xref: /linux/drivers/firewire/core-device.c (revision 95e9fd10f06cb5642028b6b851e32b8c8afb4571)
1 /*
2  * Device probing and sysfs code.
3  *
4  * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 
21 #include <linux/bug.h>
22 #include <linux/ctype.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/errno.h>
26 #include <linux/firewire.h>
27 #include <linux/firewire-constants.h>
28 #include <linux/idr.h>
29 #include <linux/jiffies.h>
30 #include <linux/kobject.h>
31 #include <linux/list.h>
32 #include <linux/mod_devicetable.h>
33 #include <linux/module.h>
34 #include <linux/mutex.h>
35 #include <linux/rwsem.h>
36 #include <linux/slab.h>
37 #include <linux/spinlock.h>
38 #include <linux/string.h>
39 #include <linux/workqueue.h>
40 
41 #include <linux/atomic.h>
42 #include <asm/byteorder.h>
43 
44 #include "core.h"
45 
46 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
47 {
48 	ci->p = p + 1;
49 	ci->end = ci->p + (p[0] >> 16);
50 }
51 EXPORT_SYMBOL(fw_csr_iterator_init);
52 
53 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
54 {
55 	*key = *ci->p >> 24;
56 	*value = *ci->p & 0xffffff;
57 
58 	return ci->p++ < ci->end;
59 }
60 EXPORT_SYMBOL(fw_csr_iterator_next);
61 
62 static const u32 *search_leaf(const u32 *directory, int search_key)
63 {
64 	struct fw_csr_iterator ci;
65 	int last_key = 0, key, value;
66 
67 	fw_csr_iterator_init(&ci, directory);
68 	while (fw_csr_iterator_next(&ci, &key, &value)) {
69 		if (last_key == search_key &&
70 		    key == (CSR_DESCRIPTOR | CSR_LEAF))
71 			return ci.p - 1 + value;
72 
73 		last_key = key;
74 	}
75 
76 	return NULL;
77 }
78 
79 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
80 {
81 	unsigned int quadlets, i;
82 	char c;
83 
84 	if (!size || !buf)
85 		return -EINVAL;
86 
87 	quadlets = min(block[0] >> 16, 256U);
88 	if (quadlets < 2)
89 		return -ENODATA;
90 
91 	if (block[1] != 0 || block[2] != 0)
92 		/* unknown language/character set */
93 		return -ENODATA;
94 
95 	block += 3;
96 	quadlets -= 2;
97 	for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
98 		c = block[i / 4] >> (24 - 8 * (i % 4));
99 		if (c == '\0')
100 			break;
101 		buf[i] = c;
102 	}
103 	buf[i] = '\0';
104 
105 	return i;
106 }
107 
108 /**
109  * fw_csr_string() - reads a string from the configuration ROM
110  * @directory:	e.g. root directory or unit directory
111  * @key:	the key of the preceding directory entry
112  * @buf:	where to put the string
113  * @size:	size of @buf, in bytes
114  *
115  * The string is taken from a minimal ASCII text descriptor leaf after
116  * the immediate entry with @key.  The string is zero-terminated.
117  * Returns strlen(buf) or a negative error code.
118  */
119 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
120 {
121 	const u32 *leaf = search_leaf(directory, key);
122 	if (!leaf)
123 		return -ENOENT;
124 
125 	return textual_leaf_to_string(leaf, buf, size);
126 }
127 EXPORT_SYMBOL(fw_csr_string);
128 
129 static void get_ids(const u32 *directory, int *id)
130 {
131 	struct fw_csr_iterator ci;
132 	int key, value;
133 
134 	fw_csr_iterator_init(&ci, directory);
135 	while (fw_csr_iterator_next(&ci, &key, &value)) {
136 		switch (key) {
137 		case CSR_VENDOR:	id[0] = value; break;
138 		case CSR_MODEL:		id[1] = value; break;
139 		case CSR_SPECIFIER_ID:	id[2] = value; break;
140 		case CSR_VERSION:	id[3] = value; break;
141 		}
142 	}
143 }
144 
145 static void get_modalias_ids(struct fw_unit *unit, int *id)
146 {
147 	get_ids(&fw_parent_device(unit)->config_rom[5], id);
148 	get_ids(unit->directory, id);
149 }
150 
151 static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
152 {
153 	int match = 0;
154 
155 	if (id[0] == id_table->vendor_id)
156 		match |= IEEE1394_MATCH_VENDOR_ID;
157 	if (id[1] == id_table->model_id)
158 		match |= IEEE1394_MATCH_MODEL_ID;
159 	if (id[2] == id_table->specifier_id)
160 		match |= IEEE1394_MATCH_SPECIFIER_ID;
161 	if (id[3] == id_table->version)
162 		match |= IEEE1394_MATCH_VERSION;
163 
164 	return (match & id_table->match_flags) == id_table->match_flags;
165 }
166 
167 static bool is_fw_unit(struct device *dev);
168 
169 static int fw_unit_match(struct device *dev, struct device_driver *drv)
170 {
171 	const struct ieee1394_device_id *id_table =
172 			container_of(drv, struct fw_driver, driver)->id_table;
173 	int id[] = {0, 0, 0, 0};
174 
175 	/* We only allow binding to fw_units. */
176 	if (!is_fw_unit(dev))
177 		return 0;
178 
179 	get_modalias_ids(fw_unit(dev), id);
180 
181 	for (; id_table->match_flags != 0; id_table++)
182 		if (match_ids(id_table, id))
183 			return 1;
184 
185 	return 0;
186 }
187 
188 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
189 {
190 	int id[] = {0, 0, 0, 0};
191 
192 	get_modalias_ids(unit, id);
193 
