xref: /linux/drivers/firewire/core-card.c (revision 36239c6704b71da7fb8e2a9429e159a84d0c5a3e)
1 /*
2  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software Foundation,
16  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  */
18 
19 #include <linux/bug.h>
20 #include <linux/completion.h>
21 #include <linux/crc-itu-t.h>
22 #include <linux/device.h>
23 #include <linux/errno.h>
24 #include <linux/firewire.h>
25 #include <linux/firewire-constants.h>
26 #include <linux/jiffies.h>
27 #include <linux/kernel.h>
28 #include <linux/kref.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/mutex.h>
32 #include <linux/spinlock.h>
33 #include <linux/workqueue.h>
34 
35 #include <asm/atomic.h>
36 #include <asm/byteorder.h>
37 
38 #include "core.h"
39 
40 int fw_compute_block_crc(__be32 *block)
41 {
42 	int length;
43 	u16 crc;
44 
45 	length = (be32_to_cpu(block[0]) >> 16) & 0xff;
46 	crc = crc_itu_t(0, (u8 *)&block[1], length * 4);
47 	*block |= cpu_to_be32(crc);
48 
49 	return length;
50 }
51 
52 static DEFINE_MUTEX(card_mutex);
53 static LIST_HEAD(card_list);
54 
55 static LIST_HEAD(descriptor_list);
56 static int descriptor_count;
57 
58 static __be32 tmp_config_rom[256];
59 /* ROM header, bus info block, root dir header, capabilities = 7 quadlets */
60 static size_t config_rom_length = 1 + 4 + 1 + 1;
61 
62 #define BIB_CRC(v)		((v) <<  0)
63 #define BIB_CRC_LENGTH(v)	((v) << 16)
64 #define BIB_INFO_LENGTH(v)	((v) << 24)
65 #define BIB_BUS_NAME		0x31333934 /* "1394" */
66 #define BIB_LINK_SPEED(v)	((v) <<  0)
67 #define BIB_GENERATION(v)	((v) <<  4)
68 #define BIB_MAX_ROM(v)		((v) <<  8)
69 #define BIB_MAX_RECEIVE(v)	((v) << 12)
70 #define BIB_CYC_CLK_ACC(v)	((v) << 16)
71 #define BIB_PMC			((1) << 27)
72 #define BIB_BMC			((1) << 28)
73 #define BIB_ISC			((1) << 29)
74 #define BIB_CMC			((1) << 30)
75 #define BIB_IRMC		((1) << 31)
76 #define NODE_CAPABILITIES	0x0c0083c0 /* per IEEE 1394 clause 8.3.2.6.5.2 */
77 
78 static void generate_config_rom(struct fw_card *card, __be32 *config_rom)
79 {
80 	struct fw_descriptor *desc;
81 	int i, j, k, length;
82 
83 	/*
84 	 * Initialize contents of config rom buffer.  On the OHCI
85 	 * controller, block reads to the config rom accesses the host
86 	 * memory, but quadlet read access the hardware bus info block
87 	 * registers.  That's just crack, but it means we should make
88 	 * sure the contents of bus info block in host memory matches
89 	 * the version stored in the OHCI registers.
