1 /* 2 * Device probing and sysfs code. 3 * 4 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software Foundation, 18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 19 */ 20 21 #include <linux/bug.h> 22 #include <linux/ctype.h> 23 #include <linux/delay.h> 24 #include <linux/device.h> 25 #include <linux/errno.h> 26 #include <linux/firewire.h> 27 #include <linux/firewire-constants.h> 28 #include <linux/idr.h> 29 #include <linux/jiffies.h> 30 #include <linux/kobject.h> 31 #include <linux/list.h> 32 #include <linux/mod_devicetable.h> 33 #include <linux/module.h> 34 #include <linux/mutex.h> 35 #include <linux/rwsem.h> 36 #include <linux/semaphore.h> 37 #include <linux/spinlock.h> 38 #include <linux/string.h> 39 #include <linux/workqueue.h> 40 41 #include <asm/atomic.h> 42 #include <asm/byteorder.h> 43 #include <asm/system.h> 44 45 #include "core.h" 46 47 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p) 48 { 49 ci->p = p + 1; 50 ci->end = ci->p + (p[0] >> 16); 51 } 52 EXPORT_SYMBOL(fw_csr_iterator_init); 53 54 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value) 55 { 56 *key = *ci->p >> 24; 57 *value = *ci->p & 0xffffff; 58 59 return ci->p++ < ci->end; 60 } 61 EXPORT_SYMBOL(fw_csr_iterator_next); 62 63 static const u32 *search_leaf(const u32 *directory, int search_key) 64 { 65 struct fw_csr_iterator ci; 66 int last_key = 0, key, value; 67 68 fw_csr_iterator_init(&ci, directory); 69 while (fw_csr_iterator_next(&ci, &key, &value)) { 70 if (last_key == search_key && 71 key == (CSR_DESCRIPTOR | CSR_LEAF)) 72 return ci.p - 1 + value; 73 74 last_key = key; 75 } 76 77 return NULL; 78 } 79 80 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size) 81 { 82 unsigned int quadlets, i; 83 char c; 84 85 if (!size || !buf) 86 return -EINVAL; 87 88 quadlets = min(block[0] >> 16, 256U); 89 if (quadlets < 2) 90 return -ENODATA; 91 92 if (block[1] != 0 || block[2] != 0) 93 /* unknown language/character set */ 94 return -ENODATA; 95 96 block += 3; 97 quadlets -= 2; 98 for (i = 0; i < quadlets * 4 && i < size - 1; i++) { 99 c = block[i / 4] >> (24 - 8 * (i % 4)); 100 if (c == '\0') 101 break; 102 buf[i] = c; 103 } 104 buf[i] = '\0'; 105 106 return i; 107 } 108 109 /** 110 * fw_csr_string - reads a string from the configuration ROM 111 * @directory: e.g. root directory or unit directory 112 * @key: the key of the preceding directory entry 113 * @buf: where to put the string 114 * @size: size of @buf, in bytes 115 * 116 * The string is taken from a minimal ASCII text descriptor leaf after 117 * the immediate entry with @key. The string is zero-terminated. 118 * Returns strlen(buf) or a negative error code. 119 */ 120 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size) 121 { 122 const u32 *leaf = search_leaf(directory, key); 123 if (!leaf) 124 return -ENOENT; 125 126 return textual_leaf_to_string(leaf, buf, size); 127 } 128 EXPORT_SYMBOL(fw_csr_string); 129 130 static bool is_fw_unit(struct device *dev); 131 132 static int match_unit_directory(const u32 *directory, u32 match_flags, 133 const struct ieee1394_device_id *id) 134 { 135 struct fw_csr_iterator ci; 136 int key, value, match; 137 138 match = 0; 139 fw_csr_iterator_init(&ci, directory); 140 while (fw_csr_iterator_next(&ci, &key, &value)) { 141 if (key == CSR_VENDOR && value == id->vendor_id) 142 match |= IEEE1394_MATCH_VENDOR_ID; 143 if (key == CSR_MODEL && value == id->model_id) 144 match |= IEEE1394_MATCH_MODEL_ID; 145 if (key == CSR_SPECIFIER_ID && value == id->specifier_id) 146 match |= IEEE1394_MATCH_SPECIFIER_ID; 147 if (key == CSR_VERSION && value == id->version) 148 match |= IEEE1394_MATCH_VERSION; 149 } 150 151 return (match & match_flags) == match_flags; 152 } 153 154 static int fw_unit_match(struct device *dev, struct device_driver *drv) 155 { 156 struct fw_unit *unit = fw_unit(dev); 157 struct fw_device *device; 158 const struct ieee1394_device_id *id; 159 160 /* We only allow binding to fw_units. */ 161 if (!is_fw_unit(dev)) 162 return 0; 163 164 device = fw_parent_device(unit); 165 id = container_of(drv, struct fw_driver, driver)->id_table; 166 167 for (; id->match_flags != 0; id++) { 168 if (match_unit_directory(unit->directory, id->match_flags, id)) 169 return 1; 170 171 /* Also check vendor ID in the root directory. */ 172 if ((id->match_flags & IEEE1394_MATCH_VENDOR_ID) && 173 match_unit_directory(&device->config_rom[5], 174 IEEE1394_MATCH_VENDOR_ID, id) && 175 match_unit_directory(unit->directory, id->match_flags 176 & ~IEEE1394_MATCH_VENDOR_ID, id)) 177 return 1; 178 } 179 180 return 0; 181 } 182 183 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size) 