34 35 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p) 36 { 37 ci->p = p + 1; 38 ci->end = ci->p + (p[0] >> 16); 39 } 40 EXPORT_SYMBOL(fw_csr_iterator_init); 41 42 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value) 43 { 44 *key = *ci->p >> 24; 45 *value = *ci->p & 0xffffff; 46 47 return ci->p++ < ci->end; 48 } 49 EXPORT_SYMBOL(fw_csr_iterator_next); 50 51 static const u32 *search_directory(const u32 *directory, int search_key) 52 { 53 struct fw_csr_iterator ci; 54 int key, value; 55 56 search_key |= CSR_DIRECTORY; 57 58 fw_csr_iterator_init(&ci, directory); 59 while (fw_csr_iterator_next(&ci, &key, &value)) { 60 if (key == search_key) 61 return ci.p - 1 + value; 62 } 63 64 return NULL; 65 } 66 67 static const u32 *search_leaf(const u32 *directory, int search_key) 68 { 69 struct fw_csr_iterator ci; 70 int last_key = 0, key, value; 71 72 fw_csr_iterator_init(&ci, directory); 73 while (fw_csr_iterator_next(&ci, &key, &value)) { 74 if (last_key == search_key && 75 key == (CSR_DESCRIPTOR | CSR_LEAF)) 76 return ci.p - 1 + value; 77 78 last_key = key; 79 } 80 81 return NULL; 82 } 83 84 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size) 85 { 86 unsigned int quadlets, i; 87 char c; 88 89 if (!size || !buf) 90 return -EINVAL; 91 92 quadlets = min(block[0] >> 16, 256U); 93 if (quadlets < 2) 94 return -ENODATA; 95 96 if (block[1] != 0 || block[2] != 0) 97 /* unknown language/character set */ 98 return -ENODATA; 99 100 block += 3; 101 quadlets -= 2; 102 for (i = 0; i < quadlets * 4 && i < size - 1; i++) { 103 c = block[i / 4] >> (24 - 8 * (i % 4)); 104 if (c == '\0') 105 break; 106 buf[i] = c; 107 } 108 buf[i] = '\0'; 109 110 return i; 111 } 112 113 /** 114 * fw_csr_string() - reads a string from the configuration ROM 115 * @directory: e.g. root directory or unit directory 116 * @key: the key of the preceding directory entry 117 * @buf: where to put the string 118 * @size: size of @buf, in bytes 119 * 120 * The string is taken from a minimal ASCII text descriptor leaf just after the entry with the 121 * @key. The string is zero-terminated. An overlong string is silently truncated such that it 122 * and the zero byte fit into @size. 123 * 124 * Returns strlen(buf) or a negative error code. 125 */ 126 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size) 127 { 128 const u32 *leaf = search_leaf(directory, key); 129 if (!leaf) 130 return -ENOENT; 131 132 return textual_leaf_to_string(leaf, buf, size); 133 } 134 EXPORT_SYMBOL(fw_csr_string); 135 136 static void get_ids(const u32 *directory, int *id) 137 { 138 struct fw_csr_iterator ci; 139 int key, value; 140 141 fw_csr_iterator_init(&ci, directory); 142 while (fw_csr_iterator_next(&ci, &key, &value)) { 143 switch (key) { 144 case CSR_VENDOR: id[0] = value; break; 145 case CSR_MODEL: id[1] = value; break; 146 case CSR_SPECIFIER_ID: id[2] = value; break; 147 case CSR_VERSION: id[3] = value; break; 148 } 149 } 150 } 151 152 static void get_modalias_ids(const struct fw_unit *unit, int *id) 153 { 154 const u32 *root_directory = &fw_parent_device(unit)->config_rom[ROOT_DIR_OFFSET]; 155 const u32 *directories[] = {NULL, NULL, NULL}; 156 const u32 *vendor_directory; 157 int i; 158 159 directories[0] = root_directory; 160 161 // Legacy layout of configuration ROM described in Annex 1 of 'Configuration ROM for AV/C 162 // Devices 1.0 (December 12, 2000, 1394 Trading Association, TA Document 1999027)'. 163 vendor_directory = search_directory(root_directory, CSR_VENDOR); 164 if (!vendor_directory) { 165 directories[1] = unit->directory; 166 } else { 167 directories[1] = vendor_directory; 168 directories[2] = unit->directory; 169 } 170 171 for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i) 172 get_ids(directories[i], id); 173 } 174 175 static bool match_ids(const struct ieee1394_device_id *id_table, int *id) 176 { 177 int match = 0; 178 179 if (id[0] == id_table->vendor_id) 180 match |= IEEE1394_MATCH_VENDOR_ID; 181 if (id[1] == id_table->model_id) 182 match |= IEEE1394_MATCH_MODEL_ID; 183 if (id[2] == id_table->specifier_id) 184 match |= IEEE1394_MATCH_SPECIFIER_ID; 185 if (id[3] == id_table->version) 186 match |= IEEE1394_MATCH_VERSION; 187 188 return (match & id_table->match_flags) == id_table->match_flags; 189 } 190 191 static const struct ieee1394_device_id *unit_match(struct device *dev, 192 const struct device_driver *drv) 193 { 194 const struct ieee1394_device_id *id_table = 195 container_of_const(drv, struct fw_driver, driver)->id_table; 196 int id[] = {0, 0, 0, 0}; 197 198 get_modalias_ids(fw_unit(dev), id); 199 200 for (; id_table->match_flags != 0; id_table++) 201 if (match_ids(id_table, id)) 202 return id_table; 203 204 return NULL; 205 } 206 207 static bool is_fw_unit(const struct device *dev); 208 209 static int fw_unit_match(struct device *dev, const struct device_driver *drv) 210 { 211 /* We only allow binding to fw_units. */ 212 return is_fw_unit(dev) && unit_match(dev, drv) != NULL; 213 } 214 215 static int fw_unit_probe(struct device *dev) 216 { 217 struct fw_driver *driver = 218 container_of(dev->driver, struct fw_driver, driver); 219 220 return driver->probe(fw_unit(dev), unit_match(dev, dev->driver)); 221 } 222 223 static void fw_unit_remove(struct device *dev) 224 { 225 struct fw_driver *driver = 226 container_of(dev->driver, struct fw_driver, driver); 227 228 driver->remove(fw_unit(dev)); 229 } 230 231 static int get_modalias(const struct fw_unit *unit, char *buffer, size_t buffer_size) 232 { 233 int id[] = {0, 0, 0, 0}; 234 235 get_modalias_ids(unit, id); 236 237 return snprintf(buffer, buffer_size, 238 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X", 239 id[0], id[1], id[2], id[3]); 240 } 241 242 static int fw_unit_uevent(const struct device *dev, struct kobj_uevent_env *env) 243 { 244 const struct fw_unit *unit = fw_unit(dev); 245 char modalias[64]; 246 247 get_modalias(unit, modalias, sizeof(modalias)); 248 249 if (add_uevent_var(env, "MODALIAS=%s", modalias)) 250 return -ENOMEM; 251 252 return 0; 253 } 254 255 const struct bus_type fw_bus_type = { 256 .name = "firewire", 257 .match = fw_unit_match, 258 .probe = fw_unit_probe, 259 .remove = fw_unit_remove, 260 }; 261 EXPORT_SYMBOL(fw_bus_type); 262 263 int fw_device_enable_phys_dma(struct fw_device *device) 264 { 265 int generation = device->generation; 266 267 /* device->node_id, accessed below, must not be older than generation */ 268 smp_rmb(); 269 270 return device->card->driver->enable_phys_dma(device->card, 271 device->node_id, 272 generation); 273 } 274 EXPORT_SYMBOL(fw_device_enable_phys_dma); 275 276 struct config_rom_attribute { 277 struct device_attribute attr; 278 u32 key; 279 }; 280 281 static ssize_t show_immediate(struct device *dev, 282 struct device_attribute *dattr, char *buf) 283 { 284 struct config_rom_attribute *attr = 285 container_of(dattr, struct config_rom_attribute, attr); 286 struct fw_csr_iterator ci; 287 const u32 *directories[] = {NULL, NULL}; 288 int i, value = -1; 289 290 guard(rwsem_read)(&fw_device_rwsem); 291 292 if (is_fw_unit(dev)) { 293 directories[0] = fw_unit(dev)->directory; 294 } else { 295 const u32 *root_directory = fw_device(dev)->config_rom + ROOT_DIR_OFFSET; 296 const u32 *vendor_directory = search_directory(root_directory, CSR_VENDOR); 297 298 if (!vendor_directory) { 299 directories[0] = root_directory; 300 } else { 301 // Legacy layout of configuration ROM described in Annex 1 of 302 // 'Configuration ROM for AV/C Devices 1.0 (December 12, 2000, 1394 Trading 303 // Association, TA Document 1999027)'. 304 directories[0] = vendor_directory; 305 directories[1] = root_directory; 306 } 307 } 308 309 for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i) { 310 int key, val; 311 312 fw_csr_iterator_init(&ci, directories[i]); 313 while (fw_csr_iterator_next(&ci, &key, &val)) { 314 if (attr->key == key) 315 value = val; 316 } 317 } 318 319 if (value < 0) 320 return -ENOENT; 321 322 // Note that this function is also called by init_fw_attribute_group() with NULL pointer. 323 return buf ? sysfs_emit(buf, "0x%06x\n", value) : 0; 324 } 325 326 #define IMMEDIATE_ATTR(name, key) \ 327 { __ATTR(name, S_IRUGO, show_immediate, NULL), key } 328 329 static ssize_t show_text_leaf(struct device *dev, 330 struct device_attribute *dattr, char *buf) 331 { 332 struct config_rom_attribute *attr = 333 container_of(dattr, struct config_rom_attribute, attr); 334 const u32 *directories[] = {NULL, NULL}; 335 size_t bufsize; 336 char dummy_buf[2]; 337 int i, ret = -ENOENT; 338 339 guard(rwsem_read)(&fw_device_rwsem); 340 341 if (is_fw_unit(dev)) { 342 directories[0] = fw_unit(dev)->directory; 343 } else { 344 const u32 *root_directory = fw_device(dev)->config_rom + ROOT_DIR_OFFSET; 345 const u32 *vendor_directory = search_directory(root_directory, CSR_VENDOR); 346 347 if (!vendor_directory) { 348 directories[0] = root_directory; 349 } else { 350 // Legacy layout of configuration ROM described in Annex 1 of 351 // 'Configuration ROM for AV/C Devices 1.0 (December 12, 2000, 1394 352 // Trading Association, TA Document 1999027)'. 353 directories[0] = root_directory; 354 directories[1] = vendor_directory; 355 } 356 } 357 358 // Note that this function is also called by init_fw_attribute_group() with NULL pointer. 359 if (buf) { 360 bufsize = PAGE_SIZE - 1; 361 } else { 362 buf = dummy_buf; 363 bufsize = 1; 364 } 365 366 for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i) { 367 int result = fw_csr_string(directories[i], attr->key, buf, bufsize); 368 // Detected. 369 if (result >= 0) { 370 ret = result; 371 } else if (i == 0 && attr->key == CSR_VENDOR) { 372 // Sony DVMC-DA1 has configuration ROM such that the descriptor leaf entry 373 // in the root directory follows to the directory entry for vendor ID 374 // instead of the immediate value for vendor ID. 375 result = fw_csr_string(directories[i], CSR_DIRECTORY | attr->key, buf, 376 bufsize); 377 if (result >= 0) 378 ret = result; 379 } 380 } 381 382 if (ret < 0) 383 return ret; 384 385 // Strip trailing whitespace and add newline. 