xref: /linux/drivers/firewire/core-card.c (revision cc4589ebfae6f8dbb5cf880a0a67eedab3416492)
1 /*
2  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software Foundation,
16  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  */
18 
19 #include <linux/bug.h>
20 #include <linux/completion.h>
21 #include <linux/crc-itu-t.h>
22 #include <linux/device.h>
23 #include <linux/errno.h>
24 #include <linux/firewire.h>
25 #include <linux/firewire-constants.h>
26 #include <linux/jiffies.h>
27 #include <linux/kernel.h>
28 #include <linux/kref.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/mutex.h>
32 #include <linux/spinlock.h>
33 #include <linux/workqueue.h>
34 
35 #include <asm/atomic.h>
36 #include <asm/byteorder.h>
37 
38 #include "core.h"
39 
40 int fw_compute_block_crc(__be32 *block)
41 {
42 	int length;
43 	u16 crc;
44 
45 	length = (be32_to_cpu(block[0]) >> 16) & 0xff;
46 	crc = crc_itu_t(0, (u8 *)&block[1], length * 4);
47 	*block |= cpu_to_be32(crc);
48 
49 	return length;
50 }
51 
52 static DEFINE_MUTEX(card_mutex);
53 static LIST_HEAD(card_list);
54 
55 static LIST_HEAD(descriptor_list);
56 static int descriptor_count;
57 
58 static __be32 tmp_config_rom[256];
59 /* ROM header, bus info block, root dir header, capabilities = 7 quadlets */
60 static size_t config_rom_length = 1 + 4 + 1 + 1;
61 
62 #define BIB_CRC(v)		((v) <<  0)
63 #define BIB_CRC_LENGTH(v)	((v) << 16)
64 #define BIB_INFO_LENGTH(v)	((v) << 24)
65 #define BIB_BUS_NAME		0x31333934 /* "1394" */
66 #define BIB_LINK_SPEED(v)	((v) <<  0)
67 #define BIB_GENERATION(v)	((v) <<  4)
68 #define BIB_MAX_ROM(v)		((v) <<  8)
69 #define BIB_MAX_RECEIVE(v)	((v) << 12)
70 #define BIB_CYC_CLK_ACC(v)	((v) << 16)
71 #define BIB_PMC			((1) << 27)
72 #define BIB_BMC			((1) << 28)
73 #define BIB_ISC			((1) << 29)
74 #define BIB_CMC			((1) << 30)
75 #define BIB_IRMC		((1) << 31)
76 #define NODE_CAPABILITIES	0x0c0083c0 /* per IEEE 1394 clause 8.3.2.6.5.2 */
77 
78 static void generate_config_rom(struct fw_card *card, __be32 *config_rom)
79 {
80 	struct fw_descriptor *desc;
81 	int i, j, k, length;
82 
83 	/*
84 	 * Initialize contents of config rom buffer.  On the OHCI
85 	 * controller, block reads to the config rom accesses the host
86 	 * memory, but quadlet read access the hardware bus info block
87 	 * registers.  That's just crack, but it means we should make
88 	 * sure the contents of bus info block in host memory matches
89 	 * the version stored in the OHCI registers.
