xref: /linux/drivers/firewire/core-cdev.c (revision 23b0f90ba871f096474e1c27c3d14f455189d2d9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Char device for device raw access
4  *
5  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
6  */
7 
8 #include <linux/bug.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/errno.h>
15 #include <linux/firewire.h>
16 #include <linux/firewire-cdev.h>
17 #include <linux/irqflags.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel.h>
20 #include <linux/kref.h>
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/mutex.h>
24 #include <linux/poll.h>
25 #include <linux/sched.h> /* required for linux/wait.h */
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 #include <linux/string.h>
29 #include <linux/time.h>
30 #include <linux/uaccess.h>
31 #include <linux/vmalloc.h>
32 #include <linux/wait.h>
33 #include <linux/workqueue.h>
34 
35 
36 #include "core.h"
37 #include <trace/events/firewire.h>
38 
39 #include "packet-header-definitions.h"
40 
41 /*
42  * ABI version history is documented in linux/firewire-cdev.h.
43  */
44 #define FW_CDEV_KERNEL_VERSION			6
45 #define FW_CDEV_VERSION_EVENT_REQUEST2		4
46 #define FW_CDEV_VERSION_ALLOCATE_REGION_END	4
47 #define FW_CDEV_VERSION_AUTO_FLUSH_ISO_OVERFLOW	5
48 #define FW_CDEV_VERSION_EVENT_ASYNC_TSTAMP	6
49 
50 static DEFINE_SPINLOCK(phy_receiver_list_lock);
51 static LIST_HEAD(phy_receiver_list);
52 
53 struct client {
54 	u32 version;
55 	struct fw_device *device;
56 
57 	spinlock_t lock;
58 	bool in_shutdown;
59 	struct xarray resource_xa;
60 	struct list_head event_list;
61 	wait_queue_head_t wait;
62 	wait_queue_head_t tx_flush_wait;
63 	u64 bus_reset_closure;
64 
65 	struct fw_iso_context *iso_context;
66 	struct mutex iso_context_mutex;
67 	u64 iso_closure;
68 	struct fw_iso_buffer buffer;
69 	unsigned long vm_start;
70 
71 	struct list_head phy_receiver_link;
72 	u64 phy_receiver_closure;
73 
74 	struct list_head link;
75 	struct kref kref;
76 };
77 
78 static inline void client_get(struct client *client)
79 {
80 	kref_get(&client->kref);
81 }
82 
83 static void client_release(struct kref *kref)
84 {
85 	struct client *client = container_of(kref, struct client, kref);
86 
87 	fw_device_put(client->device);
88 	kfree(client);
89 }
90 
91 static void client_put(struct client *client)
92 {
93 	kref_put(&client->kref, client_release);
94 }
95 
96 struct client_resource;
97 typedef void (*client_resource_release_fn_t)(struct client *,
98 					     struct client_resource *);
99 struct client_resource {
100 	client_resource_release_fn_t release;
101 	int handle;
102 };
103 
104 struct address_handler_resource {
105 	struct client_resource resource;
106 	struct fw_address_handler handler;
107 	__u64 closure;
108 	struct client *client;
109 };
110 
111 struct outbound_transaction_resource {
112 	struct client_resource resource;
113 	struct fw_transaction transaction;
114 };
115 
116 struct inbound_transaction_resource {
117 	struct client_resource resource;
118 	struct fw_card *card;
119 	struct fw_request *request;
120 	bool is_fcp;
121 	void *data;
122 	size_t length;
123 };
124 
125 struct descriptor_resource {
126 	struct client_resource resource;
127 	struct fw_descriptor descriptor;
128 	u32 data[];
129 };
130 
131 struct iso_resource {
132 	struct client_resource resource;
133 	struct client *client;
134 	/* Schedule work and access todo only with client->lock held. */
135 	struct delayed_work work;
136 	enum {ISO_RES_ALLOC, ISO_RES_REALLOC, ISO_RES_DEALLOC,
137 	      ISO_RES_ALLOC_ONCE, ISO_RES_DEALLOC_ONCE,} todo;
138 	int generation;
139 	u64 channels;
140 	s32 bandwidth;
141 	struct iso_resource_event *e_alloc, *e_dealloc;
142 };
143 
144 static struct address_handler_resource *to_address_handler_resource(struct client_resource *resource)
145 {
146 	return container_of(resource, struct address_handler_resource, resource);
147 }
148 
149 static struct inbound_transaction_resource *to_inbound_transaction_resource(struct client_resource *resource)
150 {
151 	return container_of(resource, struct inbound_transaction_resource, resource);
152 }
153 
154 static struct descriptor_resource *to_descriptor_resource(struct client_resource *resource)
155 {
156 	return container_of(resource, struct descriptor_resource, resource);
157 }
158 
159 static struct iso_resource *to_iso_resource(struct client_resource *resource)
160 {
161 	return container_of(resource, struct iso_resource, resource);
162 }
163 
164 static void release_iso_resource(struct client *, struct client_resource *);
165 
166 static int is_iso_resource(const struct client_resource *resource)
167 {
168 	return resource->release == release_iso_resource;
169 }
170 
171 static void release_transaction(struct client *client,
172 				struct client_resource *resource);
173 
174 static int is_outbound_transaction_resource(const struct client_resource *resource)
175 {
176 	return resource->release == release_transaction;
177 }
178 
179 static void schedule_iso_resource(struct iso_resource *r, unsigned long delay)
180 {
181 	client_get(r->client);
182 	if (!queue_delayed_work(fw_workqueue, &r->work, delay))
183 		client_put(r->client);
184 }
185 
186 /*
187  * dequeue_event() just kfree()'s the event, so the event has to be
188  * the first field in a struct XYZ_event.
189  */
190 struct event {
191 	struct { void *data; size_t size; } v[2];
192 	struct list_head link;
193 };
194 
195 struct bus_reset_event {
196 	struct event event;
197 	struct fw_cdev_event_bus_reset reset;
198 };
199 
200 struct outbound_transaction_event {
201 	struct event event;
202 	struct client *client;
203 	struct outbound_transaction_resource r;
204 	union {
205 		struct fw_cdev_event_response without_tstamp;
206 		struct fw_cdev_event_response2 with_tstamp;
207 	} rsp;
208 };
209 
210 struct inbound_transaction_event {
211 	struct event event;
212 	union {
213 		struct fw_cdev_event_request request;
214 		struct fw_cdev_event_request2 request2;
215 		struct fw_cdev_event_request3 with_tstamp;
216 	} req;
217 };
218 
219 struct iso_interrupt_event {
220 	struct event event;
221 	struct fw_cdev_event_iso_interrupt interrupt;
222 };
223 
224 struct iso_interrupt_mc_event {
225 	struct event event;
226 	struct fw_cdev_event_iso_interrupt_mc interrupt;
227 };
228 
229 struct iso_resource_event {
230 	struct event event;
231 	struct fw_cdev_event_iso_resource iso_resource;
232 };
233 
234 struct outbound_phy_packet_event {
235 	struct event event;
236 	struct client *client;
237 	struct fw_packet p;
238 	union {
239 		struct fw_cdev_event_phy_packet without_tstamp;
240 		struct fw_cdev_event_phy_packet2 with_tstamp;
241 	} phy_packet;
242 };
243 
244 struct inbound_phy_packet_event {
245 	struct event event;
246 	union {
247 		struct fw_cdev_event_phy_packet without_tstamp;
248 		struct fw_cdev_event_phy_packet2 with_tstamp;
249 	} phy_packet;
250 };
251 
252 #ifdef CONFIG_COMPAT
253 static void __user *u64_to_uptr(u64 value)
254 {
255 	if (in_compat_syscall())
256 		return compat_ptr(value);
257 	else
258 		return (void __user *)(unsigned long)value;
259 }
260 
261 static u64 uptr_to_u64(void __user *ptr)
262 {
263 	if (in_compat_syscall())
264 		return ptr_to_compat(ptr);
265 	else
266 		return (u64)(unsigned long)ptr;
267 }
268 #else
269 static inline void __user *u64_to_uptr(u64 value)
270 {
271 	return (void __user *)(unsigned long)value;
272 }
273 
274 static inline u64 uptr_to_u64(void __user *ptr)
275 {
276 	return (u64)(unsigned long)ptr;
277 }
278 #endif /* CONFIG_COMPAT */
279 
280 static int fw_device_op_open(struct inode *inode, struct file *file)
281 {
282 	struct fw_device *device;
283 	struct client *client;
284 
285 	device = fw_device_get_by_devt(inode->i_rdev);
286 	if (device == NULL)
287 		return -ENODEV;
288 
289 	if (fw_device_is_shutdown(device)) {
290 		fw_device_put(device);
291 		return -ENODEV;
292 	}
293 
294 	client = kzalloc(sizeof(*client), GFP_KERNEL);
295 	if (client == NULL) {
296 		fw_device_put(device);
297 		return -ENOMEM;
298 	}
299 
300 	client->device = device;
301 	spin_lock_init(&client->lock);
302 	xa_init_flags(&client->resource_xa, XA_FLAGS_ALLOC1 | XA_FLAGS_LOCK_BH);
303 	INIT_LIST_HEAD(&client->event_list);
304 	init_waitqueue_head(&client->wait);
305 	init_waitqueue_head(&client->tx_flush_wait);
306 	INIT_LIST_HEAD(&client->phy_receiver_link);
307 	INIT_LIST_HEAD(&client->link);
308 	kref_init(&client->kref);
309 	mutex_init(&client->iso_context_mutex);
310 
311 	file->private_data = client;
312 
313 	return nonseekable_open(inode, file);
314 }
315 
316 static void queue_event(struct client *client, struct event *event,