194 	return snprintf(buffer, buffer_size,
195 			"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
196 			id[0], id[1], id[2], id[3]);
197 }
198 
199 static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
200 {
201 	struct fw_unit *unit = fw_unit(dev);
202 	char modalias[64];
203 
204 	get_modalias(unit, modalias, sizeof(modalias));
205 
206 	if (add_uevent_var(env, "MODALIAS=%s", modalias))
207 		return -ENOMEM;
208 
209 	return 0;
210 }
211 
212 struct bus_type fw_bus_type = {
213 	.name = "firewire",
214 	.match = fw_unit_match,
215 };
216 EXPORT_SYMBOL(fw_bus_type);
217 
218 int fw_device_enable_phys_dma(struct fw_device *device)
219 {
220 	int generation = device->generation;
221 
222 	/* device->node_id, accessed below, must not be older than generation */
223 	smp_rmb();
224 
225 	return device->card->driver->enable_phys_dma(device->card,
226 						     device->node_id,
227 						     generation);
228 }
229 EXPORT_SYMBOL(fw_device_enable_phys_dma);
230 
231 struct config_rom_attribute {
232 	struct device_attribute attr;
233 	u32 key;
234 };
235 
236 static ssize_t show_immediate(struct device *dev,
237 			      struct device_attribute *dattr, char *buf)
238 {
239 	struct config_rom_attribute *attr =
240 		container_of(dattr, struct config_rom_attribute, attr);
241 	struct fw_csr_iterator ci;
242 	const u32 *dir;
243 	int key, value, ret = -ENOENT;
244 
245 	down_read(&fw_device_rwsem);
246 
247 	if (is_fw_unit(dev))
248 		dir = fw_unit(dev)->directory;
249 	else
250 		dir = fw_device(dev)->config_rom + 5;
251 
252 	fw_csr_iterator_init(&ci, dir);
253 	while (fw_csr_iterator_next(&ci, &key, &value))
254 		if (attr->key == key) {
255 			ret = snprintf(buf, buf ? PAGE_SIZE : 0,
256 				       "0x%06x\n", value);
257 			break;
258 		}
259 
260 	up_read(&fw_device_rwsem);
261 
262 	return ret;
263 }
264 
265 #define IMMEDIATE_ATTR(name, key)				\
266 	{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }
267 
268 static ssize_t show_text_leaf(struct device *dev,
269 			      struct device_attribute *dattr, char *buf)
270 {
271 	struct config_rom_attribute *attr =
272 		container_of(dattr, struct config_rom_attribute, attr);
273 	const u32 *dir;
274 	size_t bufsize;
275 	char dummy_buf[2];
276 	int ret;
277 
278 	down_read(&fw_device_rwsem);
279 
280 	if (is_fw_unit(dev))
281 		dir = fw_unit(dev)->directory;
282 	else
283 		dir = fw_device(dev)->config_rom + 5;
284 
285 	if (buf) {
286 		bufsize = PAGE_SIZE - 1;
287 	} else {
288 		buf = dummy_buf;
289 		bufsize = 1;
290 	}
291 
292 	ret = fw_csr_string(dir, attr->key, buf, bufsize);
293 
294 	if (ret >= 0) {
295 		/* Strip trailing whitespace and add newline. */
296 		while (ret > 0 && isspace(buf[ret - 1]))
297 			ret--;
298 		strcpy(buf + ret, "\n");
299 		ret++;
300 	}
301 
302 	up_read(&fw_device_rwsem);
303 
304 	return ret;
305 }
306 
307 #define TEXT_LEAF_ATTR(name, key)				\
308 	{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
309 
310 static struct config_rom_attribute config_rom_attributes[] = {
311 	IMMEDIATE_ATTR(vendor, CSR_VENDOR),
312 	IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
313 	IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
314 	IMMEDIATE_ATTR(version, CSR_VERSION),
315 	IMMEDIATE_ATTR(model, CSR_MODEL),
316 	TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
317 	TEXT_LEAF_ATTR(model_name, CSR_MODEL),
318 	TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
319 };
320 
321 static void init_fw_attribute_group(struct device *dev,
322 				    struct device_attribute *attrs,
323 				    struct fw_attribute_group *group)
324 {
325 	struct device_attribute *attr;
326 	int i, j;
327 
328 	for (j = 0; attrs[j].attr.name != NULL; j++)
329 		group->attrs[j] = &attrs[j].attr;
330 
331 	for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
332 		attr = &config_rom_attributes[i].attr;
333 		if (attr->show(dev, attr, NULL) < 0)
334 			continue;
335 		group->attrs[j++] = &attr->attr;
336 	}
337 
338 	group->attrs[j] = NULL;
339 	group->groups[0] = &group->group;
340 	group->groups[1] = NULL;
341 	group->group.attrs = group->attrs;
342 	dev->groups = (const struct attribute_group **) group->groups;
343 }
344 
345 static ssize_t modalias_show(struct device *dev,
346 			     struct device_attribute *attr, char *buf)
347 {
348 	struct fw_unit *unit = fw_unit(dev);
349 	int length;
350 
351 	length = get_modalias(unit, buf, PAGE_SIZE);
352 	strcpy(buf + length, "\n");
353 
354 	return length + 1;
355 }
356 
357 static ssize_t rom_index_show(struct device *dev,
358 			      struct device_attribute *attr, char *buf)
359 {
360 	struct fw_device *device = fw_device(dev->parent);
361 	struct fw_unit *unit = fw_unit(dev);
362 
363 	return snprintf(buf, PAGE_SIZE, "%d\n",