90 	 */
91 
92 	config_rom[0] = cpu_to_be32(
93 		BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0));
94 	config_rom[1] = cpu_to_be32(BIB_BUS_NAME);
95 	config_rom[2] = cpu_to_be32(
96 		BIB_LINK_SPEED(card->link_speed) |
97 		BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
98 		BIB_MAX_ROM(2) |
99 		BIB_MAX_RECEIVE(card->max_receive) |
100 		BIB_BMC | BIB_ISC | BIB_CMC | BIB_IRMC);
101 	config_rom[3] = cpu_to_be32(card->guid >> 32);
102 	config_rom[4] = cpu_to_be32(card->guid);
103 
104 	/* Generate root directory. */
105 	config_rom[6] = cpu_to_be32(NODE_CAPABILITIES);
106 	i = 7;
107 	j = 7 + descriptor_count;
108 
109 	/* Generate root directory entries for descriptors. */
110 	list_for_each_entry (desc, &descriptor_list, link) {
111 		if (desc->immediate > 0)
112 			config_rom[i++] = cpu_to_be32(desc->immediate);
113 		config_rom[i] = cpu_to_be32(desc->key | (j - i));
114 		i++;
115 		j += desc->length;
116 	}
117 
118 	/* Update root directory length. */
119 	config_rom[5] = cpu_to_be32((i - 5 - 1) << 16);
120 
121 	/* End of root directory, now copy in descriptors. */
122 	list_for_each_entry (desc, &descriptor_list, link) {
123 		for (k = 0; k < desc->length; k++)
124 			config_rom[i + k] = cpu_to_be32(desc->data[k]);
125 		i += desc->length;
126 	}
127 
128 	/* Calculate CRCs for all blocks in the config rom.  This
129 	 * assumes that CRC length and info length are identical for
130 	 * the bus info block, which is always the case for this
131 	 * implementation. */
132 	for (i = 0; i < j; i += length + 1)
133 		length = fw_compute_block_crc(config_rom + i);
134 
135 	WARN_ON(j != config_rom_length);
136 }
137 
138 static void update_config_roms(void)
139 {
140 	struct fw_card *card;
141 
142 	list_for_each_entry (card, &card_list, link) {
143 		generate_config_rom(card, tmp_config_rom);
144 		card->driver->set_config_rom(card, tmp_config_rom,
145 					     config_rom_length);
146 	}
147 }
148 
149 static size_t required_space(struct fw_descriptor *desc)
150 {
151 	/* descriptor + entry into root dir + optional immediate entry */
152 	return desc->length + 1 + (desc->immediate > 0 ? 1 : 0);
153 }
154 
155 int fw_core_add_descriptor(struct fw_descriptor *desc)
156 {
157 	size_t i;
158 	int ret;
159 
160 	/*
161 	 * Check descriptor is valid; the length of all blocks in the
162 	 * descriptor has to add up to exactly the length of the
163 	 * block.
164 	 */
165 	i = 0;
166 	while (i < desc->length)
167 		i += (desc->data[i] >> 16) + 1;
168 
169 	if (i != desc->length)
170 		return -EINVAL;
171 
172 	mutex_lock(&card_mutex);
173 
174 	if (config_rom_length + required_space(desc) > 256) {
175 		ret = -EBUSY;
176 	} else {
177 		list_add_tail(&desc->link, &descriptor_list);
178 		config_rom_length += required_space(desc);
179 		descriptor_count++;
180 		if (desc->immediate > 0)
181 			descriptor_count++;
182 		update_config_roms();
183 		ret = 0;
184 	}
185 
186 	mutex_unlock(&card_mutex);
187 
188 	return ret;
189 }
190 EXPORT_SYMBOL(fw_core_add_descriptor);
191 
192 void fw_core_remove_descriptor(struct fw_descriptor *desc)
193 {
194 	mutex_lock(&card_mutex);
195 
196 	list_del(&desc->link);
197 	config_rom_length -= required_space(desc);
198 	descriptor_count--;
199 	if (desc->immediate > 0)
200 		descriptor_count--;
201 	update_config_roms();
202 
203 	mutex_unlock(&card_mutex);
204 }
205 EXPORT_SYMBOL(fw_core_remove_descriptor);
206 
207 static int reset_bus(struct fw_card *card, bool short_reset)
208 {
209 	int reg = short_reset ? 5 : 1;
210 	int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
211 
212 	return card->driver->update_phy_reg(card, reg, 0, bit);
213 }
214 
