xref: /linux/drivers/firewire/core-card.c (revision ab0f4cedc3554f921691ce5b63d59e258154e799)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
4  */
5 
6 #include <linux/bug.h>
7 #include <linux/completion.h>
8 #include <linux/crc-itu-t.h>
9 #include <linux/device.h>
10 #include <linux/errno.h>
11 #include <linux/firewire.h>
12 #include <linux/firewire-constants.h>
13 #include <linux/jiffies.h>
14 #include <linux/kernel.h>
15 #include <linux/kref.h>
16 #include <linux/list.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <linux/spinlock.h>
20 #include <linux/workqueue.h>
21 
22 #include <linux/atomic.h>
23 #include <asm/byteorder.h>
24 
25 #include "core.h"
26 #include <trace/events/firewire.h>
27 
28 #define define_fw_printk_level(func, kern_level)		\
29 void func(const struct fw_card *card, const char *fmt, ...)	\
30 {								\
31 	struct va_format vaf;					\
32 	va_list args;						\
33 								\
34 	va_start(args, fmt);					\
35 	vaf.fmt = fmt;						\
36 	vaf.va = &args;						\
37 	printk(kern_level KBUILD_MODNAME " %s: %pV",		\
38 	       dev_name(card->device), &vaf);			\
39 	va_end(args);						\
40 }
41 define_fw_printk_level(fw_err, KERN_ERR);
42 define_fw_printk_level(fw_notice, KERN_NOTICE);
43 
44 int fw_compute_block_crc(__be32 *block)
45 {
46 	int length;
47 	u16 crc;
48 
49 	length = (be32_to_cpu(block[0]) >> 16) & 0xff;
50 	crc = crc_itu_t(0, (u8 *)&block[1], length * 4);
51 	*block |= cpu_to_be32(crc);
52 
53 	return length;
54 }
55 
56 static DEFINE_MUTEX(card_mutex);
57 static LIST_HEAD(card_list);
58 
59 static LIST_HEAD(descriptor_list);
60 static int descriptor_count;
61 
62 static __be32 tmp_config_rom[256];
63 /* ROM header, bus info block, root dir header, capabilities = 7 quadlets */
64 static size_t config_rom_length = 1 + 4 + 1 + 1;
65 
66 #define BIB_CRC(v)		((v) <<  0)
67 #define BIB_CRC_LENGTH(v)	((v) << 16)
68 #define BIB_INFO_LENGTH(v)	((v) << 24)
69 #define BIB_BUS_NAME		0x31333934 /* "1394" */
70 #define BIB_LINK_SPEED(v)	((v) <<  0)
71 #define BIB_GENERATION(v)	((v) <<  4)
72 #define BIB_MAX_ROM(v)		((v) <<  8)
73 #define BIB_MAX_RECEIVE(v)	((v) << 12)
74 #define BIB_CYC_CLK_ACC(v)	((v) << 16)
75 #define BIB_PMC			((1) << 27)
76 #define BIB_BMC			((1) << 28)
77 #define BIB_ISC			((1) << 29)
78 #define BIB_CMC			((1) << 30)
79 #define BIB_IRMC		((1) << 31)
80 #define NODE_CAPABILITIES	0x0c0083c0 /* per IEEE 1394 clause 8.3.2.6.5.2 */
81 
82 /*
83  * IEEE-1394 specifies a default SPLIT_TIMEOUT value of 800 cycles (100 ms),
84  * but we have to make it longer because there are many devices whose firmware
85  * is just too slow for that.
86  */
87 #define DEFAULT_SPLIT_TIMEOUT	(2 * 8000)
88 
89 #define CANON_OUI		0x000085
90 
91 static void generate_config_rom(struct fw_card *card, __be32 *config_rom)
92 {
93 	struct fw_descriptor *desc;
94 	int i, j, k, length;
95 
96 	/*
97 	 * Initialize contents of config rom buffer.  On the OHCI
98 	 * controller, block reads to the config rom accesses the host
99 	 * memory, but quadlet read access the hardware bus info block
100 	 * registers.  That's just crack, but it means we should make
101 	 * sure the contents of bus info block in host memory matches
102 	 * the version stored in the OHCI registers.
