1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Device probing and sysfs code. 4 * 5 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net> 6 */ 7 8 #include <linux/bug.h> 9 #include <linux/ctype.h> 10 #include <linux/delay.h> 11 #include <linux/device.h> 12 #include <linux/errno.h> 13 #include <linux/firewire.h> 14 #include <linux/firewire-constants.h> 15 #include <linux/idr.h> 16 #include <linux/jiffies.h> 17 #include <linux/kobject.h> 18 #include <linux/list.h> 19 #include <linux/mod_devicetable.h> 20 #include <linux/module.h> 21 #include <linux/mutex.h> 22 #include <linux/random.h> 23 #include <linux/rwsem.h> 24 #include <linux/slab.h> 25 #include <linux/spinlock.h> 26 #include <linux/string.h> 27 #include <linux/workqueue.h> 28 29 #include <linux/atomic.h> 30 #include <asm/byteorder.h> 31 32 #include "core.h" 33 34 #define ROOT_DIR_OFFSET 5 35 36 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p) 37 { 38 ci->p = p + 1; 39 ci->end = ci->p + (p[0] >> 16); 40 } 41 EXPORT_SYMBOL(fw_csr_iterator_init); 42 43 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value) 44 { 45 *key = *ci->p >> 24; 46 *value = *ci->p & 0xffffff; 47 48 return ci->p++ < ci->end; 49 } 50 EXPORT_SYMBOL(fw_csr_iterator_next); 51 52 static const u32 *search_directory(const u32 *directory, int search_key) 53 { 54 struct fw_csr_iterator ci; 55 int key, value; 56 57 search_key |= CSR_DIRECTORY; 58 59 fw_csr_iterator_init(&ci, directory); 60 while (fw_csr_iterator_next(&ci, &key, &value)) { 61 if (key == search_key) 62 return ci.p - 1 + value; 63 } 64 65 return NULL; 66 } 67 68 static const u32 *search_leaf(const u32 *directory, int search_key) 69 { 70 struct fw_csr_iterator ci; 71 int last_key = 0, key, value; 72 73 fw_csr_iterator_init(&ci, directory); 74 while (fw_csr_iterator_next(&ci, &key, &value)) { 75 if (last_key == search_key && 76 key == (CSR_DESCRIPTOR | CSR_LEAF)) 77 return ci.p - 1 + value; 78 79 last_key = key; 80 } 81 82 return NULL; 83 } 84 85 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size) 86 { 87 unsigned int quadlets, i; 88 char c; 89 90 if (!size || !buf) 91 return -EINVAL; 92 93 quadlets = min(block[0] >> 16, 256U); 94 if (quadlets < 2) 95 return -ENODATA; 96 97 if (block[1] != 0 || block[2] != 0) 98 /* unknown language/character set */ 99 return -ENODATA; 100 101 block += 3; 102 quadlets -= 2; 103 for (i = 0; i < quadlets * 4 && i < size - 1; i++) { 104 c = block[i / 4] >> (24 - 8 * (i % 4)); 105 if (c == '\0') 106 break; 107 buf[i] = c; 108 } 109 buf[i] = '\0'; 110 111 return i; 112 } 113 114 /** 115 * fw_csr_string() - reads a string from the configuration ROM 116 * @directory: e.g. root directory or unit directory 117 * @key: the key of the preceding directory entry 118 * @buf: where to put the string 119 * @size: size of @buf, in bytes 120 * 121 * The string is taken from a minimal ASCII text descriptor leaf just after the entry with the 122 * @key. The string is zero-terminated. An overlong string is silently truncated such that it 123 * and the zero byte fit into @size. 124 * 125 * Returns strlen(buf) or a negative error code. 126 */ 127 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size) 128 { 129 const u32 *leaf = search_leaf(directory, key); 130 if (!leaf) 131 return -ENOENT; 132 133 return textual_leaf_to_string(leaf, buf, size); 134 } 135 EXPORT_SYMBOL(fw_csr_string); 136 137 static void get_ids(const u32 *directory, int *id) 138 { 139 struct fw_csr_iterator ci; 140 int key, value; 141 142 fw_csr_iterator_init(&ci, directory); 143 while (fw_csr_iterator_next(&ci, &key, &value)) { 144 switch (key) { 145 case CSR_VENDOR: id[0] = value; break; 146 case CSR_MODEL: id[1] = value; break; 147 case CSR_SPECIFIER_ID: id[2] = value; break; 148 case CSR_VERSION: id[3] = value; break; 149 } 150 } 151 } 152 153 static void get_modalias_ids(const struct fw_unit *unit, int *id) 154 { 155 const u32 *root_directory = &fw_parent_device(unit)->config_rom[ROOT_DIR_OFFSET]; 156 const u32 *directories[] = {NULL, NULL, NULL}; 157 const u32 *vendor_directory; 158 int i; 159 160 directories[0] = root_directory; 161 162 // Legacy layout of configuration ROM described in Annex 1 of 'Configuration ROM for AV/C 163 // Devices 1.0 (December 12, 2000, 1394 Trading Association, TA Document 1999027)'. 164 vendor_directory = search_directory(root_directory, CSR_VENDOR); 165 if (!vendor_directory) { 166 directories[1] = unit->directory; 167 } else { 168 directories[1] = vendor_directory; 169 directories[2] = unit->directory; 170 } 171 172 for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i) 173 get_ids(directories[i], id); 174 } 175 176 static bool match_ids(const struct ieee1394_device_id *id_table, int *id) 177 { 178 int match = 0; 179 180 if (id[0] == id_table->vendor_id) 181 match |= IEEE1394_MATCH_VENDOR_ID; 182 if (id[1] == id_table->model_id) 183 match |= IEEE1394_MATCH_MODEL_ID; 184 if (id[2] == id_table->specifier_id) 185 match |= IEEE1394_MATCH_SPECIFIER_ID; 186 if (id[3] == id_table->version) 187 match |= IEEE1394_MATCH_VERSION; 188 189 return (match & id_table->match_flags) == id_table->match_flags; 