xref: /linux/drivers/firewire/core-card.c (revision 913df4453f85f1fe79b35ecf3c9a0c0b707d22a2)
1 /*
2  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software Foundation,
16  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  */
18 
19 #include <linux/bug.h>
20 #include <linux/completion.h>
21 #include <linux/crc-itu-t.h>
22 #include <linux/device.h>
23 #include <linux/errno.h>
24 #include <linux/firewire.h>
25 #include <linux/firewire-constants.h>
26 #include <linux/jiffies.h>
27 #include <linux/kernel.h>
28 #include <linux/kref.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/mutex.h>
32 #include <linux/spinlock.h>
33 #include <linux/timer.h>
34 #include <linux/workqueue.h>
35 
36 #include <asm/atomic.h>
37 #include <asm/byteorder.h>
38 
39 #include "core.h"
40 
41 int fw_compute_block_crc(u32 *block)
42 {
43 	__be32 be32_block[256];
44 	int i, length;
45 
46 	length = (*block >> 16) & 0xff;
47 	for (i = 0; i < length; i++)
48 		be32_block[i] = cpu_to_be32(block[i + 1]);
49 	*block |= crc_itu_t(0, (u8 *) be32_block, length * 4);
50 
51 	return length;
52 }
53 
54 static DEFINE_MUTEX(card_mutex);
55 static LIST_HEAD(card_list);
56 
57 static LIST_HEAD(descriptor_list);
58 static int descriptor_count;
59 
60 #define BIB_CRC(v)		((v) <<  0)
61 #define BIB_CRC_LENGTH(v)	((v) << 16)
62 #define BIB_INFO_LENGTH(v)	((v) << 24)
63 
64 #define BIB_LINK_SPEED(v)	((v) <<  0)
65 #define BIB_GENERATION(v)	((v) <<  4)
66 #define BIB_MAX_ROM(v)		((v) <<  8)
67 #define BIB_MAX_RECEIVE(v)	((v) << 12)
68 #define BIB_CYC_CLK_ACC(v)	((v) << 16)
69 #define BIB_PMC			((1) << 27)
70 #define BIB_BMC			((1) << 28)
71 #define BIB_ISC			((1) << 29)
72 #define BIB_CMC			((1) << 30)
73 #define BIB_IMC			((1) << 31)
74 
75 static u32 *generate_config_rom(struct fw_card *card, size_t *config_rom_length)
76 {
77 	struct fw_descriptor *desc;
78 	static u32 config_rom[256];
79 	int i, j, length;
80 
81 	/*
82 	 * Initialize contents of config rom buffer.  On the OHCI
83 	 * controller, block reads to the config rom accesses the host
84 	 * memory, but quadlet read access the hardware bus info block
85 	 * registers.  That's just crack, but it means we should make
86 	 * sure the contents of bus info block in host memory matches
87 	 * the version stored in the OHCI registers.
88 	 */
89 
90 	memset(config_rom, 0, sizeof(config_rom));
91 	config_rom[0] = BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0);
92 	config_rom[1] = 0x31333934;
93 
94 	config_rom[2] =
95 		BIB_LINK_SPEED(card->link_speed) |
96 		BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
97 		BIB_MAX_ROM(2) |
98 		BIB_MAX_RECEIVE(card->max_receive) |
99 		BIB_BMC | BIB_ISC | BIB_CMC | BIB_IMC;
100 	config_rom[3] = card->guid >> 32;
101 	config_rom[4] = card->guid;
102 
103 	/* Generate root directory. */
104 	i = 5;
105 	config_rom[i++] = 0;
106 	config_rom[i++] = 0x0c0083c0; /* node capabilities */
107 	j = i + descriptor_count;
108 
109 	/* Generate root directory entries for descriptors. */
110 	list_for_each_entry (desc, &descriptor_list, link) {
111 		if (desc->immediate > 0)
112 			config_rom[i++] = desc->immediate;
113 		config_rom[i] = desc->key | (j - i);
114 		i++;
115 		j += desc->length;
116 	}
117 
118 	/* Update root directory length. */
119 	config_rom[5] = (i - 5 - 1) << 16;
120 
121 	/* End of root directory, now copy in descriptors. */
122 	list_for_each_entry (desc, &descriptor_list, link) {
123 		memcpy(&config_rom[i], desc->data, desc->length * 4);
124 		i += desc->length;
125 	}
126 
127 	/* Calculate CRCs for all blocks in the config rom.  This
128 	 * assumes that CRC length and info length are identical for
129 	 * the bus info block, which is always the case for this
130 	 * implementation. */
131 	for (i = 0; i < j; i += length + 1)
132 		length = fw_compute_block_crc(config_rom + i);
133 
134 	*config_rom_length = j;
135 
136 	return config_rom;
137 }
138 
139 static void update_config_roms(void)
140 {
141 	struct fw_card *card;
142 	u32 *config_rom;
143 	size_t length;
144 
145 	list_for_each_entry (card, &card_list, link) {
146 		config_rom = generate_config_rom(card, &length);
147 		card->driver->set_config_rom(card, config_rom, length);
148 	}
149 }
150 
151 int fw_core_add_descriptor(struct fw_descriptor *desc)
152 {
153 	size_t i;
154 
155 	/*
156 	 * Check descriptor is valid; the length of all blocks in the
157 	 * descriptor has to add up to exactly the length of the
158 	 * block.