364 			(int)(unit->directory - device->config_rom));
365 }
366 
367 static struct device_attribute fw_unit_attributes[] = {
368 	__ATTR_RO(modalias),
369 	__ATTR_RO(rom_index),
370 	__ATTR_NULL,
371 };
372 
373 static ssize_t config_rom_show(struct device *dev,
374 			       struct device_attribute *attr, char *buf)
375 {
376 	struct fw_device *device = fw_device(dev);
377 	size_t length;
378 
379 	down_read(&fw_device_rwsem);
380 	length = device->config_rom_length * 4;
381 	memcpy(buf, device->config_rom, length);
382 	up_read(&fw_device_rwsem);
383 
384 	return length;
385 }
386 
387 static ssize_t guid_show(struct device *dev,
388 			 struct device_attribute *attr, char *buf)
389 {
390 	struct fw_device *device = fw_device(dev);
391 	int ret;
392 
393 	down_read(&fw_device_rwsem);
394 	ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
395 		       device->config_rom[3], device->config_rom[4]);
396 	up_read(&fw_device_rwsem);
397 
398 	return ret;
399 }
400 
401 static ssize_t is_local_show(struct device *dev,
402 			     struct device_attribute *attr, char *buf)
403 {
404 	struct fw_device *device = fw_device(dev);
405 
406 	return sprintf(buf, "%u\n", device->is_local);
407 }
408 
409 static int units_sprintf(char *buf, const u32 *directory)
410 {
411 	struct fw_csr_iterator ci;
412 	int key, value;
413 	int specifier_id = 0;
414 	int version = 0;
415 
416 	fw_csr_iterator_init(&ci, directory);
417 	while (fw_csr_iterator_next(&ci, &key, &value)) {
418 		switch (key) {
419 		case CSR_SPECIFIER_ID:
420 			specifier_id = value;
421 			break;
422 		case CSR_VERSION:
423 			version = value;
424 			break;
425 		}
426 	}
427 
428 	return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
429 }
430 
431 static ssize_t units_show(struct device *dev,
432 			  struct device_attribute *attr, char *buf)
433 {
434 	struct fw_device *device = fw_device(dev);
435 	struct fw_csr_iterator ci;
436 	int key, value, i = 0;
437 
438 	down_read(&fw_device_rwsem);
439 	fw_csr_iterator_init(&ci, &device->config_rom[5]);
440 	while (fw_csr_iterator_next(&ci, &key, &value)) {
441 		if (key != (CSR_UNIT | CSR_DIRECTORY))
442 			continue;
443 		i += units_sprintf(&buf[i], ci.p + value - 1);
444 		if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
445 			break;
446 	}
447 	up_read(&fw_device_rwsem);
448 
449 	if (i)
450 		buf[i - 1] = '\n';
451 
452 	return i;
453 }
454 
455 static struct device_attribute fw_device_attributes[] = {
456 	__ATTR_RO(config_rom),
457 	__ATTR_RO(guid),
458 	__ATTR_RO(is_local),
459 	__ATTR_RO(units),
460 	__ATTR_NULL,
461 };
462 
463 static int read_rom(struct fw_device *device,
464 		    int generation, int index, u32 *data)
465 {
466 	u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
467 	int i, rcode;
468 
469 	/* device->node_id, accessed below, must not be older than generation */
470 	smp_rmb();
471 
472 	for (i = 10; i < 100; i += 10) {
473 		rcode = fw_run_transaction(device->card,
474 				TCODE_READ_QUADLET_REQUEST, device->node_id,
475 				generation, device->max_speed, offset, data, 4);
476 		if (rcode != RCODE_BUSY)
477 			break;
478 		msleep(i);
479 	}
480 	be32_to_cpus(data);
481 
482 	return rcode;
483 }
484 
485 #define MAX_CONFIG_ROM_SIZE 256
486 
487 /*
488  * Read the bus info block, perform a speed probe, and read all of the rest of
489  * the config ROM.  We do all this with a cached bus generation.  If the bus
490  * generation changes under us, read_config_rom will fail and get retried.
491  * It's better to start all over in this case because the node from which we
492  * are reading the ROM may have changed the ROM during the reset.
493  * Returns either a result code or a negative error code.
494  */
495 static int read_config_rom(struct fw_device *device, int generation)
496 {
497 	struct fw_card *card = device->card;
498 	const u32 *old_rom, *new_rom;
499 	u32 *rom, *stack;
500 	u32 sp, key;
501 	int i, end, length, ret;
502 
503 	rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
504 		      sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
505 	if (rom == NULL)
506 		return -ENOMEM;
507 
508 	stack = &rom[MAX_CONFIG_ROM_SIZE];
509 	memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
510 
511 	device->max_speed = SCODE_100;
512 
513 	/* First read the bus info block. */
514 	for (i = 0; i < 5; i++) {
515 		ret = read_rom(device, generation, i, &rom[i]);
516 		if (ret != RCODE_COMPLETE)
517 			goto out;
518 		/*
519 		 * As per IEEE1212 7.2, during initialization, devices can
520 		 * reply with a 0 for the first quadlet of the config
521 		 * rom to indicate that they are booting (for example,
522 		 * if the firmware is on the disk of a external
523 		 * harddisk).  In that case we just fail, and the
524 		 * retry mechanism will try again later.