190 } 191 192 static const struct ieee1394_device_id *unit_match(struct device *dev, 193 const struct device_driver *drv) 194 { 195 const struct ieee1394_device_id *id_table = 196 container_of_const(drv, struct fw_driver, driver)->id_table; 197 int id[] = {0, 0, 0, 0}; 198 199 get_modalias_ids(fw_unit(dev), id); 200 201 for (; id_table->match_flags != 0; id_table++) 202 if (match_ids(id_table, id)) 203 return id_table; 204 205 return NULL; 206 } 207 208 static bool is_fw_unit(const struct device *dev); 209 210 static int fw_unit_match(struct device *dev, const struct device_driver *drv) 211 { 212 /* We only allow binding to fw_units. */ 213 return is_fw_unit(dev) && unit_match(dev, drv) != NULL; 214 } 215 216 static int fw_unit_probe(struct device *dev) 217 { 218 struct fw_driver *driver = 219 container_of(dev->driver, struct fw_driver, driver); 220 221 return driver->probe(fw_unit(dev), unit_match(dev, dev->driver)); 222 } 223 224 static void fw_unit_remove(struct device *dev) 225 { 226 struct fw_driver *driver = 227 container_of(dev->driver, struct fw_driver, driver); 228 229 driver->remove(fw_unit(dev)); 230 } 231 232 static int get_modalias(const struct fw_unit *unit, char *buffer, size_t buffer_size) 233 { 234 int id[] = {0, 0, 0, 0}; 235 236 get_modalias_ids(unit, id); 237 238 return snprintf(buffer, buffer_size, 239 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X", 240 id[0], id[1], id[2], id[3]); 241 } 242 243 static int fw_unit_uevent(const struct device *dev, struct kobj_uevent_env *env) 244 { 245 const struct fw_unit *unit = fw_unit(dev); 246 char modalias[64]; 247 248 get_modalias(unit, modalias, sizeof(modalias)); 249 250 if (add_uevent_var(env, "MODALIAS=%s", modalias)) 251 return -ENOMEM; 252 253 return 0; 254 } 255 256 const struct bus_type fw_bus_type = { 257 .name = "firewire", 258 .match = fw_unit_match, 259 .probe = fw_unit_probe, 260 .remove = fw_unit_remove, 261 }; 262 EXPORT_SYMBOL(fw_bus_type); 263 264 int fw_device_enable_phys_dma(struct fw_device *device) 265 { 266 int generation = device->generation; 267 268 /* device->node_id, accessed below, must not be older than generation */ 269 smp_rmb(); 270 271 return device->card->driver->enable_phys_dma(device->card, 272 device->node_id, 273 generation); 274 } 275 EXPORT_SYMBOL(fw_device_enable_phys_dma); 276 277 struct config_rom_attribute { 278 struct device_attribute attr; 279 u32 key; 280 }; 281 282 static ssize_t show_immediate(struct device *dev, 283 struct device_attribute *dattr, char *buf) 284 { 285 struct config_rom_attribute *attr = 286 container_of(dattr, struct config_rom_attribute, attr); 287 struct fw_csr_iterator ci; 288 const u32 *directories[] = {NULL, NULL}; 289 int i, value = -1; 290 291 down_read(&fw_device_rwsem); 292 293 if (is_fw_unit(dev)) { 294 directories[0] = fw_unit(dev)->directory; 295 } else { 296 const u32 *root_directory = fw_device(dev)->config_rom + ROOT_DIR_OFFSET; 297 const u32 *vendor_directory = search_directory(root_directory, CSR_VENDOR); 298 299 if (!vendor_directory) { 300 directories[0] = root_directory; 301 } else { 302 // Legacy layout of configuration ROM described in Annex 1 of 303 // 'Configuration ROM for AV/C Devices 1.0 (December 12, 2000, 1394 Trading 304 // Association, TA Document 1999027)'. 305 directories[0] = vendor_directory; 306 directories[1] = root_directory; 307 } 308 } 309 310 for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i) { 311 int key, val; 312 313 fw_csr_iterator_init(&ci, directories[i]); 314 while (fw_csr_iterator_next(&ci, &key, &val)) { 315 if (attr->key == key) 316 value = val; 317 } 318 } 319 320 up_read(&fw_device_rwsem); 321 322 if (value < 0) 323 return -ENOENT; 324 325 // Note that this function is also called by init_fw_attribute_group() with NULL pointer. 326 return buf ? sysfs_emit(buf, "0x%06x\n", value) : 0; 327 } 328 329 #define IMMEDIATE_ATTR(name, key) \ 330 { __ATTR(name, S_IRUGO, show_immediate, NULL), key } 331 332 static ssize_t show_text_leaf(struct device *dev, 333 struct device_attribute *dattr, char *buf) 334 { 335 struct config_rom_attribute *attr = 336 container_of(dattr, struct config_rom_attribute, attr); 337 const u32 *directories[] = {NULL, NULL}; 338 size_t bufsize; 339 char dummy_buf[2]; 340 int i, ret = -ENOENT; 341 342 down_read(&fw_device_rwsem); 343 344 if (is_fw_unit(dev)) { 345 directories[0] = fw_unit(dev)->directory; 346 } else { 347 const u32 *root_directory = fw_device(dev)->config_rom + ROOT_DIR_OFFSET; 348 const u32 *vendor_directory = search_directory(root_directory, CSR_VENDOR); 349 350 if (!vendor_directory) { 351 directories[0] = root_directory; 352 } else { 353 // Legacy layout of configuration ROM described in Annex 1 of 354 // 'Configuration ROM for AV/C Devices 1.0 (December 12, 2000, 1394 355 // Trading Association, TA Document 1999027)'. 356 directories[0] = root_directory; 357 directories[1] = vendor_directory; 358 } 359 } 360 361 // Note that this function is also called by init_fw_attribute_group() with NULL pointer. 