159 	 */
160 	i = 0;
161 	while (i < desc->length)
162 		i += (desc->data[i] >> 16) + 1;
163 
164 	if (i != desc->length)
165 		return -EINVAL;
166 
167 	mutex_lock(&card_mutex);
168 
169 	list_add_tail(&desc->link, &descriptor_list);
170 	descriptor_count++;
171 	if (desc->immediate > 0)
172 		descriptor_count++;
173 	update_config_roms();
174 
175 	mutex_unlock(&card_mutex);
176 
177 	return 0;
178 }
179 EXPORT_SYMBOL(fw_core_add_descriptor);
180 
181 void fw_core_remove_descriptor(struct fw_descriptor *desc)
182 {
183 	mutex_lock(&card_mutex);
184 
185 	list_del(&desc->link);
186 	descriptor_count--;
187 	if (desc->immediate > 0)
188 		descriptor_count--;
189 	update_config_roms();
190 
191 	mutex_unlock(&card_mutex);
192 }
193 EXPORT_SYMBOL(fw_core_remove_descriptor);
194 
195 static void allocate_broadcast_channel(struct fw_card *card, int generation)
196 {
197 	int channel, bandwidth = 0;
198 
199 	fw_iso_resource_manage(card, generation, 1ULL << 31, &channel,
200 			       &bandwidth, true, card->bm_transaction_data);
201 	if (channel == 31) {
202 		card->broadcast_channel_allocated = true;
203 		device_for_each_child(card->device, (void *)(long)generation,
204 				      fw_device_set_broadcast_channel);
205 	}
206 }
207 
208 static const char gap_count_table[] = {
209 	63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
210 };
211 
212 void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
213 {
214 	int scheduled;
215 
216 	fw_card_get(card);
217 	scheduled = schedule_delayed_work(&card->work, delay);
218 	if (!scheduled)
219 		fw_card_put(card);
220 }
221 
222 static void fw_card_bm_work(struct work_struct *work)
223 {
224 	struct fw_card *card = container_of(work, struct fw_card, work.work);
225 	struct fw_device *root_device;
226 	struct fw_node *root_node;
227 	unsigned long flags;
228 	int root_id, new_root_id, irm_id, local_id;
229 	int gap_count, generation, grace, rcode;
230 	bool do_reset = false;
231 	bool root_device_is_running;
232 	bool root_device_is_cmc;
233 
234 	spin_lock_irqsave(&card->lock, flags);
235 
236 	if (card->local_node == NULL) {
237 		spin_unlock_irqrestore(&card->lock, flags);
238 		goto out_put_card;
239 	}
240 
241 	generation = card->generation;
242 	root_node = card->root_node;
243 	fw_node_get(root_node);
244 	root_device = root_node->data;
245 	root_device_is_running = root_device &&
246 			atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
247 	root_device_is_cmc = root_device && root_device->cmc;
248 	root_id  = root_node->node_id;
249 	irm_id   = card->irm_node->node_id;
250 	local_id = card->local_node->node_id;
251 
252 	grace = time_after(jiffies, card->reset_jiffies + DIV_ROUND_UP(HZ, 8));
253 
254 	if (is_next_generation(generation, card->bm_generation) ||
255 	    (card->bm_generation != generation && grace)) {
256 		/*
257 		 * This first step is to figure out who is IRM and
258 		 * then try to become bus manager.  If the IRM is not
259 		 * well defined (e.g. does not have an active link
260 		 * layer or does not responds to our lock request, we
261 		 * will have to do a little vigilante bus management.
262 		 * In that case, we do a goto into the gap count logic
263 		 * so that when we do the reset, we still optimize the
264 		 * gap count.  That could well save a reset in the
265 		 * next generation.
