xref: /linux/drivers/firewire/core-card.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
4  */
5 
6 #include <linux/bug.h>
7 #include <linux/completion.h>
8 #include <linux/crc-itu-t.h>
9 #include <linux/device.h>
10 #include <linux/errno.h>
11 #include <linux/firewire.h>
12 #include <linux/firewire-constants.h>
13 #include <linux/jiffies.h>
14 #include <linux/kernel.h>
15 #include <linux/kref.h>
16 #include <linux/list.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <linux/spinlock.h>
20 #include <linux/workqueue.h>
21 
22 #include <linux/atomic.h>
23 #include <asm/byteorder.h>
24 
25 #include "core.h"
26 #include <trace/events/firewire.h>
27 
28 #define define_fw_printk_level(func, kern_level)		\
29 void func(const struct fw_card *card, const char *fmt, ...)	\
30 {								\
31 	struct va_format vaf;					\
32 	va_list args;						\
33 								\
34 	va_start(args, fmt);					\
35 	vaf.fmt = fmt;						\
36 	vaf.va = &args;						\
37 	printk(kern_level KBUILD_MODNAME " %s: %pV",		\
38 	       dev_name(card->device), &vaf);			\
39 	va_end(args);						\
40 }
41 define_fw_printk_level(fw_err, KERN_ERR);
42 define_fw_printk_level(fw_notice, KERN_NOTICE);
43 
44 int fw_compute_block_crc(__be32 *block)
45 {
46 	int length;
47 	u16 crc;
48 
49 	length = (be32_to_cpu(block[0]) >> 16) & 0xff;
50 	crc = crc_itu_t(0, (u8 *)&block[1], length * 4);
51 	*block |= cpu_to_be32(crc);
52 
53 	return length;
54 }
55 
56 static DEFINE_MUTEX(card_mutex);
57 static LIST_HEAD(card_list);
58 
59 static LIST_HEAD(descriptor_list);
60 static int descriptor_count;
61 
62 static __be32 tmp_config_rom[256];
63 /* ROM header, bus info block, root dir header, capabilities = 7 quadlets */
64 static size_t config_rom_length = 1 + 4 + 1 + 1;
65 
66 #define BIB_CRC(v)		((v) <<  0)
67 #define BIB_CRC_LENGTH(v)	((v) << 16)
68 #define BIB_INFO_LENGTH(v)	((v) << 24)
69 #define BIB_BUS_NAME		0x31333934 /* "1394" */
70 #define BIB_LINK_SPEED(v)	((v) <<  0)
71 #define BIB_GENERATION(v)	((v) <<  4)
72 #define BIB_MAX_ROM(v)		((v) <<  8)
73 #define BIB_MAX_RECEIVE(v)	((v) << 12)
74 #define BIB_CYC_CLK_ACC(v)	((v) << 16)
75 #define BIB_PMC			((1) << 27)
76 #define BIB_BMC			((1) << 28)
77 #define BIB_ISC			((1) << 29)
78 #define BIB_CMC			((1) << 30)
79 #define BIB_IRMC		((1) << 31)
80 #define NODE_CAPABILITIES	0x0c0083c0 /* per IEEE 1394 clause 8.3.2.6.5.2 */
81 
82 /*
83  * IEEE-1394 specifies a default SPLIT_TIMEOUT value of 800 cycles (100 ms),
84  * but we have to make it longer because there are many devices whose firmware
85  * is just too slow for that.
86  */
87 #define DEFAULT_SPLIT_TIMEOUT	(2 * 8000)
88 
89 #define CANON_OUI		0x000085
90 
91 static void generate_config_rom(struct fw_card *card, __be32 *config_rom)
92 {
93 	struct fw_descriptor *desc;
94 	int i, j, k, length;
95 
96 	/*
97 	 * Initialize contents of config rom buffer.  On the OHCI
98 	 * controller, block reads to the config rom accesses the host
99 	 * memory, but quadlet read access the hardware bus info block
100 	 * registers.  That's just crack, but it means we should make
101 	 * sure the contents of bus info block in host memory matches
102 	 * the version stored in the OHCI registers.