317 			void *data0, size_t size0, void *data1, size_t size1)
318 {
319 	event->v[0].data = data0;
320 	event->v[0].size = size0;
321 	event->v[1].data = data1;
322 	event->v[1].size = size1;
323 
324 	scoped_guard(spinlock_irqsave, &client->lock) {
325 		if (client->in_shutdown)
326 			kfree(event);
327 		else
328 			list_add_tail(&event->link, &client->event_list);
329 	}
330 
331 	wake_up_interruptible(&client->wait);
332 }
333 
334 static int dequeue_event(struct client *client,
335 			 char __user *buffer, size_t count)
336 {
337 	struct event *event;
338 	size_t size, total;
339 	int i, ret;
340 
341 	ret = wait_event_interruptible(client->wait,
342 			!list_empty(&client->event_list) ||
343 			fw_device_is_shutdown(client->device));
344 	if (ret < 0)
345 		return ret;
346 
347 	if (list_empty(&client->event_list) &&
348 		       fw_device_is_shutdown(client->device))
349 		return -ENODEV;
350 
351 	scoped_guard(spinlock_irq, &client->lock) {
352 		event = list_first_entry(&client->event_list, struct event, link);
353 		list_del(&event->link);
354 	}
355 
356 	total = 0;
357 	for (i = 0; i < ARRAY_SIZE(event->v) && total < count; i++) {
358 		size = min(event->v[i].size, count - total);
359 		if (copy_to_user(buffer + total, event->v[i].data, size)) {
360 			ret = -EFAULT;
361 			goto out;
362 		}
363 		total += size;
364 	}
365 	ret = total;
366 
367  out:
368 	kfree(event);
369 
370 	return ret;
371 }
372 
373 static ssize_t fw_device_op_read(struct file *file, char __user *buffer,
374 				 size_t count, loff_t *offset)
375 {
376 	struct client *client = file->private_data;
377 
378 	return dequeue_event(client, buffer, count);
379 }
380 
381 static void fill_bus_reset_event(struct fw_cdev_event_bus_reset *event,
382 				 struct client *client)
383 {
384 	struct fw_card *card = client->device->card;
385 
386 	guard(spinlock_irq)(&card->lock);
387 
388 	event->closure	     = client->bus_reset_closure;
389 	event->type          = FW_CDEV_EVENT_BUS_RESET;
390 	event->generation    = client->device->generation;
391 	event->node_id       = client->device->node_id;
392 	event->local_node_id = card->local_node->node_id;
393 	event->bm_node_id    = card->bm_node_id;
394 	event->irm_node_id   = card->irm_node->node_id;
395 	event->root_node_id  = card->root_node->node_id;
396 }
397 
398 static void for_each_client(struct fw_device *device,
399 			    void (*callback)(struct client *client))
400 {
401 	struct client *c;
402 
403 	guard(mutex)(&device->client_list_mutex);
404 
405 	list_for_each_entry(c, &device->client_list, link)
406 		callback(c);
407 }
408 
409 static void queue_bus_reset_event(struct client *client)
410 {
411 	struct bus_reset_event *e;
412 	struct client_resource *resource;
413 	unsigned long index;
414 
415 	e = kzalloc(sizeof(*e), GFP_KERNEL);
416 	if (e == NULL)
417 		return;
418 
419 	fill_bus_reset_event(&e->reset, client);
420 
421 	queue_event(client, &e->event,
422 		    &e->reset, sizeof(e->reset), NULL, 0);
423 
424 	guard(spinlock_irq)(&client->lock);
425 
426 	xa_for_each(&client->resource_xa, index, resource) {
427 		if (is_iso_resource(resource))
428 			schedule_iso_resource(to_iso_resource(resource), 0);
429 	}
430 }
431 
432 void fw_device_cdev_update(struct fw_device *device)
433 {
434 	for_each_client(device, queue_bus_reset_event);
435 }
436 
437 static void wake_up_client(struct client *client)
438 {
439 	wake_up_interruptible(&client->wait);
440 }
441 
442 void fw_device_cdev_remove(struct fw_device *device)
443 {
444 	for_each_client(device, wake_up_client);
445 }
446 
447 union ioctl_arg {
448 	struct fw_cdev_get_info			get_info;
449 	struct fw_cdev_send_request		send_request;
450 	struct fw_cdev_allocate			allocate;
451 	struct fw_cdev_deallocate		deallocate;
452 	struct fw_cdev_send_response		send_response;
453 	struct fw_cdev_initiate_bus_reset	initiate_bus_reset;
454 	struct fw_cdev_add_descriptor		add_descriptor;
455 	struct fw_cdev_remove_descriptor	remove_descriptor;
456 	struct fw_cdev_create_iso_context	create_iso_context;
457 	struct fw_cdev_queue_iso		queue_iso;
458 	struct fw_cdev_start_iso		start_iso;
459 	struct fw_cdev_stop_iso			stop_iso;
460 	struct fw_cdev_get_cycle_timer		get_cycle_timer;
461 	struct fw_cdev_allocate_iso_resource	allocate_iso_resource;
462 	struct fw_cdev_send_stream_packet	send_stream_packet;
463 	struct fw_cdev_get_cycle_timer2		get_cycle_timer2;
464 	struct fw_cdev_send_phy_packet		send_phy_packet;
465 	struct fw_cdev_receive_phy_packets	receive_phy_packets;
466 	struct fw_cdev_set_iso_channels		set_iso_channels;
467 	struct fw_cdev_flush_iso		flush_iso;
468 };
469 
470 static int ioctl_get_info(struct client *client, union ioctl_arg *arg)
471 {
472 	struct fw_cdev_get_info *a = &arg->get_info;
473 	struct fw_cdev_event_bus_reset bus_reset;
474 	unsigned long ret = 0;
475 
476 	client->version = a->version;
477 	a->version = FW_CDEV_KERNEL_VERSION;
478 	a->card = client->device->card->index;
479 
480 	scoped_guard(rwsem_read, &fw_device_rwsem) {
481 		if (a->rom != 0) {
482 			size_t want = a->rom_length;
483 			size_t have = client->device->config_rom_length * 4;
484 
485 			ret = copy_to_user(u64_to_uptr(a->rom), client->device->config_rom,
486 					   min(want, have));
487 			if (ret != 0)
488 				return -EFAULT;
489 		}
490 		a->rom_length = client->device->config_rom_length * 4;
491 	}
492 
493 	guard(mutex)(&client->device->client_list_mutex);
494 
495 	client->bus_reset_closure = a->bus_reset_closure;
496 	if (a->bus_reset != 0) {
497 		fill_bus_reset_event(&bus_reset, client);
498 		/* unaligned size of bus_reset is 36 bytes */
499 		ret = copy_to_user(u64_to_uptr(a->bus_reset), &bus_reset, 36);
500 	}
501 	if (ret == 0 && list_empty(&client->link))
502 		list_add_tail(&client->link, &client->device->client_list);
503 
504 	return ret ? -EFAULT : 0;
505 }
506 
507 static int add_client_resource(struct client *client, struct client_resource *resource,
508 			       gfp_t gfp_mask)
509 {
510 	int ret;
511 
512 	scoped_guard(spinlock_irqsave, &client->lock) {
513 		u32 index;
514 
515 		if (client->in_shutdown) {
516 			ret = -ECANCELED;
517 		} else {
518 			if (gfpflags_allow_blocking(gfp_mask)) {
519 				ret = xa_alloc(&client->resource_xa, &index, resource, xa_limit_32b,
520 					       GFP_NOWAIT);
521 			} else {
522 				ret = xa_alloc_bh(&client->resource_xa, &index, resource,
523 						  xa_limit_32b, GFP_NOWAIT);
524 			}
525 		}
526 		if (ret >= 0) {
527 			resource->handle = index;
528 			client_get(client);
529 			if (is_iso_resource(resource))
530 				schedule_iso_resource(to_iso_resource(resource), 0);
531 		}
532 	}
533 
534 	return ret < 0 ? ret : 0;
535 }
536 
537 static int release_client_resource(struct client *client, u32 handle,
538 				   client_resource_release_fn_t release,
539 				   struct client_resource **return_resource)
540 {
541 	unsigned long index = handle;
542 	struct client_resource *resource;
543 
544 	scoped_guard(spinlock_irq, &client->lock) {
545 		if (client->in_shutdown)
546 			return -EINVAL;
547 
548 		resource = xa_load(&client->resource_xa, index);
549 		if (!resource || resource->release != release)
550 			return -EINVAL;
551 
552 		xa_erase(&client->resource_xa, handle);
553 	}
554 
555 	if (return_resource)
556 		*return_resource = resource;
557 	else
558 		resource->release(client, resource);
559 
560 	client_put(client);
561 
562 	return 0;
563 }
564 
565 static void release_transaction(struct client *client,
566 				struct client_resource *resource)
567 {
568 }
569 
570 static void complete_transaction(struct fw_card *card, int rcode, u32 request_tstamp,
571 				 u32 response_tstamp, void *payload, size_t length, void *data)
572 {
573 	struct outbound_transaction_event *e = data;
574 	struct client *client = e->client;
575 	unsigned long index = e->r.resource.handle;
576 
577 	scoped_guard(spinlock_irqsave, &client->lock) {
578 		xa_erase(&client->resource_xa, index);
579 		if (client->in_shutdown)
580 			wake_up(&client->tx_flush_wait);
581 	}
582 
583 	switch (e->rsp.without_tstamp.type) {
584 	case FW_CDEV_EVENT_RESPONSE:
585 	{
586 		struct fw_cdev_event_response *rsp = &e->rsp.without_tstamp;
587 
588 		if (length < rsp->length)
589 			rsp->length = length;
590 		if (rcode == RCODE_COMPLETE)
591 			memcpy(rsp->data, payload, rsp->length);
592 
593 		rsp->rcode = rcode;
594 
595 		// In the case that sizeof(*rsp) doesn't align with the position of the
596 		// data, and the read is short, preserve an extra copy of the data
597 		// to stay compatible with a pre-2.6.27 bug.  Since the bug is harmless
598 		// for short reads and some apps depended on it, this is both safe
599 		// and prudent for compatibility.