266 		 */
267 
268 		if (!card->irm_node->link_on) {
269 			new_root_id = local_id;
270 			fw_notify("IRM has link off, making local node (%02x) root.\n",
271 				  new_root_id);
272 			goto pick_me;
273 		}
274 
275 		card->bm_transaction_data[0] = cpu_to_be32(0x3f);
276 		card->bm_transaction_data[1] = cpu_to_be32(local_id);
277 
278 		spin_unlock_irqrestore(&card->lock, flags);
279 
280 		rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
281 				irm_id, generation, SCODE_100,
282 				CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
283 				card->bm_transaction_data,
284 				sizeof(card->bm_transaction_data));
285 
286 		if (rcode == RCODE_GENERATION)
287 			/* Another bus reset, BM work has been rescheduled. */
288 			goto out;
289 
290 		if (rcode == RCODE_COMPLETE &&
291 		    card->bm_transaction_data[0] != cpu_to_be32(0x3f)) {
292 
293 			/* Somebody else is BM.  Only act as IRM. */
294 			if (local_id == irm_id)
295 				allocate_broadcast_channel(card, generation);
296 
297 			goto out;
298 		}
299 
300 		spin_lock_irqsave(&card->lock, flags);
301 
302 		if (rcode != RCODE_COMPLETE) {
303 			/*
304 			 * The lock request failed, maybe the IRM
305 			 * isn't really IRM capable after all. Let's
306 			 * do a bus reset and pick the local node as
307 			 * root, and thus, IRM.
308 			 */
309 			new_root_id = local_id;
310 			fw_notify("BM lock failed, making local node (%02x) root.\n",
311 				  new_root_id);
312 			goto pick_me;
313 		}
314 	} else if (card->bm_generation != generation) {
315 		/*
316 		 * We weren't BM in the last generation, and the last
317 		 * bus reset is less than 125ms ago.  Reschedule this job.
318 		 */
319 		spin_unlock_irqrestore(&card->lock, flags);
320 		fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
321 		goto out;
322 	}
323 
324 	/*
325 	 * We're bus manager for this generation, so next step is to
326 	 * make sure we have an active cycle master and do gap count
327 	 * optimization.
328 	 */
329 	card->bm_generation = generation;
330 
331 	if (root_device == NULL) {
332 		/*
333 		 * Either link_on is false, or we failed to read the
334 		 * config rom.  In either case, pick another root.
335 		 */
336 		new_root_id = local_id;
337 	} else if (!root_device_is_running) {
338 		/*
339 		 * If we haven't probed this device yet, bail out now
340 		 * and let's try again once that's done.
341 		 */
342 		spin_unlock_irqrestore(&card->lock, flags);
343 		goto out;
344 	} else if (root_device_is_cmc) {
345 		/*
346 		 * FIXME: I suppose we should set the cmstr bit in the
347 		 * STATE_CLEAR register of this node, as described in
348 		 * 1394-1995, 8.4.2.6.  Also, send out a force root
349 		 * packet for this node.
350 		 */
351 		new_root_id = root_id;
352 	} else {
353 		/*
354 		 * Current root has an active link layer and we
355 		 * successfully read the config rom, but it's not
356 		 * cycle master capable.
357 		 */
358 		new_root_id = local_id;
359 	}
360 
361  pick_me:
362 	/*
363 	 * Pick a gap count from 1394a table E-1.  The table doesn't cover
364 	 * the typically much larger 1394b beta repeater delays though.
365 	 */
366 	if (!card->beta_repeaters_present &&
367 	    root_node->max_hops < ARRAY_SIZE(gap_count_table))
368 		gap_count = gap_count_table[root_node->max_hops];
369 	else
370 		gap_count = 63;
371 
372 	/*
373 	 * Finally, figure out if we should do a reset or not.  If we have
374 	 * done less than 5 resets with the same physical topology and we
375 	 * have either a new root or a new gap count setting, let's do it.
