1 /* 2 * Device probing and sysfs code. 3 * 4 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software Foundation, 18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 19 */ 20 21 #include <linux/bug.h> 22 #include <linux/ctype.h> 23 #include <linux/delay.h> 24 #include <linux/device.h> 25 #include <linux/errno.h> 26 #include <linux/firewire.h> 27 #include <linux/firewire-constants.h> 28 #include <linux/idr.h> 29 #include <linux/jiffies.h> 30 #include <linux/kobject.h> 31 #include <linux/list.h> 32 #include <linux/mod_devicetable.h> 33 #include <linux/module.h> 34 #include <linux/mutex.h> 35 #include <linux/rwsem.h> 36 #include <linux/slab.h> 37 #include <linux/spinlock.h> 38 #include <linux/string.h> 39 #include <linux/workqueue.h> 40 41 #include <linux/atomic.h> 42 #include <asm/byteorder.h> 43 44 #include "core.h" 45 46 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p) 47 { 48 ci->p = p + 1; 49 ci->end = ci->p + (p[0] >> 16); 50 } 51 EXPORT_SYMBOL(fw_csr_iterator_init); 52 53 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value) 54 { 55 *key = *ci->p >> 24; 56 *value = *ci->p & 0xffffff; 57 58 return ci->p++ < ci->end; 59 } 60 EXPORT_SYMBOL(fw_csr_iterator_next); 61 62 static const u32 *search_leaf(const u32 *directory, int search_key) 63 { 64 struct fw_csr_iterator ci; 65 int last_key = 0, key, value; 66 67 fw_csr_iterator_init(&ci, directory); 68 while (fw_csr_iterator_next(&ci, &key, &value)) { 69 if (last_key == search_key && 70 key == (CSR_DESCRIPTOR | CSR_LEAF)) 71 return ci.p - 1 + value; 72 73 last_key = key; 74 } 75 76 return NULL; 77 } 78 79 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size) 80 { 81 unsigned int quadlets, i; 82 char c; 83 84 if (!size || !buf) 85 return -EINVAL; 86 87 quadlets = min(block[0] >> 16, 256U); 88 if (quadlets < 2) 89 return -ENODATA; 90 91 if (block[1] != 0 || block[2] != 0) 92 /* unknown language/character set */ 93 return -ENODATA; 94 95 block += 3; 96 quadlets -= 2; 97 for (i = 0; i < quadlets * 4 && i < size - 1; i++) { 98 c = block[i / 4] >> (24 - 8 * (i % 4)); 99 if (c == '\0') 100 break; 101 buf[i] = c; 102 } 103 buf[i] = '\0'; 104 105 return i; 106 } 107 108 /** 109 * fw_csr_string() - reads a string from the configuration ROM 110 * @directory: e.g. root directory or unit directory 111 * @key: the key of the preceding directory entry 112 * @buf: where to put the string 113 * @size: size of @buf, in bytes 114 * 115 * The string is taken from a minimal ASCII text descriptor leaf after 116 * the immediate entry with @key. The string is zero-terminated. 117 * Returns strlen(buf) or a negative error code. 118 */ 119 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size) 120 { 121 const u32 *leaf = search_leaf(directory, key); 122 if (!leaf) 123 return -ENOENT; 124 125 return textual_leaf_to_string(leaf, buf, size); 126 } 127 EXPORT_SYMBOL(fw_csr_string); 128 129 static void get_ids(const u32 *directory, int *id) 130 { 131 struct fw_csr_iterator ci; 132 int key, value; 133 134 fw_csr_iterator_init(&ci, directory); 135 while (fw_csr_iterator_next(&ci, &key, &value)) { 136 switch (key) { 137 case CSR_VENDOR: id[0] = value; break; 138 case CSR_MODEL: id[1] = value; break; 139 case CSR_SPECIFIER_ID: id[2] = value; break; 140 case CSR_VERSION: id[3] = value; break; 141 } 142 } 143 } 144 145 static void get_modalias_ids(struct fw_unit *unit, int *id) 146 { 147 get_ids(&fw_parent_device(unit)->config_rom[5], id); 148 get_ids(unit->directory, id); 149 } 150 151 static bool match_ids(const struct ieee1394_device_id *id_table, int *id) 152 { 153 int match = 0; 154 155 if (id[0] == id_table->vendor_id) 156 match |= IEEE1394_MATCH_VENDOR_ID; 157 if (id[1] == id_table->model_id) 158 match |= IEEE1394_MATCH_MODEL_ID; 159 if (id[2] == id_table->specifier_id) 160 match |= IEEE1394_MATCH_SPECIFIER_ID; 161 if (id[3] == id_table->version) 162 match |= IEEE1394_MATCH_VERSION; 163 164 return (match & id_table->match_flags) == id_table->match_flags; 165 } 166 167 static bool is_fw_unit(struct device *dev); 168 169 static int fw_unit_match(struct device *dev, struct device_driver *drv) 170 { 171 const struct ieee1394_device_id *id_table = 172 container_of(drv, struct fw_driver, driver)->id_table; 173 int id[] = {0, 0, 0, 0}; 174 175 /* We only allow binding to fw_units. */ 176 if (!is_fw_unit(dev)) 177 return 0; 178 179 get_modalias_ids(fw_unit(dev), id); 180 181 for (; id_table->match_flags != 0; id_table++) 182 if (match_ids(id_table, id)) 183 return 1; 184 185 return 0; 186 } 187 188 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size) 189 { 190 int id[] = {0, 0, 0, 