90 	 */
91 
92 	config_rom[0] = cpu_to_be32(
93 		BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0));
94 	config_rom[1] = cpu_to_be32(BIB_BUS_NAME);
95 	config_rom[2] = cpu_to_be32(
96 		BIB_LINK_SPEED(card->link_speed) |
97 		BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
98 		BIB_MAX_ROM(2) |
99 		BIB_MAX_RECEIVE(card->max_receive) |
100 		BIB_BMC | BIB_ISC | BIB_CMC | BIB_IRMC);
101 	config_rom[3] = cpu_to_be32(card->guid >> 32);
102 	config_rom[4] = cpu_to_be32(card->guid);
103 
104 	/* Generate root directory. */
105 	config_rom[6] = cpu_to_be32(NODE_CAPABILITIES);
106 	i = 7;
107 	j = 7 + descriptor_count;
108 
109 	/* Generate root directory entries for descriptors. */
110 	list_for_each_entry (desc, &descriptor_list, link) {
111 		if (desc->immediate > 0)
112 			config_rom[i++] = cpu_to_be32(desc->immediate);
113 		config_rom[i] = cpu_to_be32(desc->key | (j - i));
114 		i++;
115 		j += desc->length;
116 	}
117 
118 	/* Update root directory length. */
119 	config_rom[5] = cpu_to_be32((i - 5 - 1) << 16);
120 
121 	/* End of root directory, now copy in descriptors. */
122 	list_for_each_entry (desc, &descriptor_list, link) {
123 		for (k = 0; k < desc->length; k++)
124 			config_rom[i + k] = cpu_to_be32(desc->data[k]);
125 		i += desc->length;
126 	}
127 
128 	/* Calculate CRCs for all blocks in the config rom.  This
129 	 * assumes that CRC length and info length are identical for
130 	 * the bus info block, which is always the case for this
131 	 * implementation. */
132 	for (i = 0; i < j; i += length + 1)
133 		length = fw_compute_block_crc(config_rom + i);
134 
135 	WARN_ON(j != config_rom_length);
136 }
137 
138 static void update_config_roms(void)
139 {
140 	struct fw_card *card;
141 
142 	list_for_each_entry (card, &card_list, link) {
143 		generate_config_rom(card, tmp_config_rom);
144 		card->driver->set_config_rom(card, tmp_config_rom,
145 					     config_rom_length);
146 	}
147 }
148 
149 static size_t required_space(struct fw_descriptor *desc)
150 {
151 	/* descriptor + entry into root dir + optional immediate entry */
152 	return desc->length + 1 + (desc->immediate > 0 ? 1 : 0);
153 }
154 
155 int fw_core_add_descriptor(struct fw_descriptor *desc)
156 {
157 	size_t i;
158 	int ret;
159 
160 	/*
161 	 * Check descriptor is valid; the length of all blocks in the
162 	 * descriptor has to add up to exactly the length of the
163 	 * block.
164 	 */
165 	i = 0;
166 	while (i < desc->length)
167 		i += (desc->data[i] >> 16) + 1;
168 
169 	if (i != desc->length)
170 		return -EINVAL;
171 
172 	mutex_lock(&card_mutex);
173 
174 	if (config_rom_length + required_space(desc) > 256) {
175 		ret = -EBUSY;
176 	} else {
177 		list_add_tail(&desc->link, &descriptor_list);
178 		config_rom_length += required_space(desc);
179 		descriptor_count++;
180 		if (desc->immediate > 0)
181 			descriptor_count++;
182 		update_config_roms();
183 		ret = 0;
184 	}
185 
186 	mutex_unlock(&card_mutex);
187 
188 	return ret;
189 }
190 EXPORT_SYMBOL(fw_core_add_descriptor);
191 
192 void fw_core_remove_descriptor(struct fw_descriptor *desc)
193 {
194 	mutex_lock(&card_mutex);
195 
196 	list_del(&desc->link);
197 	config_rom_length -= required_space(desc);
198 	descriptor_count--;
199 	if (desc->immediate > 0)
200 		descriptor_count--;
201 	update_config_roms();
202 
203 	mutex_unlock(&card_mutex);
204 }
205 EXPORT_SYMBOL(fw_core_remove_descriptor);
206 
207 static void allocate_broadcast_channel(struct fw_card *card, int generation)
208 {
209 	int channel, bandwidth = 0;
210 
211 	fw_iso_resource_manage(card, generation, 1ULL << 31, &channel,
212 			       &bandwidth, true, card->bm_transaction_data);
213 	if (channel == 31) {
214 		card->broadcast_channel_allocated = true;
215 		device_for_each_child(card->device, (void *)(long)generation,