362 if (buf) { 363 bufsize = PAGE_SIZE - 1; 364 } else { 365 buf = dummy_buf; 366 bufsize = 1; 367 } 368 369 for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i) { 370 int result = fw_csr_string(directories[i], attr->key, buf, bufsize); 371 // Detected. 372 if (result >= 0) { 373 ret = result; 374 } else if (i == 0 && attr->key == CSR_VENDOR) { 375 // Sony DVMC-DA1 has configuration ROM such that the descriptor leaf entry 376 // in the root directory follows to the directory entry for vendor ID 377 // instead of the immediate value for vendor ID. 378 result = fw_csr_string(directories[i], CSR_DIRECTORY | attr->key, buf, 379 bufsize); 380 if (result >= 0) 381 ret = result; 382 } 383 } 384 385 if (ret >= 0) { 386 /* Strip trailing whitespace and add newline. */ 387 while (ret > 0 && isspace(buf[ret - 1])) 388 ret--; 389 strcpy(buf + ret, "\n"); 390 ret++; 391 } 392 393 up_read(&fw_device_rwsem); 394 395 return ret; 396 } 397 398 #define TEXT_LEAF_ATTR(name, key) \ 399 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key } 400 401 static struct config_rom_attribute config_rom_attributes[] = { 402 IMMEDIATE_ATTR(vendor, CSR_VENDOR), 403 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION), 404 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID), 405 IMMEDIATE_ATTR(version, CSR_VERSION), 406 IMMEDIATE_ATTR(model, CSR_MODEL), 407 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR), 408 TEXT_LEAF_ATTR(model_name, CSR_MODEL), 409 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION), 410 }; 411 412 static void init_fw_attribute_group(struct device *dev, 413 struct device_attribute *attrs, 414 struct fw_attribute_group *group) 415 { 416 struct device_attribute *attr; 417 int i, j; 418 419 for (j = 0; attrs[j].attr.name != NULL; j++) 420 group->attrs[j] = &attrs[j].attr; 421 422 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) { 423 attr = &config_rom_attributes[i].attr; 424 if (attr->show(dev, attr, NULL) < 0) 425 continue; 426 group->attrs[j++] = &attr->attr; 427 } 428 429 group->attrs[j] = NULL; 430 group->groups[0] = &group->group; 431 group->groups[1] = NULL; 432 group->group.attrs = group->attrs; 433 dev->groups = (const struct attribute_group **) group->groups; 434 } 435 436 static ssize_t modalias_show(struct device *dev, 437 struct device_attribute *attr, char *buf) 438 { 439 struct fw_unit *unit = fw_unit(dev); 440 int length; 441 442 length = get_modalias(unit, buf, PAGE_SIZE); 443 strcpy(buf + length, "\n"); 444 445 return length + 1; 446 } 447 448 static ssize_t rom_index_show(struct device *dev, 449 struct device_attribute *attr, char *buf) 450 { 451 struct fw_device *device = fw_device(dev->parent); 452 struct fw_unit *unit = fw_unit(dev); 453 454 return sysfs_emit(buf, "%td\n", unit->directory - device->config_rom); 455 } 456 457 static struct device_attribute fw_unit_attributes[] = { 458 __ATTR_RO(modalias), 459 __ATTR_RO(rom_index), 460 __ATTR_NULL, 461 }; 462 463 static ssize_t config_rom_show(struct device *dev, 464 struct device_attribute *attr, char *buf) 465 { 466 struct fw_device *device = fw_device(dev); 467 size_t length; 468 469 down_read(&fw_device_rwsem); 470 length = device->config_rom_length * 4; 471 memcpy(buf, device->config_rom, length); 472 up_read(&fw_device_rwsem); 473 474 return length; 475 } 476 477 static ssize_t guid_show(struct device *dev, 478 struct device_attribute *attr, char *buf) 479 { 480 struct fw_device *device = fw_device(dev); 481 int ret; 482 483 down_read(&fw_device_rwsem); 484 ret = sysfs_emit(buf, "0x%08x%08x\n", device->config_rom[3], device->config_rom[4]); 485 up_read(&fw_device_rwsem); 486 487 return ret; 488 } 489 490 static ssize_t is_local_show(struct device *dev, 491 struct device_attribute *attr, char *buf) 492 { 493 struct fw_device *device = fw_device(dev); 494 495 return sysfs_emit(buf, "%u\n", device->is_local); 496 } 497 498 static int units_sprintf(char *buf, const u32 *directory) 499 { 500 struct fw_csr_iterator ci; 501 int key, value; 502 int specifier_id = 0; 503 int version = 0; 504 505 fw_csr_iterator_init(&ci, directory); 506 while (fw_csr_iterator_next(&ci, &key, &value)) { 507 switch (key) { 508 case CSR_SPECIFIER_ID: 509 specifier_id = value; 510 break; 511 case CSR_VERSION: 512 version = value; 513 break; 514 } 515 } 516 517 return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version); 518 } 519 520 static ssize_t units_show(struct device *dev, 521 struct device_attribute *attr, char *buf) 522 { 523 struct fw_device *device = fw_device(dev); 524 struct fw_csr_iterator ci; 525 int key, value, i = 0; 526 527 down_read(&fw_device_rwsem); 528 fw_csr_iterator_init(&ci, &device->config_rom[ROOT_DIR_OFFSET]); 529 while (fw_csr_iterator_next(&ci, &key, &value)) { 530 if (key != (CSR_UNIT | CSR_DIRECTORY)) 531 continue; 532 i += units_sprintf(&buf[i], ci.p + value - 1); 533 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1)) 534 break; 535 } 536 up_read(&fw_device_rwsem); 537 538 if (i) 539 buf[i - 1] = '\n'; 540 541 return i; 542 } 543 544 static struct device_attribute fw_device_attributes[] = { 545 __ATTR_RO(config_rom), 546 __ATTR_RO(guid), 547 __ATTR_RO(is_local), 548 __ATTR_RO(units), 