0}; 191 192 get_modalias_ids(unit, id); 193 194 return snprintf(buffer, buffer_size, 195 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X", 196 id[0], id[1], id[2], id[3]); 197 } 198 199 static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env) 200 { 201 struct fw_unit *unit = fw_unit(dev); 202 char modalias[64]; 203 204 get_modalias(unit, modalias, sizeof(modalias)); 205 206 if (add_uevent_var(env, "MODALIAS=%s", modalias)) 207 return -ENOMEM; 208 209 return 0; 210 } 211 212 struct bus_type fw_bus_type = { 213 .name = "firewire", 214 .match = fw_unit_match, 215 }; 216 EXPORT_SYMBOL(fw_bus_type); 217 218 int fw_device_enable_phys_dma(struct fw_device *device) 219 { 220 int generation = device->generation; 221 222 /* device->node_id, accessed below, must not be older than generation */ 223 smp_rmb(); 224 225 return device->card->driver->enable_phys_dma(device->card, 226 device->node_id, 227 generation); 228 } 229 EXPORT_SYMBOL(fw_device_enable_phys_dma); 230 231 struct config_rom_attribute { 232 struct device_attribute attr; 233 u32 key; 234 }; 235 236 static ssize_t show_immediate(struct device *dev, 237 struct device_attribute *dattr, char *buf) 238 { 239 struct config_rom_attribute *attr = 240 container_of(dattr, struct config_rom_attribute, attr); 241 struct fw_csr_iterator ci; 242 const u32 *dir; 243 int key, value, ret = -ENOENT; 244 245 down_read(&fw_device_rwsem); 246 247 if (is_fw_unit(dev)) 248 dir = fw_unit(dev)->directory; 249 else 250 dir = fw_device(dev)->config_rom + 5; 251 252 fw_csr_iterator_init(&ci, dir); 253 while (fw_csr_iterator_next(&ci, &key, &value)) 254 if (attr->key == key) { 255 ret = snprintf(buf, buf ? PAGE_SIZE : 0, 256 "0x%06x\n", value); 257 break; 258 } 259 260 up_read(&fw_device_rwsem); 261 262 return ret; 263 } 264 265 #define IMMEDIATE_ATTR(name, key) \ 266 { __ATTR(name, S_IRUGO, show_immediate, NULL), key } 267 268 static ssize_t show_text_leaf(struct device *dev, 269 struct device_attribute *dattr, char *buf) 270 { 271 struct config_rom_attribute *attr = 272 container_of(dattr, struct config_rom_attribute, attr); 273 const u32 *dir; 274 size_t bufsize; 275 char dummy_buf[2]; 276 int ret; 277 278 down_read(&fw_device_rwsem); 279 280 if (is_fw_unit(dev)) 281 dir = fw_unit(dev)->directory; 282 else 283 dir = fw_device(dev)->config_rom + 5; 284 285 if (buf) { 286 bufsize = PAGE_SIZE - 1; 287 } else { 288 buf = dummy_buf; 289 bufsize = 1; 290 } 291 292 ret = fw_csr_string(dir, attr->key, buf, bufsize); 293 294 if (ret >= 0) { 295 /* Strip trailing whitespace and add newline. */ 296 while (ret > 0 && isspace(buf[ret - 1])) 297 ret--; 298 strcpy(buf + ret, "\n"); 299 ret++; 300 } 301 302 up_read(&fw_device_rwsem); 303 304 return ret; 305 } 306 307 #define TEXT_LEAF_ATTR(name, key) \ 308 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key } 309 310 static struct config_rom_attribute config_rom_attributes[] = { 311 IMMEDIATE_ATTR(vendor, CSR_VENDOR), 312 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION), 313 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID), 314 IMMEDIATE_ATTR(version, CSR_VERSION), 315 IMMEDIATE_ATTR(model, CSR_MODEL), 316 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR), 317 TEXT_LEAF_ATTR(model_name, CSR_MODEL), 318 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION), 319 }; 320 321 static void init_fw_attribute_group(struct device *dev, 322 struct device_attribute *attrs, 323 struct fw_attribute_group *group) 324 { 325 struct device_attribute *attr; 326 int i, j; 327 328 for (j = 0; attrs[j].attr.name != NULL; j++) 329 group->attrs[j] = &attrs[j].attr; 330 331 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) { 332 attr = &config_rom_attributes[i].attr; 333 if (attr->show(dev, attr, NULL) < 0) 334 continue; 335 group->attrs[j++] = &attr->attr; 336 } 337 338 group->attrs[j] = NULL; 339 group->groups[0] = &group->group; 340 group->groups[1] = NULL; 341 group->group.attrs = group->attrs; 342 dev->groups = (const struct attribute_group **) group->groups; 343 } 344 345 static ssize_t modalias_show(struct device *dev, 346 struct device_attribute *attr, char *buf) 347 { 348 struct fw_unit *unit = fw_unit(dev); 349 int length; 350 351 length = get_modalias(unit, buf, PAGE_SIZE); 352 strcpy(buf + length, "\n"); 353 354 return length + 1; 355 } 356 357 static ssize_t rom_index_show(struct device *dev, 358 struct device_attribute *attr, char *buf) 359 { 360 struct fw_device *device = fw_device(dev->parent); 361 struct fw_unit *unit = fw_unit(dev); 362 363 return snprintf(buf, PAGE_SIZE, "%d\n", 364 (int)(unit->directory - device->config_rom)); 