600 		if (rsp->length <= sizeof(*rsp) - offsetof(typeof(*rsp), data))
601 			queue_event(client, &e->event, rsp, sizeof(*rsp), rsp->data, rsp->length);
602 		else
603 			queue_event(client, &e->event, rsp, sizeof(*rsp) + rsp->length, NULL, 0);
604 
605 		break;
606 	}
607 	case FW_CDEV_EVENT_RESPONSE2:
608 	{
609 		struct fw_cdev_event_response2 *rsp = &e->rsp.with_tstamp;
610 
611 		if (length < rsp->length)
612 			rsp->length = length;
613 		if (rcode == RCODE_COMPLETE)
614 			memcpy(rsp->data, payload, rsp->length);
615 
616 		rsp->rcode = rcode;
617 		rsp->request_tstamp = request_tstamp;
618 		rsp->response_tstamp = response_tstamp;
619 
620 		queue_event(client, &e->event, rsp, sizeof(*rsp) + rsp->length, NULL, 0);
621 
622 		break;
623 	}
624 	default:
625 		WARN_ON(1);
626 		break;
627 	}
628 
629 	// Drop the xarray's reference.
630 	client_put(client);
631 }
632 
633 static int init_request(struct client *client,
634 			struct fw_cdev_send_request *request,
635 			int destination_id, int speed)
636 {
637 	struct outbound_transaction_event *e;
638 	void *payload;
639 	int ret;
640 
641 	if (request->tcode != TCODE_STREAM_DATA &&
642 	    (request->length > 4096 || request->length > 512 << speed))
643 		return -EIO;
644 
645 	if (request->tcode == TCODE_WRITE_QUADLET_REQUEST &&
646 	    request->length < 4)
647 		return -EINVAL;
648 
649 	e = kmalloc(sizeof(*e) + request->length, GFP_KERNEL);
650 	if (e == NULL)
651 		return -ENOMEM;
652 	e->client = client;
653 
654 	if (client->version < FW_CDEV_VERSION_EVENT_ASYNC_TSTAMP) {
655 		struct fw_cdev_event_response *rsp = &e->rsp.without_tstamp;
656 
657 		rsp->type = FW_CDEV_EVENT_RESPONSE;
658 		rsp->length = request->length;
659 		rsp->closure = request->closure;
660 		payload = rsp->data;
661 	} else {
662 		struct fw_cdev_event_response2 *rsp = &e->rsp.with_tstamp;
663 
664 		rsp->type = FW_CDEV_EVENT_RESPONSE2;
665 		rsp->length = request->length;
666 		rsp->closure = request->closure;
667 		payload = rsp->data;
668 	}
669 
670 	if (request->data && copy_from_user(payload, u64_to_uptr(request->data), request->length)) {
671 		ret = -EFAULT;
672 		goto failed;
673 	}
674 
675 	e->r.resource.release = release_transaction;
676 	ret = add_client_resource(client, &e->r.resource, GFP_KERNEL);
677 	if (ret < 0)
678 		goto failed;
679 
680 	fw_send_request_with_tstamp(client->device->card, &e->r.transaction, request->tcode,
681 				    destination_id, request->generation, speed, request->offset,
682 				    payload, request->length, complete_transaction, e);
683 	return 0;
684 
685  failed:
686 	kfree(e);
687 
688 	return ret;
689 }
690 
691 static int ioctl_send_request(struct client *client, union ioctl_arg *arg)
692 {
693 	switch (arg->send_request.tcode) {
694 	case TCODE_WRITE_QUADLET_REQUEST:
695 	case TCODE_WRITE_BLOCK_REQUEST:
696 	case TCODE_READ_QUADLET_REQUEST:
697 	case TCODE_READ_BLOCK_REQUEST:
698 	case TCODE_LOCK_MASK_SWAP:
699 	case TCODE_LOCK_COMPARE_SWAP:
700 	case TCODE_LOCK_FETCH_ADD:
701 	case TCODE_LOCK_LITTLE_ADD:
702 	case TCODE_LOCK_BOUNDED_ADD:
703 	case TCODE_LOCK_WRAP_ADD:
704 	case TCODE_LOCK_VENDOR_DEPENDENT:
705 		break;
706 	default:
707 		return -EINVAL;
708 	}
709 
710 	return init_request(client, &arg->send_request, client->device->node_id,
711 			    client->device->max_speed);
712 }
713 
714 static void release_request(struct client *client,
715 			    struct client_resource *resource)
716 {
717 	struct inbound_transaction_resource *r = to_inbound_transaction_resource(resource);
718 
719 	if (r->is_fcp)
720 		fw_request_put(r->request);
721 	else
722 		fw_send_response(r->card, r->request, RCODE_CONFLICT_ERROR);
723 
724 	fw_card_put(r->card);
725 	kfree(r);
726 }
727 
728 static void handle_request(struct fw_card *card, struct fw_request *request,
729 			   int tcode, int destination, int source,
730 			   int generation, unsigned long long offset,
731 			   void *payload, size_t length, void *callback_data)
732 {
733 	struct address_handler_resource *handler = callback_data;
734 	bool is_fcp = is_in_fcp_region(offset, length);
735 	struct inbound_transaction_resource *r;
736 	struct inbound_transaction_event *e;
737 	size_t event_size0;
738 	int ret;
739 
740 	/* card may be different from handler->client->device->card */
741 	fw_card_get(card);
742 
743 	// Extend the lifetime of data for request so that its payload is safely accessible in
744 	// the process context for the client.