184 { 185 struct fw_device *device = fw_parent_device(unit); 186 struct fw_csr_iterator ci; 187 188 int key, value; 189 int vendor = 0; 190 int model = 0; 191 int specifier_id = 0; 192 int version = 0; 193 194 fw_csr_iterator_init(&ci, &device->config_rom[5]); 195 while (fw_csr_iterator_next(&ci, &key, &value)) { 196 switch (key) { 197 case CSR_VENDOR: 198 vendor = value; 199 break; 200 case CSR_MODEL: 201 model = value; 202 break; 203 } 204 } 205 206 fw_csr_iterator_init(&ci, unit->directory); 207 while (fw_csr_iterator_next(&ci, &key, &value)) { 208 switch (key) { 209 case CSR_SPECIFIER_ID: 210 specifier_id = value; 211 break; 212 case CSR_VERSION: 213 version = value; 214 break; 215 } 216 } 217 218 return snprintf(buffer, buffer_size, 219 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X", 220 vendor, model, specifier_id, version); 221 } 222 223 static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env) 224 { 225 struct fw_unit *unit = fw_unit(dev); 226 char modalias[64]; 227 228 get_modalias(unit, modalias, sizeof(modalias)); 229 230 if (add_uevent_var(env, "MODALIAS=%s", modalias)) 231 return -ENOMEM; 232 233 return 0; 234 } 235 236 struct bus_type fw_bus_type = { 237 .name = "firewire", 238 .match = fw_unit_match, 239 }; 240 EXPORT_SYMBOL(fw_bus_type); 241 242 int fw_device_enable_phys_dma(struct fw_device *device) 243 { 244 int generation = device->generation; 245 246 /* device->node_id, accessed below, must not be older than generation */ 247 smp_rmb(); 248 249 return device->card->driver->enable_phys_dma(device->card, 250 device->node_id, 251 generation); 252 } 253 EXPORT_SYMBOL(fw_device_enable_phys_dma); 254 255 struct config_rom_attribute { 256 struct device_attribute attr; 257 u32 key; 258 }; 259 260 static ssize_t show_immediate(struct device *dev, 261 struct device_attribute *dattr, char *buf) 262 { 263 struct config_rom_attribute *attr = 264 container_of(dattr, struct config_rom_attribute, attr); 265 struct fw_csr_iterator ci; 266 const u32 *dir; 267 int key, value, ret = -ENOENT; 268 269 down_read(&fw_device_rwsem); 270 271 if (is_fw_unit(dev)) 272 dir = fw_unit(dev)->directory; 273 else 274 dir = fw_device(dev)->config_rom + 5; 275 276 fw_csr_iterator_init(&ci, dir); 277 while (fw_csr_iterator_next(&ci, &key, &value)) 278 if (attr->key == key) { 279 ret = snprintf(buf, buf ? PAGE_SIZE : 0, 280 "0x%06x\n", value); 281 break; 282 } 283 284 up_read(&fw_device_rwsem); 285 286 return ret; 287 } 288 289 #define IMMEDIATE_ATTR(name, key) \ 290 { __ATTR(name, S_IRUGO, show_immediate, NULL), key } 291 292 static ssize_t show_text_leaf(struct device *dev, 293 struct device_attribute *dattr, char *buf) 294 { 295 struct config_rom_attribute *attr = 296 container_of(dattr, struct config_rom_attribute, attr); 297 const u32 *dir; 298 size_t bufsize; 299 char dummy_buf[2]; 300 int ret; 301 302 down_read(&fw_device_rwsem); 303 304 if (is_fw_unit(dev)) 305 dir = fw_unit(dev)->directory; 306 else 307 dir = fw_device(dev)->config_rom + 5; 308 309 if (buf) { 310 bufsize = PAGE_SIZE - 1; 311 } else { 312 buf = dummy_buf; 313 bufsize = 1; 314 } 315 316 ret = fw_csr_string(dir, attr->key, buf, bufsize); 317 318 if (ret >= 0) { 319 /* Strip trailing whitespace and add newline. */ 320 while (ret > 0 && isspace(buf[ret - 1])) 321 ret--; 322 strcpy(buf + ret, "\n"); 323 ret++; 324 } 325 326 up_read(&fw_device_rwsem); 327 328 return ret; 329 } 330 331 #define TEXT_LEAF_ATTR(name, key) \ 332 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key } 333 334 static struct config_rom_attribute config_rom_attributes[] = { 335 IMMEDIATE_ATTR(vendor, CSR_VENDOR), 336 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION), 337 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID), 338 IMMEDIATE_ATTR(version, CSR_VERSION), 339 IMMEDIATE_ATTR(model, CSR_MODEL), 340 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR), 341 TEXT_LEAF_ATTR(model_name, CSR_MODEL), 342 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION), 343 }; 344 345 static void init_fw_attribute_group(struct device *dev, 346 struct device_attribute *attrs, 347 struct fw_attribute_group *group) 348 { 349 struct device_attribute *attr; 350 int i, j; 351 352 for (j = 0; attrs[j].attr.name != NULL; j++) 353 group->attrs[j] = &attrs[j].attr; 354 355 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) { 356 attr = &config_rom_attributes[i].attr; 357 if (attr->show(dev, attr, NULL) < 0) 358 continue; 359 group->attrs[j++] = &attr->attr; 360 } 361 362 group->attrs[j] = NULL; 363 group->groups[0] = &group->group; 364 group->groups[1] = NULL; 