365 } 366 367 static struct device_attribute fw_unit_attributes[] = { 368 __ATTR_RO(modalias), 369 __ATTR_RO(rom_index), 370 __ATTR_NULL, 371 }; 372 373 static ssize_t config_rom_show(struct device *dev, 374 struct device_attribute *attr, char *buf) 375 { 376 struct fw_device *device = fw_device(dev); 377 size_t length; 378 379 down_read(&fw_device_rwsem); 380 length = device->config_rom_length * 4; 381 memcpy(buf, device->config_rom, length); 382 up_read(&fw_device_rwsem); 383 384 return length; 385 } 386 387 static ssize_t guid_show(struct device *dev, 388 struct device_attribute *attr, char *buf) 389 { 390 struct fw_device *device = fw_device(dev); 391 int ret; 392 393 down_read(&fw_device_rwsem); 394 ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n", 395 device->config_rom[3], device->config_rom[4]); 396 up_read(&fw_device_rwsem); 397 398 return ret; 399 } 400 401 static ssize_t is_local_show(struct device *dev, 402 struct device_attribute *attr, char *buf) 403 { 404 struct fw_device *device = fw_device(dev); 405 406 return sprintf(buf, "%u\n", device->is_local); 407 } 408 409 static int units_sprintf(char *buf, const u32 *directory) 410 { 411 struct fw_csr_iterator ci; 412 int key, value; 413 int specifier_id = 0; 414 int version = 0; 415 416 fw_csr_iterator_init(&ci, directory); 417 while (fw_csr_iterator_next(&ci, &key, &value)) { 418 switch (key) { 419 case CSR_SPECIFIER_ID: 420 specifier_id = value; 421 break; 422 case CSR_VERSION: 423 version = value; 424 break; 425 } 426 } 427 428 return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version); 429 } 430 431 static ssize_t units_show(struct device *dev, 432 struct device_attribute *attr, char *buf) 433 { 434 struct fw_device *device = fw_device(dev); 435 struct fw_csr_iterator ci; 436 int key, value, i = 0; 437 438 down_read(&fw_device_rwsem); 439 fw_csr_iterator_init(&ci, &device->config_rom[5]); 440 while (fw_csr_iterator_next(&ci, &key, &value)) { 441 if (key != (CSR_UNIT | CSR_DIRECTORY)) 442 continue; 443 i += units_sprintf(&buf[i], ci.p + value - 1); 444 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1)) 445 break; 446 } 447 up_read(&fw_device_rwsem); 448 449 if (i) 450 buf[i - 1] = '\n'; 451 452 return i; 453 } 454 455 static struct device_attribute fw_device_attributes[] = { 456 __ATTR_RO(config_rom), 457 __ATTR_RO(guid), 458 __ATTR_RO(is_local), 459 __ATTR_RO(units), 460 __ATTR_NULL, 461 }; 462 463 static int read_rom(struct fw_device *device, 464 int generation, int index, u32 *data) 465 { 466 u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4; 467 int i, rcode; 468 469 /* device->node_id, accessed below, must not be older than generation */ 470 smp_rmb(); 471 472 for (i = 10; i < 100; i += 10) { 473 rcode = fw_run_transaction(device->card, 474 TCODE_READ_QUADLET_REQUEST, device->node_id, 475 generation, device->max_speed, offset, data, 4); 476 if (rcode != RCODE_BUSY) 477 break; 478 msleep(i); 479 } 480 be32_to_cpus(data); 481 482 return rcode; 483 } 484 485 #define MAX_CONFIG_ROM_SIZE 256 486 487 /* 488 * Read the bus info block, perform a speed probe, and read all of the rest of 489 * the config ROM. We do all this with a cached bus generation. If the bus 490 * generation changes under us, read_config_rom will fail and get retried. 491 * It's better to start all over in this case because the node from which we 492 * are reading the ROM may have changed the ROM during the reset. 493 * Returns either a result code or a negative error code. 494 */ 495 static int read_config_rom(struct fw_device *device, int generation) 496 { 497 struct fw_card *card = device->card; 498 const u32 *old_rom, *new_rom; 499 u32 *rom, *stack; 500 u32 sp, key; 501 int i, end, length, ret; 502 503 rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE + 504 sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL); 505 if (rom == NULL) 506 return -ENOMEM; 507 508 stack = &rom[MAX_CONFIG_ROM_SIZE]; 509 memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE); 510 511 device->max_speed = SCODE_100; 512 513 /* First read the bus info block. */ 514 for (i = 0; i < 5; i++) { 515 ret = read_rom(device, generation, i, &rom[i]); 516 if (ret != RCODE_COMPLETE) 517 goto out; 518 /* 519 * As per IEEE1212 7.2, during initialization, devices can 520 * reply with a 0 for the first quadlet of the config 521 * rom to indicate that they are booting (for example, 522 * if the firmware is on the disk of a external 523 * harddisk). In that case we just fail, and the 524 * retry mechanism will try again later. 