549 __ATTR_NULL, 550 }; 551 552 static int read_rom(struct fw_device *device, 553 int generation, int index, u32 *data) 554 { 555 u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4; 556 int i, rcode; 557 558 /* device->node_id, accessed below, must not be older than generation */ 559 smp_rmb(); 560 561 for (i = 10; i < 100; i += 10) { 562 rcode = fw_run_transaction(device->card, 563 TCODE_READ_QUADLET_REQUEST, device->node_id, 564 generation, device->max_speed, offset, data, 4); 565 if (rcode != RCODE_BUSY) 566 break; 567 msleep(i); 568 } 569 be32_to_cpus(data); 570 571 return rcode; 572 } 573 574 #define MAX_CONFIG_ROM_SIZE 256 575 576 /* 577 * Read the bus info block, perform a speed probe, and read all of the rest of 578 * the config ROM. We do all this with a cached bus generation. If the bus 579 * generation changes under us, read_config_rom will fail and get retried. 580 * It's better to start all over in this case because the node from which we 581 * are reading the ROM may have changed the ROM during the reset. 582 * Returns either a result code or a negative error code. 583 */ 584 static int read_config_rom(struct fw_device *device, int generation) 585 { 586 struct fw_card *card = device->card; 587 const u32 *old_rom, *new_rom; 588 u32 *rom, *stack; 589 u32 sp, key; 590 int i, end, length, ret; 591 592 rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE + 593 sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL); 594 if (rom == NULL) 595 return -ENOMEM; 596 597 stack = &rom[MAX_CONFIG_ROM_SIZE]; 598 memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE); 599 600 device->max_speed = SCODE_100; 601 602 /* First read the bus info block. */ 603 for (i = 0; i < 5; i++) { 604 ret = read_rom(device, generation, i, &rom[i]); 605 if (ret != RCODE_COMPLETE) 606 goto out; 607 /* 608 * As per IEEE1212 7.2, during initialization, devices can 609 * reply with a 0 for the first quadlet of the config 610 * rom to indicate that they are booting (for example, 611 * if the firmware is on the disk of a external 612 * harddisk). In that case we just fail, and the 613 * retry mechanism will try again later. 614 */ 615 if (i == 0 && rom[i] == 0) { 616 ret = RCODE_BUSY; 617 goto out; 618 } 619 } 620 621 device->max_speed = device->node->max_speed; 622 623 /* 624 * Determine the speed of 625 * - devices with link speed less than PHY speed, 626 * - devices with 1394b PHY (unless only connected to 1394a PHYs), 627 * - all devices if there are 1394b repeaters. 628 * Note, we cannot use the bus info block's link_spd as starting point 629 * because some buggy firmwares set it lower than necessary and because 630 * 1394-1995 nodes do not have the field. 631 */ 632 if ((rom[2] & 0x7) < device->max_speed || 633 device->max_speed == SCODE_BETA || 634 card->beta_repeaters_present) { 635 u32 dummy; 636 637 /* for S1600 and S3200 */ 638 if (device->max_speed == SCODE_BETA) 639 device->max_speed = card->link_speed; 640 641 while (device->max_speed > SCODE_100) { 642 if (read_rom(device, generation, 0, &dummy) == 643 RCODE_COMPLETE) 644 break; 645 device->max_speed--; 646 } 647 } 648 649 /* 650 * Now parse the config rom. The config rom is a recursive 651 * directory structure so we parse it using a stack of 652 * references to the blocks that make up the structure. We 653 * push a reference to the root directory on the stack to 654 * start things off. 655 */ 656 length = i; 657 sp = 0; 658 stack[sp++] = 0xc0000005; 659 while (sp > 0) { 660 /* 661 * Pop the next block reference of the stack. The 662 * lower 24 bits is the offset into the config rom, 663 * the upper 8 bits are the type of the reference the 664 * block. 665 */ 666 key = stack[--sp]; 667 i = key & 0xffffff; 668 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) { 669 ret = -ENXIO; 670 goto out; 671 } 672 673 /* Read header quadlet for the block to get the length. */ 674 ret = read_rom(device, generation, i, &rom[i]); 675 if (ret != RCODE_COMPLETE) 676 goto out; 677 end = i + (rom[i] >> 16) + 1; 678 if (end > MAX_CONFIG_ROM_SIZE) { 679 /* 680 * This block extends outside the config ROM which is 681 * a firmware bug. Ignore this whole block, i.e. 682 * simply set a fake block length of 0. 683 */ 684 fw_err(card, "skipped invalid ROM block %x at %llx\n", 685 rom[i], 686 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM); 687 rom[i] = 0; 688 end = i; 689 } 690 i++; 691 692 /* 693 * Now read in the block. If this is a directory 694 * block, check the entries as we read them to see if 695 * it references another block, and push it in that case. 696 */ 697 for (; i < end; i++) { 698 ret = read_rom(device, generation, i, &rom[i]); 699 if (ret != RCODE_COMPLETE) 700 goto out; 701 702 if ((key >> 30) != 3 || (rom[i] >> 30) < 2) 703 continue; 704 /* 705 * Offset points outside the ROM. May be a firmware 706 * bug or an Extended ROM entry (IEEE 1212-2001 clause 707 * 7.7.18). Simply overwrite this pointer here by a 708 * fake immediate entry so that later iterators over 709 * the ROM don't have to check offsets all the time. 710 */ 711 if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) { 