215 void fw_schedule_bus_reset(struct fw_card *card, bool delayed, bool short_reset)
216 {
217 	/* We don't try hard to sort out requests of long vs. short resets. */
218 	card->br_short = short_reset;
219 
220 	/* Use an arbitrary short delay to combine multiple reset requests. */
221 	fw_card_get(card);
222 	if (!schedule_delayed_work(&card->br_work,
223 				   delayed ? DIV_ROUND_UP(HZ, 100) : 0))
224 		fw_card_put(card);
225 }
226 EXPORT_SYMBOL(fw_schedule_bus_reset);
227 
228 static void br_work(struct work_struct *work)
229 {
230 	struct fw_card *card = container_of(work, struct fw_card, br_work.work);
231 
232 	/* Delay for 2s after last reset per IEEE 1394 clause 8.2.1. */
233 	if (card->reset_jiffies != 0 &&
234 	    time_is_after_jiffies(card->reset_jiffies + 2 * HZ)) {
235 		if (!schedule_delayed_work(&card->br_work, 2 * HZ))
236 			fw_card_put(card);
237 		return;
238 	}
239 
240 	fw_send_phy_config(card, FW_PHY_CONFIG_NO_NODE_ID, card->generation,
241 			   FW_PHY_CONFIG_CURRENT_GAP_COUNT);
242 	reset_bus(card, card->br_short);
243 	fw_card_put(card);
244 }
245 
246 static void allocate_broadcast_channel(struct fw_card *card, int generation)
247 {
248 	int channel, bandwidth = 0;
249 
250 	if (!card->broadcast_channel_allocated) {
251 		fw_iso_resource_manage(card, generation, 1ULL << 31,
252 				       &channel, &bandwidth, true,
253 				       card->bm_transaction_data);
254 		if (channel != 31) {
255 			fw_notify("failed to allocate broadcast channel\n");
256 			return;
257 		}
258 		card->broadcast_channel_allocated = true;
259 	}
260 
261 	device_for_each_child(card->device, (void *)(long)generation,
262 			      fw_device_set_broadcast_channel);
263 }
264 
265 static const char gap_count_table[] = {
266 	63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
267 };
268 
269 void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
270 {
271 	fw_card_get(card);
272 	if (!schedule_delayed_work(&card->bm_work, delay))
273 		fw_card_put(card);
274 }
275 
276 static void bm_work(struct work_struct *work)
277 {
278 	struct fw_card *card = container_of(work, struct fw_card, bm_work.work);
279 	struct fw_device *root_device, *irm_device;
280 	struct fw_node *root_node;
281 	int root_id, new_root_id, irm_id, bm_id, local_id;
282 	int gap_count, generation, grace, rcode;
283 	bool do_reset = false;
284 	bool root_device_is_running;
285 	bool root_device_is_cmc;
286 	bool irm_is_1394_1995_only;
287 
288 	spin_lock_irq(&card->lock);
289 
290 	if (card->local_node == NULL) {
291 		spin_unlock_irq(&card->lock);
292 		goto out_put_card;
293 	}
294 
295 	generation = card->generation;
296 
297 	root_node = card->root_node;
298 	fw_node_get(root_node);
299 	root_device = root_node->data;
300 	root_device_is_running = root_device &&
301 			atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
302 	root_device_is_cmc = root_device && root_device->cmc;
303 
304 	irm_device = card->irm_node->data;
305 	irm_is_1394_1995_only = irm_device && irm_device->config_rom &&
306 			(irm_device->config_rom[2] & 0x000000f0) == 0;
307 
308 	root_id  = root_node->node_id;
309 	irm_id   = card->irm_node->node_id;
310 	local_id = card->local_node->node_id;
311 
312 	grace = time_after(jiffies, card->reset_jiffies + DIV_ROUND_UP(HZ, 8));
313 
314 	if ((is_next_generation(generation, card->bm_generation) &&
315 	     !card->bm_abdicate) ||
316 	    (card->bm_generation != generation && grace)) {
317 		/*
318 		 * This first step is to figure out who is IRM and
319 		 * then try to become bus manager.  If the IRM is not
320 		 * well defined (e.g. does not have an active link
321 		 * layer or does not responds to our lock request, we
322 		 * will have to do a little vigilante bus management.