525 */ 526 if (i == 0 && rom[i] == 0) { 527 ret = RCODE_BUSY; 528 goto out; 529 } 530 } 531 532 device->max_speed = device->node->max_speed; 533 534 /* 535 * Determine the speed of 536 * - devices with link speed less than PHY speed, 537 * - devices with 1394b PHY (unless only connected to 1394a PHYs), 538 * - all devices if there are 1394b repeaters. 539 * Note, we cannot use the bus info block's link_spd as starting point 540 * because some buggy firmwares set it lower than necessary and because 541 * 1394-1995 nodes do not have the field. 542 */ 543 if ((rom[2] & 0x7) < device->max_speed || 544 device->max_speed == SCODE_BETA || 545 card->beta_repeaters_present) { 546 u32 dummy; 547 548 /* for S1600 and S3200 */ 549 if (device->max_speed == SCODE_BETA) 550 device->max_speed = card->link_speed; 551 552 while (device->max_speed > SCODE_100) { 553 if (read_rom(device, generation, 0, &dummy) == 554 RCODE_COMPLETE) 555 break; 556 device->max_speed--; 557 } 558 } 559 560 /* 561 * Now parse the config rom. The config rom is a recursive 562 * directory structure so we parse it using a stack of 563 * references to the blocks that make up the structure. We 564 * push a reference to the root directory on the stack to 565 * start things off. 566 */ 567 length = i; 568 sp = 0; 569 stack[sp++] = 0xc0000005; 570 while (sp > 0) { 571 /* 572 * Pop the next block reference of the stack. The 573 * lower 24 bits is the offset into the config rom, 574 * the upper 8 bits are the type of the reference the 575 * block. 576 */ 577 key = stack[--sp]; 578 i = key & 0xffffff; 579 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) { 580 ret = -ENXIO; 581 goto out; 582 } 583 584 /* Read header quadlet for the block to get the length. */ 585 ret = read_rom(device, generation, i, &rom[i]); 586 if (ret != RCODE_COMPLETE) 587 goto out; 588 end = i + (rom[i] >> 16) + 1; 589 if (end > MAX_CONFIG_ROM_SIZE) { 590 /* 591 * This block extends outside the config ROM which is 592 * a firmware bug. Ignore this whole block, i.e. 593 * simply set a fake block length of 0. 594 */ 595 fw_err(card, "skipped invalid ROM block %x at %llx\n", 596 rom[i], 597 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM); 598 rom[i] = 0; 599 end = i; 600 } 601 i++; 602 603 /* 604 * Now read in the block. If this is a directory 605 * block, check the entries as we read them to see if 606 * it references another block, and push it in that case. 607 */ 608 for (; i < end; i++) { 609 ret = read_rom(device, generation, i, &rom[i]); 610 if (ret != RCODE_COMPLETE) 611 goto out; 612 613 if ((key >> 30) != 3 || (rom[i] >> 30) < 2) 614 continue; 615 /* 616 * Offset points outside the ROM. May be a firmware 617 * bug or an Extended ROM entry (IEEE 1212-2001 clause 618 * 7.7.18). Simply overwrite this pointer here by a 619 * fake immediate entry so that later iterators over 620 * the ROM don't have to check offsets all the time. 621 */ 622 if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) { 623 fw_err(card, 624 "skipped unsupported ROM entry %x at %llx\n", 625 rom[i], 626 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM); 627 rom[i] = 0; 628 continue; 629 } 630 stack[sp++] = i + rom[i]; 631 } 632 if (length < i) 633 length = i; 634 } 635 636 old_rom = device->config_rom; 637 new_rom = kmemdup(rom, length * 4, GFP_KERNEL); 638 if (new_rom == NULL) { 639 ret = -ENOMEM; 640 goto out; 641 } 642 643 down_write(&fw_device_rwsem); 644 device->config_rom = new_rom; 645 device->config_rom_length = length; 646 up_write(&fw_device_rwsem); 647 648 kfree(old_rom); 649 ret = RCODE_COMPLETE; 650 device->max_rec = rom[2] >> 12 & 0xf; 651 device->cmc = rom[2] >> 30 & 1; 652 device->irmc = rom[2] >> 31 & 1; 653 out: 654 kfree(rom); 655 656 return ret; 657 } 658 659 static void fw_unit_release(struct device *dev) 660 { 661 struct fw_unit *unit = fw_unit(dev); 662 663 fw_device_put(fw_parent_device(unit)); 664 kfree(unit); 665 } 666 667 static struct device_type fw_unit_type = { 668 .uevent = fw_unit_uevent, 669 .release = fw_unit_release, 670 }; 671 672 static bool is_fw_unit(struct device *dev) 673 { 674 return dev->type == &fw_unit_type; 675 } 676 677 static void create_units(struct fw_device *device) 678 { 679 struct fw_csr_iterator ci; 680 struct fw_unit *unit; 681 int key, value, i; 682 683 i = 0; 684 fw_csr_iterator_init(&ci, &device->config_rom[5]); 685 while (fw_csr_iterator_next(&ci, &key, &value)) { 686 if (key != (CSR_UNIT | CSR_DIRECTORY)) 687 continue; 688 689 /* 690 * Get the address of the unit directory and try to 691 * match the drivers id_tables against it. 692 */ 693 unit = kzalloc(sizeof(*unit), GFP_KERNEL); 694 if (unit == NULL) { 695 