712 fw_err(card, 713 "skipped unsupported ROM entry %x at %llx\n", 714 rom[i], 715 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM); 716 rom[i] = 0; 717 continue; 718 } 719 stack[sp++] = i + rom[i]; 720 } 721 if (length < i) 722 length = i; 723 } 724 725 old_rom = device->config_rom; 726 new_rom = kmemdup(rom, length * 4, GFP_KERNEL); 727 if (new_rom == NULL) { 728 ret = -ENOMEM; 729 goto out; 730 } 731 732 down_write(&fw_device_rwsem); 733 device->config_rom = new_rom; 734 device->config_rom_length = length; 735 up_write(&fw_device_rwsem); 736 737 kfree(old_rom); 738 ret = RCODE_COMPLETE; 739 device->max_rec = rom[2] >> 12 & 0xf; 740 device->cmc = rom[2] >> 30 & 1; 741 device->irmc = rom[2] >> 31 & 1; 742 out: 743 kfree(rom); 744 745 return ret; 746 } 747 748 static void fw_unit_release(struct device *dev) 749 { 750 struct fw_unit *unit = fw_unit(dev); 751 752 fw_device_put(fw_parent_device(unit)); 753 kfree(unit); 754 } 755 756 static struct device_type fw_unit_type = { 757 .uevent = fw_unit_uevent, 758 .release = fw_unit_release, 759 }; 760 761 static bool is_fw_unit(const struct device *dev) 762 { 763 return dev->type == &fw_unit_type; 764 } 765 766 static void create_units(struct fw_device *device) 767 { 768 struct fw_csr_iterator ci; 769 struct fw_unit *unit; 770 int key, value, i; 771 772 i = 0; 773 fw_csr_iterator_init(&ci, &device->config_rom[ROOT_DIR_OFFSET]); 774 while (fw_csr_iterator_next(&ci, &key, &value)) { 775 if (key != (CSR_UNIT | CSR_DIRECTORY)) 776 continue; 777 778 /* 779 * Get the address of the unit directory and try to 780 * match the drivers id_tables against it. 781 */ 782 unit = kzalloc(sizeof(*unit), GFP_KERNEL); 783 if (unit == NULL) 784 continue; 785 786 unit->directory = ci.p + value - 1; 787 unit->device.bus = &fw_bus_type; 788 unit->device.type = &fw_unit_type; 789 unit->device.parent = &device->device; 790 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++); 791 792 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) < 793 ARRAY_SIZE(fw_unit_attributes) + 794 ARRAY_SIZE(config_rom_attributes)); 795 init_fw_attribute_group(&unit->device, 796 fw_unit_attributes, 797 &unit->attribute_group); 798 799 fw_device_get(device); 800 if (device_register(&unit->device) < 0) { 801 put_device(&unit->device); 802 continue; 803 } 804 } 805 } 806 807 static int shutdown_unit(struct device *device, void *data) 808 { 809 device_unregister(device); 810 811 return 0; 812 } 813 814 /* 815 * fw_device_rwsem acts as dual purpose mutex: 816 * - serializes accesses to fw_device_idr, 817 * - serializes accesses to fw_device.config_rom/.config_rom_length and 818 * fw_unit.directory, unless those accesses happen at safe occasions 819 */ 820 DECLARE_RWSEM(fw_device_rwsem); 821 822 DEFINE_IDR(fw_device_idr); 823 int fw_cdev_major; 824 825 struct fw_device *fw_device_get_by_devt(dev_t devt) 826 { 827 struct fw_device *device; 828 829 down_read(&fw_device_rwsem); 830 device = idr_find(&fw_device_idr, MINOR(devt)); 831 if (device) 832 fw_device_get(device); 833 up_read(&fw_device_rwsem); 834 835 return device; 836 } 837 838 struct workqueue_struct *fw_workqueue; 839 EXPORT_SYMBOL(fw_workqueue); 840 841 static void fw_schedule_device_work(struct fw_device *device, 842 unsigned long delay) 843 { 844 queue_delayed_work(fw_workqueue, &device->work, delay); 845 } 846 847 /* 848 * These defines control the retry behavior for reading the config 849 * rom. It shouldn't be necessary to tweak these; if the device 850 * doesn't respond to a config rom read within 10 seconds, it's not 851 * going to respond at all. As for the initial delay, a lot of 852 * devices will be able to respond within half a second after bus 853 * reset. On the other hand, it's not really worth being more 854 * aggressive than that, since it scales pretty well; if 10 devices 855 * are plugged in, they're all getting read within one second. 856 */ 857 858 #define MAX_RETRIES 10 859 #define RETRY_DELAY (3 * HZ) 860 #define INITIAL_DELAY (HZ / 2) 861 #define SHUTDOWN_DELAY (2 * HZ) 862 863 static void fw_device_shutdown(struct work_struct *work) 864 { 865 struct fw_device *device = 866 container_of(work, struct fw_device, work.work); 867 int minor = MINOR(device->device.devt); 868 869 if (time_before64(get_jiffies_64(), 870 device->card->reset_jiffies + SHUTDOWN_DELAY) 871 && !list_empty(&device->card->link)) { 872 fw_schedule_device_work(device, SHUTDOWN_DELAY); 873 return; 874 } 875 876 if (atomic_cmpxchg(&device->state, 877 FW_DEVICE_GONE, 878 FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE) 879 return; 880 881 fw_device_cdev_remove(device); 882 device_for_each_child(&device->device, NULL, shutdown_unit); 883 device_unregister(&device->device); 884 885 down_write(&fw_device_rwsem); 886 idr_remove(&fw_device_idr, minor); 887 up_write(&fw_device_rwsem); 888 889 fw_device_put(device); 890 } 891 892 static void fw_device_release(struct device *dev) 893 { 894 struct fw_device *device = fw_device(dev); 895 struct fw_card *card = device->card; 896 unsigned long flags; 897 898 /* 899 * Take the card lock so we