103 	 */
104 
105 	config_rom[0] = cpu_to_be32(
106 		BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0));
107 	config_rom[1] = cpu_to_be32(BIB_BUS_NAME);
108 	config_rom[2] = cpu_to_be32(
109 		BIB_LINK_SPEED(card->link_speed) |
110 		BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
111 		BIB_MAX_ROM(2) |
112 		BIB_MAX_RECEIVE(card->max_receive) |
113 		BIB_BMC | BIB_ISC | BIB_CMC | BIB_IRMC);
114 	config_rom[3] = cpu_to_be32(card->guid >> 32);
115 	config_rom[4] = cpu_to_be32(card->guid);
116 
117 	/* Generate root directory. */
118 	config_rom[6] = cpu_to_be32(NODE_CAPABILITIES);
119 	i = 7;
120 	j = 7 + descriptor_count;
121 
122 	/* Generate root directory entries for descriptors. */
123 	list_for_each_entry (desc, &descriptor_list, link) {
124 		if (desc->immediate > 0)
125 			config_rom[i++] = cpu_to_be32(desc->immediate);
126 		config_rom[i] = cpu_to_be32(desc->key | (j - i));
127 		i++;
128 		j += desc->length;
129 	}
130 
131 	/* Update root directory length. */
132 	config_rom[5] = cpu_to_be32((i - 5 - 1) << 16);
133 
134 	/* End of root directory, now copy in descriptors. */
135 	list_for_each_entry (desc, &descriptor_list, link) {
136 		for (k = 0; k < desc->length; k++)
137 			config_rom[i + k] = cpu_to_be32(desc->data[k]);
138 		i += desc->length;
139 	}
140 
141 	/* Calculate CRCs for all blocks in the config rom.  This
142 	 * assumes that CRC length and info length are identical for
143 	 * the bus info block, which is always the case for this
144 	 * implementation. */
145 	for (i = 0; i < j; i += length + 1)
146 		length = fw_compute_block_crc(config_rom + i);
147 
148 	WARN_ON(j != config_rom_length);
149 }
150 
151 static void update_config_roms(void)
152 {
153 	struct fw_card *card;
154 
155 	list_for_each_entry (card, &card_list, link) {
156 		generate_config_rom(card, tmp_config_rom);
157 		card->driver->set_config_rom(card, tmp_config_rom,
158 					     config_rom_length);
159 	}
160 }
161 
162 static size_t required_space(struct fw_descriptor *desc)
163 {
164 	/* descriptor + entry into root dir + optional immediate entry */
165 	return desc->length + 1 + (desc->immediate > 0 ? 1 : 0);
166 }
167 
168 int fw_core_add_descriptor(struct fw_descriptor *desc)
169 {
170 	size_t i;
171 
172 	/*
173 	 * Check descriptor is valid; the length of all blocks in the
174 	 * descriptor has to add up to exactly the length of the
175 	 * block.
176 	 */
177 	i = 0;
178 	while (i < desc->length)
179 		i += (desc->data[i] >> 16) + 1;
180 
181 	if (i != desc->length)
182 		return -EINVAL;
183 
184 	guard(mutex)(&card_mutex);
185 
186 	if (config_rom_length + required_space(desc) > 256)
187 		return -EBUSY;
188 
189 	list_add_tail(&desc->link, &descriptor_list);
190 	config_rom_length += required_space(desc);
191 	descriptor_count++;
192 	if (desc->immediate > 0)
193 		descriptor_count++;
194 	update_config_roms();
195 
196 	return 0;
197 }
198 EXPORT_SYMBOL(fw_core_add_descriptor);
199 
200 void fw_core_remove_descriptor(struct fw_descriptor *desc)
201 {
202 	guard(mutex)(&card_mutex);
203 
204 	list_del(&desc->link);
205 	config_rom_length -= required_space(desc);
206 	descriptor_count--;
207 	if (desc->immediate > 0)
208 		descriptor_count--;
209 	update_config_roms();
210 }
211 EXPORT_SYMBOL(fw_core_remove_descriptor);
212 
213 static int reset_bus(struct fw_card *card, bool short_reset)
214 {
215 	int reg = short_reset ? 5 : 1;
216 	int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
217 
218 	trace_bus_reset_initiate(card->index, card->generation, short_reset);
219 
220 	return card->driver->update_phy_reg(card, reg, 0, bit);
221 }
222 
223 void fw_schedule_bus_reset(struct fw_card *card, bool delayed, bool short_reset)
224 {
225 	trace_bus_reset_schedule(card->index, card->generation, short_reset);
226 
227 	/* We don't try hard to sort out requests of long vs. short resets. */
228 	card->br_short = short_reset;