103 	 */
104 
105 	config_rom[0] = cpu_to_be32(
106 		BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0));
107 	config_rom[1] = cpu_to_be32(BIB_BUS_NAME);
108 	config_rom[2] = cpu_to_be32(
109 		BIB_LINK_SPEED(card->link_speed) |
110 		BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
111 		BIB_MAX_ROM(2) |
112 		BIB_MAX_RECEIVE(card->max_receive) |
113 		BIB_BMC | BIB_ISC | BIB_CMC | BIB_IRMC);
114 	config_rom[3] = cpu_to_be32(card->guid >> 32);
115 	config_rom[4] = cpu_to_be32(card->guid);
116 
117 	/* Generate root directory. */
118 	config_rom[6] = cpu_to_be32(NODE_CAPABILITIES);
119 	i = 7;
120 	j = 7 + descriptor_count;
121 
122 	/* Generate root directory entries for descriptors. */
123 	list_for_each_entry (desc, &descriptor_list, link) {
124 		if (desc->immediate > 0)
125 			config_rom[i++] = cpu_to_be32(desc->immediate);
126 		config_rom[i] = cpu_to_be32(desc->key | (j - i));
127 		i++;
128 		j += desc->length;
129 	}
130 
131 	/* Update root directory length. */
132 	config_rom[5] = cpu_to_be32((i - 5 - 1) << 16);
133 
134 	/* End of root directory, now copy in descriptors. */
135 	list_for_each_entry (desc, &descriptor_list, link) {
136 		for (k = 0; k < desc->length; k++)
137 			config_rom[i + k] = cpu_to_be32(desc->data[k]);
138 		i += desc->length;
139 	}
140 
141 	/* Calculate CRCs for all blocks in the config rom.  This
142 	 * assumes that CRC length and info length are identical for
143 	 * the bus info block, which is always the case for this
144 	 * implementation. */
145 	for (i = 0; i < j; i += length + 1)
146 		length = fw_compute_block_crc(config_rom + i);
147 
148 	WARN_ON(j != config_rom_length);
149 }
150 
151 static void update_config_roms(void)
152 {
153 	struct fw_card *card;
154 
155 	list_for_each_entry (card, &card_list, link) {
156 		generate_config_rom(card, tmp_config_rom);
157 		card->driver->set_config_rom(card, tmp_config_rom,
158 					     config_rom_length);
159 	}
160 }
161 
162 static size_t required_space(struct fw_descriptor *desc)
163 {
164 	/* descriptor + entry into root dir + optional immediate entry */
165 	return desc->length + 1 + (desc->immediate > 0 ? 1 : 0);
166 }
167 
168 int fw_core_add_descriptor(struct fw_descriptor *desc)
169 {
170 	size_t i;
171 	int ret;
172 
173 	/*
174 	 * Check descriptor is valid; the length of all blocks in the
175 	 * descriptor has to add up to exactly the length of the
176 	 * block.
177 	 */
178 	i = 0;
179 	while (i < desc->length)
180 		i += (desc->data[i] >> 16) + 1;
181 
182 	if (i != desc->length)
183 		return -EINVAL;
184 
185 	mutex_lock(&card_mutex);
186 
187 	if (config_rom_length + required_space(desc) > 256) {
188 		ret = -EBUSY;
189 	} else {
190 		list_add_tail(&desc->link, &descriptor_list);
191 		config_rom_length += required_space(desc);
192 		descriptor_count++;
193 		if (desc->immediate > 0)
194 			descriptor_count++;
195 		update_config_roms();
196 		ret = 0;
197 	}
198 
199 	mutex_unlock(&card_mutex);
200 
201 	return ret;
202 }
203 EXPORT_SYMBOL(fw_core_add_descriptor);
204 
205 void fw_core_remove_descriptor(struct fw_descriptor *desc)
206 {
207 	mutex_lock(&card_mutex);
208 
209 	list_del(&desc->link);
210 	config_rom_length -= required_space(desc);
211 	descriptor_count--;
212 	if (desc->immediate > 0)
213 		descriptor_count--;
214 	update_config_roms();
215 
216 	mutex_unlock(&card_mutex);
217 }
218 EXPORT_SYMBOL(fw_core_remove_descriptor);
219 
220 static int reset_bus(struct fw_card *card, bool short_reset)
221 {
222 	int reg = short_reset ? 5 : 1;
223 	int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
224 
225 	trace_bus_reset_initiate(card->index, card->generation, short_reset);
226 
227 	return card->driver->update_phy_reg(card, reg, 0, bit);
228 }
229 
230 void fw_schedule_bus_reset(struct fw_card *card, bool delayed, bool short_reset)
231 {
232 	trace_bus_reset_schedule(card->index, card->generation, short_reset);
233 