745 	if (is_fcp)
746 		fw_request_get(request);
747 
748 	r = kmalloc(sizeof(*r), GFP_ATOMIC);
749 	e = kmalloc(sizeof(*e), GFP_ATOMIC);
750 	if (r == NULL || e == NULL)
751 		goto failed;
752 
753 	r->card    = card;
754 	r->request = request;
755 	r->is_fcp  = is_fcp;
756 	r->data    = payload;
757 	r->length  = length;
758 
759 	r->resource.release = release_request;
760 	ret = add_client_resource(handler->client, &r->resource, GFP_ATOMIC);
761 	if (ret < 0)
762 		goto failed;
763 
764 	if (handler->client->version < FW_CDEV_VERSION_EVENT_REQUEST2) {
765 		struct fw_cdev_event_request *req = &e->req.request;
766 
767 		if (tcode & 0x10)
768 			tcode = TCODE_LOCK_REQUEST;
769 
770 		req->type	= FW_CDEV_EVENT_REQUEST;
771 		req->tcode	= tcode;
772 		req->offset	= offset;
773 		req->length	= length;
774 		req->handle	= r->resource.handle;
775 		req->closure	= handler->closure;
776 		event_size0	= sizeof(*req);
777 	} else if (handler->client->version < FW_CDEV_VERSION_EVENT_ASYNC_TSTAMP) {
778 		struct fw_cdev_event_request2 *req = &e->req.request2;
779 
780 		req->type	= FW_CDEV_EVENT_REQUEST2;
781 		req->tcode	= tcode;
782 		req->offset	= offset;
783 		req->source_node_id = source;
784 		req->destination_node_id = destination;
785 		req->card	= card->index;
786 		req->generation	= generation;
787 		req->length	= length;
788 		req->handle	= r->resource.handle;
789 		req->closure	= handler->closure;
790 		event_size0	= sizeof(*req);
791 	} else {
792 		struct fw_cdev_event_request3 *req = &e->req.with_tstamp;
793 
794 		req->type	= FW_CDEV_EVENT_REQUEST3;
795 		req->tcode	= tcode;
796 		req->offset	= offset;
797 		req->source_node_id = source;
798 		req->destination_node_id = destination;
799 		req->card	= card->index;
800 		req->generation	= generation;
801 		req->length	= length;
802 		req->handle	= r->resource.handle;
803 		req->closure	= handler->closure;
804 		req->tstamp	= fw_request_get_timestamp(request);
805 		event_size0	= sizeof(*req);
806 	}
807 
808 	queue_event(handler->client, &e->event,
809 		    &e->req, event_size0, r->data, length);
810 	return;
811 
812  failed:
813 	kfree(r);
814 	kfree(e);
815 
816 	if (!is_fcp)
817 		fw_send_response(card, request, RCODE_CONFLICT_ERROR);
818 	else
819 		fw_request_put(request);
820 
821 	fw_card_put(card);
822 }
823 
824 static void release_address_handler(struct client *client,
825 				    struct client_resource *resource)
826 {
827 	struct address_handler_resource *r = to_address_handler_resource(resource);
828 
829 	fw_core_remove_address_handler(&r->handler);
830 	kfree(r);
831 }
832 
833 static int ioctl_allocate(struct client *client, union ioctl_arg *arg)
834 {
835 	struct fw_cdev_allocate *a = &arg->allocate;
836 	struct address_handler_resource *r;
837 	struct fw_address_region region;
838 	int ret;
839 
840 	r = kmalloc(sizeof(*r), GFP_KERNEL);
841 	if (r == NULL)
842 		return -ENOMEM;
843 
844 	region.start = a->offset;
845 	if (client->version < FW_CDEV_VERSION_ALLOCATE_REGION_END)
846 		region.end = a->offset + a->length;
847 	else
848 		region.end = a->region_end;
849 
850 	r->handler.length           = a->length;
851 	r->handler.address_callback = handle_request;
852 	r->handler.callback_data    = r;
853 	r->closure   = a->closure;
854 	r->client    = client;
855 
856 	ret = fw_core_add_address_handler(&r->handler, &region);
857 	if (ret < 0) {
858 		kfree(r);
859 		return ret;
860 	}
861 	a->offset = r->handler.offset;
862 
863 	r->resource.release = release_address_handler;
864 	ret = add_client_resource(client, &r->resource, GFP_KERNEL);
865 	if (ret < 0) {
866 		release_address_handler(client, &r->resource);
867 		return ret;
868 	}
869 	a->handle = r->resource.handle;
870 
871 	return 0;
872 }
873 
874 static int ioctl_deallocate(struct client *client, union ioctl_arg *arg)
875 {
876 	return release_client_resource(client, arg->deallocate.handle,
877 				       release_address_handler, NULL);
878 }
879 
880 static int ioctl_send_response(struct client *client, union ioctl_arg *arg)
881 {
882 	struct fw_cdev_send_response *a = &arg->send_response;
883 	struct client_resource *resource;
884 	struct inbound_transaction_resource *r;
885 	int ret = 0;
886 
887 	if (release_client_resource(client, a->handle,
888 				    release_request, &resource) < 0)
889 		return -EINVAL;
890 
891 	r = to_inbound_transaction_resource(resource);
892 	if (r->is_fcp) {
893 		fw_request_put(r->request);
894 		goto out;
895 	}
896 
897 	if (a->length != fw_get_response_length(r->request)) {
898 		ret = -EINVAL;
899 		fw_request_put(r->request);
900 		goto out;
901 	}
902 	if (copy_from_user(r->data, u64_to_uptr(a->data), a->length)) {
903 		ret = -EFAULT;
904 		fw_request_put(r->request);
905 		goto out;
906 	}
907 	fw_send_response(r->card, r->request, a->rcode);
908  out:
909 	fw_card_put(r->card);
910 	kfree(r);
911 
912 	return ret;
913 }
914 
915 static int ioctl_initiate_bus_reset(struct client *client, union ioctl_arg *arg)
916 {
917 	fw_schedule_bus_reset(client->device->card, true,
918 			arg->initiate_bus_reset.type == FW_CDEV_SHORT_RESET);
919 	return 0;
920 }
921 
922 static void release_descriptor(struct client *client,
923 			       struct client_resource *resource)
924 {
925 	struct descriptor_resource *r = to_descriptor_resource(resource);
926 
927 	fw_core_remove_descriptor(&r->descriptor);
928 	kfree(r);
929 }
930 
931 static int ioctl_add_descriptor(struct client *client, union ioctl_arg *arg)
932 {
933 	struct fw_cdev_add_descriptor *a = &arg->add_descriptor;
934 	struct descriptor_resource *r;
935 	int ret;
936 
937 	/* Access policy: Allow this ioctl only on local nodes' device files. */
938 	if (!client->device->is_local)
939 		return -ENOSYS;
940 
941 	if (a->length > 256)
942 		return -EINVAL;
943 
944 	r = kmalloc(struct_size(r, data, a->length), GFP_KERNEL);
945 	if (r == NULL)
946 		return -ENOMEM;
947 
948 	if (copy_from_user(r->data, u64_to_uptr(a->data),
949 			   flex_array_size(r, data, a->length))) {
950 		ret = -EFAULT;
951 		goto failed;
952 	}
953 
954 	r->descriptor.length    = a->length;
955 	r->descriptor.immediate = a->immediate;
956 	r->descriptor.key       = a->key;
957 	r->descriptor.data      = r->data;
958 
959 	ret = fw_core_add_descriptor(&r->descriptor);
960 	if (ret < 0)
961 		goto failed;
962 
963 	r->resource.release = release_descriptor;
964 	ret = add_client_resource(client, &r->resource, GFP_KERNEL);
965 	if (ret < 0) {
966 		fw_core_remove_descriptor(&r->descriptor);
967 		goto failed;
968 	}
969 	a->handle = r->resource.handle;
970 
971 	return 0;
972  failed:
973 	kfree(r);
974 
975 	return ret;
976 }
977 
978 static int ioctl_remove_descriptor(struct client *client, union ioctl_arg *arg)
979 {
980 	return release_client_resource(client, arg->remove_descriptor.handle,
981 				       release_descriptor, NULL);
982 }
983 
984 static void iso_callback(struct fw_iso_context *context, u32 cycle,
985 			 size_t header_length, void *header, void *data)
986 {
987 	struct client *client = data;
988 	struct iso_interrupt_event *e;
989 
990 	e = kmalloc(sizeof(*e) + header_length, GFP_KERNEL);
991 	if (e == NULL)
992 		return;
993 
994 	e->interrupt.type      = FW_CDEV_EVENT_ISO_INTERRUPT;
995 	e->interrupt.closure   = client->iso_closure;
996 	e->interrupt.cycle     = cycle;
997 	e->interrupt.header_length = header_length;
998 	memcpy(e->interrupt.header, header, header_length);
999 	queue_event(client, &e->event, &e->interrupt,
1000 		    sizeof(e->interrupt) + header_length, NULL, 0);
1001 }
1002 
1003 static void iso_mc_callback(struct fw_iso_context *context,
1004 			    dma_addr_t completed, void *data)
1005 {
1006 	struct client *client = data;
1007 	struct iso_interrupt_mc_event *e;
1008 
1009 	e = kmalloc(sizeof(*e), GFP_KERNEL);
1010 	if (e == NULL)
1011 		return;
1012 
1013 	e->interrupt.type      = FW_CDEV_EVENT_ISO_INTERRUPT_MULTICHANNEL;
1014 	e->interrupt.closure   = client->iso_closure;
1015 	e->interrupt.completed = fw_iso_buffer_lookup(&client->buffer,
1016 						      completed);
1017 	queue_event(client, &e->event, &e->interrupt,
1018 		    sizeof(e->interrupt), NULL, 0);
1019 }
1020 
1021 static enum dma_data_direction iso_dma_direction(struct fw_iso_context *context)
1022 {
1023 		if (context->type == FW_ISO_CONTEXT_TRANSMIT)
1024 			return DMA_TO_DEVICE;
1025 		else
1026 			return DMA_FROM_DEVICE;
1027 }
1028 
1029 static int ioctl_create_iso_context(struct client *client, union ioctl_arg *arg)
1030 {
1031 	struct fw_cdev_create_iso_context *a = &arg->create_iso_context;
1032 	struct fw_iso_context *context;
1033 	int ret;
1034 
1035 	BUILD_BUG_ON(FW_CDEV_ISO_CONTEXT_TRANSMIT != FW_ISO_CONTEXT_TRANSMIT ||
1036 		     FW_CDEV_ISO_CONTEXT_RECEIVE  != FW_ISO_CONTEXT_RECEIVE  ||
1037 		     FW_CDEV_ISO_CONTEXT_RECEIVE_MULTICHANNEL !=
1038 					FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL);
1039 
1040 	switch (a->type) {
1041 	case FW_ISO_CONTEXT_TRANSMIT:
1042 		if (a->speed > SCODE_3200 || a->channel > 63)
1043 			return -EINVAL;
1044 		break;
1045 
1046 	case FW_ISO_CONTEXT_RECEIVE:
1047 		if (a->header_size < 4 || (a->header_size & 3) ||
1048 		    a->channel > 63)
1049 			return -EINVAL;
1050 		break;
1051 
1052 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
1053 		break;
1054 
1055 	default:
1056 		return -EINVAL;
1057 	}
1058 
1059 	if (a->type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
1060 		context = fw_iso_mc_context_create(client->device->card, iso_mc_callback, client);
1061 	else
1062 		context = fw_iso_context_create(client->device->card, a->type, a->channel, a->speed,
1063 						a->header_size, iso_callback, client);
1064 	if (IS_ERR(context))
1065 		return PTR_ERR(context);
1066 	if (client->version < FW_CDEV_VERSION_AUTO_FLUSH_ISO_OVERFLOW)
1067 		context->flags |= FW_ISO_CONTEXT_FLAG_DROP_OVERFLOW_HEADERS;
1068 
1069 	// We only support one context at this time.