525 		 */
526 		if (i == 0 && rom[i] == 0) {
527 			ret = RCODE_BUSY;
528 			goto out;
529 		}
530 	}
531 
532 	device->max_speed = device->node->max_speed;
533 
534 	/*
535 	 * Determine the speed of
536 	 *   - devices with link speed less than PHY speed,
537 	 *   - devices with 1394b PHY (unless only connected to 1394a PHYs),
538 	 *   - all devices if there are 1394b repeaters.
539 	 * Note, we cannot use the bus info block's link_spd as starting point
540 	 * because some buggy firmwares set it lower than necessary and because
541 	 * 1394-1995 nodes do not have the field.
542 	 */
543 	if ((rom[2] & 0x7) < device->max_speed ||
544 	    device->max_speed == SCODE_BETA ||
545 	    card->beta_repeaters_present) {
546 		u32 dummy;
547 
548 		/* for S1600 and S3200 */
549 		if (device->max_speed == SCODE_BETA)
550 			device->max_speed = card->link_speed;
551 
552 		while (device->max_speed > SCODE_100) {
553 			if (read_rom(device, generation, 0, &dummy) ==
554 			    RCODE_COMPLETE)
555 				break;
556 			device->max_speed--;
557 		}
558 	}
559 
560 	/*
561 	 * Now parse the config rom.  The config rom is a recursive
562 	 * directory structure so we parse it using a stack of
563 	 * references to the blocks that make up the structure.  We
564 	 * push a reference to the root directory on the stack to
565 	 * start things off.
566 	 */
567 	length = i;
568 	sp = 0;
569 	stack[sp++] = 0xc0000005;
570 	while (sp > 0) {
571 		/*
572 		 * Pop the next block reference of the stack.  The
573 		 * lower 24 bits is the offset into the config rom,
574 		 * the upper 8 bits are the type of the reference the
575 		 * block.
576 		 */
577 		key = stack[--sp];
578 		i = key & 0xffffff;
579 		if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
580 			ret = -ENXIO;
581 			goto out;
582 		}
583 
584 		/* Read header quadlet for the block to get the length. */
585 		ret = read_rom(device, generation, i, &rom[i]);
586 		if (ret != RCODE_COMPLETE)
587 			goto out;
588 		end = i + (rom[i] >> 16) + 1;
589 		if (end > MAX_CONFIG_ROM_SIZE) {
590 			/*
591 			 * This block extends outside the config ROM which is
592 			 * a firmware bug.  Ignore this whole block, i.e.
593 			 * simply set a fake block length of 0.
594 			 */
595 			fw_err(card, "skipped invalid ROM block %x at %llx\n",
596 			       rom[i],
597 			       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
598 			rom[i] = 0;
599 			end = i;
600 		}
601 		i++;
602 
603 		/*
604 		 * Now read in the block.  If this is a directory
605 		 * block, check the entries as we read them to see if
606 		 * it references another block, and push it in that case.
607 		 */
608 		for (; i < end; i++) {
609 			ret = read_rom(device, generation, i, &rom[i]);
610 			if (ret != RCODE_COMPLETE)
611 				goto out;
612 
613 			if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
614 				continue;
615 			/*
616 			 * Offset points outside the ROM.  May be a firmware
617 			 * bug or an Extended ROM entry (IEEE 1212-2001 clause
618 			 * 7.7.18).  Simply overwrite this pointer here by a
619 			 * fake immediate entry so that later iterators over
620 			 * the ROM don't have to check offsets all the time.
621 			 */
622 			if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
623 				fw_err(card,
624 				       "skipped unsupported ROM entry %x at %llx\n",
625 				       rom[i],
626 				       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
627 				rom[i] = 0;
628 				continue;
629 			}
630 			stack[sp++] = i + rom[i];
631 		}
632 		if (length < i)
633 			length = i;
634 	}
635 
636 	old_rom = device->config_rom;
637 	new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
638 	if (new_rom == NULL) {
639 		ret = -ENOMEM;
640 		goto out;
641 	}
642 
643 	down_write(&fw_device_rwsem);
644 	device->config_rom = new_rom;
645 	device->config_rom_length = length;
646 	up_write(&fw_device_rwsem);
647 
648 	kfree(old_rom);
649 	ret = RCODE_COMPLETE;
650 	device->max_rec	= rom[2] >> 12 & 0xf;
651 	device->cmc	= rom[2] >> 30 & 1;
652 	device->irmc	= rom[2] >> 31 & 1;
653  out:
654 	kfree(rom);
655 
656 	return ret;
657 }
658 
659 static void fw_unit_release(struct device *dev)
660 {
661 	struct fw_unit *unit = fw_unit(dev);
662 
663 	fw_device_put(fw_parent_device(unit));
664 	kfree(unit);
665 }
666 
667 static struct device_type fw_unit_type = {
668 	.uevent		= fw_unit_uevent,
669 	.release	= fw_unit_release,
670 };
671 
672 static bool is_fw_unit(struct device *dev)
673 {
674 	return dev->type == &fw_unit_type;
675 }
676 
677 static void create_units(struct fw_device *device)
678 {
679 	struct fw_csr_iterator ci;
680 	struct fw_unit *unit;
681 	int key, value, i;
682 
683 	i = 0;
684 	fw_csr_iterator_init(&ci, &device->config_rom[5]);
685 	while (fw_csr_iterator_next(&ci, &key, &value)) {
686 		if (key != (CSR_UNIT | CSR_DIRECTORY))
687 			continue;
688 
689 		/*
690 		 * Get the address of the unit directory and try to
691 		 * match the drivers id_tables against it.