234 	/* We don't try hard to sort out requests of long vs. short resets. */
235 	card->br_short = short_reset;
236 
237 	/* Use an arbitrary short delay to combine multiple reset requests. */
238 	fw_card_get(card);
239 	if (!queue_delayed_work(fw_workqueue, &card->br_work,
240 				delayed ? DIV_ROUND_UP(HZ, 100) : 0))
241 		fw_card_put(card);
242 }
243 EXPORT_SYMBOL(fw_schedule_bus_reset);
244 
245 static void br_work(struct work_struct *work)
246 {
247 	struct fw_card *card = container_of(work, struct fw_card, br_work.work);
248 
249 	/* Delay for 2s after last reset per IEEE 1394 clause 8.2.1. */
250 	if (card->reset_jiffies != 0 &&
251 	    time_before64(get_jiffies_64(), card->reset_jiffies + 2 * HZ)) {
252 		trace_bus_reset_postpone(card->index, card->generation, card->br_short);
253 
254 		if (!queue_delayed_work(fw_workqueue, &card->br_work, 2 * HZ))
255 			fw_card_put(card);
256 		return;
257 	}
258 
259 	fw_send_phy_config(card, FW_PHY_CONFIG_NO_NODE_ID, card->generation,
260 			   FW_PHY_CONFIG_CURRENT_GAP_COUNT);
261 	reset_bus(card, card->br_short);
262 	fw_card_put(card);
263 }
264 
265 static void allocate_broadcast_channel(struct fw_card *card, int generation)
266 {
267 	int channel, bandwidth = 0;
268 
269 	if (!card->broadcast_channel_allocated) {
270 		fw_iso_resource_manage(card, generation, 1ULL << 31,
271 				       &channel, &bandwidth, true);
272 		if (channel != 31) {
273 			fw_notice(card, "failed to allocate broadcast channel\n");
274 			return;
275 		}
276 		card->broadcast_channel_allocated = true;
277 	}
278 
279 	device_for_each_child(card->device, (void *)(long)generation,
280 			      fw_device_set_broadcast_channel);
281 }
282 
283 static const char gap_count_table[] = {
284 	63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
285 };
286 
287 void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
288 {
289 	fw_card_get(card);
290 	if (!schedule_delayed_work(&card->bm_work, delay))
291 		fw_card_put(card);
292 }
293 
294 static void bm_work(struct work_struct *work)
295 {
296 	struct fw_card *card = container_of(work, struct fw_card, bm_work.work);
297 	struct fw_device *root_device, *irm_device;
298 	struct fw_node *root_node;
299 	int root_id, new_root_id, irm_id, bm_id, local_id;
300 	int gap_count, generation, grace, rcode;
301 	bool do_reset = false;
302 	bool root_device_is_running;
303 	bool root_device_is_cmc;
304 	bool irm_is_1394_1995_only;
305 	bool keep_this_irm;
306 	__be32 transaction_data[2];
307 
308 	spin_lock_irq(&card->lock);
309 
310 	if (card->local_node == NULL) {
311 		spin_unlock_irq(&card->lock);
312 		goto out_put_card;
313 	}
314 
315 	generation = card->generation;
316 
317 	root_node = card->root_node;
318 	fw_node_get(root_node);
319 	root_device = root_node->data;
320 	root_device_is_running = root_device &&
321 			atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
322 	root_device_is_cmc = root_device && root_device->cmc;
323 
324 	irm_device = card->irm_node->data;
325 	irm_is_1394_1995_only = irm_device && irm_device->config_rom &&
326 			(irm_device->config_rom[2] & 0x000000f0) == 0;
327 
328 	/* Canon MV5i works unreliably if it is not root node. */
329 	keep_this_irm = irm_device && irm_device->config_rom &&
330 			irm_device->config_rom[3] >> 8 == CANON_OUI;
331 
332 	root_id  = root_node->node_id;
333 	irm_id   = card->irm_node->node_id;
334 	local_id = card->local_node->node_id;
335 
336 	grace = time_after64(get_jiffies_64(),
337 			     card->reset_jiffies + DIV_ROUND_UP(HZ, 8));
338 
339 	if ((is_next_generation(generation, card->bm_generation) &&
340 	     !card->bm_abdicate) ||
341 	    (card->bm_generation != generation && grace)) {
342 		/*
343 		 * This first step is to figure out who is IRM and
344 		 * then try to become bus manager.  If the IRM is not
345 		 * well defined (e.g. does not have an active link
346 		 * layer or does not responds to our lock request, we
347 		 * will have to do a little vigilante bus management.