don't set this to NULL while a 900 * FW_NODE_UPDATED callback is being handled or while the 901 * bus manager work looks at this node. 902 */ 903 spin_lock_irqsave(&card->lock, flags); 904 device->node->data = NULL; 905 spin_unlock_irqrestore(&card->lock, flags); 906 907 fw_node_put(device->node); 908 kfree(device->config_rom); 909 kfree(device); 910 fw_card_put(card); 911 } 912 913 static struct device_type fw_device_type = { 914 .release = fw_device_release, 915 }; 916 917 static bool is_fw_device(const struct device *dev) 918 { 919 return dev->type == &fw_device_type; 920 } 921 922 static int update_unit(struct device *dev, void *data) 923 { 924 struct fw_unit *unit = fw_unit(dev); 925 struct fw_driver *driver = (struct fw_driver *)dev->driver; 926 927 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) { 928 device_lock(dev); 929 driver->update(unit); 930 device_unlock(dev); 931 } 932 933 return 0; 934 } 935 936 static void fw_device_update(struct work_struct *work) 937 { 938 struct fw_device *device = 939 container_of(work, struct fw_device, work.work); 940 941 fw_device_cdev_update(device); 942 device_for_each_child(&device->device, NULL, update_unit); 943 } 944 945 /* 946 * If a device was pending for deletion because its node went away but its 947 * bus info block and root directory header matches that of a newly discovered 948 * device, revive the existing fw_device. 949 * The newly allocated fw_device becomes obsolete instead. 950 */ 951 static int lookup_existing_device(struct device *dev, void *data) 952 { 953 struct fw_device *old = fw_device(dev); 954 struct fw_device *new = data; 955 struct fw_card *card = new->card; 956 int match = 0; 957 958 if (!is_fw_device(dev)) 959 return 0; 960 961 down_read(&fw_device_rwsem); /* serialize config_rom access */ 962 spin_lock_irq(&card->lock); /* serialize node access */ 963 964 if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 && 965 atomic_cmpxchg(&old->state, 966 FW_DEVICE_GONE, 967 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) { 968 struct fw_node *current_node = new->node; 969 struct fw_node *obsolete_node = old->node; 970 971 new->node = obsolete_node; 972 new->node->data = new; 973 old->node = current_node; 974 old->node->data = old; 975 976 old->max_speed = new->max_speed; 977 old->node_id = current_node->node_id; 978 smp_wmb(); /* update node_id before generation */ 979 old->generation = card->generation; 980 old->config_rom_retries = 0; 981 fw_notice(card, "rediscovered device %s\n", dev_name(dev)); 982 983 old->workfn = fw_device_update; 984 fw_schedule_device_work(old, 0); 985 986 if (current_node == card->root_node) 987 fw_schedule_bm_work(card, 0); 988 989 match = 1; 990 } 991 992 spin_unlock_irq(&card->lock); 993 up_read(&fw_device_rwsem); 994 995 return match; 996 } 997 998 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, }; 999 1000 static void set_broadcast_channel(struct fw_device *device, int generation) 1001 { 1002 struct fw_card *card = device->card; 1003 __be32 data; 1004 int rcode; 1005 1006 if (!card->broadcast_channel_allocated) 1007 return; 1008 1009 /* 1010 * The Broadcast_Channel Valid bit is required by nodes which want to 1011 * transmit on this channel. Such transmissions are practically 1012 * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required 1013 * to be IRM capable and have a max_rec of 8 or more. We use this fact 1014 * to narrow down to which nodes we send Broadcast_Channel updates. 1015 */ 1016 if (!device->irmc || device->max_rec < 8) 1017 return; 1018 1019 /* 1020 * Some 1394-1995 nodes crash if this 1394a-2000 register is written. 1021 * Perform a read test first. 1022 */ 1023 if (device->bc_implemented == BC_UNKNOWN) { 1024 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST, 1025 device->node_id, generation, device->max_speed, 1026 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL, 1027 &data, 4); 1028 switch (rcode) { 1029 case RCODE_COMPLETE: 1030 if (data & cpu_to_be32(1 << 31)) { 1031 device->bc_implemented = BC_IMPLEMENTED; 1032 break; 1033 } 1034 fallthrough; /* to case address error */ 1035 case RCODE_ADDRESS_ERROR: 1036 device->bc_implemented = BC_UNIMPLEMENTED; 1037 } 1038 } 1039 1040 if (device->bc_implemented == BC_IMPLEMENTED) { 1041 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL | 1042 BROADCAST_CHANNEL_VALID); 1043 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST, 1044 device->node_id, generation, device->max_speed, 1045 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL, 1046 &data, 4); 1047 } 1048 } 1049 1050 int fw_device_set_broadcast_channel(struct device *dev, void *gen) 1051 { 1052 if (is_fw_device(dev)) 1053 set_broadcast_channel(fw_device(dev), (long)gen); 1054 1055 return 0; 1056 } 1057 1058 static void fw_device_init(struct work_struct *work) 1059 { 1060 struct fw_device *device = 1061 container_of(work, struct fw_device, work.work); 1062 struct fw_card *card = device->card; 1063 struct device *revived_dev; 1064 int minor, ret; 1065 1066 /* 1067 * All failure paths here set node->data to NULL, so that we 1068 * don't try to do device_for_each_child() on a kfree()'d 1069 * device. 