1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net> 4 */ 5 6 #include <linux/bug.h> 7 #include <linux/completion.h> 8 #include <linux/crc-itu-t.h> 9 #include <linux/device.h> 10 #include <linux/errno.h> 11 #include <linux/firewire.h> 12 #include <linux/firewire-constants.h> 13 #include <linux/jiffies.h> 14 #include <linux/kernel.h> 15 #include <linux/kref.h> 16 #include <linux/list.h> 17 #include <linux/module.h> 18 #include <linux/mutex.h> 19 #include <linux/spinlock.h> 20 #include <linux/workqueue.h> 21 22 #include <linux/atomic.h> 23 #include <asm/byteorder.h> 24 25 #include "core.h" 26 #include <trace/events/firewire.h> 27 28 #define define_fw_printk_level(func, kern_level) \ 29 void func(const struct fw_card *card, const char *fmt, ...) \ 30 { \ 31 struct va_format vaf; \ 32 va_list args; \ 33 \ 34 va_start(args, fmt); \ 35 vaf.fmt = fmt; \ 36 vaf.va = &args; \ 37 printk(kern_level KBUILD_MODNAME " %s: %pV", \ 38 dev_name(card->device), &vaf); \ 39 va_end(args); \ 40 } 41 define_fw_printk_level(fw_err, KERN_ERR); 42 define_fw_printk_level(fw_notice, KERN_NOTICE); 43 44 int fw_compute_block_crc(__be32 *block) 45 { 46 int length; 47 u16 crc; 48 49 length = (be32_to_cpu(block[0]) >> 16) & 0xff; 50 crc = crc_itu_t(0, (u8 *)&block[1], length * 4); 51 *block |= cpu_to_be32(crc); 52 53 return length; 54 } 55 56 static DEFINE_MUTEX(card_mutex); 57 static LIST_HEAD(card_list); 58 59 static LIST_HEAD(descriptor_list); 60 static int descriptor_count; 61 62 static __be32 tmp_config_rom[256]; 63 /* ROM header, bus info block, root dir header, capabilities = 7 quadlets */ 64 static size_t config_rom_length = 1 + 4 + 1 + 1; 65 66 #define BIB_CRC(v) ((v) << 0) 67 #define BIB_CRC_LENGTH(v) ((v) << 16) 68 #define BIB_INFO_LENGTH(v) ((v) << 24) 69 #define BIB_BUS_NAME 0x31333934 /* "1394" */ 70 #define BIB_LINK_SPEED(v) ((v) << 0) 71 #define BIB_GENERATION(v) ((v) << 4) 72 #define BIB_MAX_ROM(v) ((v) << 8) 73 #define BIB_MAX_RECEIVE(v) ((v) << 12) 74 #define BIB_CYC_CLK_ACC(v) ((v) << 16) 75 #define BIB_PMC ((1) << 27) 76 #define BIB_BMC ((1) << 28) 77 #define BIB_ISC ((1) << 29) 78 #define BIB_CMC ((1) << 30) 79 #define BIB_IRMC ((1) << 31) 80 #define NODE_CAPABILITIES 0x0c0083c0 /* per IEEE 1394 clause 8.3.2.6.5.2 */ 81 82 /* 83 * IEEE-1394 specifies a default SPLIT_TIMEOUT value of 800 cycles (100 ms), 84 * but we have to make it longer because there are many devices whose firmware 85 * is just too slow for that. 86 */ 87 #define DEFAULT_SPLIT_TIMEOUT (2 * 8000) 88 89 #define CANON_OUI 0x000085 90 91 static void generate_config_rom(struct fw_card *card, __be32 *config_rom) 92 { 93 struct fw_descriptor *desc; 94 int i, j, k, length; 95 96 /* 97 * Initialize contents of config rom buffer. On the OHCI 98 * controller, block reads to the config rom accesses the host 99 * memory, but quadlet read access the hardware bus info block 100 * registers. That's just crack, but it means we should make 101 * sure the contents of bus info block in host memory matches 102 * the version stored in the OHCI registers. 