216 				      fw_device_set_broadcast_channel);
217 	}
218 }
219 
220 static const char gap_count_table[] = {
221 	63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
222 };
223 
224 void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
225 {
226 	fw_card_get(card);
227 	if (!schedule_delayed_work(&card->work, delay))
228 		fw_card_put(card);
229 }
230 
231 static void fw_card_bm_work(struct work_struct *work)
232 {
233 	struct fw_card *card = container_of(work, struct fw_card, work.work);
234 	struct fw_device *root_device, *irm_device;
235 	struct fw_node *root_node;
236 	unsigned long flags;
237 	int root_id, new_root_id, irm_id, local_id;
238 	int gap_count, generation, grace, rcode;
239 	bool do_reset = false;
240 	bool root_device_is_running;
241 	bool root_device_is_cmc;
242 	bool irm_is_1394_1995_only;
243 
244 	spin_lock_irqsave(&card->lock, flags);
245 
246 	if (card->local_node == NULL) {
247 		spin_unlock_irqrestore(&card->lock, flags);
248 		goto out_put_card;
249 	}
250 
251 	generation = card->generation;
252 
253 	root_node = card->root_node;
254 	fw_node_get(root_node);
255 	root_device = root_node->data;
256 	root_device_is_running = root_device &&
257 			atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
258 	root_device_is_cmc = root_device && root_device->cmc;
259 
260 	irm_device = card->irm_node->data;
261 	irm_is_1394_1995_only = irm_device && irm_device->config_rom &&
262 			(irm_device->config_rom[2] & 0x000000f0) == 0;
263 
264 	root_id  = root_node->node_id;
265 	irm_id   = card->irm_node->node_id;
266 	local_id = card->local_node->node_id;
267 
268 	grace = time_after(jiffies, card->reset_jiffies + DIV_ROUND_UP(HZ, 8));
269 
270 	if (is_next_generation(generation, card->bm_generation) ||
271 	    (card->bm_generation != generation && grace)) {
272 		/*
273 		 * This first step is to figure out who is IRM and
274 		 * then try to become bus manager.  If the IRM is not
275 		 * well defined (e.g. does not have an active link
276 		 * layer or does not responds to our lock request, we
277 		 * will have to do a little vigilante bus management.
278 		 * In that case, we do a goto into the gap count logic
279 		 * so that when we do the reset, we still optimize the
280 		 * gap count.  That could well save a reset in the
281 		 * next generation.
282 		 */
283 
284 		if (!card->irm_node->link_on) {
285 			new_root_id = local_id;
286 			fw_notify("%s, making local node (%02x) root.\n",
287 				  "IRM has link off", new_root_id);
288 			goto pick_me;
289 		}
290 
291 		if (irm_is_1394_1995_only) {
292 			new_root_id = local_id;
293 			fw_notify("%s, making local node (%02x) root.\n",
294 				  "IRM is not 1394a compliant", new_root_id);
295 			goto pick_me;
296 		}
297 
298 		card->bm_transaction_data[0] = cpu_to_be32(0x3f);
299 		card->bm_transaction_data[1] = cpu_to_be32(local_id);
300 
301 		spin_unlock_irqrestore(&card->lock, flags);
302 
303 		rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
304 				irm_id, generation, SCODE_100,
305 				CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
306 				card->bm_transaction_data,
307 				sizeof(card->bm_transaction_data));
308 
309 		if (rcode == RCODE_GENERATION)
310 			/* Another bus reset, BM work has been rescheduled. */
311 			goto out;
312 
313 		if (rcode == RCODE_COMPLETE &&
314 		    card->bm_transaction_data[0] != cpu_to_be32(0x3f)) {
315 
316 			/* Somebody else is BM.  Only act as IRM. */
317 			if (local_id == irm_id)
318 				allocate_broadcast_channel(card, generation);
319 
320 			goto out;
321 		}
322 
323 		spin_lock_irqsave(&card->lock, flags);
324 
325 		if (rcode != RCODE_COMPLETE) {
326 			/*
327 			 * The lock request failed, maybe the IRM
328 			 * isn't really IRM capable after all. Let's
329 			 * do a bus reset and pick the local node as
330 			 * root, and thus, IRM.