1070 	scoped_guard(mutex, &client->iso_context_mutex) {
1071 		if (client->iso_context != NULL) {
1072 			fw_iso_context_destroy(context);
1073 
1074 			return -EBUSY;
1075 		}
1076 		// The DMA mapping operation is available if the buffer is already allocated by
1077 		// mmap(2) system call. If not, it is delegated to the system call.
1078 		if (client->buffer.pages && !client->buffer.dma_addrs) {
1079 			ret = fw_iso_buffer_map_dma(&client->buffer, client->device->card,
1080 						    iso_dma_direction(context));
1081 			if (ret < 0) {
1082 				fw_iso_context_destroy(context);
1083 
1084 				return ret;
1085 			}
1086 		}
1087 		client->iso_closure = a->closure;
1088 		client->iso_context = context;
1089 	}
1090 
1091 	a->handle = 0;
1092 
1093 	return 0;
1094 }
1095 
1096 static int ioctl_set_iso_channels(struct client *client, union ioctl_arg *arg)
1097 {
1098 	struct fw_cdev_set_iso_channels *a = &arg->set_iso_channels;
1099 	struct fw_iso_context *ctx = client->iso_context;
1100 
1101 	if (ctx == NULL || a->handle != 0)
1102 		return -EINVAL;
1103 
1104 	return fw_iso_context_set_channels(ctx, &a->channels);
1105 }
1106 
1107 /* Macros for decoding the iso packet control header. */
1108 #define GET_PAYLOAD_LENGTH(v)	((v) & 0xffff)
1109 #define GET_INTERRUPT(v)	(((v) >> 16) & 0x01)
1110 #define GET_SKIP(v)		(((v) >> 17) & 0x01)
1111 #define GET_TAG(v)		(((v) >> 18) & 0x03)
1112 #define GET_SY(v)		(((v) >> 20) & 0x0f)
1113 #define GET_HEADER_LENGTH(v)	(((v) >> 24) & 0xff)
1114 
1115 static int ioctl_queue_iso(struct client *client, union ioctl_arg *arg)
1116 {
1117 	struct fw_cdev_queue_iso *a = &arg->queue_iso;
1118 	struct fw_cdev_iso_packet __user *p, *end, *next;
1119 	struct fw_iso_context *ctx = client->iso_context;
1120 	unsigned long payload, buffer_end, transmit_header_bytes = 0;
1121 	u32 control;
1122 	int count;
1123 	DEFINE_RAW_FLEX(struct fw_iso_packet, u, header, 64);
1124 
1125 	if (ctx == NULL || a->handle != 0)
1126 		return -EINVAL;
1127 
1128 	/*
1129 	 * If the user passes a non-NULL data pointer, has mmap()'ed
1130 	 * the iso buffer, and the pointer points inside the buffer,
1131 	 * we setup the payload pointers accordingly.  Otherwise we
1132 	 * set them both to 0, which will still let packets with
1133 	 * payload_length == 0 through.  In other words, if no packets
1134 	 * use the indirect payload, the iso buffer need not be mapped
1135 	 * and the a->data pointer is ignored.
1136 	 */
1137 	payload = (unsigned long)a->data - client->vm_start;
1138 	buffer_end = client->buffer.page_count << PAGE_SHIFT;
1139 	if (a->data == 0 || client->buffer.pages == NULL ||
1140 	    payload >= buffer_end) {
1141 		payload = 0;
1142 		buffer_end = 0;
1143 	}
1144 
1145 	if (ctx->type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL && payload & 3)
1146 		return -EINVAL;
1147 
1148 	p = (struct fw_cdev_iso_packet __user *)u64_to_uptr(a->packets);
1149 
1150 	end = (void __user *)p + a->size;
1151 	count = 0;
1152 	while (p < end) {
1153 		if (get_user(control, &p->control))
1154 			return -EFAULT;
1155 		u->payload_length = GET_PAYLOAD_LENGTH(control);
1156 		u->interrupt = GET_INTERRUPT(control);
1157 		u->skip = GET_SKIP(control);
1158 		u->tag = GET_TAG(control);
1159 		u->sy = GET_SY(control);
1160 		u->header_length = GET_HEADER_LENGTH(control);
1161 
1162 		switch (ctx->type) {
1163 		case FW_ISO_CONTEXT_TRANSMIT:
1164 			if (u->header_length & 3)
1165 				return -EINVAL;
1166 			transmit_header_bytes = u->header_length;
1167 			break;
1168 
1169 		case FW_ISO_CONTEXT_RECEIVE:
1170 			if (u->header_length == 0 ||
1171 			    u->header_length % ctx->header_size != 0)
1172 				return -EINVAL;
1173 			break;
1174 
1175 		case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
1176 			if (u->payload_length == 0 ||
1177 			    u->payload_length & 3)
1178 				return -EINVAL;
1179 			break;
1180 		}
1181 
1182 		next = (struct fw_cdev_iso_packet __user *)
1183 			&p->header[transmit_header_bytes / 4];
1184 		if (next > end)
1185 			return -EINVAL;
1186 		if (copy_from_user
1187 		    (u->header, p->header, transmit_header_bytes))
1188 			return -EFAULT;
1189 		if (u->skip && ctx->type == FW_ISO_CONTEXT_TRANSMIT &&
1190 		    u->header_length + u->payload_length > 0)
1191 			return -EINVAL;
1192 		if (payload + u->payload_length > buffer_end)
1193 			return -EINVAL;
1194 
1195 		if (fw_iso_context_queue(ctx, u, &client->buffer, payload))
1196 			break;
1197 
1198 		p = next;
1199 		payload += u->payload_length;
1200 		count++;
1201 	}
1202 	fw_iso_context_queue_flush(ctx);
1203 
1204 	a->size    -= uptr_to_u64(p) - a->packets;
1205 	a->packets  = uptr_to_u64(p);
1206 	a->data     = client->vm_start + payload;
1207 
1208 	return count;
1209 }
1210 
1211 static int ioctl_start_iso(struct client *client, union ioctl_arg *arg)
1212 {
1213 	struct fw_cdev_start_iso *a = &arg->start_iso;
1214 
1215 	BUILD_BUG_ON(
1216 	    FW_CDEV_ISO_CONTEXT_MATCH_TAG0 != FW_ISO_CONTEXT_MATCH_TAG0 ||
1217 	    FW_CDEV_ISO_CONTEXT_MATCH_TAG1 != FW_ISO_CONTEXT_MATCH_TAG1 ||
1218 	    FW_CDEV_ISO_CONTEXT_MATCH_TAG2 != FW_ISO_CONTEXT_MATCH_TAG2 ||
1219 	    FW_CDEV_ISO_CONTEXT_MATCH_TAG3 != FW_ISO_CONTEXT_MATCH_TAG3 ||
1220 	    FW_CDEV_ISO_CONTEXT_MATCH_ALL_TAGS != FW_ISO_CONTEXT_MATCH_ALL_TAGS);
1221 
1222 	if (client->iso_context == NULL || a->handle != 0)
1223 		return -EINVAL;
1224 
1225 	if (client->iso_context->type == FW_ISO_CONTEXT_RECEIVE &&
1226 	    (a->tags == 0 || a->tags > 15 || a->sync > 15))
1227 		return -EINVAL;
1228 
1229 	return fw_iso_context_start(client->iso_context,
1230 				    a->cycle, a->sync, a->tags);
1231 }
1232 
1233 static int ioctl_stop_iso(struct client *client, union ioctl_arg *arg)
1234 {
1235 	struct fw_cdev_stop_iso *a = &arg->stop_iso;
1236 
1237 	if (client->iso_context == NULL || a->handle != 0)
1238 		return -EINVAL;
1239 
1240 	return fw_iso_context_stop(client->iso_context);
1241 }
1242 
1243 static int ioctl_flush_iso(struct client *client, union ioctl_arg *arg)
1244 {
1245 	struct fw_cdev_flush_iso *a = &arg->flush_iso;
1246 
1247 	if (client->iso_context == NULL || a->handle != 0)
1248 		return -EINVAL;
1249 
1250 	return fw_iso_context_flush_completions(client->iso_context);
1251 }
1252 
1253 static int ioctl_get_cycle_timer2(struct client *client, union ioctl_arg *arg)
1254 {
1255 	struct fw_cdev_get_cycle_timer2 *a = &arg->get_cycle_timer2;
1256 	struct fw_card *card = client->device->card;
1257 	struct timespec64 ts = {0, 0};
1258 	u32 cycle_time = 0;
1259 	int ret;
1260 
1261 	guard(irq)();
1262 
1263 	ret = fw_card_read_cycle_time(card, &cycle_time);
1264 	if (ret < 0)
1265 		return ret;
1266 
1267 	switch (a->clk_id) {
1268 	case CLOCK_REALTIME:      ktime_get_real_ts64(&ts);	break;
1269 	case CLOCK_MONOTONIC:     ktime_get_ts64(&ts);		break;
1270 	case CLOCK_MONOTONIC_RAW: ktime_get_raw_ts64(&ts);	break;
1271 	default:
1272 		return -EINVAL;
1273 	}
1274 
1275 	a->tv_sec      = ts.tv_sec;
1276 	a->tv_nsec     = ts.tv_nsec;
1277 	a->cycle_timer = cycle_time;
1278 
1279 	return 0;
1280 }
1281 
1282 static int ioctl_get_cycle_timer(struct client *client, union ioctl_arg *arg)
1283 {
1284 	struct fw_cdev_get_cycle_timer *a = &arg->get_cycle_timer;
1285 	struct fw_cdev_get_cycle_timer2 ct2;
1286 
1287 	ct2.clk_id = CLOCK_REALTIME;
1288 	ioctl_get_cycle_timer2(client, (union ioctl_arg *)&ct2);
1289 
1290 	a->local_time = ct2.tv_sec * USEC_PER_SEC + ct2.tv_nsec / NSEC_PER_USEC;
1291 	a->cycle_timer = ct2.cycle_timer;
1292 
1293 	return 0;
1294 }
1295 
1296 static void iso_resource_work(struct work_struct *work)
1297 {
1298 	struct iso_resource_event *e;
1299 	struct iso_resource *r = from_work(r, work, work.work);
1300 	struct client *client = r->client;
1301 	unsigned long index = r->resource.handle;
1302 	int generation, channel, bandwidth, todo;
1303 	bool skip, free, success;
1304 
1305 	scoped_guard(spinlock_irq, &client->lock) {
1306 		generation = client->device->generation;
1307 		todo = r->todo;
1308 		// Allow 1000ms grace period for other reallocations.