365 group->group.attrs = group->attrs; 366 dev->groups = (const struct attribute_group **) group->groups; 367 } 368 369 static ssize_t modalias_show(struct device *dev, 370 struct device_attribute *attr, char *buf) 371 { 372 struct fw_unit *unit = fw_unit(dev); 373 int length; 374 375 length = get_modalias(unit, buf, PAGE_SIZE); 376 strcpy(buf + length, "\n"); 377 378 return length + 1; 379 } 380 381 static ssize_t rom_index_show(struct device *dev, 382 struct device_attribute *attr, char *buf) 383 { 384 struct fw_device *device = fw_device(dev->parent); 385 struct fw_unit *unit = fw_unit(dev); 386 387 return snprintf(buf, PAGE_SIZE, "%d\n", 388 (int)(unit->directory - device->config_rom)); 389 } 390 391 static struct device_attribute fw_unit_attributes[] = { 392 __ATTR_RO(modalias), 393 __ATTR_RO(rom_index), 394 __ATTR_NULL, 395 }; 396 397 static ssize_t config_rom_show(struct device *dev, 398 struct device_attribute *attr, char *buf) 399 { 400 struct fw_device *device = fw_device(dev); 401 size_t length; 402 403 down_read(&fw_device_rwsem); 404 length = device->config_rom_length * 4; 405 memcpy(buf, device->config_rom, length); 406 up_read(&fw_device_rwsem); 407 408 return length; 409 } 410 411 static ssize_t guid_show(struct device *dev, 412 struct device_attribute *attr, char *buf) 413 { 414 struct fw_device *device = fw_device(dev); 415 int ret; 416 417 down_read(&fw_device_rwsem); 418 ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n", 419 device->config_rom[3], device->config_rom[4]); 420 up_read(&fw_device_rwsem); 421 422 return ret; 423 } 424 425 static int units_sprintf(char *buf, const u32 *directory) 426 { 427 struct fw_csr_iterator ci; 428 int key, value; 429 int specifier_id = 0; 430 int version = 0; 431 432 fw_csr_iterator_init(&ci, directory); 433 while (fw_csr_iterator_next(&ci, &key, &value)) { 434 switch (key) { 435 case CSR_SPECIFIER_ID: 436 specifier_id = value; 437 break; 438 case CSR_VERSION: 439 version = value; 440 break; 441 } 442 } 443 444 return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version); 445 } 446 447 static ssize_t units_show(struct device *dev, 448 struct device_attribute *attr, char *buf) 449 { 450 struct fw_device *device = fw_device(dev); 451 struct fw_csr_iterator ci; 452 int key, value, i = 0; 453 454 down_read(&fw_device_rwsem); 455 fw_csr_iterator_init(&ci, &device->config_rom[5]); 456 while (fw_csr_iterator_next(&ci, &key, &value)) { 457 if (key != (CSR_UNIT | CSR_DIRECTORY)) 458 continue; 459 i += units_sprintf(&buf[i], ci.p + value - 1); 460 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1)) 461 break; 462 } 463 up_read(&fw_device_rwsem); 464 465 if (i) 466 buf[i - 1] = '\n'; 467 468 return i; 469 } 470 471 static struct device_attribute fw_device_attributes[] = { 472 __ATTR_RO(config_rom), 473 __ATTR_RO(guid), 474 __ATTR_RO(units), 475 __ATTR_NULL, 476 }; 477 478 static int read_rom(struct fw_device *device, 479 int generation, int index, u32 *data) 480 { 481 int rcode; 482 483 /* device->node_id, accessed below, must not be older than generation */ 484 smp_rmb(); 485 486 rcode = fw_run_transaction(device->card, TCODE_READ_QUADLET_REQUEST, 487 device->node_id, generation, device->max_speed, 488 (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4, 489 data, 4); 490 be32_to_cpus(data); 491 492 return rcode; 493 } 494 495 #define MAX_CONFIG_ROM_SIZE 256 496 497 /* 498 * Read the bus info block, perform a speed probe, and read all of the rest of 499 * the config ROM. We do all this with a cached bus generation. If the bus 500 * generation changes under us, read_config_rom will fail and get retried. 501 * It's better to start all over in this case because the node from which we 502 * are reading the ROM may have changed the ROM during the reset. 503 */ 504 static int read_config_rom(struct fw_device *device, int generation) 505 { 506 const u32 *old_rom, *new_rom; 507 u32 *rom, *stack; 508 u32 sp, key; 509 int i, end, length, ret = -1; 510 511 rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE + 512 sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL); 513 if (rom == NULL) 514 return -ENOMEM; 515 516 stack = &rom[MAX_CONFIG_ROM_SIZE]; 517 memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE); 518 519 device->max_speed = SCODE_100; 520 521 /* First read the bus info block. */ 522 for (i = 0; i < 5; i++) { 523 if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE) 524 goto out; 525 /* 526 * As per IEEE1212 7.2, during power-up, devices can 527 * reply with a 0 for the first quadlet of the config 528 * rom to indicate that they are booting (for example, 529 * if the firmware is on the disk of a external 530 * harddisk). In that case we just fail, and the 531 * retry mechanism will try again later. 