386 while (ret > 0 && isspace(buf[ret - 1])) 387 ret--; 388 strcpy(buf + ret, "\n"); 389 ret++; 390 391 return ret; 392 } 393 394 #define TEXT_LEAF_ATTR(name, key) \ 395 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key } 396 397 static struct config_rom_attribute config_rom_attributes[] = { 398 IMMEDIATE_ATTR(vendor, CSR_VENDOR), 399 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION), 400 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID), 401 IMMEDIATE_ATTR(version, CSR_VERSION), 402 IMMEDIATE_ATTR(model, CSR_MODEL), 403 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR), 404 TEXT_LEAF_ATTR(model_name, CSR_MODEL), 405 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION), 406 }; 407 408 static void init_fw_attribute_group(struct device *dev, 409 struct device_attribute *attrs, 410 struct fw_attribute_group *group) 411 { 412 struct device_attribute *attr; 413 int i, j; 414 415 for (j = 0; attrs[j].attr.name != NULL; j++) 416 group->attrs[j] = &attrs[j].attr; 417 418 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) { 419 attr = &config_rom_attributes[i].attr; 420 if (attr->show(dev, attr, NULL) < 0) 421 continue; 422 group->attrs[j++] = &attr->attr; 423 } 424 425 group->attrs[j] = NULL; 426 group->groups[0] = &group->group; 427 group->groups[1] = NULL; 428 group->group.attrs = group->attrs; 429 dev->groups = (const struct attribute_group **) group->groups; 430 } 431 432 static ssize_t modalias_show(struct device *dev, 433 struct device_attribute *attr, char *buf) 434 { 435 struct fw_unit *unit = fw_unit(dev); 436 int length; 437 438 length = get_modalias(unit, buf, PAGE_SIZE); 439 strcpy(buf + length, "\n"); 440 441 return length + 1; 442 } 443 444 static ssize_t rom_index_show(struct device *dev, 445 struct device_attribute *attr, char *buf) 446 { 447 struct fw_device *device = fw_device(dev->parent); 448 struct fw_unit *unit = fw_unit(dev); 449 450 return sysfs_emit(buf, "%td\n", unit->directory - device->config_rom); 451 } 452 453 static struct device_attribute fw_unit_attributes[] = { 454 __ATTR_RO(modalias), 455 __ATTR_RO(rom_index), 456 __ATTR_NULL, 457 }; 458 459 static ssize_t config_rom_show(struct device *dev, 460 struct device_attribute *attr, char *buf) 461 { 462 struct fw_device *device = fw_device(dev); 463 size_t length; 464 465 guard(rwsem_read)(&fw_device_rwsem); 466 467 length = device->config_rom_length * 4; 468 memcpy(buf, device->config_rom, length); 469 470 return length; 471 } 472 473 static ssize_t guid_show(struct device *dev, 474 struct device_attribute *attr, char *buf) 475 { 476 struct fw_device *device = fw_device(dev); 477 478 guard(rwsem_read)(&fw_device_rwsem); 479 480 return sysfs_emit(buf, "0x%08x%08x\n", device->config_rom[3], device->config_rom[4]); 481 } 482 483 static ssize_t is_local_show(struct device *dev, 484 struct device_attribute *attr, char *buf) 485 { 486 struct fw_device *device = fw_device(dev); 487 488 return sysfs_emit(buf, "%u\n", device->is_local); 489 } 490 491 static int units_sprintf(char *buf, const u32 *directory) 492 { 493 struct fw_csr_iterator ci; 494 int key, value; 495 int specifier_id = 0; 496 int version = 0; 497 498 fw_csr_iterator_init(&ci, directory); 499 while (fw_csr_iterator_next(&ci, &key, &value)) { 500 switch (key) { 501 case CSR_SPECIFIER_ID: 502 specifier_id = value; 503 break; 504 case CSR_VERSION: 505 version = value; 506 break; 507 } 508 } 509 510 return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version); 511 } 512 513 static ssize_t units_show(struct device *dev, 514 struct device_attribute *attr, char *buf) 515 { 516 struct fw_device *device = fw_device(dev); 517 struct fw_csr_iterator ci; 518 int key, value, i = 0; 519 520 guard(rwsem_read)(&fw_device_rwsem); 521 522 fw_csr_iterator_init(&ci, &device->config_rom[ROOT_DIR_OFFSET]); 523 while (fw_csr_iterator_next(&ci, &key, &value)) { 524 if (key != (CSR_UNIT | CSR_DIRECTORY)) 525 continue; 526 i += units_sprintf(&buf[i], ci.p + value - 1); 527 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1)) 528 break; 529 } 530 531 if (i) 532 buf[i - 1] = '\n'; 533 534 return i; 535 } 536 537 static struct device_attribute fw_device_attributes[] = { 538 __ATTR_RO(config_rom), 539 __ATTR_RO(guid), 540 __ATTR_RO(is_local), 541 __ATTR_RO(units), 542 __ATTR_NULL, 543 }; 544 545 #define CANON_OUI 0x000085 546 547 static int detect_quirks_by_bus_information_block(const u32 *bus_information_block) 548 { 549 int quirks = 0; 550 551 if ((bus_information_block[2] & 0x000000f0) == 0) 552 quirks |= FW_DEVICE_QUIRK_IRM_IS_1394_1995_ONLY; 553 554 if ((bus_information_block[3] >> 8) == CANON_OUI) 555 quirks |= FW_DEVICE_QUIRK_IRM_IGNORES_BUS_MANAGER; 556 557 return quirks; 558 } 559 560 struct entry_match { 561 unsigned int index; 562 u32 value; 563 }; 564 565 static const struct entry_match motu_audio_express_matches[] = { 566 { 1, 0x030001f2 }, 567 { 3, 0xd1000002 }, 568 { 4, 0x8d000005 }, 569 { 6, 0x120001f2 }, 570 { 7, 0x13000033 }, 571 { 8, 0x17104800 }, 572 }; 573 574 static const struct entry_match tascam_fw_series_matches[] = { 575 { 1, 0x0300022e }, 576 { 3, 0x8d000006 }, 577 { 4, 0xd1000001 }, 578 { 6, 0x1200022e }, 579 { 8, 0xd4000004 }, 580 }; 581 582 static int detect_quirks_by_root_directory(const u32 *root_directory, unsigned int length) 583 { 584 static const struct { 585 enum fw_device_quirk quirk; 586 const struct entry_match *matches; 587 unsigned int match_count; 588 } *entry, entries[] = { 589 { 590 .quirk = FW_DEVICE_QUIRK_ACK_PACKET_WITH_INVALID_PENDING_CODE, 591 .matches = motu_audio_express_matches, 592 .match_count = ARRAY_SIZE(motu_audio_express_matches), 593 }, 594 { 595 .quirk = FW_DEVICE_QUIRK_UNSTABLE_AT_S400, 596 .matches = tascam_fw_series_matches, 597 .match_count = ARRAY_SIZE(tascam_fw_series_matches), 598 }, 599 }; 600 int quirks = 0; 601 int i; 602 603 for (i = 0; i < ARRAY_SIZE(entries); ++i) { 604 int j; 605 606 entry = entries + i; 607 for (j = 0; j < entry->match_count; ++j) { 608 unsigned int index = entry->matches[j].index; 609 unsigned int value = entry->matches[j].value; 610 611 if ((length < index) || (root_directory[index] != value)) 612 break; 613 } 614 if (j == entry->match_count) 615 quirks |= entry->quirk; 616 } 617 618 return quirks; 619 } 620 621 static int read_rom(struct fw_device *device, int generation, int speed, int index, u32 *data) 622 { 623 u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4; 624 int i, rcode; 625 626 /* device->node_id, accessed below, must not be older than generation */ 627 smp_rmb(); 628 629 for (i = 10; i < 100; i += 10) { 630 rcode = fw_run_transaction(device->card, 631 TCODE_READ_QUADLET_REQUEST, device->node_id, 632 generation, speed, offset, data, 4); 633 if (rcode != RCODE_BUSY) 634 break; 635 msleep(i); 636 } 637 be32_to_cpus(data); 638 639 return rcode; 640 } 641 642 // By quadlet unit. 643 #define MAX_CONFIG_ROM_SIZE ((CSR_CONFIG_ROM_END - CSR_CONFIG_ROM) / sizeof(u32)) 644 645 /* 646 * Read the bus info block, perform a speed probe, and read all of the rest of 647 * the config ROM. We do all this with a cached bus generation. If the bus 648 * generation changes under us, read_config_rom will fail and get retried. 649 * It's better to start all over in this case because the node from which we 650 * are reading the ROM may have changed the ROM during the reset. 651 * Returns either a result code or a negative error code. 652 */ 653 static int read_config_rom(struct fw_device *device, int generation) 654 { 655 struct fw_card *card = device->card; 656 const u32 *new_rom, *old_rom __free(kfree) = NULL; 657 u32 *stack, *rom __free(kfree) = NULL; 658 u32 sp, key; 659 int i, end, length, ret, speed; 660 int quirks; 661 662 rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE + 663 sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL); 664 if (rom == NULL) 665 return -ENOMEM; 666 667 stack = &rom[MAX_CONFIG_ROM_SIZE]; 668 memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE); 669 670 speed = SCODE_100; 671 672 /* First read the bus info block. */ 673 for (i = 0; i < 5; i++) { 674 ret = read_rom(device, generation, speed, i, &rom[i]); 675 if (ret != RCODE_COMPLETE) 676 return ret; 677 /* 678 * As per IEEE1212 7.2, during initialization, devices can 679 * reply with a 0 for the first quadlet of the config 680 * rom to indicate that they are booting (for example, 681 * if the firmware is on the disk of a external 682 * harddisk). In that case we just fail, and the 683 * retry mechanism will try again later. 684 */ 685 if (i == 0 && rom[i] == 0) 686 return RCODE_BUSY; 687 } 688 689 quirks = detect_quirks_by_bus_information_block(rom); 690 691 // Just prevent from torn writing/reading. 692 WRITE_ONCE(device->quirks, quirks); 693 694 /* 695 * Now parse the config rom. The config rom is a recursive 696 * directory structure so we parse it using a stack of 697 * references to the blocks that make up the structure. We 698 * push a reference to the root directory on the stack to 699 * start things off. 700 */ 701 length = i; 702 sp = 0; 703 stack[sp++] = 0xc0000005; 704 while (sp > 0) { 705 /* 706 * Pop the next block reference of the stack. The 707 * lower 24 bits is the offset into the config rom, 708 * the upper 8 bits are the type of the reference the 709 * block. 710 */ 711 key = stack[--sp]; 712 i = key & 0xffffff; 713 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) 714 return -ENXIO; 715 716 /* Read header quadlet for the block to get the length. */ 717 ret = read_rom(device, generation, speed, i, &rom[i]); 718 if (ret != RCODE_COMPLETE) 719 return ret; 720 end = i + (rom[i] >> 16) + 1; 721 if (end > MAX_CONFIG_ROM_SIZE) { 722 /* 723 * This block extends outside the config ROM which is 724 * a firmware bug. Ignore this whole block, i.e. 725 * simply set a fake block length of 0. 726 */ 727 fw_err(card, "skipped invalid ROM block %x at %llx\n", 728 rom[i], 729 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM); 730 rom[i] = 0; 731 end = i; 732 } 733 i++; 734 735 /* 736 * Now read in the block. If this is a directory 737 * block, check the entries as we read them to see if 738 * it references another block, and push it in that case. 739 */ 740 for (; i < end; i++) { 741 ret = read_rom(device, generation, speed, i, &rom[i]); 742 if (ret != RCODE_COMPLETE) 743 return ret; 744 745 if ((key >> 30) != 3 || (rom[i] >> 30) < 2) 746 continue; 747 /* 748 * Offset points outside the ROM. May be a firmware 749 * bug or an Extended ROM entry (IEEE 1212-2001 clause 750 * 7.7.18). Simply overwrite this pointer here by a 751 * fake immediate entry so that later iterators over 752 * the ROM don't have to check offsets all the time. 753 */ 754 if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) { 755 fw_err(card, 756 "skipped unsupported ROM entry %x at %llx\n", 757 rom[i], 758 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM); 759 rom[i] = 0; 760 continue; 761 } 762 stack[sp++] = i + rom[i]; 763 } 764 if (length < i) 765 length = i; 766 } 767 768 quirks |= detect_quirks_by_root_directory(rom + ROOT_DIR_OFFSET, length - ROOT_DIR_OFFSET); 769 770 // Just prevent from torn writing/reading. 