348 		 * In that case, we do a goto into the gap count logic
349 		 * so that when we do the reset, we still optimize the
350 		 * gap count.  That could well save a reset in the
351 		 * next generation.
352 		 */
353 
354 		if (!card->irm_node->link_on) {
355 			new_root_id = local_id;
356 			fw_notice(card, "%s, making local node (%02x) root\n",
357 				  "IRM has link off", new_root_id);
358 			goto pick_me;
359 		}
360 
361 		if (irm_is_1394_1995_only && !keep_this_irm) {
362 			new_root_id = local_id;
363 			fw_notice(card, "%s, making local node (%02x) root\n",
364 				  "IRM is not 1394a compliant", new_root_id);
365 			goto pick_me;
366 		}
367 
368 		transaction_data[0] = cpu_to_be32(0x3f);
369 		transaction_data[1] = cpu_to_be32(local_id);
370 
371 		spin_unlock_irq(&card->lock);
372 
373 		rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
374 				irm_id, generation, SCODE_100,
375 				CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
376 				transaction_data, 8);
377 
378 		if (rcode == RCODE_GENERATION)
379 			/* Another bus reset, BM work has been rescheduled. */
380 			goto out;
381 
382 		bm_id = be32_to_cpu(transaction_data[0]);
383 
384 		spin_lock_irq(&card->lock);
385 		if (rcode == RCODE_COMPLETE && generation == card->generation)
386 			card->bm_node_id =
387 			    bm_id == 0x3f ? local_id : 0xffc0 | bm_id;
388 		spin_unlock_irq(&card->lock);
389 
390 		if (rcode == RCODE_COMPLETE && bm_id != 0x3f) {
391 			/* Somebody else is BM.  Only act as IRM. */
392 			if (local_id == irm_id)
393 				allocate_broadcast_channel(card, generation);
394 
395 			goto out;
396 		}
397 
398 		if (rcode == RCODE_SEND_ERROR) {
399 			/*
400 			 * We have been unable to send the lock request due to
401 			 * some local problem.  Let's try again later and hope
402 			 * that the problem has gone away by then.
403 			 */
404 			fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
405 			goto out;
406 		}
407 
408 		spin_lock_irq(&card->lock);
409 
410 		if (rcode != RCODE_COMPLETE && !keep_this_irm) {
411 			/*
412 			 * The lock request failed, maybe the IRM
413 			 * isn't really IRM capable after all. Let's
414 			 * do a bus reset and pick the local node as
415 			 * root, and thus, IRM.
416 			 */
417 			new_root_id = local_id;
418 			fw_notice(card, "BM lock failed (%s), making local node (%02x) root\n",
419 				  fw_rcode_string(rcode), new_root_id);
420 			goto pick_me;
421 		}
422 	} else if (card->bm_generation != generation) {
423 		/*
424 		 * We weren't BM in the last generation, and the last
425 		 * bus reset is less than 125ms ago.  Reschedule this job.
426 		 */
427 		spin_unlock_irq(&card->lock);
428 		fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
429 		goto out;
430 	}
431 
432 	/*
433 	 * We're bus manager for this generation, so next step is to
434 	 * make sure we have an active cycle master and do gap count
435 	 * optimization.
