1 /* 2 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net> 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software Foundation, 16 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 */ 18 19 #include <linux/bug.h> 20 #include <linux/completion.h> 21 #include <linux/crc-itu-t.h> 22 #include <linux/device.h> 23 #include <linux/errno.h> 24 #include <linux/firewire.h> 25 #include <linux/firewire-constants.h> 26 #include <linux/jiffies.h> 27 #include <linux/kernel.h> 28 #include <linux/kref.h> 29 #include <linux/list.h> 30 #include <linux/module.h> 31 #include <linux/mutex.h> 32 #include <linux/spinlock.h> 33 #include <linux/timer.h> 34 #include <linux/workqueue.h> 35 36 #include <asm/atomic.h> 37 #include <asm/byteorder.h> 38 39 #include "core.h" 40 41 int fw_compute_block_crc(u32 *block) 42 { 43 __be32 be32_block[256]; 44 int i, length; 45 46 length = (*block >> 16) & 0xff; 47 for (i = 0; i < length; i++) 48 be32_block[i] = cpu_to_be32(block[i + 1]); 49 *block |= crc_itu_t(0, (u8 *) be32_block, length * 4); 50 51 return length; 52 } 53 54 static DEFINE_MUTEX(card_mutex); 55 static LIST_HEAD(card_list); 56 57 static LIST_HEAD(descriptor_list); 58 static int descriptor_count; 59 60 #define BIB_CRC(v) ((v) << 0) 61 #define BIB_CRC_LENGTH(v) ((v) << 16) 62 #define BIB_INFO_LENGTH(v) ((v) << 24) 63 64 #define BIB_LINK_SPEED(v) ((v) << 0) 65 #define BIB_GENERATION(v) ((v) << 4) 66 #define BIB_MAX_ROM(v) ((v) << 8) 67 #define BIB_MAX_RECEIVE(v) ((v) << 12) 68 #define BIB_CYC_CLK_ACC(v) ((v) << 16) 69 #define BIB_PMC ((1) << 27) 70 #define BIB_BMC ((1) << 28) 71 #define BIB_ISC ((1) << 29) 72 #define BIB_CMC ((1) << 30) 73 #define BIB_IMC ((1) << 31) 74 75 static u32 *generate_config_rom(struct fw_card *card, size_t *config_rom_length) 76 { 77 struct fw_descriptor *desc; 78 static u32 config_rom[256]; 79 int i, j, length; 80 81 /* 82 * Initialize contents of config rom buffer. On the OHCI 83 * controller, block reads to the config rom accesses the host 84 * memory, but quadlet read access the hardware bus info block 85 * registers. That's just crack, but it means we should make 86 * sure the contents of bus info block in host memory matches 87 * the version stored in the OHCI registers. 88 */ 89 90 memset(config_rom, 0, sizeof(config_rom)); 91 config_rom[0] = BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0); 92 config_rom[1] = 0x31333934; 93 94 config_rom[2] = 95 BIB_LINK_SPEED(card->link_speed) | 96 BIB_GENERATION(card->config_rom_generation++ % 14 + 2) | 97 BIB_MAX_ROM(2) | 98 BIB_MAX_RECEIVE(card->max_receive) | 99 BIB_BMC | BIB_ISC | BIB_CMC | BIB_IMC; 100 config_rom[3] = card->guid >> 32; 101 config_rom[4] = card->guid; 102 103 /* Generate root directory. */ 104 i = 5; 105 config_rom[i++] = 0; 106 config_rom[i++] = 0x0c0083c0; /* node capabilities */ 107 j = i + descriptor_count; 108 109 /* Generate root directory entries for descriptors. */ 110 list_for_each_entry (desc, &descriptor_list, link) { 111 if (desc->immediate > 0) 112 config_rom[i++] = desc->immediate; 113 config_rom[i] = desc->key | (j - i); 114 i++; 115 j += desc->length; 116 } 117 118 /* Update root directory length. */ 119 config_rom[5] = (i - 5 - 1) << 16; 120 121 /* End of root directory, now copy in descriptors. */ 122 list_for_each_entry (desc, &descriptor_list, link) { 123 memcpy(&config_rom[i], desc->data, desc->length * 4); 124 i += desc->length; 125 } 126 127 /* Calculate CRCs for all blocks in the config rom. This 128 * assumes that CRC length and info length are identical for 129 * the bus info block, which is always the case for this 130 * implementation. */ 131 for (i = 0; i < j; i += length + 1) 132 length = fw_compute_block_crc(config_rom + i); 133 134 *config_rom_length = j; 135 136 return config_rom; 137 } 138 139 static void update_config_roms(void) 140 { 141 struct fw_card *card; 142 u32 *config_rom; 143 size_t length; 144 145 list_for_each_entry (card, &card_list, link) { 146 config_rom = generate_config_rom(card, &length); 147 card->driver->set_config_rom(card, config_rom, length); 148 } 149 } 150 151 int fw_core_add_descriptor(struct fw_descriptor *desc) 152 { 153 size_t i; 154 155 /* 156 * Check descriptor is valid; the length of all blocks in the 157 * descriptor has to add up to exactly the length of the 158 * block. 