1309 		if (todo == ISO_RES_ALLOC &&
1310 		    time_is_after_jiffies64(client->device->card->reset_jiffies + secs_to_jiffies(1))) {
1311 			schedule_iso_resource(r, msecs_to_jiffies(333));
1312 			skip = true;
1313 		} else {
1314 			// We could be called twice within the same generation.
1315 			skip = todo == ISO_RES_REALLOC &&
1316 			       r->generation == generation;
1317 		}
1318 		free = todo == ISO_RES_DEALLOC ||
1319 		       todo == ISO_RES_ALLOC_ONCE ||
1320 		       todo == ISO_RES_DEALLOC_ONCE;
1321 		r->generation = generation;
1322 	}
1323 
1324 	if (skip)
1325 		goto out;
1326 
1327 	bandwidth = r->bandwidth;
1328 
1329 	fw_iso_resource_manage(client->device->card, generation,
1330 			r->channels, &channel, &bandwidth,
1331 			todo == ISO_RES_ALLOC ||
1332 			todo == ISO_RES_REALLOC ||
1333 			todo == ISO_RES_ALLOC_ONCE);
1334 	/*
1335 	 * Is this generation outdated already?  As long as this resource sticks
1336 	 * in the xarray, it will be scheduled again for a newer generation or at
1337 	 * shutdown.
1338 	 */
1339 	if (channel == -EAGAIN &&
1340 	    (todo == ISO_RES_ALLOC || todo == ISO_RES_REALLOC))
1341 		goto out;
1342 
1343 	success = channel >= 0 || bandwidth > 0;
1344 
1345 	scoped_guard(spinlock_irq, &client->lock) {
1346 		// Transit from allocation to reallocation, except if the client
1347 		// requested deallocation in the meantime.
1348 		if (r->todo == ISO_RES_ALLOC)
1349 			r->todo = ISO_RES_REALLOC;
1350 		// Allocation or reallocation failure?  Pull this resource out of the
1351 		// xarray and prepare for deletion, unless the client is shutting down.
1352 		if (r->todo == ISO_RES_REALLOC && !success &&
1353 		    !client->in_shutdown &&
1354 		    xa_erase(&client->resource_xa, index)) {
1355 			client_put(client);
1356 			free = true;
1357 		}
1358 	}
1359 
1360 	if (todo == ISO_RES_ALLOC && channel >= 0)
1361 		r->channels = 1ULL << channel;
1362 
1363 	if (todo == ISO_RES_REALLOC && success)
1364 		goto out;
1365 
1366 	if (todo == ISO_RES_ALLOC || todo == ISO_RES_ALLOC_ONCE) {
1367 		e = r->e_alloc;
1368 		r->e_alloc = NULL;
1369 	} else {
1370 		e = r->e_dealloc;
1371 		r->e_dealloc = NULL;
1372 	}
1373 	e->iso_resource.handle    = r->resource.handle;
1374 	e->iso_resource.channel   = channel;
1375 	e->iso_resource.bandwidth = bandwidth;
1376 
1377 	queue_event(client, &e->event,
1378 		    &e->iso_resource, sizeof(e->iso_resource), NULL, 0);
1379 
1380 	if (free) {
1381 		cancel_delayed_work(&r->work);
1382 		kfree(r->e_alloc);
1383 		kfree(r->e_dealloc);
1384 		kfree(r);
1385 	}
1386  out:
1387 	client_put(client);
1388 }
1389 
1390 static void release_iso_resource(struct client *client,
1391 				 struct client_resource *resource)
1392 {
1393 	struct iso_resource *r = to_iso_resource(resource);
1394 
1395 	guard(spinlock_irq)(&client->lock);
1396 
1397 	r->todo = ISO_RES_DEALLOC;
1398 	schedule_iso_resource(r, 0);
1399 }
1400 
1401 static int init_iso_resource(struct client *client,
1402 		struct fw_cdev_allocate_iso_resource *request, int todo)
1403 {
1404 	struct iso_resource_event *e1, *e2;
1405 	struct iso_resource *r;
1406 	int ret;
1407 
1408 	if ((request->channels == 0 && request->bandwidth == 0) ||
1409 	    request->bandwidth > BANDWIDTH_AVAILABLE_INITIAL)
1410 		return -EINVAL;
1411 
1412 	r  = kmalloc(sizeof(*r), GFP_KERNEL);
1413 	e1 = kmalloc(sizeof(*e1), GFP_KERNEL);
1414 	e2 = kmalloc(sizeof(*e2), GFP_KERNEL);
1415 	if (r == NULL || e1 == NULL || e2 == NULL) {
1416 		ret = -ENOMEM;
1417 		goto fail;
1418 	}
1419 
1420 	INIT_DELAYED_WORK(&r->work, iso_resource_work);
1421 	r->client	= client;
1422 	r->todo		= todo;
1423 	r->generation	= -1;
1424 	r->channels	= request->channels;
1425 	r->bandwidth	= request->bandwidth;
1426 	r->e_alloc	= e1;
1427 	r->e_dealloc	= e2;
1428 
1429 	e1->iso_resource.closure = request->closure;
1430 	e1->iso_resource.type    = FW_CDEV_EVENT_ISO_RESOURCE_ALLOCATED;
1431 	e2->iso_resource.closure = request->closure;
1432 	e2->iso_resource.type    = FW_CDEV_EVENT_ISO_RESOURCE_DEALLOCATED;
1433 
1434 	if (todo == ISO_RES_ALLOC) {
1435 		r->resource.release = release_iso_resource;
1436 		ret = add_client_resource(client, &r->resource, GFP_KERNEL);
1437 		if (ret < 0)
1438 			goto fail;
1439 	} else {
1440 		r->resource.release = NULL;
1441 		r->resource.handle = -1;
1442 		schedule_iso_resource(r, 0);
1443 	}
1444 	request->handle = r->resource.handle;
1445 
1446 	return 0;
1447  fail:
1448 	kfree(r);
1449 	kfree(e1);
1450 	kfree(e2);
1451 
1452 	return ret;
1453 }
1454 
1455 static int ioctl_allocate_iso_resource(struct client *client,
1456 				       union ioctl_arg *arg)
1457 {
1458 	return init_iso_resource(client,
1459 			&arg->allocate_iso_resource, ISO_RES_ALLOC);
1460 }
1461 
1462 static int ioctl_deallocate_iso_resource(struct client *client,
1463 					 union ioctl_arg *arg)
1464 {
1465 	return release_client_resource(client,
1466 			arg->deallocate.handle, release_iso_resource, NULL);
1467 }
1468 
1469 static int ioctl_allocate_iso_resource_once(struct client *client,
1470 					    union ioctl_arg *arg)
1471 {
1472 	return init_iso_resource(client,
1473 			&arg->allocate_iso_resource, ISO_RES_ALLOC_ONCE);
1474 }
1475 
1476 static int ioctl_deallocate_iso_resource_once(struct client *client,
1477 					      union ioctl_arg *arg)
1478 {
1479 	return init_iso_resource(client,
1480 			&arg->allocate_iso_resource, ISO_RES_DEALLOC_ONCE);
1481 }
1482 
1483 /*
1484  * Returns a speed code:  Maximum speed to or from this device,
1485  * limited by the device's link speed, the local node's link speed,
1486  * and all PHY port speeds between the two links.