532 */ 533 if (i == 0 && rom[i] == 0) 534 goto out; 535 } 536 537 device->max_speed = device->node->max_speed; 538 539 /* 540 * Determine the speed of 541 * - devices with link speed less than PHY speed, 542 * - devices with 1394b PHY (unless only connected to 1394a PHYs), 543 * - all devices if there are 1394b repeaters. 544 * Note, we cannot use the bus info block's link_spd as starting point 545 * because some buggy firmwares set it lower than necessary and because 546 * 1394-1995 nodes do not have the field. 547 */ 548 if ((rom[2] & 0x7) < device->max_speed || 549 device->max_speed == SCODE_BETA || 550 device->card->beta_repeaters_present) { 551 u32 dummy; 552 553 /* for S1600 and S3200 */ 554 if (device->max_speed == SCODE_BETA) 555 device->max_speed = device->card->link_speed; 556 557 while (device->max_speed > SCODE_100) { 558 if (read_rom(device, generation, 0, &dummy) == 559 RCODE_COMPLETE) 560 break; 561 device->max_speed--; 562 } 563 } 564 565 /* 566 * Now parse the config rom. The config rom is a recursive 567 * directory structure so we parse it using a stack of 568 * references to the blocks that make up the structure. We 569 * push a reference to the root directory on the stack to 570 * start things off. 571 */ 572 length = i; 573 sp = 0; 574 stack[sp++] = 0xc0000005; 575 while (sp > 0) { 576 /* 577 * Pop the next block reference of the stack. The 578 * lower 24 bits is the offset into the config rom, 579 * the upper 8 bits are the type of the reference the 580 * block. 581 */ 582 key = stack[--sp]; 583 i = key & 0xffffff; 584 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) 585 goto out; 586 587 /* Read header quadlet for the block to get the length. */ 588 if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE) 589 goto out; 590 end = i + (rom[i] >> 16) + 1; 591 if (end > MAX_CONFIG_ROM_SIZE) { 592 /* 593 * This block extends outside the config ROM which is 594 * a firmware bug. Ignore this whole block, i.e. 595 * simply set a fake block length of 0. 596 */ 597 fw_error("skipped invalid ROM block %x at %llx\n", 598 rom[i], 599 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM); 600 rom[i] = 0; 601 end = i; 602 } 603 i++; 604 605 /* 606 * Now read in the block. If this is a directory 607 * block, check the entries as we read them to see if 608 * it references another block, and push it in that case. 609 */ 610 for (; i < end; i++) { 611 if (read_rom(device, generation, i, &rom[i]) != 612 RCODE_COMPLETE) 613 goto out; 614 615 if ((key >> 30) != 3 || (rom[i] >> 30) < 2) 616 continue; 617 /* 618 * Offset points outside the ROM. May be a firmware 619 * bug or an Extended ROM entry (IEEE 1212-2001 clause 620 * 7.7.18). Simply overwrite this pointer here by a 621 * fake immediate entry so that later iterators over 622 * the ROM don't have to check offsets all the time. 623 */ 624 if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) { 625 fw_error("skipped unsupported ROM entry %x at %llx\n", 626 rom[i], 627 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM); 628 rom[i] = 0; 629 continue; 630 } 631 stack[sp++] = i + rom[i]; 632 } 633 if (length < i) 634 length = i; 635 } 636 637 old_rom = device->config_rom; 638 new_rom = kmemdup(rom, length * 4, GFP_KERNEL); 639 if (new_rom == NULL) 640 goto out; 641 642 down_write(&fw_device_rwsem); 643 device->config_rom = new_rom; 644 device->config_rom_length = length; 645 up_write(&fw_device_rwsem); 646 647 kfree(old_rom); 648 ret = 0; 649 device->max_rec = rom[2] >> 12 & 0xf; 650 device->cmc = rom[2] >> 30 & 1; 651 device->irmc = rom[2] >> 31 & 1; 652 out: 653 kfree(rom); 654 655 return ret; 656 } 657 658 static void fw_unit_release(struct device *dev) 659 { 660 struct fw_unit *unit = fw_unit(dev); 661 662 kfree(unit); 663 } 664 665 static struct device_type fw_unit_type = { 666 .uevent = fw_unit_uevent, 667 .release = fw_unit_release, 668 }; 669 670 static bool is_fw_unit(struct device *dev) 671 { 672 return dev->type == &fw_unit_type; 673 } 674 675 static void create_units(struct fw_device *device) 676 { 677 struct fw_csr_iterator ci; 678 struct fw_unit *unit; 679 int key, value, i; 680 681 i = 0; 682 fw_csr_iterator_init(&ci, &device->config_rom[5]); 683 while (fw_csr_iterator_next(&ci, &key, &value)) { 684 if (key != (CSR_UNIT | CSR_DIRECTORY)) 685 continue; 686 687 /* 688 * Get the address of the unit directory and try to 689 * match the drivers id_tables against it. 690 */ 691 unit = kzalloc(sizeof(*unit), GFP_KERNEL); 692 if (unit == NULL) { 693 fw_error("failed to allocate memory for unit\n"); 694 continue; 695 } 696 697 unit->directory = ci.p + value - 1; 698 unit->device.bus = &fw_bus_type; 699 unit->device.type = &fw_unit_type; 700 unit->device.parent = &device->device; 701 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++); 702 703 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) < 704 ARRAY_SIZE(fw_unit_attributes) + 705 ARRAY_SIZE(config_rom_attributes)); 706 init_fw_attribute_group(&unit->device, 707 fw_unit_attributes, 708 &unit->attribute_group); 709 710 if (device_register(&unit->device) < 0) 711 goto skip_unit; 712 713 continue; 714 715 skip_unit: 716 kfree(unit); 717 } 718 } 719 720 static int shutdown_unit(struct device *device, void *data) 721 { 722 device_unregister(device); 723 724 return 0; 725 } 726 727 /* 728 * fw_device_rwsem acts as dual purpose mutex: 729 * - serializes accesses to fw_device_idr, 730 * - serializes accesses to fw_device.config_rom/.config_rom_length and 731 * fw_unit.directory, unless those accesses happen at safe occasions 732 */ 733 DECLARE_RWSEM(fw_device_rwsem); 734 735 DEFINE_IDR(fw_device_idr); 736 int fw_cdev_major; 737 738 struct fw_device *fw_device_get_by_devt(dev_t devt) 739 { 740 struct fw_device *device; 741 742 down_read(&fw_device_rwsem); 743 device = idr_find(&fw_device_idr, MINOR(devt)); 744 if (device) 745 fw_device_get(device); 746 up_read(&fw_device_rwsem); 747 748 return device; 749 } 750 751 /* 752 * These defines control the retry behavior for reading the config 753 * rom. It shouldn't be necessary to tweak these; if the device 754 * doesn't respond to a config rom read within 10 seconds, it's not 755 * going to respond at all. As for the initial delay, a lot of 756 * devices will be able to respond within half a second after bus 757 * reset. On the other hand, it's not really worth being more 758 * aggressive than that, since it scales pretty well; if 10 devices 759 * are plugged in, they're all getting read within one second. 760 */ 761 762 #define MAX_RETRIES 10 763 #define RETRY_DELAY (3 * HZ) 764 #define INITIAL_DELAY (HZ / 2) 765 #define SHUTDOWN_DELAY (2 * HZ) 766 767 static void fw_device_shutdown(struct work_struct *work) 768 { 769 struct fw_device *device = 770 container_of(work, struct fw_device, work.work); 771 int minor = MINOR(device->device.devt); 772 773 if (time_is_after_jiffies(device->card->reset_jiffies + SHUTDOWN_DELAY) 774 && !list_empty(&device->card->link)) { 775 schedule_delayed_work(&device->work, SHUTDOWN_DELAY); 776 return; 777 } 778 779 if (atomic_cmpxchg(&device->state, 780 FW_DEVICE_GONE, 781 FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE) 782 return; 783 784 fw_device_cdev_remove(device); 785 device_for_each_child(&device->device, NULL, shutdown_unit); 786 device_unregister(&device->device); 787 788 down_write(&fw_device_rwsem); 789 idr_remove(&fw_device_idr, minor); 790 up_write(&fw_device_rwsem); 791 792 fw_device_put(device); 793 } 794 795 static void fw_device_release(struct device *dev) 796 { 797 struct fw_device *device = fw_device(dev); 798 struct fw_card *card = device->card; 799 unsigned long flags; 800 801 /* 802 * Take the card lock so we don't set this to NULL while a 803 * FW_NODE_UPDATED callback is being handled or while the 804 * bus manager work looks at this node. 805 */ 806 spin_lock_irqsave(&card->lock, flags); 807 device->node->data = NULL; 808 spin_unlock_irqrestore(&card->lock, flags); 809 810 fw_node_put(device->node); 811 kfree(device->config_rom); 812 kfree(device); 813 fw_card_put(card); 814 } 815 816 static struct device_type fw_device_type = { 817 .release = fw_device_release, 818 }; 819 820 static bool is_fw_device(struct device *dev) 821 { 822 return dev->type == &fw_device_type; 823 } 824 825 static int update_unit(struct device *dev, void *data) 826 { 827 struct fw_unit *unit = fw_unit(dev); 828 struct fw_driver *driver = (struct fw_driver *)dev->driver; 829 830 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) { 831 down(&dev->sem); 832 driver->update(unit); 833 up(&dev->sem); 834 } 835 836 return 0; 837 } 838 839 static void fw_device_update(struct work_struct *work) 840 { 841 struct fw_device *device = 842 container_of(work, struct fw_device, work.work); 843 844 fw_device_cdev_update(device); 845 device_for_each_child(&device->device, NULL, update_unit); 846 } 847 848 /* 849 * If a device was pending for deletion because its node went away but its 850 * bus info block and root directory header matches that of a newly discovered 851 * device, revive the existing fw_device. 