fw_err(device->card, "out of memory for unit\n"); 696 continue; 697 } 698 699 unit->directory = ci.p + value - 1; 700 unit->device.bus = &fw_bus_type; 701 unit->device.type = &fw_unit_type; 702 unit->device.parent = &device->device; 703 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++); 704 705 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) < 706 ARRAY_SIZE(fw_unit_attributes) + 707 ARRAY_SIZE(config_rom_attributes)); 708 init_fw_attribute_group(&unit->device, 709 fw_unit_attributes, 710 &unit->attribute_group); 711 712 if (device_register(&unit->device) < 0) 713 goto skip_unit; 714 715 fw_device_get(device); 716 continue; 717 718 skip_unit: 719 kfree(unit); 720 } 721 } 722 723 static int shutdown_unit(struct device *device, void *data) 724 { 725 device_unregister(device); 726 727 return 0; 728 } 729 730 /* 731 * fw_device_rwsem acts as dual purpose mutex: 732 * - serializes accesses to fw_device_idr, 733 * - serializes accesses to fw_device.config_rom/.config_rom_length and 734 * fw_unit.directory, unless those accesses happen at safe occasions 735 */ 736 DECLARE_RWSEM(fw_device_rwsem); 737 738 DEFINE_IDR(fw_device_idr); 739 int fw_cdev_major; 740 741 struct fw_device *fw_device_get_by_devt(dev_t devt) 742 { 743 struct fw_device *device; 744 745 down_read(&fw_device_rwsem); 746 device = idr_find(&fw_device_idr, MINOR(devt)); 747 if (device) 748 fw_device_get(device); 749 up_read(&fw_device_rwsem); 750 751 return device; 752 } 753 754 struct workqueue_struct *fw_workqueue; 755 EXPORT_SYMBOL(fw_workqueue); 756 757 static void fw_schedule_device_work(struct fw_device *device, 758 unsigned long delay) 759 { 760 queue_delayed_work(fw_workqueue, &device->work, delay); 761 } 762 763 /* 764 * These defines control the retry behavior for reading the config 765 * rom. It shouldn't be necessary to tweak these; if the device 766 * doesn't respond to a config rom read within 10 seconds, it's not 767 * going to respond at all. As for the initial delay, a lot of 768 * devices will be able to respond within half a second after bus 769 * reset. On the other hand, it's not really worth being more 770 * aggressive than that, since it scales pretty well; if 10 devices 771 * are plugged in, they're all getting read within one second. 772 */ 773 774 #define MAX_RETRIES 10 775 #define RETRY_DELAY (3 * HZ) 776 #define INITIAL_DELAY (HZ / 2) 777 #define SHUTDOWN_DELAY (2 * HZ) 778 779 static void fw_device_shutdown(struct work_struct *work) 780 { 781 struct fw_device *device = 782 container_of(work, struct fw_device, work.work); 783 int minor = MINOR(device->device.devt); 784 785 if (time_before64(get_jiffies_64(), 786 device->card->reset_jiffies + SHUTDOWN_DELAY) 787 && !list_empty(&device->card->link)) { 788 fw_schedule_device_work(device, SHUTDOWN_DELAY); 789 return; 790 } 791 792 if (atomic_cmpxchg(&device->state, 793 FW_DEVICE_GONE, 794 FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE) 795 return; 796 797 fw_device_cdev_remove(device); 798 device_for_each_child(&device->device, NULL, shutdown_unit); 799 device_unregister(&device->device); 800 801 down_write(&fw_device_rwsem); 802 idr_remove(&fw_device_idr, minor); 803 up_write(&fw_device_rwsem); 804 805 fw_device_put(device); 806 } 807 808 static void fw_device_release(struct device *dev) 809 { 810 struct fw_device *device = fw_device(dev); 811 struct fw_card *card = device->card; 812 unsigned long flags; 813 814 /* 815 * Take the card lock so we don't set this to NULL while a 816 * FW_NODE_UPDATED callback is being handled or while the 817 * bus manager work looks at this node. 818 */ 819 spin_lock_irqsave(&card->lock, flags); 820 device->node->data = NULL; 821 spin_unlock_irqrestore(&card->lock, flags); 822 823 fw_node_put(device->node); 824 kfree(device->config_rom); 825 kfree(device); 826 fw_card_put(card); 827 } 828 829 static struct device_type fw_device_type = { 830 .release = fw_device_release, 831 }; 832 833 static bool is_fw_device(struct device *dev) 834 { 835 return dev->type == &fw_device_type; 836 } 837 838 static int update_unit(struct device *dev, void *data) 839 { 840 struct fw_unit *unit = fw_unit(dev); 841 struct fw_driver *driver = (struct fw_driver *)dev->driver; 842 843 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) { 844 device_lock(dev); 845 driver->update(unit); 846 device_unlock(dev); 847 } 848 849 return 0; 850 } 851 852 static void fw_device_update(struct work_struct *work) 853 { 854 struct fw_device *device = 855 container_of(work, struct fw_device, work.work); 856 857 fw_device_cdev_update(device); 858 device_for_each_child(&device->device, NULL, update_unit); 859 } 860 861 /* 862 * If a device was pending for deletion because its node went away but its 863 * bus info block and root directory header matches that of a newly discovered 864 * device, revive the existing fw_device. 