331 			 */
332 			new_root_id = local_id;
333 			fw_notify("%s, making local node (%02x) root.\n",
334 				  "BM lock failed", new_root_id);
335 			goto pick_me;
336 		}
337 	} else if (card->bm_generation != generation) {
338 		/*
339 		 * We weren't BM in the last generation, and the last
340 		 * bus reset is less than 125ms ago.  Reschedule this job.
341 		 */
342 		spin_unlock_irqrestore(&card->lock, flags);
343 		fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
344 		goto out;
345 	}
346 
347 	/*
348 	 * We're bus manager for this generation, so next step is to
349 	 * make sure we have an active cycle master and do gap count
350 	 * optimization.
351 	 */
352 	card->bm_generation = generation;
353 
354 	if (root_device == NULL) {
355 		/*
356 		 * Either link_on is false, or we failed to read the
357 		 * config rom.  In either case, pick another root.
358 		 */
359 		new_root_id = local_id;
360 	} else if (!root_device_is_running) {
361 		/*
362 		 * If we haven't probed this device yet, bail out now
363 		 * and let's try again once that's done.
364 		 */
365 		spin_unlock_irqrestore(&card->lock, flags);
366 		goto out;
367 	} else if (root_device_is_cmc) {
368 		/*
369 		 * FIXME: I suppose we should set the cmstr bit in the
370 		 * STATE_CLEAR register of this node, as described in
371 		 * 1394-1995, 8.4.2.6.  Also, send out a force root
372 		 * packet for this node.
373 		 */
374 		new_root_id = root_id;
375 	} else {
376 		/*
377 		 * Current root has an active link layer and we
378 		 * successfully read the config rom, but it's not
379 		 * cycle master capable.
380 		 */
381 		new_root_id = local_id;
382 	}
383 
384  pick_me:
385 	/*
386 	 * Pick a gap count from 1394a table E-1.  The table doesn't cover
387 	 * the typically much larger 1394b beta repeater delays though.
388 	 */
389 	if (!card->beta_repeaters_present &&
390 	    root_node->max_hops < ARRAY_SIZE(gap_count_table))
391 		gap_count = gap_count_table[root_node->max_hops];
392 	else
393 		gap_count = 63;
394 
395 	/*
396 	 * Finally, figure out if we should do a reset or not.  If we have
397 	 * done less than 5 resets with the same physical topology and we
398 	 * have either a new root or a new gap count setting, let's do it.
399 	 */
400 
401 	if (card->bm_retries++ < 5 &&
402 	    (card->gap_count != gap_count || new_root_id != root_id))
403 		do_reset = true;
404 
405 	spin_unlock_irqrestore(&card->lock, flags);
406 
407 	if (do_reset) {
408 		fw_notify("phy config: card %d, new root=%x, gap_count=%d\n",
409 			  card->index, new_root_id, gap_count);
410 		fw_send_phy_config(card, new_root_id, generation, gap_count);
411 		fw_core_initiate_bus_reset(card, 1);
412 		/* Will allocate broadcast channel after the reset. */
413 	} else {
414 		if (local_id == irm_id)
415 			allocate_broadcast_channel(card, generation);
416 	}
417 
418  out:
419 	fw_node_put(root_node);
420  out_put_card:
421 	fw_card_put(card);
422 }
423 
424 void fw_card_initialize(struct fw_card *card,
425 			const struct fw_card_driver *driver,
426 			struct device *device)
427 {
428 	static atomic_t index = ATOMIC_INIT(-1);
429 
430 	card->index = atomic_inc_return(&index);
431 	card->driver = driver;
432 	card->device = device;
433 	card->current_tlabel = 0;
434 	card->tlabel_mask = 0;
435 	card->color = 0;
436 	card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
437 
438 	kref_init(&card->kref);
439 	init_completion(&card->done);
440 	INIT_LIST_HEAD(&card->transaction_list);
441 	spin_lock_init(&card->lock);
442 
443 	card->local_node = NULL;
444 
445 	INIT_DELAYED_WORK(&card->work, fw_card_bm_work);
446 }
447 EXPORT_SYMBOL(fw_card_initialize);
448 
449 int fw_card_add(struct fw_card *card,
450 		u32 max_receive, u32 link_speed, u64 guid)
451 {
452 	int ret;
453 
454 	card->max_receive = max_receive;
455 	card->link_speed = link_speed;
456 	card->guid = guid;
457 
458 	mutex_lock(&card_mutex);
459 
460 	generate_config_rom(card, tmp_config_rom);
461 	ret = card->driver->enable(card, tmp_config_rom, config_rom_length);
462 	if (ret == 0)
463 		list_add_tail(&card->link, &card_list);
464 
465 	mutex_unlock(&card_mutex);
466 
467 	return ret;
468 }
469 EXPORT_SYMBOL(fw_card_add);
470 
471 
472 /*
473  * The next few functions implement a dummy driver that is used once a card
474  * driver shuts down an fw_card.  This allows the driver to cleanly unload,
475  * as all IO to the card will be handled (and failed) by the dummy driver
476  * instead of calling into the module.  Only functions for iso context
477  * shutdown still need to be provided by the card driver.