323 		 * In that case, we do a goto into the gap count logic
324 		 * so that when we do the reset, we still optimize the
325 		 * gap count.  That could well save a reset in the
326 		 * next generation.
327 		 */
328 
329 		if (!card->irm_node->link_on) {
330 			new_root_id = local_id;
331 			fw_notify("%s, making local node (%02x) root.\n",
332 				  "IRM has link off", new_root_id);
333 			goto pick_me;
334 		}
335 
336 		if (irm_is_1394_1995_only) {
337 			new_root_id = local_id;
338 			fw_notify("%s, making local node (%02x) root.\n",
339 				  "IRM is not 1394a compliant", new_root_id);
340 			goto pick_me;
341 		}
342 
343 		card->bm_transaction_data[0] = cpu_to_be32(0x3f);
344 		card->bm_transaction_data[1] = cpu_to_be32(local_id);
345 
346 		spin_unlock_irq(&card->lock);
347 
348 		rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
349 				irm_id, generation, SCODE_100,
350 				CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
351 				card->bm_transaction_data, 8);
352 
353 		if (rcode == RCODE_GENERATION)
354 			/* Another bus reset, BM work has been rescheduled. */
355 			goto out;
356 
357 		bm_id = be32_to_cpu(card->bm_transaction_data[0]);
358 
359 		spin_lock_irq(&card->lock);
360 		if (rcode == RCODE_COMPLETE && generation == card->generation)
361 			card->bm_node_id =
362 			    bm_id == 0x3f ? local_id : 0xffc0 | bm_id;
363 		spin_unlock_irq(&card->lock);
364 
365 		if (rcode == RCODE_COMPLETE && bm_id != 0x3f) {
366 			/* Somebody else is BM.  Only act as IRM. */
367 			if (local_id == irm_id)
368 				allocate_broadcast_channel(card, generation);
369 
370 			goto out;
371 		}
372 
373 		if (rcode == RCODE_SEND_ERROR) {
374 			/*
375 			 * We have been unable to send the lock request due to
376 			 * some local problem.  Let's try again later and hope
377 			 * that the problem has gone away by then.
378 			 */
379 			fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
380 			goto out;
381 		}
382 
383 		spin_lock_irq(&card->lock);
384 
385 		if (rcode != RCODE_COMPLETE) {
386 			/*
387 			 * The lock request failed, maybe the IRM
388 			 * isn't really IRM capable after all. Let's
389 			 * do a bus reset and pick the local node as
390 			 * root, and thus, IRM.
391 			 */
392 			new_root_id = local_id;
393 			fw_notify("%s, making local node (%02x) root.\n",
394 				  "BM lock failed", new_root_id);
395 			goto pick_me;
396 		}
397 	} else if (card->bm_generation != generation) {
398 		/*
399 		 * We weren't BM in the last generation, and the last
400 		 * bus reset is less than 125ms ago.  Reschedule this job.
401 		 */
402 		spin_unlock_irq(&card->lock);
403 		fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
404 		goto out;
405 	}
406 
407 	/*
408 	 * We're bus manager for this generation, so next step is to
409 	 * make sure we have an active cycle master and do gap count
410 	 * optimization.
411 	 */
412 	card->bm_generation = generation;
413 
414 	if (root_device == NULL) {
415 		/*
416 		 * Either link_on is false, or we failed to read the
417 		 * config rom.  In either case, pick another root.
418 		 */
419 		new_root_id = local_id;
420 	} else if (!root_device_is_running) {
421 		/*
422 		 * If we haven't probed this device yet, bail out now
423 		 * and let's try again once that's done.
424 		 */
425 		spin_unlock_irq(&card->lock);
426 		goto out;
427 	} else if (root_device_is_cmc) {
428 		/*
429 		 * We will send out a force root packet for this
430 		 * node as part of the gap count optimization.
431 		 */
432 		new_root_id = root_id;
433 	} else {
434 		/*
435 		 * Current root has an active link layer and we
436 		 * successfully read the config rom, but it's not
437 		 * cycle master capable.