865 * The newly allocated fw_device becomes obsolete instead. 866 */ 867 static int lookup_existing_device(struct device *dev, void *data) 868 { 869 struct fw_device *old = fw_device(dev); 870 struct fw_device *new = data; 871 struct fw_card *card = new->card; 872 int match = 0; 873 874 if (!is_fw_device(dev)) 875 return 0; 876 877 down_read(&fw_device_rwsem); /* serialize config_rom access */ 878 spin_lock_irq(&card->lock); /* serialize node access */ 879 880 if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 && 881 atomic_cmpxchg(&old->state, 882 FW_DEVICE_GONE, 883 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) { 884 struct fw_node *current_node = new->node; 885 struct fw_node *obsolete_node = old->node; 886 887 new->node = obsolete_node; 888 new->node->data = new; 889 old->node = current_node; 890 old->node->data = old; 891 892 old->max_speed = new->max_speed; 893 old->node_id = current_node->node_id; 894 smp_wmb(); /* update node_id before generation */ 895 old->generation = card->generation; 896 old->config_rom_retries = 0; 897 fw_notice(card, "rediscovered device %s\n", dev_name(dev)); 898 899 PREPARE_DELAYED_WORK(&old->work, fw_device_update); 900 fw_schedule_device_work(old, 0); 901 902 if (current_node == card->root_node) 903 fw_schedule_bm_work(card, 0); 904 905 match = 1; 906 } 907 908 spin_unlock_irq(&card->lock); 909 up_read(&fw_device_rwsem); 910 911 return match; 912 } 913 914 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, }; 915 916 static void set_broadcast_channel(struct fw_device *device, int generation) 917 { 918 struct fw_card *card = device->card; 919 __be32 data; 920 int rcode; 921 922 if (!card->broadcast_channel_allocated) 923 return; 924 925 /* 926 * The Broadcast_Channel Valid bit is required by nodes which want to 927 * transmit on this channel. Such transmissions are practically 928 * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required 929 * to be IRM capable and have a max_rec of 8 or more. We use this fact 930 * to narrow down to which nodes we send Broadcast_Channel updates. 931 */ 932 if (!device->irmc || device->max_rec < 8) 933 return; 934 935 /* 936 * Some 1394-1995 nodes crash if this 1394a-2000 register is written. 937 * Perform a read test first. 938 */ 939 if (device->bc_implemented == BC_UNKNOWN) { 940 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST, 941 device->node_id, generation, device->max_speed, 942 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL, 943 &data, 4); 944 switch (rcode) { 945 case RCODE_COMPLETE: 946 if (data & cpu_to_be32(1 << 31)) { 947 device->bc_implemented = BC_IMPLEMENTED; 948 break; 949 } 950 /* else fall through to case address error */ 951 case RCODE_ADDRESS_ERROR: 952 device->bc_implemented = BC_UNIMPLEMENTED; 953 } 954 } 955 956 if (device->bc_implemented == BC_IMPLEMENTED) { 957 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL | 958 BROADCAST_CHANNEL_VALID); 959 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST, 960 device->node_id, generation, device->max_speed, 961 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL, 962 &data, 4); 963 } 964 } 965 966 int fw_device_set_broadcast_channel(struct device *dev, void *gen) 967 { 968 if (is_fw_device(dev)) 969 set_broadcast_channel(fw_device(dev), (long)gen); 970 971 return 0; 972 } 973 974 static void fw_device_init(struct work_struct *work) 975 { 976 struct fw_device *device = 977 container_of(work, struct fw_device, work.work); 978 struct fw_card *card = device->card; 979 struct device *revived_dev; 980 int minor, ret; 981 982 /* 983 * All failure paths here set node->data to NULL, so that we 984 * don't try to do device_for_each_child() on a kfree()'d 985 * device. 986 */ 987 988 ret = read_config_rom(device, device->generation); 989 if (ret != RCODE_COMPLETE) { 990 if (device->config_rom_retries < MAX_RETRIES && 991 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) { 992 device->config_rom_retries++; 993 fw_schedule_device_work(device, RETRY_DELAY); 994 } else { 995 if (device->node->link_on) 996 fw_notice(card, "giving up on node %x: reading config rom failed: %s\n", 997 device->node_id, 998 fw_rcode_string(ret)); 999 if (device->node == card->root_node) 1000 fw_schedule_bm_work(card, 0); 1001 fw_device_release(&device->device); 1002 } 1003 return; 1004 } 1005 1006 revived_dev = device_find_child(card->device, 1007 device, lookup_existing_device); 1008 if (revived_dev) { 1009 put_device(revived_dev); 1010 fw_device_release(&device->device); 1011 1012 return; 1013 } 1014 1015 device_initialize(&device->device); 1016 1017 fw_device_get(device); 1018 down_write(&fw_device_rwsem); 1019 ret = idr_pre_get(&fw_device_idr, GFP_KERNEL) ? 