436 	 */
437 	card->bm_generation = generation;
438 
439 	if (card->gap_count == 0) {
440 		/*
441 		 * If self IDs have inconsistent gap counts, do a
442 		 * bus reset ASAP. The config rom read might never
443 		 * complete, so don't wait for it. However, still
444 		 * send a PHY configuration packet prior to the
445 		 * bus reset. The PHY configuration packet might
446 		 * fail, but 1394-2008 8.4.5.2 explicitly permits
447 		 * it in this case, so it should be safe to try.
448 		 */
449 		new_root_id = local_id;
450 		/*
451 		 * We must always send a bus reset if the gap count
452 		 * is inconsistent, so bypass the 5-reset limit.
453 		 */
454 		card->bm_retries = 0;
455 	} else if (root_device == NULL) {
456 		/*
457 		 * Either link_on is false, or we failed to read the
458 		 * config rom.  In either case, pick another root.
459 		 */
460 		new_root_id = local_id;
461 	} else if (!root_device_is_running) {
462 		/*
463 		 * If we haven't probed this device yet, bail out now
464 		 * and let's try again once that's done.
465 		 */
466 		spin_unlock_irq(&card->lock);
467 		goto out;
468 	} else if (root_device_is_cmc) {
469 		/*
470 		 * We will send out a force root packet for this
471 		 * node as part of the gap count optimization.
472 		 */
473 		new_root_id = root_id;
474 	} else {
475 		/*
476 		 * Current root has an active link layer and we
477 		 * successfully read the config rom, but it's not
478 		 * cycle master capable.
479 		 */
480 		new_root_id = local_id;
481 	}
482 
483  pick_me:
484 	/*
485 	 * Pick a gap count from 1394a table E-1.  The table doesn't cover
486 	 * the typically much larger 1394b beta repeater delays though.
487 	 */
488 	if (!card->beta_repeaters_present &&
489 	    root_node->max_hops < ARRAY_SIZE(gap_count_table))
490 		gap_count = gap_count_table[root_node->max_hops];
491 	else
492 		gap_count = 63;
493 
494 	/*
495 	 * Finally, figure out if we should do a reset or not.  If we have
496 	 * done less than 5 resets with the same physical topology and we
497 	 * have either a new root or a new gap count setting, let's do it.
498 	 */
499 
500 	if (card->bm_retries++ < 5 &&
501 	    (card->gap_count != gap_count || new_root_id != root_id))
502 		do_reset = true;
503 
504 	spin_unlock_irq(&card->lock);
505 
506 	if (do_reset) {
507 		fw_notice(card, "phy config: new root=%x, gap_count=%d\n",
508 			  new_root_id, gap_count);
509 		fw_send_phy_config(card, new_root_id, generation, gap_count);
510 		/*
511 		 * Where possible, use a short bus reset to minimize
512 		 * disruption to isochronous transfers. But in the event
513 		 * of a gap count inconsistency, use a long bus reset.
514 		 *
515 		 * As noted in 1394a 8.4.6.2, nodes on a mixed 1394/1394a bus
516 		 * may set different gap counts after a bus reset. On a mixed
517 		 * 1394/1394a bus, a short bus reset can get doubled. Some
518 		 * nodes may treat the double reset as one bus reset and others
519 		 * may treat it as two, causing a gap count inconsistency
520 		 * again. Using a long bus reset prevents this.
521 		 */
522 		reset_bus(card, card->gap_count != 0);
523 		/* Will allocate broadcast channel after the reset. */
524 		goto out;
525 	}
526 
527 	if (root_device_is_cmc) {
528 		/*
529 		 * Make sure that the cycle master sends cycle start packets.