692 		 */
693 		unit = kzalloc(sizeof(*unit), GFP_KERNEL);
694 		if (unit == NULL) {
695 			fw_err(device->card, "out of memory for unit\n");
696 			continue;
697 		}
698 
699 		unit->directory = ci.p + value - 1;
700 		unit->device.bus = &fw_bus_type;
701 		unit->device.type = &fw_unit_type;
702 		unit->device.parent = &device->device;
703 		dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
704 
705 		BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
706 				ARRAY_SIZE(fw_unit_attributes) +
707 				ARRAY_SIZE(config_rom_attributes));
708 		init_fw_attribute_group(&unit->device,
709 					fw_unit_attributes,
710 					&unit->attribute_group);
711 
712 		if (device_register(&unit->device) < 0)
713 			goto skip_unit;
714 
715 		fw_device_get(device);
716 		continue;
717 
718 	skip_unit:
719 		kfree(unit);
720 	}
721 }
722 
723 static int shutdown_unit(struct device *device, void *data)
724 {
725 	device_unregister(device);
726 
727 	return 0;
728 }
729 
730 /*
731  * fw_device_rwsem acts as dual purpose mutex:
732  *   - serializes accesses to fw_device_idr,
733  *   - serializes accesses to fw_device.config_rom/.config_rom_length and
734  *     fw_unit.directory, unless those accesses happen at safe occasions
735  */
736 DECLARE_RWSEM(fw_device_rwsem);
737 
738 DEFINE_IDR(fw_device_idr);
739 int fw_cdev_major;
740 
741 struct fw_device *fw_device_get_by_devt(dev_t devt)
742 {
743 	struct fw_device *device;
744 
745 	down_read(&fw_device_rwsem);
746 	device = idr_find(&fw_device_idr, MINOR(devt));
747 	if (device)
748 		fw_device_get(device);
749 	up_read(&fw_device_rwsem);
750 
751 	return device;
752 }
753 
754 struct workqueue_struct *fw_workqueue;
755 EXPORT_SYMBOL(fw_workqueue);
756 
757 static void fw_schedule_device_work(struct fw_device *device,
758 				    unsigned long delay)
759 {
760 	queue_delayed_work(fw_workqueue, &device->work, delay);
761 }
762 
763 /*
764  * These defines control the retry behavior for reading the config
765  * rom.  It shouldn't be necessary to tweak these; if the device
766  * doesn't respond to a config rom read within 10 seconds, it's not
767  * going to respond at all.  As for the initial delay, a lot of
768  * devices will be able to respond within half a second after bus
769  * reset.  On the other hand, it's not really worth being more
770  * aggressive than that, since it scales pretty well; if 10 devices
771  * are plugged in, they're all getting read within one second.
772  */
773 
774 #define MAX_RETRIES	10
775 #define RETRY_DELAY	(3 * HZ)
776 #define INITIAL_DELAY	(HZ / 2)
777 #define SHUTDOWN_DELAY	(2 * HZ)
778 
779 static void fw_device_shutdown(struct work_struct *work)
780 {
781 	struct fw_device *device =
782 		container_of(work, struct fw_device, work.work);
783 	int minor = MINOR(device->device.devt);
784 
785 	if (time_before64(get_jiffies_64(),
786 			  device->card->reset_jiffies + SHUTDOWN_DELAY)
787 	    && !list_empty(&device->card->link)) {
788 		fw_schedule_device_work(device, SHUTDOWN_DELAY);
789 		return;
790 	}
791 
792 	if (atomic_cmpxchg(&device->state,
793 			   FW_DEVICE_GONE,
794 			   FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
795 		return;
796 
797 	fw_device_cdev_remove(device);
798 	device_for_each_child(&device->device, NULL, shutdown_unit);
799 	device_unregister(&device->device);
800 
801 	down_write(&fw_device_rwsem);
802 	idr_remove(&fw_device_idr, minor);
803 	up_write(&fw_device_rwsem);
804 
805 	fw_device_put(device);
806 }
807 
808 static void fw_device_release(struct device *dev)
809 {
810 	struct fw_device *device = fw_device(dev);
811 	struct fw_card *card = device->card;
812 	unsigned long flags;
813 
814 	/*
815 	 * Take the card lock so we don't set this to NULL while a
816 	 * FW_NODE_UPDATED callback is being handled or while the
817 	 * bus manager work looks at this node.