1487  */
1488 static int ioctl_get_speed(struct client *client, union ioctl_arg *arg)
1489 {
1490 	return client->device->max_speed;
1491 }
1492 
1493 static int ioctl_send_broadcast_request(struct client *client,
1494 					union ioctl_arg *arg)
1495 {
1496 	struct fw_cdev_send_request *a = &arg->send_request;
1497 
1498 	switch (a->tcode) {
1499 	case TCODE_WRITE_QUADLET_REQUEST:
1500 	case TCODE_WRITE_BLOCK_REQUEST:
1501 		break;
1502 	default:
1503 		return -EINVAL;
1504 	}
1505 
1506 	/* Security policy: Only allow accesses to Units Space. */
1507 	if (a->offset < CSR_REGISTER_BASE + CSR_CONFIG_ROM_END)
1508 		return -EACCES;
1509 
1510 	return init_request(client, a, LOCAL_BUS | 0x3f, SCODE_100);
1511 }
1512 
1513 static int ioctl_send_stream_packet(struct client *client, union ioctl_arg *arg)
1514 {
1515 	struct fw_cdev_send_stream_packet *a = &arg->send_stream_packet;
1516 	struct fw_cdev_send_request request;
1517 	int dest;
1518 
1519 	if (a->speed > client->device->card->link_speed ||
1520 	    a->length > 1024 << a->speed)
1521 		return -EIO;
1522 
1523 	if (a->tag > 3 || a->channel > 63 || a->sy > 15)
1524 		return -EINVAL;
1525 
1526 	dest = fw_stream_packet_destination_id(a->tag, a->channel, a->sy);
1527 	request.tcode		= TCODE_STREAM_DATA;
1528 	request.length		= a->length;
1529 	request.closure		= a->closure;
1530 	request.data		= a->data;
1531 	request.generation	= a->generation;
1532 
1533 	return init_request(client, &request, dest, a->speed);
1534 }
1535 
1536 static void outbound_phy_packet_callback(struct fw_packet *packet,
1537 					 struct fw_card *card, int status)
1538 {
1539 	struct outbound_phy_packet_event *e =
1540 		container_of(packet, struct outbound_phy_packet_event, p);
1541 	struct client *e_client = e->client;
1542 	u32 rcode;
1543 
1544 	trace_async_phy_outbound_complete((uintptr_t)packet, card->index, status, packet->generation,
1545 					  packet->timestamp);
1546 
1547 	switch (status) {
1548 	// expected:
1549 	case ACK_COMPLETE:
1550 		rcode = RCODE_COMPLETE;
1551 		break;
1552 	// should never happen with PHY packets:
1553 	case ACK_PENDING:
1554 		rcode = RCODE_COMPLETE;
1555 		break;
1556 	case ACK_BUSY_X:
1557 	case ACK_BUSY_A:
1558 	case ACK_BUSY_B:
1559 		rcode = RCODE_BUSY;
1560 		break;
1561 	case ACK_DATA_ERROR:
1562 		rcode = RCODE_DATA_ERROR;
1563 		break;
1564 	case ACK_TYPE_ERROR:
1565 		rcode = RCODE_TYPE_ERROR;
1566 		break;
1567 	// stale generation; cancelled; on certain controllers: no ack
1568 	default:
1569 		rcode = status;
1570 		break;
1571 	}
1572 
1573 	switch (e->phy_packet.without_tstamp.type) {
1574 	case FW_CDEV_EVENT_PHY_PACKET_SENT:
1575 	{
1576 		struct fw_cdev_event_phy_packet *pp = &e->phy_packet.without_tstamp;
1577 
1578 		pp->rcode = rcode;
1579 		pp->data[0] = packet->timestamp;
1580 		queue_event(e->client, &e->event, &e->phy_packet, sizeof(*pp) + pp->length,
1581 			    NULL, 0);
1582 		break;
1583 	}
1584 	case FW_CDEV_EVENT_PHY_PACKET_SENT2:
1585 	{
1586 		struct fw_cdev_event_phy_packet2 *pp = &e->phy_packet.with_tstamp;
1587 
1588 		pp->rcode = rcode;
1589 		pp->tstamp = packet->timestamp;
1590 		queue_event(e->client, &e->event, &e->phy_packet, sizeof(*pp) + pp->length,
1591 			    NULL, 0);
1592 		break;
1593 	}
1594 	default:
1595 		WARN_ON(1);
1596 		break;
1597 	}
1598 
1599 	client_put(e_client);
1600 }
1601 
1602 static int ioctl_send_phy_packet(struct client *client, union ioctl_arg *arg)
1603 {
1604 	struct fw_cdev_send_phy_packet *a = &arg->send_phy_packet;
1605 	struct fw_card *card = client->device->card;
1606 	struct outbound_phy_packet_event *e;
1607 
1608 	/* Access policy: Allow this ioctl only on local nodes' device files. */
1609 	if (!client->device->is_local)
1610 		return -ENOSYS;
1611 
1612 	e = kzalloc(sizeof(*e) + sizeof(a->data), GFP_KERNEL);
1613 	if (e == NULL)
1614 		return -ENOMEM;
1615 
1616 	client_get(client);
1617 	e->client		= client;
1618 	e->p.speed		= SCODE_100;
1619 	e->p.generation		= a->generation;
1620 	async_header_set_tcode(e->p.header, TCODE_LINK_INTERNAL);
1621 	e->p.header[1]		= a->data[0];
1622 	e->p.header[2]		= a->data[1];
1623 	e->p.header_length	= 12;
1624 	e->p.callback		= outbound_phy_packet_callback;
1625 
1626 	if (client->version < FW_CDEV_VERSION_EVENT_ASYNC_TSTAMP) {
1627 		struct fw_cdev_event_phy_packet *pp = &e->phy_packet.without_tstamp;
1628 
1629 		pp->closure = a->closure;
1630 		pp->type = FW_CDEV_EVENT_PHY_PACKET_SENT;
1631 		if (is_ping_packet(a->data))
1632 			pp->length = 4;
1633 	} else {
1634 		struct fw_cdev_event_phy_packet2 *pp = &e->phy_packet.with_tstamp;
1635 
1636 		pp->closure = a->closure;
1637 		pp->type = FW_CDEV_EVENT_PHY_PACKET_SENT2;
1638 		// Keep the data field so that application can match the response event to the
1639 		// request.
1640 		pp->length = sizeof(a->data);
1641 		memcpy(pp->data, a->data, sizeof(a->data));
1642 	}
1643 
1644 	trace_async_phy_outbound_initiate((uintptr_t)&e->p, card->index, e->p.generation,
1645 					  e->p.header[1], e->p.header[2]);
1646 
1647 	card->driver->send_request(card, &e->p);
1648 
1649 	return 0;
1650 }
1651 
1652 static int ioctl_receive_phy_packets(struct client *client, union ioctl_arg *arg)
1653 {
1654 	struct fw_cdev_receive_phy_packets *a = &arg->receive_phy_packets;
1655 
1656 	/* Access policy: Allow this ioctl only on local nodes' device files. */
1657 	if (!client->device->is_local)
1658 		return -ENOSYS;
1659 
1660 	// NOTE: This can be without irq when we can guarantee that __fw_send_request() for local
1661 	// destination never runs in any type of IRQ context.
1662 	scoped_guard(spinlock_irq, &phy_receiver_list_lock)
1663 		list_move_tail(&client->phy_receiver_link, &phy_receiver_list);
1664 
1665 	client->phy_receiver_closure = a->closure;
1666 
1667 	return 0;
1668 }
1669 
1670 void fw_cdev_handle_phy_packet(struct fw_card *card, struct fw_packet *p)
1671 {
1672 	struct client *client;
1673 
1674 	// NOTE: This can be without irqsave when we can guarantee that __fw_send_request() for local
1675 	// destination never runs in any type of IRQ context.