229 
230 	/* Use an arbitrary short delay to combine multiple reset requests. */
231 	fw_card_get(card);
232 	if (!queue_delayed_work(fw_workqueue, &card->br_work,
233 				delayed ? DIV_ROUND_UP(HZ, 100) : 0))
234 		fw_card_put(card);
235 }
236 EXPORT_SYMBOL(fw_schedule_bus_reset);
237 
238 static void br_work(struct work_struct *work)
239 {
240 	struct fw_card *card = container_of(work, struct fw_card, br_work.work);
241 
242 	/* Delay for 2s after last reset per IEEE 1394 clause 8.2.1. */
243 	if (card->reset_jiffies != 0 &&
244 	    time_before64(get_jiffies_64(), card->reset_jiffies + 2 * HZ)) {
245 		trace_bus_reset_postpone(card->index, card->generation, card->br_short);
246 
247 		if (!queue_delayed_work(fw_workqueue, &card->br_work, 2 * HZ))
248 			fw_card_put(card);
249 		return;
250 	}
251 
252 	fw_send_phy_config(card, FW_PHY_CONFIG_NO_NODE_ID, card->generation,
253 			   FW_PHY_CONFIG_CURRENT_GAP_COUNT);
254 	reset_bus(card, card->br_short);
255 	fw_card_put(card);
256 }
257 
258 static void allocate_broadcast_channel(struct fw_card *card, int generation)
259 {
260 	int channel, bandwidth = 0;
261 
262 	if (!card->broadcast_channel_allocated) {
263 		fw_iso_resource_manage(card, generation, 1ULL << 31,
264 				       &channel, &bandwidth, true);
265 		if (channel != 31) {
266 			fw_notice(card, "failed to allocate broadcast channel\n");
267 			return;
268 		}
269 		card->broadcast_channel_allocated = true;
270 	}
271 
272 	device_for_each_child(card->device, (void *)(long)generation,
273 			      fw_device_set_broadcast_channel);
274 }
275 
276 static const char gap_count_table[] = {
277 	63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
278 };
279 
280 void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
281 {
282 	fw_card_get(card);
283 	if (!schedule_delayed_work(&card->bm_work, delay))
284 		fw_card_put(card);
285 }
286 
287 static void bm_work(struct work_struct *work)
288 {
289 	struct fw_card *card = container_of(work, struct fw_card, bm_work.work);
290 	struct fw_device *root_device, *irm_device;
291 	struct fw_node *root_node;
292 	int root_id, new_root_id, irm_id, bm_id, local_id;
293 	int gap_count, generation, grace, rcode;
294 	bool do_reset = false;
295 	bool root_device_is_running;
296 	bool root_device_is_cmc;
297 	bool irm_is_1394_1995_only;
298 	bool keep_this_irm;
299 	__be32 transaction_data[2];
300 
301 	spin_lock_irq(&card->lock);
302 
303 	if (card->local_node == NULL) {
304 		spin_unlock_irq(&card->lock);
305 		goto out_put_card;
306 	}
307 
308 	generation = card->generation;
309 
310 	root_node = card->root_node;
311 	fw_node_get(root_node);
312 	root_device = root_node->data;
313 	root_device_is_running = root_device &&
314 			atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
315 	root_device_is_cmc = root_device && root_device->cmc;
316 
317 	irm_device = card->irm_node->data;
318 	irm_is_1394_1995_only = irm_device && irm_device->config_rom &&
319 			(irm_device->config_rom[2] & 0x000000f0) == 0;
320 
321 	/* Canon MV5i works unreliably if it is not root node. */
322 	keep_this_irm = irm_device && irm_device->config_rom &&
323 			irm_device->config_rom[3] >> 8 == CANON_OUI;
324 
325 	root_id  = root_node->node_id;
326 	irm_id   = card->irm_node->node_id;
327 	local_id = card->local_node->node_id;
328 
329 	grace = time_after64(get_jiffies_64(),
330 			     card->reset_jiffies + DIV_ROUND_UP(HZ, 8));
331 
332 	if ((is_next_generation(generation, card->bm_generation) &&
333 	     !card->bm_abdicate) ||
334 	    (card->bm_generation != generation && grace)) {
335 		/*
336 		 * This first step is to figure out who is IRM and
337 		 * then try to become bus manager.  If the IRM is not
338 		 * well defined (e.g. does not have an active link
339 		 * layer or does not responds to our lock request, we
340 		 * will have to do a little vigilante bus management.