159 */ 160 i = 0; 161 while (i < desc->length) 162 i += (desc->data[i] >> 16) + 1; 163 164 if (i != desc->length) 165 return -EINVAL; 166 167 mutex_lock(&card_mutex); 168 169 list_add_tail(&desc->link, &descriptor_list); 170 descriptor_count++; 171 if (desc->immediate > 0) 172 descriptor_count++; 173 update_config_roms(); 174 175 mutex_unlock(&card_mutex); 176 177 return 0; 178 } 179 EXPORT_SYMBOL(fw_core_add_descriptor); 180 181 void fw_core_remove_descriptor(struct fw_descriptor *desc) 182 { 183 mutex_lock(&card_mutex); 184 185 list_del(&desc->link); 186 descriptor_count--; 187 if (desc->immediate > 0) 188 descriptor_count--; 189 update_config_roms(); 190 191 mutex_unlock(&card_mutex); 192 } 193 EXPORT_SYMBOL(fw_core_remove_descriptor); 194 195 static void allocate_broadcast_channel(struct fw_card *card, int generation) 196 { 197 int channel, bandwidth = 0; 198 199 fw_iso_resource_manage(card, generation, 1ULL << 31, &channel, 200 &bandwidth, true, card->bm_transaction_data); 201 if (channel == 31) { 202 card->broadcast_channel_allocated = true; 203 device_for_each_child(card->device, (void *)(long)generation, 204 fw_device_set_broadcast_channel); 205 } 206 } 207 208 static const char gap_count_table[] = { 209 63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40 210 }; 211 212 void fw_schedule_bm_work(struct fw_card *card, unsigned long delay) 213 { 214 int scheduled; 215 216 fw_card_get(card); 217 scheduled = schedule_delayed_work(&card->work, delay); 218 if (!scheduled) 219 fw_card_put(card); 220 } 221 222 static void fw_card_bm_work(struct work_struct *work) 223 { 224 struct fw_card *card = container_of(work, struct fw_card, work.work); 225 struct fw_device *root_device; 226 struct fw_node *root_node; 227 unsigned long flags; 228 int root_id, new_root_id, irm_id, local_id; 229 int gap_count, generation, grace, rcode; 230 bool do_reset = false; 231 bool root_device_is_running; 232 bool root_device_is_cmc; 233 234 spin_lock_irqsave(&card->lock, flags); 235 236 if (card->local_node == NULL) { 237 spin_unlock_irqrestore(&card->lock, flags); 238 goto out_put_card; 239 } 240 241 generation = card->generation; 242 root_node = card->root_node; 243 fw_node_get(root_node); 244 root_device = root_node->data; 245 root_device_is_running = root_device && 246 atomic_read(&root_device->state) == FW_DEVICE_RUNNING; 247 root_device_is_cmc = root_device && root_device->cmc; 248 root_id = root_node->node_id; 249 irm_id = card->irm_node->node_id; 250 local_id = card->local_node->node_id; 251 252 grace = time_after(jiffies, card->reset_jiffies + DIV_ROUND_UP(HZ, 8)); 253 254 if (is_next_generation(generation, card->bm_generation) || 255 (card->bm_generation != generation && grace)) { 256 /* 257 * This first step is to figure out who is IRM and 258 * then try to become bus manager. If the IRM is not 259 * well defined (e.g. does not have an active link 260 * layer or does not responds to our lock request, we 261 * will have to do a little vigilante bus management. 262 * In that case, we do a goto into the gap count logic 263 * so that when we do the reset, we still optimize the 264 * gap count. That could well save a reset in the 265 * next generation. 266 */ 267 268 if (!card->irm_node->link_on) { 269 new_root_id = local_id; 270 fw_notify("IRM has link off, making local node (%02x) root.