103 */ 104 105 config_rom[0] = cpu_to_be32( 106 BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0)); 107 config_rom[1] = cpu_to_be32(BIB_BUS_NAME); 108 config_rom[2] = cpu_to_be32( 109 BIB_LINK_SPEED(card->link_speed) | 110 BIB_GENERATION(card->config_rom_generation++ % 14 + 2) | 111 BIB_MAX_ROM(2) | 112 BIB_MAX_RECEIVE(card->max_receive) | 113 BIB_BMC | BIB_ISC | BIB_CMC | BIB_IRMC); 114 config_rom[3] = cpu_to_be32(card->guid >> 32); 115 config_rom[4] = cpu_to_be32(card->guid); 116 117 /* Generate root directory. */ 118 config_rom[6] = cpu_to_be32(NODE_CAPABILITIES); 119 i = 7; 120 j = 7 + descriptor_count; 121 122 /* Generate root directory entries for descriptors. */ 123 list_for_each_entry (desc, &descriptor_list, link) { 124 if (desc->immediate > 0) 125 config_rom[i++] = cpu_to_be32(desc->immediate); 126 config_rom[i] = cpu_to_be32(desc->key | (j - i)); 127 i++; 128 j += desc->length; 129 } 130 131 /* Update root directory length. */ 132 config_rom[5] = cpu_to_be32((i - 5 - 1) << 16); 133 134 /* End of root directory, now copy in descriptors. */ 135 list_for_each_entry (desc, &descriptor_list, link) { 136 for (k = 0; k < desc->length; k++) 137 config_rom[i + k] = cpu_to_be32(desc->data[k]); 138 i += desc->length; 139 } 140 141 /* Calculate CRCs for all blocks in the config rom. This 142 * assumes that CRC length and info length are identical for 143 * the bus info block, which is always the case for this 144 * implementation. */ 145 for (i = 0; i < j; i += length + 1) 146 length = fw_compute_block_crc(config_rom + i); 147 148 WARN_ON(j != config_rom_length); 149 } 150 151 static void update_config_roms(void) 152 { 153 struct fw_card *card; 154 155 list_for_each_entry (card, &card_list, link) { 156 generate_config_rom(card, tmp_config_rom); 157 card->driver->set_config_rom(card, tmp_config_rom, 158 config_rom_length); 159 } 160 } 161 162 static size_t required_space(struct fw_descriptor *desc) 163 { 164 /* descriptor + entry into root dir + optional immediate entry */ 165 return desc->length + 1 + (desc->immediate > 0 ? 1 : 0); 166 } 167 168 int fw_core_add_descriptor(struct fw_descriptor *desc) 169 { 170 size_t i; 171 172 /* 173 * Check descriptor is valid; the length of all blocks in the 174 * descriptor has to add up to exactly the length of the 175 * block. 176 */ 177 i = 0; 178 while (i < desc->length) 179 i += (desc->data[i] >> 16) + 1; 180 181 if (i != desc->length) 182 return -EINVAL; 183 184 guard(mutex)(&card_mutex); 185 186 if (config_rom_length + required_space(desc) > 256) 187 return -EBUSY; 188 189 list_add_tail(&desc->link, &descriptor_list); 190 config_rom_length += required_space(desc); 191 descriptor_count++; 192 if (desc->immediate > 0) 193 descriptor_count++; 194 update_config_roms(); 195 196 return 0; 197 } 198 EXPORT_SYMBOL(fw_core_add_descriptor); 199 200 void fw_core_remove_descriptor(struct fw_descriptor *desc) 201 { 202 guard(mutex)(&card_mutex); 203 204 list_del(&desc->link); 205 config_rom_length -= required_space(desc); 206 descriptor_count--; 207 if (desc->immediate > 0) 208 descriptor_count--; 209 update_config_roms(); 210 } 211 EXPORT_SYMBOL(fw_core_remove_descriptor); 212 213 static int reset_bus(struct fw_card *card, bool short_reset) 214 { 215 int reg = short_reset ? 5 : 1; 216 int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET; 217 218 trace_bus_reset_initiate(card->index, card->generation, short_reset); 219 220 return card->driver->update_phy_reg(card, reg, 0, bit); 221 } 222 223 void fw_schedule_bus_reset(struct fw_card *card, bool delayed, bool short_reset) 224 { 225 trace_bus_reset_schedule(card->index, card->generation, short_reset); 226 227 /* We don't try hard to sort out requests of long vs. short resets. */ 228 card->br_short = short_reset; 229 230 /* Use an arbitrary short delay to combine multiple reset requests. */ 231 fw_card_get(card); 232 if (!queue_delayed_work(fw_workqueue, &card->br_work, delayed ? msecs_to_jiffies(10) : 0)) 233 fw_card_put(card); 234 } 235 EXPORT_SYMBOL(fw_schedule_bus_reset); 236 237 static void br_work(struct work_struct *work) 238 { 239 struct fw_card *card = from_work(card, work, br_work.work); 240 241 /* Delay for 2s after last reset per IEEE 1394 clause 8.2.1. */ 242 if (card->reset_jiffies != 0 && 243 time_is_after_jiffies64(card->reset_jiffies + secs_to_jiffies(2))) { 244 trace_bus_reset_postpone(card->index, card->generation, card->br_short); 245 246 if (!queue_delayed_work(fw_workqueue, &card->br_work, secs_to_jiffies(2))) 247 fw_card_put(card); 248 return; 249 } 250 251 fw_send_phy_config(card, FW_PHY_CONFIG_NO_NODE_ID, card->generation, 252 FW_PHY_CONFIG_CURRENT_GAP_COUNT); 253 reset_bus(card, card->br_short); 254 fw_card_put(card); 255 } 256 257 static void allocate_broadcast_channel(struct fw_card *card, int generation) 258 { 259 int channel, bandwidth = 0; 260 261 if (!card->broadcast_channel_allocated) { 262 fw_iso_resource_manage(card, generation, 1ULL << 31, 263 &channel, &bandwidth, true); 264 if (channel != 31) { 265 fw_notice(card, "failed to allocate broadcast channel\n"); 266 return; 267 } 268 card->broadcast_channel_allocated = true; 269 } 270 271 device_for_each_child(card->device, (void *)(long)generation, 272 fw_device_set_broadcast_channel); 273 } 274 275 void fw_schedule_bm_work(struct fw_card *card, unsigned long delay) 276 { 277 fw_card_get(card); 278 if (!schedule_delayed_work(&card->bm_work, delay)) 279 fw_card_put(card); 280 } 281 282 enum bm_contention_outcome { 283 // The bus management contention window is not expired. 284 BM_CONTENTION_OUTCOME_WITHIN_WINDOW = 0, 285 // The IRM node has link off. 286 BM_CONTENTION_OUTCOME_IRM_HAS_LINK_OFF, 287 // The IRM node complies IEEE 1394:1994 only. 288 BM_CONTENTION_OUTCOME_IRM_COMPLIES_1394_1995_ONLY, 289 // Another bus reset, BM work has been rescheduled. 290 BM_CONTENTION_OUTCOME_AT_NEW_GENERATION, 291 // We have been unable to send the lock request to IRM node due to some local problem. 292 BM_CONTENTION_OUTCOME_LOCAL_PROBLEM_AT_TRANSACTION, 293 // The lock request failed, maybe the IRM isn't really IRM capable after all. 294 BM_CONTENTION_OUTCOME_IRM_IS_NOT_CAPABLE_FOR_IRM, 295 // Somebody else is BM. 296 BM_CONTENTION_OUTCOME_IRM_HOLDS_ANOTHER_NODE_AS_BM, 297 // The local node succeeds after contending for bus manager. 298 BM_CONTENTION_OUTCOME_IRM_HOLDS_LOCAL_NODE_AS_BM, 299 }; 300 301 static enum bm_contention_outcome contend_for_bm(struct fw_card *card) 302 __must_hold(&card->lock) 303 { 304 int generation = card->generation; 305 int local_id = card->local_node->node_id; 306 __be32 data[2] = { 307 cpu_to_be32(BUS_MANAGER_ID_NOT_REGISTERED), 308 cpu_to_be32(local_id), 309 }; 310 bool grace = time_is_before_jiffies64(card->reset_jiffies + msecs_to_jiffies(125)); 311 bool irm_is_1394_1995_only = false; 312 bool keep_this_irm = false; 313 struct fw_node *irm_node; 314 struct fw_device *irm_device; 315 int irm_node_id; 316 int rcode; 317 318 lockdep_assert_held(&card->lock); 319 320 if (!grace) { 321 if (!is_next_generation(generation, card->bm_generation) || card->bm_abdicate) 322 return BM_CONTENTION_OUTCOME_WITHIN_WINDOW; 323 } 324 325 irm_node = card->irm_node; 326 if (!irm_node->link_on) { 327 fw_notice(card, "IRM has link off, making local node (%02x) root\n", local_id); 328 return BM_CONTENTION_OUTCOME_IRM_HAS_LINK_OFF; 329 } 330 331 irm_device = fw_node_get_device(irm_node); 332 if (irm_device && irm_device->config_rom) { 