771 WRITE_ONCE(device->quirks, quirks); 772 773 if (unlikely(quirks & FW_DEVICE_QUIRK_UNSTABLE_AT_S400)) 774 speed = SCODE_200; 775 else 776 speed = device->node->max_speed; 777 778 // Determine the speed of 779 // - devices with link speed less than PHY speed, 780 // - devices with 1394b PHY (unless only connected to 1394a PHYs), 781 // - all devices if there are 1394b repeaters. 782 // Note, we cannot use the bus info block's link_spd as starting point because some buggy 783 // firmwares set it lower than necessary and because 1394-1995 nodes do not have the field. 784 if ((rom[2] & 0x7) < speed || speed == SCODE_BETA || card->beta_repeaters_present) { 785 u32 dummy; 786 787 // for S1600 and S3200. 788 if (speed == SCODE_BETA) 789 speed = card->link_speed; 790 791 while (speed > SCODE_100) { 792 if (read_rom(device, generation, speed, 0, &dummy) == 793 RCODE_COMPLETE) 794 break; 795 --speed; 796 } 797 } 798 799 device->max_speed = speed; 800 801 old_rom = device->config_rom; 802 new_rom = kmemdup(rom, length * 4, GFP_KERNEL); 803 if (new_rom == NULL) 804 return -ENOMEM; 805 806 scoped_guard(rwsem_write, &fw_device_rwsem) { 807 device->config_rom = new_rom; 808 device->config_rom_length = length; 809 } 810 811 device->max_rec = rom[2] >> 12 & 0xf; 812 device->cmc = rom[2] >> 30 & 1; 813 device->irmc = rom[2] >> 31 & 1; 814 815 return RCODE_COMPLETE; 816 } 817 818 static void fw_unit_release(struct device *dev) 819 { 820 struct fw_unit *unit = fw_unit(dev); 821 822 fw_device_put(fw_parent_device(unit)); 823 kfree(unit); 824 } 825 826 static struct device_type fw_unit_type = { 827 .uevent = fw_unit_uevent, 828 .release = fw_unit_release, 829 }; 830 831 static bool is_fw_unit(const struct device *dev) 832 { 833 return dev->type == &fw_unit_type; 834 } 835 836 static void create_units(struct fw_device *device) 837 { 838 struct fw_csr_iterator ci; 839 struct fw_unit *unit; 840 int key, value, i; 841 842 i = 0; 843 fw_csr_iterator_init(&ci, &device->config_rom[ROOT_DIR_OFFSET]); 844 while (fw_csr_iterator_next(&ci, &key, &value)) { 845 if (key != (CSR_UNIT | CSR_DIRECTORY)) 846 continue; 847 848 /* 849 * Get the address of the unit directory and try to 850 * match the drivers id_tables against it. 851 */ 852 unit = kzalloc(sizeof(*unit), GFP_KERNEL); 853 if (unit == NULL) 854 continue; 855 856 unit->directory = ci.p + value - 1; 857 unit->device.bus = &fw_bus_type; 858 unit->device.type = &fw_unit_type; 859 unit->device.parent = &device->device; 860 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++); 861 862 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) < 863 ARRAY_SIZE(fw_unit_attributes) + 864 ARRAY_SIZE(config_rom_attributes)); 865 init_fw_attribute_group(&unit->device, 866 fw_unit_attributes, 867 &unit->attribute_group); 868 869 fw_device_get(device); 870 if (device_register(&unit->device) < 0) { 871 put_device(&unit->device); 872 continue; 873 } 874 } 875 } 876 877 static int shutdown_unit(struct device *device, void *data) 878 { 879 device_unregister(device); 880 881 return 0; 882 } 883 884 /* 885 * fw_device_rwsem acts as dual purpose mutex: 886 * - serializes accesses to fw_device.config_rom/.config_rom_length and 887 * fw_unit.directory, unless those accesses happen at safe occasions 888 */ 889 DECLARE_RWSEM(fw_device_rwsem); 890 891 DEFINE_XARRAY_ALLOC(fw_device_xa); 892 int fw_cdev_major; 893 894 struct fw_device *fw_device_get_by_devt(dev_t devt) 895 { 896 struct fw_device *device; 897 898 device = xa_load(&fw_device_xa, MINOR(devt)); 899 if (device) 900 fw_device_get(device); 901 902 return device; 903 } 904 905 struct workqueue_struct *fw_workqueue; 906 EXPORT_SYMBOL(fw_workqueue); 907 908 static void fw_schedule_device_work(struct fw_device *device, 909 unsigned long delay) 910 { 911 queue_delayed_work(fw_workqueue, &device->work, delay); 912 } 913 914 /* 915 * These defines control the retry behavior for reading the config 916 * rom. It shouldn't be necessary to tweak these; if the device 917 * doesn't respond to a config rom read within 10 seconds, it's not 918 * going to respond at all. As for the initial delay, a lot of 919 * devices will be able to respond within half a second after bus 920 * reset. On the other hand, it's not really worth being more 921 * aggressive than that, since it scales pretty well; if 10 devices 922 * are plugged in, they're all getting read within one second. 