1676 	guard(spinlock_irqsave)(&phy_receiver_list_lock);
1677 
1678 	list_for_each_entry(client, &phy_receiver_list, phy_receiver_link) {
1679 		struct inbound_phy_packet_event *e;
1680 
1681 		if (client->device->card != card)
1682 			continue;
1683 
1684 		e = kmalloc(sizeof(*e) + 8, GFP_ATOMIC);
1685 		if (e == NULL)
1686 			break;
1687 
1688 		if (client->version < FW_CDEV_VERSION_EVENT_ASYNC_TSTAMP) {
1689 			struct fw_cdev_event_phy_packet *pp = &e->phy_packet.without_tstamp;
1690 
1691 			pp->closure = client->phy_receiver_closure;
1692 			pp->type = FW_CDEV_EVENT_PHY_PACKET_RECEIVED;
1693 			pp->rcode = RCODE_COMPLETE;
1694 			pp->length = 8;
1695 			pp->data[0] = p->header[1];
1696 			pp->data[1] = p->header[2];
1697 			queue_event(client, &e->event, &e->phy_packet, sizeof(*pp) + 8, NULL, 0);
1698 		} else {
1699 			struct fw_cdev_event_phy_packet2 *pp = &e->phy_packet.with_tstamp;
1700 
1701 			pp = &e->phy_packet.with_tstamp;
1702 			pp->closure = client->phy_receiver_closure;
1703 			pp->type = FW_CDEV_EVENT_PHY_PACKET_RECEIVED2;
1704 			pp->rcode = RCODE_COMPLETE;
1705 			pp->length = 8;
1706 			pp->tstamp = p->timestamp;
1707 			pp->data[0] = p->header[1];
1708 			pp->data[1] = p->header[2];
1709 			queue_event(client, &e->event, &e->phy_packet, sizeof(*pp) + 8, NULL, 0);
1710 		}
1711 	}
1712 }
1713 
1714 static int (* const ioctl_handlers[])(struct client *, union ioctl_arg *) = {
1715 	[0x00] = ioctl_get_info,
1716 	[0x01] = ioctl_send_request,
1717 	[0x02] = ioctl_allocate,
1718 	[0x03] = ioctl_deallocate,
1719 	[0x04] = ioctl_send_response,
1720 	[0x05] = ioctl_initiate_bus_reset,
1721 	[0x06] = ioctl_add_descriptor,
1722 	[0x07] = ioctl_remove_descriptor,
1723 	[0x08] = ioctl_create_iso_context,
1724 	[0x09] = ioctl_queue_iso,
1725 	[0x0a] = ioctl_start_iso,
1726 	[0x0b] = ioctl_stop_iso,
1727 	[0x0c] = ioctl_get_cycle_timer,
1728 	[0x0d] = ioctl_allocate_iso_resource,
1729 	[0x0e] = ioctl_deallocate_iso_resource,
1730 	[0x0f] = ioctl_allocate_iso_resource_once,
1731 	[0x10] = ioctl_deallocate_iso_resource_once,
1732 	[0x11] = ioctl_get_speed,
1733 	[0x12] = ioctl_send_broadcast_request,
1734 	[0x13] = ioctl_send_stream_packet,
1735 	[0x14] = ioctl_get_cycle_timer2,
1736 	[0x15] = ioctl_send_phy_packet,
1737 	[0x16] = ioctl_receive_phy_packets,
1738 	[0x17] = ioctl_set_iso_channels,
1739 	[0x18] = ioctl_flush_iso,
1740 };
1741 
1742 static int dispatch_ioctl(struct client *client,
1743 			  unsigned int cmd, void __user *arg)
1744 {
1745 	union ioctl_arg buffer;
1746 	int ret;
1747 
1748 	if (fw_device_is_shutdown(client->device))
1749 		return -ENODEV;
1750 
1751 	if (_IOC_TYPE(cmd) != '#' ||
1752 	    _IOC_NR(cmd) >= ARRAY_SIZE(ioctl_handlers) ||
1753 	    _IOC_SIZE(cmd) > sizeof(buffer))
1754 		return -ENOTTY;
1755 
1756 	memset(&buffer, 0, sizeof(buffer));
1757 
1758 	if (_IOC_DIR(cmd) & _IOC_WRITE)
1759 		if (copy_from_user(&buffer, arg, _IOC_SIZE(cmd)))
1760 			return -EFAULT;
1761 
1762 	ret = ioctl_handlers[_IOC_NR(cmd)](client, &buffer);
1763 	if (ret < 0)
1764 		return ret;
1765 
1766 	if (_IOC_DIR(cmd) & _IOC_READ)
1767 		if (copy_to_user(arg, &buffer, _IOC_SIZE(cmd)))
1768 			return -EFAULT;
1769 
1770 	return ret;
1771 }
1772 
1773 static long fw_device_op_ioctl(struct file *file,
1774 			       unsigned int cmd, unsigned long arg)
1775 {
1776 	return dispatch_ioctl(file->private_data, cmd, (void __user *)arg);
1777 }
1778 
1779 static int fw_device_op_mmap(struct file *file, struct vm_area_struct *vma)
1780 {
1781 	struct client *client = file->private_data;
1782 	unsigned long size;
1783 	int page_count, ret;
1784 
1785 	if (fw_device_is_shutdown(client->device))
1786 		return -ENODEV;
1787 
1788 	/* FIXME: We could support multiple buffers, but we don't. */
1789 	if (client->buffer.pages != NULL)
1790 		return -EBUSY;
1791 
1792 	if (!(vma->vm_flags & VM_SHARED))
1793 		return -EINVAL;
1794 
1795 	if (vma->vm_start & ~PAGE_MASK)
1796 		return -EINVAL;
1797 
1798 	client->vm_start = vma->vm_start;
1799 	size = vma->vm_end - vma->vm_start;
1800 	page_count = size >> PAGE_SHIFT;
1801 	if (size & ~PAGE_MASK)
1802 		return -EINVAL;
1803 
1804 	ret = fw_iso_buffer_alloc(&client->buffer, page_count);
1805 	if (ret < 0)
1806 		return ret;
1807 
1808 	scoped_guard(mutex, &client->iso_context_mutex) {
1809 		// The direction of DMA can be determined if the isochronous context is already
1810 		// allocated. If not, the DMA mapping operation is postponed after the allocation.
1811 		if (client->iso_context) {
1812 			ret = fw_iso_buffer_map_dma(&client->buffer, client->device->card,
1813 						    iso_dma_direction(client->iso_context));
1814 			if (ret < 0)
1815 				goto fail;
1816 		}
1817 	}
1818 
1819 	ret = vm_map_pages_zero(vma, client->buffer.pages,
1820 				client->buffer.page_count);
1821 	if (ret < 0)
1822 		goto fail;
1823 
1824 	return 0;
1825  fail:
1826 	fw_iso_buffer_destroy(&client->buffer, client->device->card);
1827 	return ret;
1828 }
1829 
1830 static bool has_outbound_transactions(struct client *client)
1831 {
1832 	struct client_resource *resource;
1833 	unsigned long index;
1834 
1835 	guard(spinlock_irq)(&client->lock);
1836 
1837 	xa_for_each(&client->resource_xa, index, resource) {
1838 		if (is_outbound_transaction_resource(resource))
1839 			return true;
1840 	}
1841 
1842 	return false;
1843 }
1844 
1845 static int fw_device_op_release(struct inode *inode, struct file *file)
1846 {
1847 	struct client *client = file->private_data;
1848 	struct event *event, *next_event;
1849 	struct client_resource *resource;
1850 	unsigned long index;
1851 
1852 	// NOTE: This can be without irq when we can guarantee that __fw_send_request() for local
1853 	// destination never runs in any type of IRQ context.
1854 	scoped_guard(spinlock_irq, &phy_receiver_list_lock)
1855 		list_del(&client->phy_receiver_link);
1856 
1857 	scoped_guard(mutex, &client->device->client_list_mutex)
1858 		list_del(&client->link);
1859 
1860 	if (client->iso_context)
1861 		fw_iso_context_destroy(client->iso_context);
1862 	mutex_destroy(&client->iso_context_mutex);
1863 
1864 	if (client->buffer.pages)
1865 		fw_iso_buffer_destroy(&client->buffer, client->device->card);
1866 
1867 	// Freeze client->resource_xa and client->event_list.
1868 	scoped_guard(spinlock_irq, &client->lock)
1869 		client->in_shutdown = true;
1870 
1871 	wait_event(client->tx_flush_wait, !has_outbound_transactions(client));
1872 
1873 	xa_for_each(&client->resource_xa, index, resource) {
1874 		resource->release(client, resource);
1875 		client_put(client);
1876 	}
1877 	xa_destroy(&client->resource_xa);
1878 
1879 	list_for_each_entry_safe(event, next_event, &client->event_list, link)
1880 		kfree(event);
1881 
1882 	client_put(client);
1883 
1884 	return 0;
1885 }
1886 
1887 static __poll_t fw_device_op_poll(struct file *file, poll_table * pt)
1888 {
1889 	struct client *client = file->private_data;
1890 	__poll_t mask = 0;
1891 
1892 	poll_wait(file, &client->wait, pt);
1893 
1894 	if (fw_device_is_shutdown(client->device))
1895 		mask |= EPOLLHUP | EPOLLERR;
1896 	if (!list_empty(&client->event_list))
1897 		mask |= EPOLLIN | EPOLLRDNORM;
1898 
1899 	return mask;
1900 }
1901 
1902 const struct file_operations fw_device_ops = {
1903 	.owner		= THIS_MODULE,
1904 	.open		= fw_device_op_open,
1905 	.read		= fw_device_op_read,
1906 	.unlocked_ioctl	= fw_device_op_ioctl,
1907 	.mmap		= fw_device_op_mmap,
1908 	.release	= fw_device_op_release,
1909 	.poll		= fw_device_op_poll,
1910 	.compat_ioctl	= compat_ptr_ioctl,
1911 };
1912