818 	 */
819 	spin_lock_irqsave(&card->lock, flags);
820 	device->node->data = NULL;
821 	spin_unlock_irqrestore(&card->lock, flags);
822 
823 	fw_node_put(device->node);
824 	kfree(device->config_rom);
825 	kfree(device);
826 	fw_card_put(card);
827 }
828 
829 static struct device_type fw_device_type = {
830 	.release = fw_device_release,
831 };
832 
833 static bool is_fw_device(struct device *dev)
834 {
835 	return dev->type == &fw_device_type;
836 }
837 
838 static int update_unit(struct device *dev, void *data)
839 {
840 	struct fw_unit *unit = fw_unit(dev);
841 	struct fw_driver *driver = (struct fw_driver *)dev->driver;
842 
843 	if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
844 		device_lock(dev);
845 		driver->update(unit);
846 		device_unlock(dev);
847 	}
848 
849 	return 0;
850 }
851 
852 static void fw_device_update(struct work_struct *work)
853 {
854 	struct fw_device *device =
855 		container_of(work, struct fw_device, work.work);
856 
857 	fw_device_cdev_update(device);
858 	device_for_each_child(&device->device, NULL, update_unit);
859 }
860 
861 /*
862  * If a device was pending for deletion because its node went away but its
863  * bus info block and root directory header matches that of a newly discovered
864  * device, revive the existing fw_device.
865  * The newly allocated fw_device becomes obsolete instead.
866  */
867 static int lookup_existing_device(struct device *dev, void *data)
868 {
869 	struct fw_device *old = fw_device(dev);
870 	struct fw_device *new = data;
871 	struct fw_card *card = new->card;
872 	int match = 0;
873 
874 	if (!is_fw_device(dev))
875 		return 0;
876 
877 	down_read(&fw_device_rwsem); /* serialize config_rom access */
878 	spin_lock_irq(&card->lock);  /* serialize node access */
879 
880 	if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
881 	    atomic_cmpxchg(&old->state,
882 			   FW_DEVICE_GONE,
883 			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
884 		struct fw_node *current_node = new->node;
885 		struct fw_node *obsolete_node = old->node;
886 
887 		new->node = obsolete_node;
888 		new->node->data = new;
889 		old->node = current_node;
890 		old->node->data = old;
891 
892 		old->max_speed = new->max_speed;
893 		old->node_id = current_node->node_id;
894 		smp_wmb();  /* update node_id before generation */
895 		old->generation = card->generation;
896 		old->config_rom_retries = 0;
897 		fw_notice(card, "rediscovered device %s\n", dev_name(dev));
898 
899 		PREPARE_DELAYED_WORK(&old->work, fw_device_update);
900 		fw_schedule_device_work(old, 0);
901 
902 		if (current_node == card->root_node)
903 			fw_schedule_bm_work(card, 0);
904 
905 		match = 1;
906 	}
907 
908 	spin_unlock_irq(&card->lock);
909 	up_read(&fw_device_rwsem);
910 
911 	return match;
912 }
913 
914 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
915 
916 static void set_broadcast_channel(struct fw_device *device, int generation)
917 {
918 	struct fw_card *card = device->card;
919 	__be32 data;
920 	int rcode;
921 
922 	if (!card->broadcast_channel_allocated)
923 		return;
924 
925 	/*
926 	 * The Broadcast_Channel Valid bit is required by nodes which want to
927 	 * transmit on this channel.  Such transmissions are practically
928 	 * exclusive to IP over 1394 (RFC 2734).  IP capable nodes are required
929 	 * to be IRM capable and have a max_rec of 8 or more.  We use this fact
930 	 * to narrow down to which nodes we send Broadcast_Channel updates.
931 	 */
932 	if (!device->irmc || device->max_rec < 8)
933 		return;
934 
935 	/*
936 	 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
937 	 * Perform a read test first.
938 	 */
939 	if (device->bc_implemented == BC_UNKNOWN) {
940 		rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
941 				device->node_id, generation, device->max_speed,
942 				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
943 				&data, 4);
944 		switch (rcode) {
945 		case RCODE_COMPLETE:
946 			if (data & cpu_to_be32(1 << 31)) {
947 				device->bc_implemented = BC_IMPLEMENTED;
948 				break;
949 			}
950 			/* else fall through to case address error */
951 		case RCODE_ADDRESS_ERROR:
952 			device->bc_implemented = BC_UNIMPLEMENTED;
953 		}
954 	}
955 
956 	if (device->bc_implemented == BC_IMPLEMENTED) {
957 		data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
958 				   BROADCAST_CHANNEL_VALID);
959 		fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
960 				device->node_id, generation, device->max_speed,
961 				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
962 				&data, 4);
963 	}
964 }
965 
966 int fw_device_set_broadcast_channel(struct device *dev, void *gen)
967 {
968 	if (is_fw_device(dev))
969 		set_broadcast_channel(fw_device(dev), (long)gen);
970 
971 	return 0;
972 }
973 
974 static void fw_device_init(struct work_struct *work)
975 {
976 	struct fw_device *device =
977 		container_of(work, struct fw_device, work.work);
978 	struct fw_card *card = device->card;
979 	struct device *revived_dev;
980 	int minor, ret;
981 
982 	/*
983 	 * All failure paths here set node->data to NULL, so that we
984 	 * don't try to do device_for_each_child() on a kfree()'d
985 	 * device.