\n", 271 new_root_id); 272 goto pick_me; 273 } 274 275 card->bm_transaction_data[0] = cpu_to_be32(0x3f); 276 card->bm_transaction_data[1] = cpu_to_be32(local_id); 277 278 spin_unlock_irqrestore(&card->lock, flags); 279 280 rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP, 281 irm_id, generation, SCODE_100, 282 CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID, 283 card->bm_transaction_data, 284 sizeof(card->bm_transaction_data)); 285 286 if (rcode == RCODE_GENERATION) 287 /* Another bus reset, BM work has been rescheduled. */ 288 goto out; 289 290 if (rcode == RCODE_COMPLETE && 291 card->bm_transaction_data[0] != cpu_to_be32(0x3f)) { 292 293 /* Somebody else is BM. Only act as IRM. */ 294 if (local_id == irm_id) 295 allocate_broadcast_channel(card, generation); 296 297 goto out; 298 } 299 300 spin_lock_irqsave(&card->lock, flags); 301 302 if (rcode != RCODE_COMPLETE) { 303 /* 304 * The lock request failed, maybe the IRM 305 * isn't really IRM capable after all. Let's 306 * do a bus reset and pick the local node as 307 * root, and thus, IRM. 308 */ 309 new_root_id = local_id; 310 fw_notify("BM lock failed, making local node (%02x) root.\n", 311 new_root_id); 312 goto pick_me; 313 } 314 } else if (card->bm_generation != generation) { 315 /* 316 * We weren't BM in the last generation, and the last 317 * bus reset is less than 125ms ago. Reschedule this job. 318 */ 319 spin_unlock_irqrestore(&card->lock, flags); 320 fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8)); 321 goto out; 322 } 323 324 /* 325 * We're bus manager for this generation, so next step is to 326 * make sure we have an active cycle master and do gap count 327 * optimization. 328 */ 329 card->bm_generation = generation; 330 331 if (root_device == NULL) { 332 /* 333 * Either link_on is false, or we failed to read the 334 * config rom. In either case, pick another root. 335 */ 336 new_root_id = local_id; 337 } else if (!root_device_is_running) { 338 /* 339 * If we haven't probed this device yet, bail out now 340 * and let's try again once that's done. 341 */ 342 spin_unlock_irqrestore(&card->lock, flags); 343 goto out; 344 } else if (root_device_is_cmc) { 345 /* 346 * FIXME: I suppose we should set the cmstr bit in the 347 * STATE_CLEAR register of this node, as described in 348 * 1394-1995, 8.4.2.6. Also, send out a force root 349 * packet for this node. 350 */ 351 new_root_id = root_id; 352 } else { 353 /* 354 * Current root has an active link layer and we 355 * successfully read the config rom, but it's not 356 * cycle master capable. 357 */ 358 new_root_id = local_id; 359 } 360 361 pick_me: 362 /* 363 * Pick a gap count from 1394a table E-1. The table doesn't cover 364 * the typically much larger 1394b beta repeater delays though. 365 */ 366 if (!card->beta_repeaters_present && 367 root_node->max_hops < ARRAY_SIZE(gap_count_table)) 368 gap_count = gap_count_table[root_node->max_hops]; 369 else 370 gap_count = 63; 371 372 /* 373 * Finally, figure out if we should do a reset or not. If we have 374 * done less than 5 resets with the same physical topology and we 375 * have either a new root or a new gap count setting, let's do it. 376 */ 377 378 if (card->bm_retries++ < 5 && 379 (card->gap_count != gap_count || new_root_id != root_id)) 380 do_reset = true; 381 382 spin_unlock_irqrestore(&card->lock, flags); 383 384 if (do_reset) { 385 fw_notify("phy config: card %d, new root=%x, gap_count=%d\n", 386 card->index, new_root_id, gap_count); 387 fw_send_phy_config(card, new_root_id, generation, gap_count); 388 fw_core_initiate_bus_reset(card, 1); 389 /* Will allocate broadcast channel after the reset. */ 390 } else { 391 if (local_id == irm_id) 392 allocate_broadcast_channel(card, generation); 393 } 394 395 out: 396 fw_node_put(root_node); 397 out_put_card: 398 fw_card_put(card); 399 } 400 401 static void flush_timer_callback(unsigned long data) 402 { 403 struct fw_card *card = (struct fw_card *)data; 404 405 fw_flush_transactions(card); 406 } 407 408 void fw_card_initialize(struct fw_card *card, 409 const struct fw_card_driver *driver, 410 struct device *device) 411 { 412 static atomic_t index = ATOMIC_INIT(-1); 413 414 card->index = atomic_inc_return(&index); 415 card->driver = driver; 416 card->device = device; 417 card->current_tlabel = 0; 418 card->tlabel_mask = 0; 419 card->color = 0; 420 card->broadcast_channel = BROADCAST_CHANNEL_INITIAL; 421 422 kref_init(&card->kref); 