530 		 */
531 		transaction_data[0] = cpu_to_be32(CSR_STATE_BIT_CMSTR);
532 		rcode = fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
533 				root_id, generation, SCODE_100,
534 				CSR_REGISTER_BASE + CSR_STATE_SET,
535 				transaction_data, 4);
536 		if (rcode == RCODE_GENERATION)
537 			goto out;
538 	}
539 
540 	if (local_id == irm_id)
541 		allocate_broadcast_channel(card, generation);
542 
543  out:
544 	fw_node_put(root_node);
545  out_put_card:
546 	fw_card_put(card);
547 }
548 
549 void fw_card_initialize(struct fw_card *card,
550 			const struct fw_card_driver *driver,
551 			struct device *device)
552 {
553 	static atomic_t index = ATOMIC_INIT(-1);
554 
555 	card->index = atomic_inc_return(&index);
556 	card->driver = driver;
557 	card->device = device;
558 	card->current_tlabel = 0;
559 	card->tlabel_mask = 0;
560 	card->split_timeout_hi = DEFAULT_SPLIT_TIMEOUT / 8000;
561 	card->split_timeout_lo = (DEFAULT_SPLIT_TIMEOUT % 8000) << 19;
562 	card->split_timeout_cycles = DEFAULT_SPLIT_TIMEOUT;
563 	card->split_timeout_jiffies =
564 			DIV_ROUND_UP(DEFAULT_SPLIT_TIMEOUT * HZ, 8000);
565 	card->color = 0;
566 	card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
567 
568 	kref_init(&card->kref);
569 	init_completion(&card->done);
570 	INIT_LIST_HEAD(&card->transaction_list);
571 	INIT_LIST_HEAD(&card->phy_receiver_list);
572 	spin_lock_init(&card->lock);
573 
574 	card->local_node = NULL;
575 
576 	INIT_DELAYED_WORK(&card->br_work, br_work);
577 	INIT_DELAYED_WORK(&card->bm_work, bm_work);
578 }
579 EXPORT_SYMBOL(fw_card_initialize);
580 
581 int fw_card_add(struct fw_card *card,
582 		u32 max_receive, u32 link_speed, u64 guid)
583 {
584 	int ret;
585 
586 	card->max_receive = max_receive;
587 	card->link_speed = link_speed;
588 	card->guid = guid;
589 
590 	mutex_lock(&card_mutex);
591 
592 	generate_config_rom(card, tmp_config_rom);
593 	ret = card->driver->enable(card, tmp_config_rom, config_rom_length);
594 	if (ret == 0)
595 		list_add_tail(&card->link, &card_list);
596 
597 	mutex_unlock(&card_mutex);
598 
599 	return ret;
600 }
601 EXPORT_SYMBOL(fw_card_add);
602 
603 /*
604  * The next few functions implement a dummy driver that is used once a card
605  * driver shuts down an fw_card.  This allows the driver to cleanly unload,
606  * as all IO to the card will be handled (and failed) by the dummy driver
607  * instead of calling into the module.  Only functions for iso context
608  * shutdown still need to be provided by the card driver.
609  *
610  * .read/write_csr() should never be called anymore after the dummy driver
611  * was bound since they are only used within request handler context.
612  * .set_config_rom() is never called since the card is taken out of card_list
613  * before switching to the dummy driver.
614  */
615 
616 static int dummy_read_phy_reg(struct fw_card *card, int address)
617 {
618 	return -ENODEV;
619 }
620 
621 static int dummy_update_phy_reg(struct fw_card *card, int address,
622 				int clear_bits, int set_bits)
623 {
624 	return -ENODEV;
625 }
626 
627 static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
628 {
629 	packet->callback(packet, card, RCODE_CANCELLED);
630 }
631 
632 static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
633 {
634 	packet->callback(packet, card, RCODE_CANCELLED);
635 }
636 
637 static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
638 {
639 	return -ENOENT;
640 }
641 
642 static int dummy_enable_phys_dma(struct fw_card *card,
643 				 int node_id, int generation)
644 {
645 	return -ENODEV;
646 }
647 
648 static struct fw_iso_context *dummy_allocate_iso_context(struct fw_card *card,
649 				int type, int channel, size_t header_size)
650 {
651 	return ERR_PTR(-ENODEV);
652 }
653 
654 static u32 dummy_read_csr(struct fw_card *card, int csr_offset)
655 {
656 	return 0;
657 }
658 