986 	 */
987 
988 	ret = read_config_rom(device, device->generation);
989 	if (ret != RCODE_COMPLETE) {
990 		if (device->config_rom_retries < MAX_RETRIES &&
991 		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
992 			device->config_rom_retries++;
993 			fw_schedule_device_work(device, RETRY_DELAY);
994 		} else {
995 			if (device->node->link_on)
996 				fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
997 					  device->node_id,
998 					  fw_rcode_string(ret));
999 			if (device->node == card->root_node)
1000 				fw_schedule_bm_work(card, 0);
1001 			fw_device_release(&device->device);
1002 		}
1003 		return;
1004 	}
1005 
1006 	revived_dev = device_find_child(card->device,
1007 					device, lookup_existing_device);
1008 	if (revived_dev) {
1009 		put_device(revived_dev);
1010 		fw_device_release(&device->device);
1011 
1012 		return;
1013 	}
1014 
1015 	device_initialize(&device->device);
1016 
1017 	fw_device_get(device);
1018 	down_write(&fw_device_rwsem);
1019 	ret = idr_pre_get(&fw_device_idr, GFP_KERNEL) ?
1020 	      idr_get_new(&fw_device_idr, device, &minor) :
1021 	      -ENOMEM;
1022 	up_write(&fw_device_rwsem);
1023 
1024 	if (ret < 0)
1025 		goto error;
1026 
1027 	device->device.bus = &fw_bus_type;
1028 	device->device.type = &fw_device_type;
1029 	device->device.parent = card->device;
1030 	device->device.devt = MKDEV(fw_cdev_major, minor);
1031 	dev_set_name(&device->device, "fw%d", minor);
1032 
1033 	BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1034 			ARRAY_SIZE(fw_device_attributes) +
1035 			ARRAY_SIZE(config_rom_attributes));
1036 	init_fw_attribute_group(&device->device,
1037 				fw_device_attributes,
1038 				&device->attribute_group);
1039 
1040 	if (device_add(&device->device)) {
1041 		fw_err(card, "failed to add device\n");
1042 		goto error_with_cdev;
1043 	}
1044 
1045 	create_units(device);
1046 
1047 	/*
1048 	 * Transition the device to running state.  If it got pulled
1049 	 * out from under us while we did the intialization work, we
1050 	 * have to shut down the device again here.  Normally, though,
1051 	 * fw_node_event will be responsible for shutting it down when
1052 	 * necessary.  We have to use the atomic cmpxchg here to avoid
1053 	 * racing with the FW_NODE_DESTROYED case in
1054 	 * fw_node_event().
1055 	 */
1056 	if (atomic_cmpxchg(&device->state,
1057 			   FW_DEVICE_INITIALIZING,
1058 			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1059 		PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1060 		fw_schedule_device_work(device, SHUTDOWN_DELAY);
1061 	} else {
1062 		fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1063 			  dev_name(&device->device),
1064 			  device->config_rom[3], device->config_rom[4],
1065 			  1 << device->max_speed);
1066 		device->config_rom_retries = 0;
1067 
1068 		set_broadcast_channel(device, device->generation);
1069 	}
1070 
1071 	/*
1072 	 * Reschedule the IRM work if we just finished reading the
1073 	 * root node config rom.  If this races with a bus reset we
1074 	 * just end up running the IRM work a couple of extra times -
1075 	 * pretty harmless.
1076 	 */
1077 	if (device->node == card->root_node)
1078 		fw_schedule_bm_work(card, 0);
1079 
1080 	return;
1081 
1082  error_with_cdev:
1083 	down_write(&fw_device_rwsem);
1084 	idr_remove(&fw_device_idr, minor);
1085 	up_write(&fw_device_rwsem);
1086  error:
1087 	fw_device_put(device);		/* fw_device_idr's reference */
1088 
1089 	put_device(&device->device);	/* our reference */
1090 }
1091 
1092 /* Reread and compare bus info block and header of root directory */
1093 static int reread_config_rom(struct fw_device *device, int generation,
1094 			     bool *changed)
1095 {
1096 	u32 q;
1097 	int i, rcode;
1098 
1099 	for (i = 0; i < 6; i++) {
1100 		rcode = read_rom(device, generation, i, &q);
1101 		if (rcode != RCODE_COMPLETE)
1102 			return rcode;
1103 
1104 		if (i == 0 && q == 0)
1105 			/* inaccessible (see read_config_rom); retry later */
1106 			return RCODE_BUSY;
1107 
1108 		if (q != device->config_rom[i]) {
1109 			*changed = true;
1110 			return RCODE_COMPLETE;
1111 		}
1112 	}
1113 
1114 	*changed = false;
1115 	return RCODE_COMPLETE;
1116 }
1117 
1118 static void fw_device_refresh(struct work_struct *work)
1119 {
1120 	struct fw_device *device =
1121 		container_of(work, struct fw_device, work.work);
1122 	struct fw_card *card = device->card;
1123 	int ret, node_id = device->node_id;
1124 	bool changed;
1125 
1126 	ret = reread_config_rom(device, device->generation, &changed);
1127 	if (ret != RCODE_COMPLETE)
1128 		goto failed_config_rom;
1129 
1130 	if (!changed) {
1131 		if (atomic_cmpxchg(&device->state,
1132 				   FW_DEVICE_INITIALIZING,
1133 				   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1134 			goto gone;
1135 
1136 		fw_device_update(work);
1137 		device->config_rom_retries = 0;
1138 		goto out;
1139 	}
1140 
1141 	/*
1142 	 * Something changed.  We keep things simple and don't investigate
1143 	 * further.  We just destroy all previous units and create new ones.