478  */
479 
480 static int dummy_enable(struct fw_card *card,
481 			const __be32 *config_rom, size_t length)
482 {
483 	BUG();
484 	return -1;
485 }
486 
487 static int dummy_update_phy_reg(struct fw_card *card, int address,
488 				int clear_bits, int set_bits)
489 {
490 	return -ENODEV;
491 }
492 
493 static int dummy_set_config_rom(struct fw_card *card,
494 				const __be32 *config_rom, size_t length)
495 {
496 	/*
497 	 * We take the card out of card_list before setting the dummy
498 	 * driver, so this should never get called.
499 	 */
500 	BUG();
501 	return -1;
502 }
503 
504 static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
505 {
506 	packet->callback(packet, card, -ENODEV);
507 }
508 
509 static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
510 {
511 	packet->callback(packet, card, -ENODEV);
512 }
513 
514 static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
515 {
516 	return -ENOENT;
517 }
518 
519 static int dummy_enable_phys_dma(struct fw_card *card,
520 				 int node_id, int generation)
521 {
522 	return -ENODEV;
523 }
524 
525 static const struct fw_card_driver dummy_driver_template = {
526 	.enable          = dummy_enable,
527 	.update_phy_reg  = dummy_update_phy_reg,
528 	.set_config_rom  = dummy_set_config_rom,
529 	.send_request    = dummy_send_request,
530 	.cancel_packet   = dummy_cancel_packet,
531 	.send_response   = dummy_send_response,
532 	.enable_phys_dma = dummy_enable_phys_dma,
533 };
534 
535 void fw_card_release(struct kref *kref)
536 {
537 	struct fw_card *card = container_of(kref, struct fw_card, kref);
538 
539 	complete(&card->done);
540 }
541 
542 void fw_core_remove_card(struct fw_card *card)
543 {
544 	struct fw_card_driver dummy_driver = dummy_driver_template;
545 
546 	card->driver->update_phy_reg(card, 4,
547 				     PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
548 	fw_core_initiate_bus_reset(card, 1);
549 
550 	mutex_lock(&card_mutex);
551 	list_del_init(&card->link);
552 	mutex_unlock(&card_mutex);
553 
554 	/* Switch off most of the card driver interface. */
555 	dummy_driver.free_iso_context	= card->driver->free_iso_context;
556 	dummy_driver.stop_iso		= card->driver->stop_iso;
557 	card->driver = &dummy_driver;
558 
559 	fw_destroy_nodes(card);
560 
561 	/* Wait for all users, especially device workqueue jobs, to finish. */
562 	fw_card_put(card);
563 	wait_for_completion(&card->done);
564 
565 	WARN_ON(!list_empty(&card->transaction_list));
566 }
567 EXPORT_SYMBOL(fw_core_remove_card);
568 
569 int fw_core_initiate_bus_reset(struct fw_card *card, int short_reset)
570 {
571 	int reg = short_reset ? 5 : 1;
572 	int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
573 
574 	return card->driver->update_phy_reg(card, reg, 0, bit);
575 }
576 EXPORT_SYMBOL(fw_core_initiate_bus_reset);
577