852 * The newly allocated fw_device becomes obsolete instead. 853 */ 854 static int lookup_existing_device(struct device *dev, void *data) 855 { 856 struct fw_device *old = fw_device(dev); 857 struct fw_device *new = data; 858 struct fw_card *card = new->card; 859 int match = 0; 860 861 if (!is_fw_device(dev)) 862 return 0; 863 864 down_read(&fw_device_rwsem); /* serialize config_rom access */ 865 spin_lock_irq(&card->lock); /* serialize node access */ 866 867 if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 && 868 atomic_cmpxchg(&old->state, 869 FW_DEVICE_GONE, 870 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) { 871 struct fw_node *current_node = new->node; 872 struct fw_node *obsolete_node = old->node; 873 874 new->node = obsolete_node; 875 new->node->data = new; 876 old->node = current_node; 877 old->node->data = old; 878 879 old->max_speed = new->max_speed; 880 old->node_id = current_node->node_id; 881 smp_wmb(); /* update node_id before generation */ 882 old->generation = card->generation; 883 old->config_rom_retries = 0; 884 fw_notify("rediscovered device %s\n", dev_name(dev)); 885 886 PREPARE_DELAYED_WORK(&old->work, fw_device_update); 887 schedule_delayed_work(&old->work, 0); 888 889 if (current_node == card->root_node) 890 fw_schedule_bm_work(card, 0); 891 892 match = 1; 893 } 894 895 spin_unlock_irq(&card->lock); 896 up_read(&fw_device_rwsem); 897 898 return match; 899 } 900 901 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, }; 902 903 static void set_broadcast_channel(struct fw_device *device, int generation) 904 { 905 struct fw_card *card = device->card; 906 __be32 data; 907 int rcode; 908 909 if (!card->broadcast_channel_allocated) 910 return; 911 912 /* 913 * The Broadcast_Channel Valid bit is required by nodes which want to 914 * transmit on this channel. Such transmissions are practically 915 * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required 916 * to be IRM capable and have a max_rec of 8 or more. We use this fact 917 * to narrow down to which nodes we send Broadcast_Channel updates. 918 */ 919 if (!device->irmc || device->max_rec < 8) 920 return; 921 922 /* 923 * Some 1394-1995 nodes crash if this 1394a-2000 register is written. 924 * Perform a read test first. 925 */ 926 if (device->bc_implemented == BC_UNKNOWN) { 927 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST, 928 device->node_id, generation, device->max_speed, 929 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL, 930 &data, 4); 931 switch (rcode) { 932 case RCODE_COMPLETE: 933 if (data & cpu_to_be32(1 << 31)) { 934 device->bc_implemented = BC_IMPLEMENTED; 935 break; 936 } 937 /* else fall through to case address error */ 938 case RCODE_ADDRESS_ERROR: 939 device->bc_implemented = BC_UNIMPLEMENTED; 940 } 941 } 942 943 if (device->bc_implemented == BC_IMPLEMENTED) { 944 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL | 945 BROADCAST_CHANNEL_VALID); 946 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST, 947 device->node_id, generation, device->max_speed, 948 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL, 949 &data, 4); 950 } 951 } 952 953 int fw_device_set_broadcast_channel(struct device *dev, void *gen) 954 { 955 if (is_fw_device(dev)) 956 set_broadcast_channel(fw_device(dev), (long)gen); 957 958 return 0; 959 } 960 961 static void fw_device_init(struct work_struct *work) 962 { 963 struct fw_device *device = 964 container_of(work, struct fw_device, work.work); 965 struct device *revived_dev; 966 int minor, ret; 967 968 /* 969 * All failure paths here set node->data to NULL, so that we 970 * don't try to do device_for_each_child() on a kfree()'d 971 * device. 972 */ 973 974 if (read_config_rom(device, device->generation) < 0) { 975 if (device->config_rom_retries < MAX_RETRIES && 976 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) { 977 device->config_rom_retries++; 978 schedule_delayed_work(&device->work, RETRY_DELAY); 979 } else { 980 fw_notify("giving up on config rom for node id %x\n", 981 device->node_id); 982 if (device->node == device->card->root_node) 983 fw_schedule_bm_work(device->card, 0); 984 fw_device_release(&device->device); 985 } 986 return; 987 } 988 989 revived_dev = device_find_child(device->card->device, 990 device, lookup_existing_device); 991 if (revived_dev) { 992 put_device(revived_dev); 993 fw_device_release(&device->device); 994 995 return; 996 } 997 998 device_initialize(&device->device); 999 1000 fw_device_get(device); 1001 down_write(&fw_device_rwsem); 1002 ret = idr_pre_get(&fw_device_idr, GFP_KERNEL) ? 