923 */ 924 925 #define MAX_RETRIES 10 926 #define RETRY_DELAY secs_to_jiffies(3) 927 #define INITIAL_DELAY msecs_to_jiffies(500) 928 #define SHUTDOWN_DELAY secs_to_jiffies(2) 929 930 static void fw_device_shutdown(struct work_struct *work) 931 { 932 struct fw_device *device = from_work(device, work, work.work); 933 934 if (time_is_after_jiffies64(device->card->reset_jiffies + SHUTDOWN_DELAY) 935 && !list_empty(&device->card->link)) { 936 fw_schedule_device_work(device, SHUTDOWN_DELAY); 937 return; 938 } 939 940 if (atomic_cmpxchg(&device->state, 941 FW_DEVICE_GONE, 942 FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE) 943 return; 944 945 fw_device_cdev_remove(device); 946 device_for_each_child(&device->device, NULL, shutdown_unit); 947 device_unregister(&device->device); 948 949 xa_erase(&fw_device_xa, MINOR(device->device.devt)); 950 951 fw_device_put(device); 952 } 953 954 static void fw_device_release(struct device *dev) 955 { 956 struct fw_device *device = fw_device(dev); 957 struct fw_card *card = device->card; 958 959 /* 960 * Take the card lock so we don't set this to NULL while a 961 * FW_NODE_UPDATED callback is being handled or while the 962 * bus manager work looks at this node. 963 */ 964 scoped_guard(spinlock_irqsave, &card->lock) 965 fw_node_set_device(device->node, NULL); 966 967 fw_node_put(device->node); 968 kfree(device->config_rom); 969 kfree(device); 970 fw_card_put(card); 971 } 972 973 static struct device_type fw_device_type = { 974 .release = fw_device_release, 975 }; 976 977 static bool is_fw_device(const struct device *dev) 978 { 979 return dev->type == &fw_device_type; 980 } 981 982 static int update_unit(struct device *dev, void *data) 983 { 984 struct fw_unit *unit = fw_unit(dev); 985 struct fw_driver *driver = (struct fw_driver *)dev->driver; 986 987 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) { 988 device_lock(dev); 989 driver->update(unit); 990 device_unlock(dev); 991 } 992 993 return 0; 994 } 995 996 static void fw_device_update(struct work_struct *work) 997 { 998 struct fw_device *device = from_work(device, work, work.work); 999 1000 fw_device_cdev_update(device); 1001 device_for_each_child(&device->device, NULL, update_unit); 1002 } 1003 1004 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, }; 1005 1006 static void set_broadcast_channel(struct fw_device *device, int generation) 1007 { 1008 struct fw_card *card = device->card; 1009 __be32 data; 1010 int rcode; 1011 1012 if (!card->broadcast_channel_allocated) 1013 return; 1014 1015 /* 1016 * The Broadcast_Channel Valid bit is required by nodes which want to 1017 * transmit on this channel. Such transmissions are practically 1018 * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required 1019 * to be IRM capable and have a max_rec of 8 or more. We use this fact 1020 * to narrow down to which nodes we send Broadcast_Channel updates. 1021 */ 1022 if (!device->irmc || device->max_rec < 8) 1023 return; 1024 1025 /* 1026 * Some 1394-1995 nodes crash if this 1394a-2000 register is written. 1027 * Perform a read test first. 1028 */ 1029 if (device->bc_implemented == BC_UNKNOWN) { 1030 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST, 1031 device->node_id, generation, device->max_speed, 1032 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL, 1033 &data, 4); 1034 switch (rcode) { 1035 case RCODE_COMPLETE: 1036 if (data & cpu_to_be32(1 << 31)) { 1037 device->bc_implemented = BC_IMPLEMENTED; 1038 break; 1039 } 1040 fallthrough; /* to case address error */ 1041 case RCODE_ADDRESS_ERROR: 1042 device->bc_implemented = BC_UNIMPLEMENTED; 1043 } 1044 } 1045 1046 if (device->bc_implemented == BC_IMPLEMENTED) { 1047 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL | 1048 BROADCAST_CHANNEL_VALID); 1049 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST, 1050 device->node_id, generation, device->max_speed, 1051 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL, 1052 &data, 4); 1053 } 1054 } 1055 1056 int fw_device_set_broadcast_channel(struct device *dev, void *gen) 1057 { 1058 if (is_fw_device(dev)) 1059 set_broadcast_channel(fw_device(dev), (long)gen); 1060 1061 return 0; 1062 } 1063 1064 static int compare_configuration_rom(struct device *dev, const void *data) 1065 { 1066 const struct fw_device *old = fw_device(dev); 1067 const u32 *config_rom = data; 1068 1069 if (!is_fw_device(dev)) 1070 return 0; 1071 1072 // Compare the bus information block and root_length/root_crc. 1073 return !memcmp(old->config_rom, config_rom, 6 * 4); 1074 } 1075 1076 static void fw_device_init(struct work_struct *work) 1077 { 1078 struct fw_device *device = from_work(device, work, work.work); 1079 struct fw_card *card = device->card; 1080 struct device *found; 1081 u32 minor; 1082 int ret; 1083 1084 /* 1085 * All failure paths here call fw_node_set_device(node, NULL), so that we 1086 * don't try to do device_for_each_child() on a kfree()'d 1087 * device. 1088 */ 1089 1090 ret = read_config_rom(device, device->generation); 1091 if (ret != RCODE_COMPLETE) { 1092 if (device->config_rom_retries < MAX_RETRIES && 1093 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) { 1094 device->config_rom_retries++; 1095 fw_schedule_device_work(device, RETRY_DELAY); 1096 } else { 1097 if (device->node->link_on) 1098 fw_notice(card, "giving up on node %x: reading config rom failed: %s\n", 1099 device->node_id, 1100 fw_rcode_string(ret)); 1101 if (device->node == card->root_node) 1102 fw_schedule_bm_work(card, 0); 1103 fw_device_release(&device->device); 1104 } 1105 return; 1106 } 1107 1108 // If a device was pending for deletion because its node went away but its bus info block 1109 // and root directory header matches that of a newly discovered device, revive the 1110 // existing fw_device. The newly allocated fw_device becomes obsolete instead. 1111 // 1112 // serialize config_rom access. 