341 		 * In that case, we do a goto into the gap count logic
342 		 * so that when we do the reset, we still optimize the
343 		 * gap count.  That could well save a reset in the
344 		 * next generation.
345 		 */
346 
347 		if (!card->irm_node->link_on) {
348 			new_root_id = local_id;
349 			fw_notice(card, "%s, making local node (%02x) root\n",
350 				  "IRM has link off", new_root_id);
351 			goto pick_me;
352 		}
353 
354 		if (irm_is_1394_1995_only && !keep_this_irm) {
355 			new_root_id = local_id;
356 			fw_notice(card, "%s, making local node (%02x) root\n",
357 				  "IRM is not 1394a compliant", new_root_id);
358 			goto pick_me;
359 		}
360 
361 		transaction_data[0] = cpu_to_be32(0x3f);
362 		transaction_data[1] = cpu_to_be32(local_id);
363 
364 		spin_unlock_irq(&card->lock);
365 
366 		rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
367 				irm_id, generation, SCODE_100,
368 				CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
369 				transaction_data, 8);
370 
371 		if (rcode == RCODE_GENERATION)
372 			/* Another bus reset, BM work has been rescheduled. */
373 			goto out;
374 
375 		bm_id = be32_to_cpu(transaction_data[0]);
376 
377 		scoped_guard(spinlock_irq, &card->lock) {
378 			if (rcode == RCODE_COMPLETE && generation == card->generation)
379 				card->bm_node_id =
380 				    bm_id == 0x3f ? local_id : 0xffc0 | bm_id;
381 		}
382 
383 		if (rcode == RCODE_COMPLETE && bm_id != 0x3f) {
384 			/* Somebody else is BM.  Only act as IRM. */
385 			if (local_id == irm_id)
386 				allocate_broadcast_channel(card, generation);
387 
388 			goto out;
389 		}
390 
391 		if (rcode == RCODE_SEND_ERROR) {
392 			/*
393 			 * We have been unable to send the lock request due to
394 			 * some local problem.  Let's try again later and hope
395 			 * that the problem has gone away by then.
396 			 */
397 			fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
398 			goto out;
399 		}
400 
401 		spin_lock_irq(&card->lock);
402 
403 		if (rcode != RCODE_COMPLETE && !keep_this_irm) {
404 			/*
405 			 * The lock request failed, maybe the IRM
406 			 * isn't really IRM capable after all. Let's
407 			 * do a bus reset and pick the local node as
408 			 * root, and thus, IRM.
409 			 */
410 			new_root_id = local_id;
411 			fw_notice(card, "BM lock failed (%s), making local node (%02x) root\n",
412 				  fw_rcode_string(rcode), new_root_id);
413 			goto pick_me;
414 		}
415 	} else if (card->bm_generation != generation) {
416 		/*
417 		 * We weren't BM in the last generation, and the last
418 		 * bus reset is less than 125ms ago.  Reschedule this job.
419 		 */
420 		spin_unlock_irq(&card->lock);
421 		fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
422 		goto out;
423 	}
424 
425 	/*
426 	 * We're bus manager for this generation, so next step is to
427 	 * make sure we have an active cycle master and do gap count
428 	 * optimization.
429 	 */
430 	card->bm_generation = generation;
431 
432 	if (card->gap_count == 0) {
433 		/*
434 		 * If self IDs have inconsistent gap counts, do a
435 		 * bus reset ASAP. The config rom read might never
436 		 * complete, so don't wait for it. However, still
437 		 * send a PHY configuration packet prior to the
438 		 * bus reset. The PHY configuration packet might
439 		 * fail, but 1394-2008 8.4.5.2 explicitly permits
440 		 * it in this case, so it should be safe to try.
441 		 */
442 		new_root_id = local_id;
443 		/*
444 		 * We must always send a bus reset if the gap count
445 		 * is inconsistent, so bypass the 5-reset limit.
446 		 */
447 		card->bm_retries = 0;
448 	} else if (root_device == NULL) {
449 		/*
450 		 * Either link_on is false, or we failed to read the
451 		 * config rom.  In either case, pick another root.