333 irm_is_1394_1995_only = (irm_device->config_rom[2] & 0x000000f0) == 0; 334 335 // Canon MV5i works unreliably if it is not root node. 336 keep_this_irm = irm_device->config_rom[3] >> 8 == CANON_OUI; 337 } 338 339 if (irm_is_1394_1995_only && !keep_this_irm) { 340 fw_notice(card, "IRM is not 1394a compliant, making local node (%02x) root\n", 341 local_id); 342 return BM_CONTENTION_OUTCOME_IRM_COMPLIES_1394_1995_ONLY; 343 } 344 345 irm_node_id = irm_node->node_id; 346 347 spin_unlock_irq(&card->lock); 348 349 rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP, irm_node_id, generation, 350 SCODE_100, CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID, data, 351 sizeof(data)); 352 353 spin_lock_irq(&card->lock); 354 355 switch (rcode) { 356 case RCODE_GENERATION: 357 return BM_CONTENTION_OUTCOME_AT_NEW_GENERATION; 358 case RCODE_SEND_ERROR: 359 return BM_CONTENTION_OUTCOME_LOCAL_PROBLEM_AT_TRANSACTION; 360 case RCODE_COMPLETE: 361 { 362 int bm_id = be32_to_cpu(data[0]); 363 364 // Used by cdev layer for "struct fw_cdev_event_bus_reset". 365 if (bm_id != BUS_MANAGER_ID_NOT_REGISTERED) 366 card->bm_node_id = 0xffc0 & bm_id; 367 else 368 card->bm_node_id = local_id; 369 370 if (bm_id != BUS_MANAGER_ID_NOT_REGISTERED) 371 return BM_CONTENTION_OUTCOME_IRM_HOLDS_ANOTHER_NODE_AS_BM; 372 else 373 return BM_CONTENTION_OUTCOME_IRM_HOLDS_LOCAL_NODE_AS_BM; 374 } 375 default: 376 if (!keep_this_irm) { 377 fw_notice(card, "BM lock failed (%s), making local node (%02x) root\n", 378 fw_rcode_string(rcode), local_id); 379 return BM_CONTENTION_OUTCOME_IRM_COMPLIES_1394_1995_ONLY; 380 } else { 381 return BM_CONTENTION_OUTCOME_IRM_IS_NOT_CAPABLE_FOR_IRM; 382 } 383 } 384 } 385 386 DEFINE_FREE(node_unref, struct fw_node *, if (_T) fw_node_put(_T)) 387 DEFINE_FREE(card_unref, struct fw_card *, if (_T) fw_card_put(_T)) 388 389 static void bm_work(struct work_struct *work) 390 { 391 static const char gap_count_table[] = { 392 63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40 393 }; 394 struct fw_card *card __free(card_unref) = from_work(card, work, bm_work.work); 395 struct fw_node *root_node __free(node_unref) = NULL; 396 int root_id, new_root_id, irm_id, local_id; 397 int expected_gap_count, generation; 398 bool stand_for_root = false; 399 400 spin_lock_irq(&card->lock); 401 402 if (card->local_node == NULL) { 403 spin_unlock_irq(&card->lock); 404 return; 405 } 406 407 generation = card->generation; 408 409 root_node = fw_node_get(card->root_node); 410 411 root_id = root_node->node_id; 412 irm_id = card->irm_node->node_id; 413 local_id = card->local_node->node_id; 414 415 if (card->bm_generation != generation) { 416 enum bm_contention_outcome result = contend_for_bm(card); 417 418 switch (result) { 419 case BM_CONTENTION_OUTCOME_WITHIN_WINDOW: 420 spin_unlock_irq(&card->lock); 421 fw_schedule_bm_work(card, msecs_to_jiffies(125)); 422 return; 423 case BM_CONTENTION_OUTCOME_IRM_HAS_LINK_OFF: 424 stand_for_root = true; 425 break; 426 case BM_CONTENTION_OUTCOME_IRM_COMPLIES_1394_1995_ONLY: 427 stand_for_root = true; 428 break; 429 case BM_CONTENTION_OUTCOME_AT_NEW_GENERATION: 430 // BM work has been rescheduled. 