1113 scoped_guard(rwsem_read, &fw_device_rwsem) { 1114 found = device_find_child(card->device, device->config_rom, 1115 compare_configuration_rom); 1116 } 1117 if (found) { 1118 struct fw_device *reused = fw_device(found); 1119 1120 if (atomic_cmpxchg(&reused->state, 1121 FW_DEVICE_GONE, 1122 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) { 1123 // serialize node access 1124 scoped_guard(spinlock_irq, &card->lock) { 1125 struct fw_node *current_node = device->node; 1126 struct fw_node *obsolete_node = reused->node; 1127 1128 device->node = obsolete_node; 1129 fw_node_set_device(device->node, device); 1130 reused->node = current_node; 1131 fw_node_set_device(reused->node, reused); 1132 1133 reused->max_speed = device->max_speed; 1134 reused->node_id = current_node->node_id; 1135 smp_wmb(); /* update node_id before generation */ 1136 reused->generation = card->generation; 1137 reused->config_rom_retries = 0; 1138 fw_notice(card, "rediscovered device %s\n", 1139 dev_name(found)); 1140 1141 reused->workfn = fw_device_update; 1142 fw_schedule_device_work(reused, 0); 1143 1144 if (current_node == card->root_node) 1145 fw_schedule_bm_work(card, 0); 1146 } 1147 1148 put_device(found); 1149 fw_device_release(&device->device); 1150 1151 return; 1152 } 1153 1154 put_device(found); 1155 } 1156 1157 device_initialize(&device->device); 1158 1159 fw_device_get(device); 1160 1161 // The index of allocated entry is used for minor identifier of device node. 1162 ret = xa_alloc(&fw_device_xa, &minor, device, XA_LIMIT(0, MINORMASK), GFP_KERNEL); 1163 if (ret < 0) 1164 goto error; 1165 1166 device->device.bus = &fw_bus_type; 1167 device->device.type = &fw_device_type; 1168 device->device.parent = card->device; 1169 device->device.devt = MKDEV(fw_cdev_major, minor); 1170 dev_set_name(&device->device, "fw%d", minor); 1171 1172 BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) < 1173 ARRAY_SIZE(fw_device_attributes) + 1174 ARRAY_SIZE(config_rom_attributes)); 1175 init_fw_attribute_group(&device->device, 1176 fw_device_attributes, 1177 &device->attribute_group); 1178 1179 if (device_add(&device->device)) { 1180 fw_err(card, "failed to add device\n"); 1181 goto error_with_cdev; 1182 } 1183 1184 create_units(device); 1185 1186 /* 1187 * Transition the device to running state. If it got pulled 1188 * out from under us while we did the initialization work, we 1189 * have to shut down the device again here. Normally, though, 1190 * fw_node_event will be responsible for shutting it down when 1191 * necessary. We have to use the atomic cmpxchg here to avoid 1192 * racing with the FW_NODE_DESTROYED case in 1193 * fw_node_event(). 1194 */ 1195 if (atomic_cmpxchg(&device->state, 1196 FW_DEVICE_INITIALIZING, 1197 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) { 1198 device->workfn = fw_device_shutdown; 1199 fw_schedule_device_work(device, SHUTDOWN_DELAY); 1200 } else { 1201 fw_notice(card, "created device %s: GUID %08x%08x, S%d00, quirks %08x\n", 1202 dev_name(&device->device), 1203 device->config_rom[3], device->config_rom[4], 1204 1 << device->max_speed, device->quirks); 1205 device->config_rom_retries = 0; 1206 1207 set_broadcast_channel(device, device->generation); 1208 1209 add_device_randomness(&device->config_rom[3], 8); 1210 } 1211 1212 /* 1213 * Reschedule the IRM work if we just finished reading the 1214 * root node config rom. If this races with a bus reset we 1215 * just end up running the IRM work a couple of extra times - 1216 * pretty harmless. 1217 */ 1218 if (device->node == card->root_node) 1219 fw_schedule_bm_work(card, 0); 1220 1221 return; 1222 1223 error_with_cdev: 1224 xa_erase(&fw_device_xa, minor); 1225 error: 1226 fw_device_put(device); // fw_device_xa's reference. 1227 1228 put_device(&device->device); /* our reference */ 1229 } 1230 1231 /* Reread and compare bus info block and header of root directory */ 1232 static int reread_config_rom(struct fw_device *device, int generation, 1233 bool *changed) 1234 { 1235 u32 q; 1236 int i, rcode; 1237 1238 for (i = 0; i < 6; i++) { 1239 rcode = read_rom(device, generation, device->max_speed, i, &q); 1240 if (rcode != RCODE_COMPLETE) 1241 return rcode; 1242 1243 if (i == 0 && q == 0) 1244 /* inaccessible (see read_config_rom); retry later */ 1245 return RCODE_BUSY; 1246 1247 if (q != device->config_rom[i]) { 1248 *changed = true; 1249 return RCODE_COMPLETE; 1250 } 1251 } 1252 1253 *changed = false; 1254 return RCODE_COMPLETE; 1255 } 1256 1257 static void fw_device_refresh(struct work_struct *work) 1258 { 1259 struct fw_device *device = from_work(device, work, work.work); 1260 struct fw_card *card = device->card; 1261 int ret, node_id = device->node_id; 1262 bool changed; 1263 1264 ret = reread_config_rom(device, device->generation, &changed); 1265 if (ret != RCODE_COMPLETE) 1266 goto failed_config_rom; 1267 1268 if (!changed) { 1269 if (atomic_cmpxchg(&device->state, 1270 FW_DEVICE_INITIALIZING, 1271 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) 1272 goto gone; 1273 1274 fw_device_update(work); 1275 device->config_rom_retries = 0; 1276 goto out; 1277 } 1278 1279 /* 1280 * Something changed. We keep things simple and don't investigate 1281 * further. We just destroy all previous units and create new ones. 1282 */ 1283 device_for_each_child(&device->device, NULL, shutdown_unit); 1284 1285 ret = read_config_rom(device, device->generation); 