1003 idr_get_new(&fw_device_idr, device, &minor) : 1004 -ENOMEM; 1005 up_write(&fw_device_rwsem); 1006 1007 if (ret < 0) 1008 goto error; 1009 1010 device->device.bus = &fw_bus_type; 1011 device->device.type = &fw_device_type; 1012 device->device.parent = device->card->device; 1013 device->device.devt = MKDEV(fw_cdev_major, minor); 1014 dev_set_name(&device->device, "fw%d", minor); 1015 1016 BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) < 1017 ARRAY_SIZE(fw_device_attributes) + 1018 ARRAY_SIZE(config_rom_attributes)); 1019 init_fw_attribute_group(&device->device, 1020 fw_device_attributes, 1021 &device->attribute_group); 1022 1023 if (device_add(&device->device)) { 1024 fw_error("Failed to add device.\n"); 1025 goto error_with_cdev; 1026 } 1027 1028 create_units(device); 1029 1030 /* 1031 * Transition the device to running state. If it got pulled 1032 * out from under us while we did the intialization work, we 1033 * have to shut down the device again here. Normally, though, 1034 * fw_node_event will be responsible for shutting it down when 1035 * necessary. We have to use the atomic cmpxchg here to avoid 1036 * racing with the FW_NODE_DESTROYED case in 1037 * fw_node_event(). 1038 */ 1039 if (atomic_cmpxchg(&device->state, 1040 FW_DEVICE_INITIALIZING, 1041 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) { 1042 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown); 1043 schedule_delayed_work(&device->work, SHUTDOWN_DELAY); 1044 } else { 1045 if (device->config_rom_retries) 1046 fw_notify("created device %s: GUID %08x%08x, S%d00, " 1047 "%d config ROM retries\n", 1048 dev_name(&device->device), 1049 device->config_rom[3], device->config_rom[4], 1050 1 << device->max_speed, 1051 device->config_rom_retries); 1052 else 1053 fw_notify("created device %s: GUID %08x%08x, S%d00\n", 1054 dev_name(&device->device), 1055 device->config_rom[3], device->config_rom[4], 1056 1 << device->max_speed); 1057 device->config_rom_retries = 0; 1058 1059 set_broadcast_channel(device, device->generation); 1060 } 1061 1062 /* 1063 * Reschedule the IRM work if we just finished reading the 1064 * root node config rom. If this races with a bus reset we 1065 * just end up running the IRM work a couple of extra times - 1066 * pretty harmless. 1067 */ 1068 if (device->node == device->card->root_node) 1069 fw_schedule_bm_work(device->card, 0); 1070 1071 return; 1072 1073 error_with_cdev: 1074 down_write(&fw_device_rwsem); 1075 idr_remove(&fw_device_idr, minor); 1076 up_write(&fw_device_rwsem); 1077 error: 1078 fw_device_put(device); /* fw_device_idr's reference */ 1079 1080 put_device(&device->device); /* our reference */ 1081 } 1082 1083 enum { 1084 REREAD_BIB_ERROR, 1085 REREAD_BIB_GONE, 1086 REREAD_BIB_UNCHANGED, 1087 REREAD_BIB_CHANGED, 1088 }; 1089 1090 /* Reread and compare bus info block and header of root directory */ 1091 static int reread_config_rom(struct fw_device *device, int generation) 1092 { 1093 u32 q; 1094 int i; 1095 1096 for (i = 0; i < 6; i++) { 1097 if (read_rom(device, generation, i, &q) != RCODE_COMPLETE) 1098 return REREAD_BIB_ERROR; 1099 1100 if (i == 0 && q == 0) 1101 return REREAD_BIB_GONE; 1102 1103 if (q != device->config_rom[i]) 1104 return REREAD_BIB_CHANGED; 1105 } 1106 1107 return REREAD_BIB_UNCHANGED; 1108 } 1109 1110 static void fw_device_refresh(struct work_struct *work) 1111 { 1112 struct fw_device *device = 1113 container_of(work, struct fw_device, work.work); 1114 struct fw_card *card = device->card; 1115 int node_id = device->node_id; 1116 1117 switch (reread_config_rom(device, device->generation)) { 1118 case REREAD_BIB_ERROR: 1119 if (device->config_rom_retries < MAX_RETRIES / 2 && 1120 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) { 1121 device->config_rom_retries++; 1122 schedule_delayed_work(&device->work, RETRY_DELAY / 2); 1123 1124 return; 1125 } 1126 goto give_up; 1127 1128 case REREAD_BIB_GONE: 1129 goto gone; 1130 1131 case REREAD_BIB_UNCHANGED: 1132 if (atomic_cmpxchg(&device->state, 1133 FW_DEVICE_INITIALIZING, 1134 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) 1135 goto gone; 1136 1137 fw_device_update(work); 1138 device->config_rom_retries = 0; 1139 goto out; 1140 1141 case REREAD_BIB_CHANGED: 1142 break; 1143 } 1144 1145 /* 1146 * Something changed. We keep things simple and don't investigate 1147 * further. We just destroy all previous units and create new ones. 1148 */ 1149 device_for_each_child(&device->device, NULL, shutdown_unit); 1150 1151 if (read_config_rom(device, device->generation) < 0) { 1152 if (device->config_rom_retries < MAX_RETRIES && 