1020 idr_get_new(&fw_device_idr, device, &minor) : 1021 -ENOMEM; 1022 up_write(&fw_device_rwsem); 1023 1024 if (ret < 0) 1025 goto error; 1026 1027 device->device.bus = &fw_bus_type; 1028 device->device.type = &fw_device_type; 1029 device->device.parent = card->device; 1030 device->device.devt = MKDEV(fw_cdev_major, minor); 1031 dev_set_name(&device->device, "fw%d", minor); 1032 1033 BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) < 1034 ARRAY_SIZE(fw_device_attributes) + 1035 ARRAY_SIZE(config_rom_attributes)); 1036 init_fw_attribute_group(&device->device, 1037 fw_device_attributes, 1038 &device->attribute_group); 1039 1040 if (device_add(&device->device)) { 1041 fw_err(card, "failed to add device\n"); 1042 goto error_with_cdev; 1043 } 1044 1045 create_units(device); 1046 1047 /* 1048 * Transition the device to running state. If it got pulled 1049 * out from under us while we did the intialization work, we 1050 * have to shut down the device again here. Normally, though, 1051 * fw_node_event will be responsible for shutting it down when 1052 * necessary. We have to use the atomic cmpxchg here to avoid 1053 * racing with the FW_NODE_DESTROYED case in 1054 * fw_node_event(). 1055 */ 1056 if (atomic_cmpxchg(&device->state, 1057 FW_DEVICE_INITIALIZING, 1058 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) { 1059 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown); 1060 fw_schedule_device_work(device, SHUTDOWN_DELAY); 1061 } else { 1062 fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n", 1063 dev_name(&device->device), 1064 device->config_rom[3], device->config_rom[4], 1065 1 << device->max_speed); 1066 device->config_rom_retries = 0; 1067 1068 set_broadcast_channel(device, device->generation); 1069 } 1070 1071 /* 1072 * Reschedule the IRM work if we just finished reading the 1073 * root node config rom. If this races with a bus reset we 1074 * just end up running the IRM work a couple of extra times - 1075 * pretty harmless. 1076 */ 1077 if (device->node == card->root_node) 1078 fw_schedule_bm_work(card, 0); 1079 1080 return; 1081 1082 error_with_cdev: 1083 down_write(&fw_device_rwsem); 1084 idr_remove(&fw_device_idr, minor); 1085 up_write(&fw_device_rwsem); 1086 error: 1087 fw_device_put(device); /* fw_device_idr's reference */ 1088 1089 put_device(&device->device); /* our reference */ 1090 } 1091 1092 /* Reread and compare bus info block and header of root directory */ 1093 static int reread_config_rom(struct fw_device *device, int generation, 1094 bool *changed) 1095 { 1096 u32 q; 1097 int i, rcode; 1098 1099 for (i = 0; i < 6; i++) { 1100 rcode = read_rom(device, generation, i, &q); 1101 if (rcode != RCODE_COMPLETE) 1102 return rcode; 1103 1104 if (i == 0 && q == 0) 1105 /* inaccessible (see read_config_rom); retry later */ 1106 return RCODE_BUSY; 1107 1108 if (q != device->config_rom[i]) { 1109 *changed = true; 1110 return RCODE_COMPLETE; 1111 } 1112 } 1113 1114 *changed = false; 1115 return RCODE_COMPLETE; 1116 } 1117 1118 static void fw_device_refresh(struct work_struct *work) 1119 { 1120 struct fw_device *device = 1121 container_of(work, struct fw_device, work.work); 1122 struct fw_card *card = device->card; 1123 int ret, node_id = device->node_id; 1124 bool changed; 1125 1126 ret = reread_config_rom(device, device->generation, &changed); 1127 if (ret != RCODE_COMPLETE) 1128 goto failed_config_rom; 1129 1130 if (!changed) { 1131 if (atomic_cmpxchg(&device->state, 1132 FW_DEVICE_INITIALIZING, 1133 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) 1134 goto gone; 1135 1136 fw_device_update(work); 1137 device->config_rom_retries = 0; 1138 goto out; 1139 } 1140 1141 /* 1142 * Something changed. We keep things simple and don't investigate 1143 * further. We just destroy all previous units and create new ones. 1144 */ 1145 device_for_each_child(&device->device, NULL, shutdown_unit); 1146 1147 ret = read_config_rom(device, device->generation); 1148 if (ret != RCODE_COMPLETE) 1149 goto failed_config_rom; 1150 1151 fw_device_cdev_update(device); 1152 create_units(device); 1153 1154 /* Userspace may want to re-read attributes. */ 1155 kobject_uevent(&device->device.kobj, KOBJ_CHANGE); 1156 1157 if (atomic_cmpxchg(&device->state, 1158 FW_DEVICE_INITIALIZING, 1159 