1286 if (ret != RCODE_COMPLETE) 1287 goto failed_config_rom; 1288 1289 fw_device_cdev_update(device); 1290 create_units(device); 1291 1292 /* Userspace may want to re-read attributes. */ 1293 kobject_uevent(&device->device.kobj, KOBJ_CHANGE); 1294 1295 if (atomic_cmpxchg(&device->state, 1296 FW_DEVICE_INITIALIZING, 1297 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) 1298 goto gone; 1299 1300 fw_notice(card, "refreshed device %s\n", dev_name(&device->device)); 1301 device->config_rom_retries = 0; 1302 goto out; 1303 1304 failed_config_rom: 1305 if (device->config_rom_retries < MAX_RETRIES && 1306 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) { 1307 device->config_rom_retries++; 1308 fw_schedule_device_work(device, RETRY_DELAY); 1309 return; 1310 } 1311 1312 fw_notice(card, "giving up on refresh of device %s: %s\n", 1313 dev_name(&device->device), fw_rcode_string(ret)); 1314 gone: 1315 atomic_set(&device->state, FW_DEVICE_GONE); 1316 device->workfn = fw_device_shutdown; 1317 fw_schedule_device_work(device, SHUTDOWN_DELAY); 1318 out: 1319 if (node_id == card->root_node->node_id) 1320 fw_schedule_bm_work(card, 0); 1321 } 1322 1323 static void fw_device_workfn(struct work_struct *work) 1324 { 1325 struct fw_device *device = from_work(device, to_delayed_work(work), work); 1326 device->workfn(work); 1327 } 1328 1329 void fw_node_event(struct fw_card *card, struct fw_node *node, int event) 1330 { 1331 struct fw_device *device; 1332 1333 switch (event) { 1334 case FW_NODE_CREATED: 1335 /* 1336 * Attempt to scan the node, regardless whether its self ID has 1337 * the L (link active) flag set or not. Some broken devices 1338 * send L=0 but have an up-and-running link; others send L=1 1339 * without actually having a link. 1340 */ 1341 create: 1342 device = kzalloc(sizeof(*device), GFP_ATOMIC); 1343 if (device == NULL) 1344 break; 1345 1346 /* 1347 * Do minimal initialization of the device here, the 1348 * rest will happen in fw_device_init(). 1349 * 1350 * Attention: A lot of things, even fw_device_get(), 1351 * cannot be done before fw_device_init() finished! 1352 * You can basically just check device->state and 1353 * schedule work until then, but only while holding 1354 * card->lock. 1355 */ 1356 atomic_set(&device->state, FW_DEVICE_INITIALIZING); 1357 device->card = fw_card_get(card); 1358 device->node = fw_node_get(node); 1359 device->node_id = node->node_id; 1360 device->generation = card->generation; 1361 device->is_local = node == card->local_node; 1362 mutex_init(&device->client_list_mutex); 1363 INIT_LIST_HEAD(&device->client_list); 1364 1365 /* 1366 * Set the node data to point back to this device so 1367 * FW_NODE_UPDATED callbacks can update the node_id 1368 * and generation for the device. 1369 */ 1370 fw_node_set_device(node, device); 1371 1372 /* 1373 * Many devices are slow to respond after bus resets, 1374 * especially if they are bus powered and go through 1375 * power-up after getting plugged in. We schedule the 1376 * first config rom scan half a second after bus reset. 1377 */ 1378 device->workfn = fw_device_init; 1379 INIT_DELAYED_WORK(&device->work, fw_device_workfn); 1380 fw_schedule_device_work(device, INITIAL_DELAY); 1381 break; 1382 1383 case FW_NODE_INITIATED_RESET: 1384 case FW_NODE_LINK_ON: 1385 device = fw_node_get_device(node); 1386 if (device == NULL) 1387 goto create; 1388 1389 device->node_id = node->node_id; 1390 smp_wmb(); /* update node_id before generation */ 1391 device->generation = card->generation; 1392 if (atomic_cmpxchg(&device->state, 1393 FW_DEVICE_RUNNING, 1394 FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) { 1395 device->workfn = fw_device_refresh; 1396 fw_schedule_device_work(device, 1397 device->is_local ? 0 : INITIAL_DELAY); 1398 } 1399 break; 1400 1401 case FW_NODE_UPDATED: 1402 device = fw_node_get_device(node); 1403 if (device == NULL) 1404 break; 1405 1406 device->node_id = node->node_id; 1407 smp_wmb(); /* update node_id before generation */ 1408 device->generation = card->generation; 1409 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) { 1410 device->workfn = fw_device_update; 1411 fw_schedule_device_work(device, 0); 1412 } 1413 break; 1414 1415 case FW_NODE_DESTROYED: 1416 case FW_NODE_LINK_OFF: 1417 if (!fw_node_get_device(node)) 1418 break; 1419 1420 /* 1421 * Destroy the device associated with the node. There 1422 * are two cases here: either the device is fully 1423 * initialized (FW_DEVICE_RUNNING) or we're in the 1424 * process of reading its config rom 1425 * (FW_DEVICE_INITIALIZING). If it is fully 1426 * initialized we can reuse device->work to schedule a 1427 * full fw_device_shutdown(). If not, there's work 1428 * scheduled to read it's config rom, and we just put 1429 * the device in shutdown state to have that code fail 1430 * to create the device. 1431 */ 1432 device = fw_node_get_device(node); 1433 if (atomic_xchg(&device->state, 1434 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) { 1435 device->workfn = fw_device_shutdown; 1436 fw_schedule_device_work(device, 1437 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY); 1438 } 1439 break; 1440 } 1441 } 1442 1443 #ifdef CONFIG_FIREWIRE_KUNIT_DEVICE_ATTRIBUTE_TEST 1444 #include "device-attribute-test.c" 1445 #endif 1446