452 		 */
453 		new_root_id = local_id;
454 	} else if (!root_device_is_running) {
455 		/*
456 		 * If we haven't probed this device yet, bail out now
457 		 * and let's try again once that's done.
458 		 */
459 		spin_unlock_irq(&card->lock);
460 		goto out;
461 	} else if (root_device_is_cmc) {
462 		/*
463 		 * We will send out a force root packet for this
464 		 * node as part of the gap count optimization.
465 		 */
466 		new_root_id = root_id;
467 	} else {
468 		/*
469 		 * Current root has an active link layer and we
470 		 * successfully read the config rom, but it's not
471 		 * cycle master capable.
472 		 */
473 		new_root_id = local_id;
474 	}
475 
476  pick_me:
477 	/*
478 	 * Pick a gap count from 1394a table E-1.  The table doesn't cover
479 	 * the typically much larger 1394b beta repeater delays though.
480 	 */
481 	if (!card->beta_repeaters_present &&
482 	    root_node->max_hops < ARRAY_SIZE(gap_count_table))
483 		gap_count = gap_count_table[root_node->max_hops];
484 	else
485 		gap_count = 63;
486 
487 	/*
488 	 * Finally, figure out if we should do a reset or not.  If we have
489 	 * done less than 5 resets with the same physical topology and we
490 	 * have either a new root or a new gap count setting, let's do it.
491 	 */
492 
493 	if (card->bm_retries++ < 5 &&
494 	    (card->gap_count != gap_count || new_root_id != root_id))
495 		do_reset = true;
496 
497 	spin_unlock_irq(&card->lock);
498 
499 	if (do_reset) {
500 		fw_notice(card, "phy config: new root=%x, gap_count=%d\n",
501 			  new_root_id, gap_count);
502 		fw_send_phy_config(card, new_root_id, generation, gap_count);
503 		/*
504 		 * Where possible, use a short bus reset to minimize
505 		 * disruption to isochronous transfers. But in the event
506 		 * of a gap count inconsistency, use a long bus reset.
507 		 *
508 		 * As noted in 1394a 8.4.6.2, nodes on a mixed 1394/1394a bus
509 		 * may set different gap counts after a bus reset. On a mixed
510 		 * 1394/1394a bus, a short bus reset can get doubled. Some
511 		 * nodes may treat the double reset as one bus reset and others
512 		 * may treat it as two, causing a gap count inconsistency
513 		 * again. Using a long bus reset prevents this.
514 		 */
515 		reset_bus(card, card->gap_count != 0);
516 		/* Will allocate broadcast channel after the reset. */
517 		goto out;
518 	}
519 
520 	if (root_device_is_cmc) {
521 		/*
522 		 * Make sure that the cycle master sends cycle start packets.
523 		 */
524 		transaction_data[0] = cpu_to_be32(CSR_STATE_BIT_CMSTR);
525 		rcode = fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
526 				root_id, generation, SCODE_100,
527 				CSR_REGISTER_BASE + CSR_STATE_SET,
528 				transaction_data, 4);
529 		if (rcode == RCODE_GENERATION)
530 			goto out;
531 	}
532 
533 	if (local_id == irm_id)
534 		allocate_broadcast_channel(card, generation);
535 
536  out:
537 	fw_node_put(root_node);
538  out_put_card:
539 	fw_card_put(card);
540 }
541 
542 void fw_card_initialize(struct fw_card *card,
543 			const struct fw_card_driver *driver,
544 			struct device *device)
545 {
546 	static atomic_t index = ATOMIC_INIT(-1);
547 
548 	card->index = atomic_inc_return(&index);
549 	card->driver = driver;
550 	card->device = device;
551 	card->current_tlabel = 0;
552 	card->tlabel_mask = 0;
553 	card->split_timeout_hi = DEFAULT_SPLIT_TIMEOUT / 8000;
554 	card->split_timeout_lo = (DEFAULT_SPLIT_TIMEOUT % 8000) << 19;
555 	card->split_timeout_cycles = DEFAULT_SPLIT_TIMEOUT;
556 	card->split_timeout_jiffies =
557 			DIV_ROUND_UP(DEFAULT_SPLIT_TIMEOUT * HZ, 8000);
558 	card->color = 0;
559 	card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
560 
561 	kref_init(&card->kref);
562 	init_completion(&card->done);
563 	INIT_LIST_HEAD(&card->transaction_list);
564 	INIT_LIST_HEAD(&card->phy_receiver_list);
565 	spin_lock_init(&card->lock);
566 
567 	card->local_node = NULL;
568 
569 	INIT_DELAYED_WORK(&card->br_work, br_work);
570 	INIT_DELAYED_WORK(&card->bm_work, bm_work);
571 }
572 EXPORT_SYMBOL(fw_card_initialize);
573 
574 int fw_card_add(struct fw_card *card, u32 max_receive, u32 link_speed, u64 guid,
575 		unsigned int supported_isoc_contexts)
576 {
577 	struct workqueue_struct *isoc_wq;
578 	int ret;
579 
580 	// This workqueue should be:
581 	//  * != WQ_BH			Sleepable.