438 		 */
439 		new_root_id = local_id;
440 	}
441 
442  pick_me:
443 	/*
444 	 * Pick a gap count from 1394a table E-1.  The table doesn't cover
445 	 * the typically much larger 1394b beta repeater delays though.
446 	 */
447 	if (!card->beta_repeaters_present &&
448 	    root_node->max_hops < ARRAY_SIZE(gap_count_table))
449 		gap_count = gap_count_table[root_node->max_hops];
450 	else
451 		gap_count = 63;
452 
453 	/*
454 	 * Finally, figure out if we should do a reset or not.  If we have
455 	 * done less than 5 resets with the same physical topology and we
456 	 * have either a new root or a new gap count setting, let's do it.
457 	 */
458 
459 	if (card->bm_retries++ < 5 &&
460 	    (card->gap_count != gap_count || new_root_id != root_id))
461 		do_reset = true;
462 
463 	spin_unlock_irq(&card->lock);
464 
465 	if (do_reset) {
466 		fw_notify("phy config: card %d, new root=%x, gap_count=%d\n",
467 			  card->index, new_root_id, gap_count);
468 		fw_send_phy_config(card, new_root_id, generation, gap_count);
469 		reset_bus(card, true);
470 		/* Will allocate broadcast channel after the reset. */
471 		goto out;
472 	}
473 
474 	if (root_device_is_cmc) {
475 		/*
476 		 * Make sure that the cycle master sends cycle start packets.
477 		 */
478 		card->bm_transaction_data[0] = cpu_to_be32(CSR_STATE_BIT_CMSTR);
479 		rcode = fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
480 				root_id, generation, SCODE_100,
481 				CSR_REGISTER_BASE + CSR_STATE_SET,
482 				card->bm_transaction_data, 4);
483 		if (rcode == RCODE_GENERATION)
484 			goto out;
485 	}
486 
487 	if (local_id == irm_id)
488 		allocate_broadcast_channel(card, generation);
489 
490  out:
491 	fw_node_put(root_node);
492  out_put_card:
493 	fw_card_put(card);
494 }
495 
496 void fw_card_initialize(struct fw_card *card,
497 			const struct fw_card_driver *driver,
498 			struct device *device)
499 {
500 	static atomic_t index = ATOMIC_INIT(-1);
501 
502 	card->index = atomic_inc_return(&index);
503 	card->driver = driver;
504 	card->device = device;
505 	card->current_tlabel = 0;
506 	card->tlabel_mask = 0;
507 	card->split_timeout_hi = 0;
508 	card->split_timeout_lo = 800 << 19;
509 	card->split_timeout_cycles = 800;
510 	card->split_timeout_jiffies = DIV_ROUND_UP(HZ, 10);
511 	card->color = 0;
512 	card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
513 
514 	kref_init(&card->kref);
515 	init_completion(&card->done);
516 	INIT_LIST_HEAD(&card->transaction_list);
517 	INIT_LIST_HEAD(&card->phy_receiver_list);
518 	spin_lock_init(&card->lock);
519 
520 	card->local_node = NULL;
521 
522 	INIT_DELAYED_WORK(&card->br_work, br_work);
523 	INIT_DELAYED_WORK(&card->bm_work, bm_work);
524 }
525 EXPORT_SYMBOL(fw_card_initialize);
526 
527 int fw_card_add(struct fw_card *card,
528 		u32 max_receive, u32 link_speed, u64 guid)
529 {
530 	int ret;
531 
532 	card->max_receive = max_receive;
533 	card->link_speed = link_speed;
534 	card->guid = guid;
535 
536 	mutex_lock(&card_mutex);
537 
538 	generate_config_rom(card, tmp_config_rom);
539 	ret = card->driver->enable(card, tmp_config_rom, config_rom_length);
540 	if (ret == 0)
541 		list_add_tail(&card->link, &card_list);
542 
543 	mutex_unlock(&card_mutex);
544 
545 	return ret;
546 }
547 EXPORT_SYMBOL(fw_card_add);
548 
549 /*
550  * The next few functions implement a dummy driver that is used once a card
551  * driver shuts down an fw_card.  This allows the driver to cleanly unload,
552  * as all IO to the card will be handled (and failed) by the dummy driver
553  * instead of calling into the module.  Only functions for iso context
554  * shutdown still need to be provided by the card driver.