1144 	 */
1145 	device_for_each_child(&device->device, NULL, shutdown_unit);
1146 
1147 	ret = read_config_rom(device, device->generation);
1148 	if (ret != RCODE_COMPLETE)
1149 		goto failed_config_rom;
1150 
1151 	fw_device_cdev_update(device);
1152 	create_units(device);
1153 
1154 	/* Userspace may want to re-read attributes. */
1155 	kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1156 
1157 	if (atomic_cmpxchg(&device->state,
1158 			   FW_DEVICE_INITIALIZING,
1159 			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1160 		goto gone;
1161 
1162 	fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1163 	device->config_rom_retries = 0;
1164 	goto out;
1165 
1166  failed_config_rom:
1167 	if (device->config_rom_retries < MAX_RETRIES &&
1168 	    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1169 		device->config_rom_retries++;
1170 		fw_schedule_device_work(device, RETRY_DELAY);
1171 		return;
1172 	}
1173 
1174 	fw_notice(card, "giving up on refresh of device %s: %s\n",
1175 		  dev_name(&device->device), fw_rcode_string(ret));
1176  gone:
1177 	atomic_set(&device->state, FW_DEVICE_GONE);
1178 	PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1179 	fw_schedule_device_work(device, SHUTDOWN_DELAY);
1180  out:
1181 	if (node_id == card->root_node->node_id)
1182 		fw_schedule_bm_work(card, 0);
1183 }
1184 
1185 void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1186 {
1187 	struct fw_device *device;
1188 
1189 	switch (event) {
1190 	case FW_NODE_CREATED:
1191 		/*
1192 		 * Attempt to scan the node, regardless whether its self ID has
1193 		 * the L (link active) flag set or not.  Some broken devices
1194 		 * send L=0 but have an up-and-running link; others send L=1
1195 		 * without actually having a link.
1196 		 */
1197  create:
1198 		device = kzalloc(sizeof(*device), GFP_ATOMIC);
1199 		if (device == NULL)
1200 			break;
1201 
1202 		/*
1203 		 * Do minimal intialization of the device here, the
1204 		 * rest will happen in fw_device_init().
1205 		 *
1206 		 * Attention:  A lot of things, even fw_device_get(),
1207 		 * cannot be done before fw_device_init() finished!
1208 		 * You can basically just check device->state and
1209 		 * schedule work until then, but only while holding
1210 		 * card->lock.
1211 		 */
1212 		atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1213 		device->card = fw_card_get(card);
1214 		device->node = fw_node_get(node);
1215 		device->node_id = node->node_id;
1216 		device->generation = card->generation;
1217 		device->is_local = node == card->local_node;
1218 		mutex_init(&device->client_list_mutex);
1219 		INIT_LIST_HEAD(&device->client_list);
1220 
1221 		/*
1222 		 * Set the node data to point back to this device so
1223 		 * FW_NODE_UPDATED callbacks can update the node_id
1224 		 * and generation for the device.
1225 		 */
1226 		node->data = device;
1227 
1228 		/*
1229 		 * Many devices are slow to respond after bus resets,
1230 		 * especially if they are bus powered and go through
1231 		 * power-up after getting plugged in.  We schedule the
1232 		 * first config rom scan half a second after bus reset.
1233 		 */
1234 		INIT_DELAYED_WORK(&device->work, fw_device_init);
1235 		fw_schedule_device_work(device, INITIAL_DELAY);
1236 		break;
1237 
1238 	case FW_NODE_INITIATED_RESET:
1239 	case FW_NODE_LINK_ON:
1240 		device = node->data;
1241 		if (device == NULL)
1242 			goto create;
1243 
1244 		device->node_id = node->node_id;
1245 		smp_wmb();  /* update node_id before generation */
1246 		device->generation = card->generation;
1247 		if (atomic_cmpxchg(&device->state,
1248 			    FW_DEVICE_RUNNING,
1249 			    FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1250 			PREPARE_DELAYED_WORK(&device->work, fw_device_refresh);
1251 			fw_schedule_device_work(device,
1252 				device->is_local ? 0 : INITIAL_DELAY);
1253 		}
1254 		break;
1255 
1256 	case FW_NODE_UPDATED:
1257 		device = node->data;
1258 		if (device == NULL)
1259 			break;
1260 
1261 		device->node_id = node->node_id;
1262 		smp_wmb();  /* update node_id before generation */
1263 		device->generation = card->generation;
1264 		if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1265 			PREPARE_DELAYED_WORK(&device->work, fw_device_update);
1266 			fw_schedule_device_work(device, 0);
1267 		}
1268 		break;
1269 
1270 	case FW_NODE_DESTROYED:
1271 	case FW_NODE_LINK_OFF:
1272 		if (!node->data)
1273 			break;
1274 
1275 		/*
1276 		 * Destroy the device associated with the node.  There
1277 		 * are two cases here: either the device is fully
1278 		 * initialized (FW_DEVICE_RUNNING) or we're in the
1279 		 * process of reading its config rom
1280 		 * (FW_DEVICE_INITIALIZING).  If it is fully
1281 		 * initialized we can reuse device->work to schedule a
1282 		 * full fw_device_shutdown().  If not, there's work
1283 		 * scheduled to read it's config rom, and we just put
1284 		 * the device in shutdown state to have that code fail
1285 		 * to create the device.
1286 		 */
1287 		device = node->data;
1288 		if (atomic_xchg(&device->state,
1289 				FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1290 			PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1291 			fw_schedule_device_work(device,
1292 				list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1293 		}
1294 		break;
1295 	}
1296 }
1297