376 	 */
377 
378 	if (card->bm_retries++ < 5 &&
379 	    (card->gap_count != gap_count || new_root_id != root_id))
380 		do_reset = true;
381 
382 	spin_unlock_irqrestore(&card->lock, flags);
383 
384 	if (do_reset) {
385 		fw_notify("phy config: card %d, new root=%x, gap_count=%d\n",
386 			  card->index, new_root_id, gap_count);
387 		fw_send_phy_config(card, new_root_id, generation, gap_count);
388 		fw_core_initiate_bus_reset(card, 1);
389 		/* Will allocate broadcast channel after the reset. */
390 	} else {
391 		if (local_id == irm_id)
392 			allocate_broadcast_channel(card, generation);
393 	}
394 
395  out:
396 	fw_node_put(root_node);
397  out_put_card:
398 	fw_card_put(card);
399 }
400 
401 static void flush_timer_callback(unsigned long data)
402 {
403 	struct fw_card *card = (struct fw_card *)data;
404 
405 	fw_flush_transactions(card);
406 }
407 
408 void fw_card_initialize(struct fw_card *card,
409 			const struct fw_card_driver *driver,
410 			struct device *device)
411 {
412 	static atomic_t index = ATOMIC_INIT(-1);
413 
414 	card->index = atomic_inc_return(&index);
415 	card->driver = driver;
416 	card->device = device;
417 	card->current_tlabel = 0;
418 	card->tlabel_mask = 0;
419 	card->color = 0;
420 	card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
421 
422 	kref_init(&card->kref);
423 	init_completion(&card->done);
424 	INIT_LIST_HEAD(&card->transaction_list);
425 	spin_lock_init(&card->lock);
426 	setup_timer(&card->flush_timer,
427 		    flush_timer_callback, (unsigned long)card);
428 
429 	card->local_node = NULL;
430 
431 	INIT_DELAYED_WORK(&card->work, fw_card_bm_work);
432 }
433 EXPORT_SYMBOL(fw_card_initialize);
434 
435 int fw_card_add(struct fw_card *card,
436 		u32 max_receive, u32 link_speed, u64 guid)
437 {
438 	u32 *config_rom;
439 	size_t length;
440 	int ret;
441 
442 	card->max_receive = max_receive;
443 	card->link_speed = link_speed;
444 	card->guid = guid;
445 
446 	mutex_lock(&card_mutex);
447 
448 	config_rom = generate_config_rom(card, &length);
449 	ret = card->driver->enable(card, config_rom, length);
450 	if (ret == 0)
451 		list_add_tail(&card->link, &card_list);
452 
453 	mutex_unlock(&card_mutex);
454 
455 	return ret;
456 }
457 EXPORT_SYMBOL(fw_card_add);
458 
459 
460 /*
461  * The next few functions implement a dummy driver that is used once a card
462  * driver shuts down an fw_card.  This allows the driver to cleanly unload,
463  * as all IO to the card will be handled (and failed) by the dummy driver
464  * instead of calling into the module.  Only functions for iso context
465  * shutdown still need to be provided by the card driver.
466  */
467 
468 static int dummy_enable(struct fw_card *card, u32 *config_rom, size_t length)
469 {
470 	BUG();
471 	return -1;
472 }
473 
474 static int dummy_update_phy_reg(struct fw_card *card, int address,
475 				int clear_bits, int set_bits)
476 {
477 	return -ENODEV;
478 }
479 
480 static int dummy_set_config_rom(struct fw_card *card,
481 				u32 *config_rom, size_t length)
482 {
483 	/*
484 	 * We take the card out of card_list before setting the dummy
485 	 * driver, so this should never get called.
486 	 */
487 	BUG();
488 	return -1;
489 }
490 
491 static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
492 {
493 	packet->callback(packet, card, -ENODEV);
494 }
495 
496 static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
497 {
498 	packet->callback(packet, card, -ENODEV);
499 }
500 
501 static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
502 {
503 	return -ENOENT;
504 }
505 
506 static int dummy_enable_phys_dma(struct fw_card *card,
507 				 int node_id, int generation)
508 {
509 	return -ENODEV;
510 }
511 
512 static const struct fw_card_driver dummy_driver_template = {
513 	.enable          = dummy_enable,
514 	.update_phy_reg  = dummy_update_phy_reg,
515 	.set_config_rom  = dummy_set_config_rom,
516 	.send_request    = dummy_send_request,
517 	.cancel_packet   = dummy_cancel_packet,
518 	.send_response   = dummy_send_response,
519 	.enable_phys_dma = dummy_enable_phys_dma,
520 };
521 
522 void fw_card_release(struct kref *kref)
523 {
524 	struct fw_card *card = container_of(kref, struct fw_card, kref);
525 
526 	complete(&card->done);
527 }
528 
529 void fw_core_remove_card(struct fw_card *card)
530 {
531 	struct fw_card_driver dummy_driver = dummy_driver_template;
532 
533 	card->driver->update_phy_reg(card, 4,
534 				     PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
535 	fw_core_initiate_bus_reset(card, 1);
536 
537 	mutex_lock(&card_mutex);
538 	list_del_init(&card->link);
539 	mutex_unlock(&card_mutex);
540 
541 	/* Switch off most of the card driver interface. */
542 	dummy_driver.free_iso_context	= card->driver->free_iso_context;
543 	dummy_driver.stop_iso		= card->driver->stop_iso;
544 	card->driver = &dummy_driver;
545 
546 	fw_destroy_nodes(card);
547 
548 	/* Wait for all users, especially device workqueue jobs, to finish. */
549 	fw_card_put(card);
550 	wait_for_completion(&card->done);
551 
552 	WARN_ON(!list_empty(&card->transaction_list));
553 	del_timer_sync(&card->flush_timer);
554 }
555 EXPORT_SYMBOL(fw_core_remove_card);
556 
557 int fw_core_initiate_bus_reset(struct fw_card *card, int short_reset)
558 {
559 	int reg = short_reset ? 5 : 1;
560 	int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
561 
562 	return card->driver->update_phy_reg(card, reg, 0, bit);
563 }
564 EXPORT_SYMBOL(fw_core_initiate_bus_reset);
565