555  *
556  * .read/write_csr() should never be called anymore after the dummy driver
557  * was bound since they are only used within request handler context.
558  * .set_config_rom() is never called since the card is taken out of card_list
559  * before switching to the dummy driver.
560  */
561 
562 static int dummy_read_phy_reg(struct fw_card *card, int address)
563 {
564 	return -ENODEV;
565 }
566 
567 static int dummy_update_phy_reg(struct fw_card *card, int address,
568 				int clear_bits, int set_bits)
569 {
570 	return -ENODEV;
571 }
572 
573 static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
574 {
575 	packet->callback(packet, card, RCODE_CANCELLED);
576 }
577 
578 static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
579 {
580 	packet->callback(packet, card, RCODE_CANCELLED);
581 }
582 
583 static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
584 {
585 	return -ENOENT;
586 }
587 
588 static int dummy_enable_phys_dma(struct fw_card *card,
589 				 int node_id, int generation)
590 {
591 	return -ENODEV;
592 }
593 
594 static struct fw_iso_context *dummy_allocate_iso_context(struct fw_card *card,
595 				int type, int channel, size_t header_size)
596 {
597 	return ERR_PTR(-ENODEV);
598 }
599 
600 static int dummy_start_iso(struct fw_iso_context *ctx,
601 			   s32 cycle, u32 sync, u32 tags)
602 {
603 	return -ENODEV;
604 }
605 
606 static int dummy_set_iso_channels(struct fw_iso_context *ctx, u64 *channels)
607 {
608 	return -ENODEV;
609 }
610 
611 static int dummy_queue_iso(struct fw_iso_context *ctx, struct fw_iso_packet *p,
612 			   struct fw_iso_buffer *buffer, unsigned long payload)
613 {
614 	return -ENODEV;
615 }
616 
617 static const struct fw_card_driver dummy_driver_template = {
618 	.read_phy_reg		= dummy_read_phy_reg,
619 	.update_phy_reg		= dummy_update_phy_reg,
620 	.send_request		= dummy_send_request,
621 	.send_response		= dummy_send_response,
622 	.cancel_packet		= dummy_cancel_packet,
623 	.enable_phys_dma	= dummy_enable_phys_dma,
624 	.allocate_iso_context	= dummy_allocate_iso_context,
625 	.start_iso		= dummy_start_iso,
626 	.set_iso_channels	= dummy_set_iso_channels,
627 	.queue_iso		= dummy_queue_iso,
628 };
629 
630 void fw_card_release(struct kref *kref)
631 {
632 	struct fw_card *card = container_of(kref, struct fw_card, kref);
633 
634 	complete(&card->done);
635 }
636 
637 void fw_core_remove_card(struct fw_card *card)
638 {
639 	struct fw_card_driver dummy_driver = dummy_driver_template;
640 
641 	card->driver->update_phy_reg(card, 4,
642 				     PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
643 	fw_schedule_bus_reset(card, false, true);
644 
645 	mutex_lock(&card_mutex);
646 	list_del_init(&card->link);
647 	mutex_unlock(&card_mutex);
648 
649 	/* Switch off most of the card driver interface. */
650 	dummy_driver.free_iso_context	= card->driver->free_iso_context;
651 	dummy_driver.stop_iso		= card->driver->stop_iso;
652 	card->driver = &dummy_driver;
653 
654 	fw_destroy_nodes(card);
655 
656 	/* Wait for all users, especially device workqueue jobs, to finish. */
657 	fw_card_put(card);
658 	wait_for_completion(&card->done);
659 
660 	WARN_ON(!list_empty(&card->transaction_list));
661 }
662 EXPORT_SYMBOL(fw_core_remove_card);
663