1153 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) { 1154 device->config_rom_retries++; 1155 schedule_delayed_work(&device->work, RETRY_DELAY); 1156 1157 return; 1158 } 1159 goto give_up; 1160 } 1161 1162 create_units(device); 1163 1164 /* Userspace may want to re-read attributes. */ 1165 kobject_uevent(&device->device.kobj, KOBJ_CHANGE); 1166 1167 if (atomic_cmpxchg(&device->state, 1168 FW_DEVICE_INITIALIZING, 1169 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) 1170 goto gone; 1171 1172 fw_notify("refreshed device %s\n", dev_name(&device->device)); 1173 device->config_rom_retries = 0; 1174 goto out; 1175 1176 give_up: 1177 fw_notify("giving up on refresh of device %s\n", dev_name(&device->device)); 1178 gone: 1179 atomic_set(&device->state, FW_DEVICE_GONE); 1180 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown); 1181 schedule_delayed_work(&device->work, SHUTDOWN_DELAY); 1182 out: 1183 if (node_id == card->root_node->node_id) 1184 fw_schedule_bm_work(card, 0); 1185 } 1186 1187 void fw_node_event(struct fw_card *card, struct fw_node *node, int event) 1188 { 1189 struct fw_device *device; 1190 1191 switch (event) { 1192 case FW_NODE_CREATED: 1193 case FW_NODE_LINK_ON: 1194 if (!node->link_on) 1195 break; 1196 create: 1197 device = kzalloc(sizeof(*device), GFP_ATOMIC); 1198 if (device == NULL) 1199 break; 1200 1201 /* 1202 * Do minimal intialization of the device here, the 1203 * rest will happen in fw_device_init(). 1204 * 1205 * Attention: A lot of things, even fw_device_get(), 1206 * cannot be done before fw_device_init() finished! 1207 * You can basically just check device->state and 1208 * schedule work until then, but only while holding 1209 * card->lock. 1210 */ 1211 atomic_set(&device->state, FW_DEVICE_INITIALIZING); 1212 device->card = fw_card_get(card); 1213 device->node = fw_node_get(node); 1214 device->node_id = node->node_id; 1215 device->generation = card->generation; 1216 device->is_local = node == card->local_node; 1217 mutex_init(&device->client_list_mutex); 1218 INIT_LIST_HEAD(&device->client_list); 1219 1220 /* 1221 * Set the node data to point back to this device so 1222 * FW_NODE_UPDATED callbacks can update the node_id 1223 * and generation for the device. 1224 */ 1225 node->data = device; 1226 1227 /* 1228 * Many devices are slow to respond after bus resets, 1229 * especially if they are bus powered and go through 1230 * power-up after getting plugged in. We schedule the 1231 * first config rom scan half a second after bus reset. 1232 */ 1233 INIT_DELAYED_WORK(&device->work, fw_device_init); 1234 schedule_delayed_work(&device->work, INITIAL_DELAY); 1235 break; 1236 1237 case FW_NODE_INITIATED_RESET: 1238 device = node->data; 1239 if (device == NULL) 1240 goto create; 1241 1242 device->node_id = node->node_id; 1243 smp_wmb(); /* update node_id before generation */ 1244 device->generation = card->generation; 1245 if (atomic_cmpxchg(&device->state, 1246 FW_DEVICE_RUNNING, 1247 FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) { 1248 PREPARE_DELAYED_WORK(&device->work, fw_device_refresh); 1249 schedule_delayed_work(&device->work, 1250 device->is_local ? 0 : INITIAL_DELAY); 1251 } 1252 break; 1253 1254 case FW_NODE_UPDATED: 1255 if (!node->link_on || node->data == NULL) 1256 break; 1257 1258 device = node->data; 1259 device->node_id = node->node_id; 1260 smp_wmb(); /* update node_id before generation */ 1261 device->generation = card->generation; 1262 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) { 1263 PREPARE_DELAYED_WORK(&device->work, fw_device_update); 1264 schedule_delayed_work(&device->work, 0); 1265 } 1266 break; 1267 1268 case FW_NODE_DESTROYED: 1269 case FW_NODE_LINK_OFF: 1270 if (!node->data) 1271 break; 1272 1273 /* 1274 * Destroy the device associated with the node. There 1275 * are two cases here: either the device is fully 1276 * initialized (FW_DEVICE_RUNNING) or we're in the 1277 * process of reading its config rom 1278 * (FW_DEVICE_INITIALIZING). If it is fully 1279 * initialized we can reuse device->work to schedule a 1280 * full fw_device_shutdown(). If not, there's work 1281 * scheduled to read it's config rom, and we just put 1282 * the device in shutdown state to have that code fail 1283 * to create the device. 1284 */ 1285 device = node->data; 1286 if (atomic_xchg(&device->state, 1287 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) { 1288 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown); 1289 schedule_delayed_work(&device->work, 1290 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY); 1291 } 1292 break; 1293 } 1294 } 1295