1070 */ 1071 1072 ret = read_config_rom(device, device->generation); 1073 if (ret != RCODE_COMPLETE) { 1074 if (device->config_rom_retries < MAX_RETRIES && 1075 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) { 1076 device->config_rom_retries++; 1077 fw_schedule_device_work(device, RETRY_DELAY); 1078 } else { 1079 if (device->node->link_on) 1080 fw_notice(card, "giving up on node %x: reading config rom failed: %s\n", 1081 device->node_id, 1082 fw_rcode_string(ret)); 1083 if (device->node == card->root_node) 1084 fw_schedule_bm_work(card, 0); 1085 fw_device_release(&device->device); 1086 } 1087 return; 1088 } 1089 1090 revived_dev = device_find_child(card->device, 1091 device, lookup_existing_device); 1092 if (revived_dev) { 1093 put_device(revived_dev); 1094 fw_device_release(&device->device); 1095 1096 return; 1097 } 1098 1099 device_initialize(&device->device); 1100 1101 fw_device_get(device); 1102 down_write(&fw_device_rwsem); 1103 minor = idr_alloc(&fw_device_idr, device, 0, 1 << MINORBITS, 1104 GFP_KERNEL); 1105 up_write(&fw_device_rwsem); 1106 1107 if (minor < 0) 1108 goto error; 1109 1110 device->device.bus = &fw_bus_type; 1111 device->device.type = &fw_device_type; 1112 device->device.parent = card->device; 1113 device->device.devt = MKDEV(fw_cdev_major, minor); 1114 dev_set_name(&device->device, "fw%d", minor); 1115 1116 BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) < 1117 ARRAY_SIZE(fw_device_attributes) + 1118 ARRAY_SIZE(config_rom_attributes)); 1119 init_fw_attribute_group(&device->device, 1120 fw_device_attributes, 1121 &device->attribute_group); 1122 1123 if (device_add(&device->device)) { 1124 fw_err(card, "failed to add device\n"); 1125 goto error_with_cdev; 1126 } 1127 1128 create_units(device); 1129 1130 /* 1131 * Transition the device to running state. If it got pulled 1132 * out from under us while we did the initialization work, we 1133 * have to shut down the device again here. Normally, though, 1134 * fw_node_event will be responsible for shutting it down when 1135 * necessary. We have to use the atomic cmpxchg here to avoid 1136 * racing with the FW_NODE_DESTROYED case in 1137 * fw_node_event(). 1138 */ 1139 if (atomic_cmpxchg(&device->state, 1140 FW_DEVICE_INITIALIZING, 1141 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) { 1142 device->workfn = fw_device_shutdown; 1143 fw_schedule_device_work(device, SHUTDOWN_DELAY); 1144 } else { 1145 fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n", 1146 dev_name(&device->device), 1147 device->config_rom[3], device->config_rom[4], 1148 1 << device->max_speed); 1149 device->config_rom_retries = 0; 1150 1151 set_broadcast_channel(device, device->generation); 1152 1153 add_device_randomness(&device->config_rom[3], 8); 1154 } 1155 1156 /* 1157 * Reschedule the IRM work if we just finished reading the 1158 * root node config rom. If this races with a bus reset we 1159 * just end up running the IRM work a couple of extra times - 1160 * pretty harmless. 1161 */ 1162 if (device->node == card->root_node) 1163 fw_schedule_bm_work(card, 0); 1164 1165 return; 1166 1167 error_with_cdev: 1168 down_write(&fw_device_rwsem); 1169 idr_remove(&fw_device_idr, minor); 1170 up_write(&fw_device_rwsem); 1171 error: 1172 fw_device_put(device); /* fw_device_idr's reference */ 1173 1174 put_device(&device->device); /* our reference */ 1175 } 1176 1177 /* Reread and compare bus info block and header of root directory */ 1178 static int reread_config_rom(struct fw_device *device, int generation, 1179 bool *changed) 1180 { 1181 u32 q; 1182 int i, rcode; 1183 1184 for (i = 0; i < 6; i++) { 1185 rcode = read_rom(device, generation, i, &q); 1186 if (rcode != RCODE_COMPLETE) 1187 return rcode; 1188 1189 if (i == 0 && q == 0) 1190 /* inaccessible (see read_config_rom); retry later */ 1191 return RCODE_BUSY; 1192 1193 if (q != device->config_rom[i]) { 1194 *changed = true; 1195 return RCODE_COMPLETE; 1196 } 1197 } 1198 1199 *changed = false; 1200 return RCODE_COMPLETE; 1201 } 1202 1203 static void fw_device_refresh(struct work_struct *work) 1204 { 1205 struct fw_device *device = 1206 container_of(work, struct fw_device, work.work); 1207 struct fw_card *card = device->card; 1208 int ret, node_id = device->node_id; 1209 bool changed; 1210 1211 ret = reread_config_rom(device, device->generation, &changed); 1212 if (ret != RCODE_COMPLETE) 1213 goto failed_config_rom; 1214 1215 if (!changed) { 1216 if (atomic_cmpxchg(&device->state, 1217 FW_DEVICE_INITIALIZING, 1218 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) 1219 goto gone; 1220 1221 fw_device_update(work); 1222 device->config_rom_retries = 0; 1223 goto out; 1224 } 1225 1226 /* 1227 * Something changed. We keep things simple and don't investigate 1228 * further. We just destroy all previous units and create new ones. 1229 */ 1230 device_for_each_child(&device->device, NULL, shutdown_unit); 1231 1232 ret = read_config_rom(device, device->generation); 1233 if (ret != RCODE_COMPLETE) 1234 goto failed_config_rom; 1235 1236 fw_device_cdev_update(device); 1237 