659 static void dummy_write_csr(struct fw_card *card, int csr_offset, u32 value)
660 {
661 }
662 
663 static int dummy_start_iso(struct fw_iso_context *ctx,
664 			   s32 cycle, u32 sync, u32 tags)
665 {
666 	return -ENODEV;
667 }
668 
669 static int dummy_set_iso_channels(struct fw_iso_context *ctx, u64 *channels)
670 {
671 	return -ENODEV;
672 }
673 
674 static int dummy_queue_iso(struct fw_iso_context *ctx, struct fw_iso_packet *p,
675 			   struct fw_iso_buffer *buffer, unsigned long payload)
676 {
677 	return -ENODEV;
678 }
679 
680 static void dummy_flush_queue_iso(struct fw_iso_context *ctx)
681 {
682 }
683 
684 static int dummy_flush_iso_completions(struct fw_iso_context *ctx)
685 {
686 	return -ENODEV;
687 }
688 
689 static const struct fw_card_driver dummy_driver_template = {
690 	.read_phy_reg		= dummy_read_phy_reg,
691 	.update_phy_reg		= dummy_update_phy_reg,
692 	.send_request		= dummy_send_request,
693 	.send_response		= dummy_send_response,
694 	.cancel_packet		= dummy_cancel_packet,
695 	.enable_phys_dma	= dummy_enable_phys_dma,
696 	.read_csr		= dummy_read_csr,
697 	.write_csr		= dummy_write_csr,
698 	.allocate_iso_context	= dummy_allocate_iso_context,
699 	.start_iso		= dummy_start_iso,
700 	.set_iso_channels	= dummy_set_iso_channels,
701 	.queue_iso		= dummy_queue_iso,
702 	.flush_queue_iso	= dummy_flush_queue_iso,
703 	.flush_iso_completions	= dummy_flush_iso_completions,
704 };
705 
706 void fw_card_release(struct kref *kref)
707 {
708 	struct fw_card *card = container_of(kref, struct fw_card, kref);
709 
710 	complete(&card->done);
711 }
712 EXPORT_SYMBOL_GPL(fw_card_release);
713 
714 void fw_core_remove_card(struct fw_card *card)
715 {
716 	struct fw_card_driver dummy_driver = dummy_driver_template;
717 	unsigned long flags;
718 
719 	card->driver->update_phy_reg(card, 4,
720 				     PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
721 	fw_schedule_bus_reset(card, false, true);
722 
723 	mutex_lock(&card_mutex);
724 	list_del_init(&card->link);
725 	mutex_unlock(&card_mutex);
726 
727 	/* Switch off most of the card driver interface. */
728 	dummy_driver.free_iso_context	= card->driver->free_iso_context;
729 	dummy_driver.stop_iso		= card->driver->stop_iso;
730 	card->driver = &dummy_driver;
731 
732 	spin_lock_irqsave(&card->lock, flags);
733 	fw_destroy_nodes(card);
734 	spin_unlock_irqrestore(&card->lock, flags);
735 
736 	/* Wait for all users, especially device workqueue jobs, to finish. */
737 	fw_card_put(card);
738 	wait_for_completion(&card->done);
739 
740 	WARN_ON(!list_empty(&card->transaction_list));
741 }
742 EXPORT_SYMBOL(fw_core_remove_card);
743 
744 /**
745  * fw_card_read_cycle_time: read from Isochronous Cycle Timer Register of 1394 OHCI in MMIO region
746  *			    for controller card.
747  * @card: The instance of card for 1394 OHCI controller.
748  * @cycle_time: The mutual reference to value of cycle time for the read operation.
749  *
750  * Read value from Isochronous Cycle Timer Register of 1394 OHCI in MMIO region for the given
751  * controller card. This function accesses the region without any lock primitives or IRQ mask.
752  * When returning successfully, the content of @value argument has value aligned to host endianness,
753  * formetted by CYCLE_TIME CSR Register of IEEE 1394 std.
754  *
755  * Context: Any context.
756  * Return:
757  * * 0 - Read successfully.
758  * * -ENODEV - The controller is unavailable due to being removed or unbound.
759  */
760 int fw_card_read_cycle_time(struct fw_card *card, u32 *cycle_time)
761 {
762 	if (card->driver->read_csr == dummy_read_csr)
763 		return -ENODEV;
764 
765 	// It's possible to switch to dummy driver between the above and the below. This is the best
766 	// effort to return -ENODEV.
767 	*cycle_time = card->driver->read_csr(card, CSR_CYCLE_TIME);
768 	return 0;
769 }
770 EXPORT_SYMBOL_GPL(fw_card_read_cycle_time);
771