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) 1160 goto gone; 1161 1162 fw_notice(card, "refreshed device %s\n", dev_name(&device->device)); 1163 device->config_rom_retries = 0; 1164 goto out; 1165 1166 failed_config_rom: 1167 if (device->config_rom_retries < MAX_RETRIES && 1168 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) { 1169 device->config_rom_retries++; 1170 fw_schedule_device_work(device, RETRY_DELAY); 1171 return; 1172 } 1173 1174 fw_notice(card, "giving up on refresh of device %s: %s\n", 1175 dev_name(&device->device), fw_rcode_string(ret)); 1176 gone: 1177 atomic_set(&device->state, FW_DEVICE_GONE); 1178 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown); 1179 fw_schedule_device_work(device, SHUTDOWN_DELAY); 1180 out: 1181 if (node_id == card->root_node->node_id) 1182 fw_schedule_bm_work(card, 0); 1183 } 1184 1185 void fw_node_event(struct fw_card *card, struct fw_node *node, int event) 1186 { 1187 struct fw_device *device; 1188 1189 switch (event) { 1190 case FW_NODE_CREATED: 1191 /* 1192 * Attempt to scan the node, regardless whether its self ID has 1193 * the L (link active) flag set or not. Some broken devices 1194 * send L=0 but have an up-and-running link; others send L=1 1195 * without actually having a link. 1196 */ 1197 create: 1198 device = kzalloc(sizeof(*device), GFP_ATOMIC); 1199 if (device == NULL) 1200 break; 1201 1202 /* 1203 * Do minimal intialization of the device here, the 1204 * rest will happen in fw_device_init(). 1205 * 1206 * Attention: A lot of things, even fw_device_get(), 1207 * cannot be done before fw_device_init() finished! 1208 * You can basically just check device->state and 1209 * schedule work until then, but only while holding 1210 * card->lock. 1211 */ 1212 atomic_set(&device->state, FW_DEVICE_INITIALIZING); 1213 device->card = fw_card_get(card); 1214 device->node = fw_node_get(node); 1215 device->node_id = node->node_id; 1216 device->generation = card->generation; 1217 device->is_local = node == card->local_node; 1218 mutex_init(&device->client_list_mutex); 1219 INIT_LIST_HEAD(&device->client_list); 1220 1221 /* 1222 * Set the node data to point back to this device so 1223 * FW_NODE_UPDATED callbacks can update the node_id 1224 * and generation for the device. 1225 */ 1226 node->data = device; 1227 1228 /* 1229 * Many devices are slow to respond after bus resets, 1230 * especially if they are bus powered and go through 1231 * power-up after getting plugged in. We schedule the 1232 * first config rom scan half a second after bus reset. 1233 */ 1234 INIT_DELAYED_WORK(&device->work, fw_device_init); 1235 fw_schedule_device_work(device, INITIAL_DELAY); 1236 break; 1237 1238 case FW_NODE_INITIATED_RESET: 1239 case FW_NODE_LINK_ON: 1240 device = node->data; 1241 if (device == NULL) 1242 goto create; 1243 1244 device->node_id = node->node_id; 1245 smp_wmb(); /* update node_id before generation */ 1246 device->generation = card->generation; 1247 if (atomic_cmpxchg(&device->state, 1248 FW_DEVICE_RUNNING, 1249 FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) { 1250 PREPARE_DELAYED_WORK(&device->work, fw_device_refresh); 1251 fw_schedule_device_work(device, 1252 device->is_local ? 0 : INITIAL_DELAY); 1253 } 1254 break; 1255 1256 case FW_NODE_UPDATED: 1257 device = node->data; 1258 if (device == NULL) 1259 break; 1260 1261 device->node_id = node->node_id; 1262 smp_wmb(); /* update node_id before generation */ 1263 device->generation = card->generation; 1264 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) { 1265 PREPARE_DELAYED_WORK(&device->work, fw_device_update); 1266 fw_schedule_device_work(device, 0); 1267 } 1268 break; 1269 1270 case FW_NODE_DESTROYED: 1271 case FW_NODE_LINK_OFF: 1272 if (!node->data) 1273 break; 1274 1275 /* 1276 * Destroy the device associated with the node. There 1277 * are two cases here: either the device is fully 1278 * initialized (FW_DEVICE_RUNNING) or we're in the 1279 * process of reading its config rom 1280 * (FW_DEVICE_INITIALIZING). If it is fully 1281 * initialized we can reuse device->work to schedule a 1282 * full fw_device_shutdown(). If not, there's work 1283 * scheduled to read it's config rom, and we just put 1284 * the device in shutdown state to have that code fail 1285 * to create the device. 1286 */ 1287 device = node->data; 1288 if (atomic_xchg(&device->state, 1289 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) { 1290 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown); 1291 fw_schedule_device_work(device, 1292 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY); 1293 } 1294 break; 1295 } 1296 } 1297