create_units(device); 1238 1239 /* Userspace may want to re-read attributes. */ 1240 kobject_uevent(&device->device.kobj, KOBJ_CHANGE); 1241 1242 if (atomic_cmpxchg(&device->state, 1243 FW_DEVICE_INITIALIZING, 1244 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) 1245 goto gone; 1246 1247 fw_notice(card, "refreshed device %s\n", dev_name(&device->device)); 1248 device->config_rom_retries = 0; 1249 goto out; 1250 1251 failed_config_rom: 1252 if (device->config_rom_retries < MAX_RETRIES && 1253 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) { 1254 device->config_rom_retries++; 1255 fw_schedule_device_work(device, RETRY_DELAY); 1256 return; 1257 } 1258 1259 fw_notice(card, "giving up on refresh of device %s: %s\n", 1260 dev_name(&device->device), fw_rcode_string(ret)); 1261 gone: 1262 atomic_set(&device->state, FW_DEVICE_GONE); 1263 device->workfn = fw_device_shutdown; 1264 fw_schedule_device_work(device, SHUTDOWN_DELAY); 1265 out: 1266 if (node_id == card->root_node->node_id) 1267 fw_schedule_bm_work(card, 0); 1268 } 1269 1270 static void fw_device_workfn(struct work_struct *work) 1271 { 1272 struct fw_device *device = container_of(to_delayed_work(work), 1273 struct fw_device, work); 1274 device->workfn(work); 1275 } 1276 1277 void fw_node_event(struct fw_card *card, struct fw_node *node, int event) 1278 { 1279 struct fw_device *device; 1280 1281 switch (event) { 1282 case FW_NODE_CREATED: 1283 /* 1284 * Attempt to scan the node, regardless whether its self ID has 1285 * the L (link active) flag set or not. Some broken devices 1286 * send L=0 but have an up-and-running link; others send L=1 1287 * without actually having a link. 1288 */ 1289 create: 1290 device = kzalloc(sizeof(*device), GFP_ATOMIC); 1291 if (device == NULL) 1292 break; 1293 1294 /* 1295 * Do minimal initialization of the device here, the 1296 * rest will happen in fw_device_init(). 1297 * 1298 * Attention: A lot of things, even fw_device_get(), 1299 * cannot be done before fw_device_init() finished! 1300 * You can basically just check device->state and 1301 * schedule work until then, but only while holding 1302 * card->lock. 1303 */ 1304 atomic_set(&device->state, FW_DEVICE_INITIALIZING); 1305 device->card = fw_card_get(card); 1306 device->node = fw_node_get(node); 1307 device->node_id = node->node_id; 1308 device->generation = card->generation; 1309 device->is_local = node == card->local_node; 1310 mutex_init(&device->client_list_mutex); 1311 INIT_LIST_HEAD(&device->client_list); 1312 1313 /* 1314 * Set the node data to point back to this device so 1315 * FW_NODE_UPDATED callbacks can update the node_id 1316 * and generation for the device. 1317 */ 1318 node->data = device; 1319 1320 /* 1321 * Many devices are slow to respond after bus resets, 1322 * especially if they are bus powered and go through 1323 * power-up after getting plugged in. We schedule the 1324 * first config rom scan half a second after bus reset. 1325 */ 1326 device->workfn = fw_device_init; 1327 INIT_DELAYED_WORK(&device->work, fw_device_workfn); 1328 fw_schedule_device_work(device, INITIAL_DELAY); 1329 break; 1330 1331 case FW_NODE_INITIATED_RESET: 1332 case FW_NODE_LINK_ON: 1333 device = node->data; 1334 if (device == NULL) 1335 goto create; 1336 1337 device->node_id = node->node_id; 1338 smp_wmb(); /* update node_id before generation */ 1339 device->generation = card->generation; 1340 if (atomic_cmpxchg(&device->state, 1341 FW_DEVICE_RUNNING, 1342 FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) { 1343 device->workfn = fw_device_refresh; 1344 fw_schedule_device_work(device, 1345 device->is_local ? 0 : INITIAL_DELAY); 1346 } 1347 break; 1348 1349 case FW_NODE_UPDATED: 1350 device = node->data; 1351 if (device == NULL) 1352 break; 1353 1354 device->node_id = node->node_id; 1355 smp_wmb(); /* update node_id before generation */ 1356 device->generation = card->generation; 1357 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) { 1358 device->workfn = fw_device_update; 1359 fw_schedule_device_work(device, 0); 1360 } 1361 break; 1362 1363 case FW_NODE_DESTROYED: 1364 case FW_NODE_LINK_OFF: 1365 if (!node->data) 1366 break; 1367 1368 /* 1369 * Destroy the device associated with the node. There 1370 * are two cases here: either the device is fully 1371 * initialized (FW_DEVICE_RUNNING) or we're in the 1372 * process of reading its config rom 1373 * (FW_DEVICE_INITIALIZING). If it is fully 1374 * initialized we can reuse device->work to schedule a 1375 * full fw_device_shutdown(). If not, there's work 1376 * scheduled to read it's config rom, and we just put 1377 * the device in shutdown state to have that code fail 1378 * to create the device. 1379 */ 1380 device = node->data; 1381 if (atomic_xchg(&device->state, 1382 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) { 1383 device->workfn = fw_device_shutdown; 1384 fw_schedule_device_work(device, 1385 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY); 1386 } 1387 break; 1388 } 1389 } 1390 1391 #ifdef CONFIG_FIREWIRE_KUNIT_DEVICE_ATTRIBUTE_TEST 1392 #include "device-attribute-test.c" 1393 #endif 1394