582 	//  * == WQ_UNBOUND		Any core can process data for isoc context. The
583 	//				implementation of unit protocol could consumes the core
584 	//				longer somehow.
585 	//  * != WQ_MEM_RECLAIM		Not used for any backend of block device.
586 	//  * == WQ_FREEZABLE		Isochronous communication is at regular interval in real
587 	//				time, thus should be drained if possible at freeze phase.
588 	//  * == WQ_HIGHPRI		High priority to process semi-realtime timestamped data.
589 	//  * == WQ_SYSFS		Parameters are available via sysfs.
590 	//  * max_active == n_it + n_ir	A hardIRQ could notify events for multiple isochronous
591 	//				contexts if they are scheduled to the same cycle.
592 	isoc_wq = alloc_workqueue("firewire-isoc-card%u",
593 				  WQ_UNBOUND | WQ_FREEZABLE | WQ_HIGHPRI | WQ_SYSFS,
594 				  supported_isoc_contexts, card->index);
595 	if (!isoc_wq)
596 		return -ENOMEM;
597 
598 	card->max_receive = max_receive;
599 	card->link_speed = link_speed;
600 	card->guid = guid;
601 
602 	guard(mutex)(&card_mutex);
603 
604 	generate_config_rom(card, tmp_config_rom);
605 	ret = card->driver->enable(card, tmp_config_rom, config_rom_length);
606 	if (ret < 0) {
607 		destroy_workqueue(isoc_wq);
608 		return ret;
609 	}
610 
611 	card->isoc_wq = isoc_wq;
612 	list_add_tail(&card->link, &card_list);
613 
614 	return 0;
615 }
616 EXPORT_SYMBOL(fw_card_add);
617 
618 /*
619  * The next few functions implement a dummy driver that is used once a card
620  * driver shuts down an fw_card.  This allows the driver to cleanly unload,
621  * as all IO to the card will be handled (and failed) by the dummy driver
622  * instead of calling into the module.  Only functions for iso context
623  * shutdown still need to be provided by the card driver.
624  *
625  * .read/write_csr() should never be called anymore after the dummy driver
626  * was bound since they are only used within request handler context.
627  * .set_config_rom() is never called since the card is taken out of card_list
628  * before switching to the dummy driver.
629  */
630 
631 static int dummy_read_phy_reg(struct fw_card *card, int address)
632 {
633 	return -ENODEV;
634 }
635 
636 static int dummy_update_phy_reg(struct fw_card *card, int address,
637 				int clear_bits, int set_bits)
638 {
639 	return -ENODEV;
640 }
641 
642 static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
643 {
644 	packet->callback(packet, card, RCODE_CANCELLED);
645 }
646 
647 static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
648 {
649 	packet->callback(packet, card, RCODE_CANCELLED);
650 }
651 
652 static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
653 {
654 	return -ENOENT;
655 }
656 
657 static int dummy_enable_phys_dma(struct fw_card *card,
658 				 int node_id, int generation)
659 {
660 	return -ENODEV;
661 }
662 
663 static struct fw_iso_context *dummy_allocate_iso_context(struct fw_card *card,
664 				int type, int channel, size_t header_size)
665 {
666 	return ERR_PTR(-ENODEV);
667 }
668 
669 static u32 dummy_read_csr(struct fw_card *card, int csr_offset)
670 {
671 	return 0;
672 }
673 
674 static void dummy_write_csr(struct fw_card *card, int csr_offset, u32 value)
675 {
676 }
677 
678 static int dummy_start_iso(struct fw_iso_context *ctx,
679 			   s32 cycle, u32 sync, u32 tags)
680 {
681 	return -ENODEV;
682 }
683 
684 static int dummy_set_iso_channels(struct fw_iso_context *ctx, u64 *channels)
685 {
686 	return -ENODEV;
687 }
688 
689 static int dummy_queue_iso(struct fw_iso_context *ctx, struct fw_iso_packet *p,