423 init_completion(&card->done); 424 INIT_LIST_HEAD(&card->transaction_list); 425 spin_lock_init(&card->lock); 426 setup_timer(&card->flush_timer, 427 flush_timer_callback, (unsigned long)card); 428 429 card->local_node = NULL; 430 431 INIT_DELAYED_WORK(&card->work, fw_card_bm_work); 432 } 433 EXPORT_SYMBOL(fw_card_initialize); 434 435 int fw_card_add(struct fw_card *card, 436 u32 max_receive, u32 link_speed, u64 guid) 437 { 438 u32 *config_rom; 439 size_t length; 440 int ret; 441 442 card->max_receive = max_receive; 443 card->link_speed = link_speed; 444 card->guid = guid; 445 446 mutex_lock(&card_mutex); 447 448 config_rom = generate_config_rom(card, &length); 449 ret = card->driver->enable(card, config_rom, length); 450 if (ret == 0) 451 list_add_tail(&card->link, &card_list); 452 453 mutex_unlock(&card_mutex); 454 455 return ret; 456 } 457 EXPORT_SYMBOL(fw_card_add); 458 459 460 /* 461 * The next few functions implement a dummy driver that is used once a card 462 * driver shuts down an fw_card. This allows the driver to cleanly unload, 463 * as all IO to the card will be handled (and failed) by the dummy driver 464 * instead of calling into the module. Only functions for iso context 465 * shutdown still need to be provided by the card driver. 466 */ 467 468 static int dummy_enable(struct fw_card *card, u32 *config_rom, size_t length) 469 { 470 BUG(); 471 return -1; 472 } 473 474 static int dummy_update_phy_reg(struct fw_card *card, int address, 475 int clear_bits, int set_bits) 476 { 477 return -ENODEV; 478 } 479 480 static int dummy_set_config_rom(struct fw_card *card, 481 u32 *config_rom, size_t length) 482 { 483 /* 484 * We take the card out of card_list before setting the dummy 485 * driver, so this should never get called. 486 */ 487 BUG(); 488 return -1; 489 } 490 491 static void dummy_send_request(struct fw_card *card, struct fw_packet *packet) 492 { 493 packet->callback(packet, card, -ENODEV); 494 } 495 496 static void dummy_send_response(struct fw_card *card, struct fw_packet *packet) 497 { 498 packet->callback(packet, card, -ENODEV); 499 } 500 501 static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet) 502 { 503 return -ENOENT; 504 } 505 506 static int dummy_enable_phys_dma(struct fw_card *card, 507 int node_id, int generation) 508 { 509 return -ENODEV; 510 } 511 512 static const struct fw_card_driver dummy_driver_template = { 513 .enable = dummy_enable, 514 .update_phy_reg = dummy_update_phy_reg, 515 .set_config_rom = dummy_set_config_rom, 516 .send_request = dummy_send_request, 517 .cancel_packet = dummy_cancel_packet, 518 .send_response = dummy_send_response, 519 .enable_phys_dma = dummy_enable_phys_dma, 520 }; 521 522 void fw_card_release(struct kref *kref) 523 { 524 struct fw_card *card = container_of(kref, struct fw_card, kref); 525 526 complete(&card->done); 527 } 528 529 void fw_core_remove_card(struct fw_card *card) 530 { 531 struct fw_card_driver dummy_driver = dummy_driver_template; 532 533 card->driver->update_phy_reg(card, 4, 534 PHY_LINK_ACTIVE | PHY_CONTENDER, 0); 535 fw_core_initiate_bus_reset(card, 1); 536 537 mutex_lock(&card_mutex); 538 list_del_init(&card->link); 539 mutex_unlock(&card_mutex); 540 541 /* Switch off most of the card driver interface. */ 542 dummy_driver.free_iso_context = card->driver->free_iso_context; 543 dummy_driver.stop_iso = card->driver->stop_iso; 544 card->driver = &dummy_driver; 545 546 fw_destroy_nodes(card); 547 548 /* Wait for all users, especially device workqueue jobs, to finish. */ 549 fw_card_put(card); 550 wait_for_completion(&card->done); 551 552 WARN_ON(!list_empty(&card->transaction_list)); 553 del_timer_sync(&card->flush_timer); 554 } 555 EXPORT_SYMBOL(fw_core_remove_card); 556 557 int fw_core_initiate_bus_reset(struct fw_card *card, int short_reset) 558 { 559 int reg = short_reset ? 5 : 1; 560 int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET; 561 562 return card->driver->update_phy_reg(card, reg, 0, bit); 563 } 564 EXPORT_SYMBOL(fw_core_initiate_bus_reset); 565