690 			   struct fw_iso_buffer *buffer, unsigned long payload)
691 {
692 	return -ENODEV;
693 }
694 
695 static void dummy_flush_queue_iso(struct fw_iso_context *ctx)
696 {
697 }
698 
699 static int dummy_flush_iso_completions(struct fw_iso_context *ctx)
700 {
701 	return -ENODEV;
702 }
703 
704 static const struct fw_card_driver dummy_driver_template = {
705 	.read_phy_reg		= dummy_read_phy_reg,
706 	.update_phy_reg		= dummy_update_phy_reg,
707 	.send_request		= dummy_send_request,
708 	.send_response		= dummy_send_response,
709 	.cancel_packet		= dummy_cancel_packet,
710 	.enable_phys_dma	= dummy_enable_phys_dma,
711 	.read_csr		= dummy_read_csr,
712 	.write_csr		= dummy_write_csr,
713 	.allocate_iso_context	= dummy_allocate_iso_context,
714 	.start_iso		= dummy_start_iso,
715 	.set_iso_channels	= dummy_set_iso_channels,
716 	.queue_iso		= dummy_queue_iso,
717 	.flush_queue_iso	= dummy_flush_queue_iso,
718 	.flush_iso_completions	= dummy_flush_iso_completions,
719 };
720 
721 void fw_card_release(struct kref *kref)
722 {
723 	struct fw_card *card = container_of(kref, struct fw_card, kref);
724 
725 	complete(&card->done);
726 }
727 EXPORT_SYMBOL_GPL(fw_card_release);
728 
729 void fw_core_remove_card(struct fw_card *card)
730 {
731 	struct fw_card_driver dummy_driver = dummy_driver_template;
732 
733 	might_sleep();
734 
735 	card->driver->update_phy_reg(card, 4,
736 				     PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
737 	fw_schedule_bus_reset(card, false, true);
738 
739 	scoped_guard(mutex, &card_mutex)
740 		list_del_init(&card->link);
741 
742 	/* Switch off most of the card driver interface. */
743 	dummy_driver.free_iso_context	= card->driver->free_iso_context;
744 	dummy_driver.stop_iso		= card->driver->stop_iso;
745 	card->driver = &dummy_driver;
746 	drain_workqueue(card->isoc_wq);
747 
748 	scoped_guard(spinlock_irqsave, &card->lock)
749 		fw_destroy_nodes(card);
750 
751 	/* Wait for all users, especially device workqueue jobs, to finish. */
752 	fw_card_put(card);
753 	wait_for_completion(&card->done);
754 
755 	destroy_workqueue(card->isoc_wq);
756 
757 	WARN_ON(!list_empty(&card->transaction_list));
758 }
759 EXPORT_SYMBOL(fw_core_remove_card);
760 
761 /**
762  * fw_card_read_cycle_time: read from Isochronous Cycle Timer Register of 1394 OHCI in MMIO region
763  *			    for controller card.
764  * @card: The instance of card for 1394 OHCI controller.
765  * @cycle_time: The mutual reference to value of cycle time for the read operation.
766  *
767  * Read value from Isochronous Cycle Timer Register of 1394 OHCI in MMIO region for the given
768  * controller card. This function accesses the region without any lock primitives or IRQ mask.
769  * When returning successfully, the content of @value argument has value aligned to host endianness,
770  * formetted by CYCLE_TIME CSR Register of IEEE 1394 std.
771  *
772  * Context: Any context.
773  * Return:
774  * * 0 - Read successfully.
775  * * -ENODEV - The controller is unavailable due to being removed or unbound.
776  */
777 int fw_card_read_cycle_time(struct fw_card *card, u32 *cycle_time)
778 {
779 	if (card->driver->read_csr == dummy_read_csr)
780 		return -ENODEV;
781 
782 	// It's possible to switch to dummy driver between the above and the below. This is the best
783 	// effort to return -ENODEV.
784 	*cycle_time = card->driver->read_csr(card, CSR_CYCLE_TIME);
785 	return 0;
786 }
787 EXPORT_SYMBOL_GPL(fw_card_read_cycle_time);
788