431 spin_unlock_irq(&card->lock); 432 return; 433 case BM_CONTENTION_OUTCOME_LOCAL_PROBLEM_AT_TRANSACTION: 434 // Let's try again later and hope that the local problem has gone away by 435 // then. 436 spin_unlock_irq(&card->lock); 437 fw_schedule_bm_work(card, msecs_to_jiffies(125)); 438 return; 439 case BM_CONTENTION_OUTCOME_IRM_IS_NOT_CAPABLE_FOR_IRM: 440 // Let's do a bus reset and pick the local node as root, and thus, IRM. 441 stand_for_root = true; 442 break; 443 case BM_CONTENTION_OUTCOME_IRM_HOLDS_ANOTHER_NODE_AS_BM: 444 if (local_id == irm_id) { 445 // Only acts as IRM. 446 spin_unlock_irq(&card->lock); 447 allocate_broadcast_channel(card, generation); 448 spin_lock_irq(&card->lock); 449 } 450 fallthrough; 451 case BM_CONTENTION_OUTCOME_IRM_HOLDS_LOCAL_NODE_AS_BM: 452 default: 453 card->bm_generation = generation; 454 break; 455 } 456 } 457 458 // We're bus manager for this generation, so next step is to make sure we have an active 459 // cycle master and do gap count optimization. 460 if (!stand_for_root) { 461 if (card->gap_count == GAP_COUNT_MISMATCHED) { 462 // If self IDs have inconsistent gap counts, do a 463 // bus reset ASAP. The config rom read might never 464 // complete, so don't wait for it. However, still 465 // send a PHY configuration packet prior to the 466 // bus reset. The PHY configuration packet might 467 // fail, but 1394-2008 8.4.5.2 explicitly permits 468 // it in this case, so it should be safe to try. 469 stand_for_root = true; 470 471 // We must always send a bus reset if the gap count 472 // is inconsistent, so bypass the 5-reset limit. 473 card->bm_retries = 0; 474 } else { 475 // Now investigate root node. 476 struct fw_device *root_device = fw_node_get_device(root_node); 477 478 if (root_device == NULL) { 479 // Either link_on is false, or we failed to read the 480 // config rom. In either case, pick another root. 481 stand_for_root = true; 482 } else { 483 bool root_device_is_running = 484 atomic_read(&root_device->state) == FW_DEVICE_RUNNING; 485 486 if (!root_device_is_running) { 487 // If we haven't probed this device yet, bail out now 488 // and let's try again once that's done. 489 spin_unlock_irq(&card->lock); 490 return; 491 } else if (!root_device->cmc) { 492 // Current root has an active link layer and we 493 // successfully read the config rom, but it's not 494 // cycle master capable. 495 stand_for_root = true; 496 } 497 } 498 } 499 } 500 501 if (stand_for_root) { 502 new_root_id = local_id; 503 } else { 504 // We will send out a force root packet for this node as part of the gap count 505 // optimization on behalf of the node. 506 new_root_id = root_id; 507 } 508 509 /* 510 * Pick a gap count from 1394a table E-1. The table doesn't cover 511 * the typically much larger 1394b beta repeater delays though. 512 */ 513 if (!card->beta_repeaters_present && 514 root_node->max_hops < ARRAY_SIZE(gap_count_table)) 515 expected_gap_count = gap_count_table[root_node->max_hops]; 516 else 517 expected_gap_count = 63; 518 519 // Finally, figure out if we should do a reset or not. If we have done less than 5 resets 520 // with the same physical topology and we have either a new root or a new gap count 521 // setting, let's do it. 522 if (card->bm_retries++ < 5 && (card->gap_count != expected_gap_count || new_root_id != root_id)) { 523 int card_gap_count = card->gap_count; 524 525 spin_unlock_irq(&card->lock); 526 527 fw_notice(card, "phy config: new root=%x, gap_count=%d\n", 528 new_root_id, expected_gap_count); 529 fw_send_phy_config(card, new_root_id, generation, expected_gap_count); 530 /* 531 * Where possible, use a short bus reset to minimize 532 * disruption to isochronous transfers. But in the event 533 * of a gap count inconsistency, use a long bus reset. 534 * 535 * As noted in 1394a 8.4.6.2, nodes on a mixed 1394/1394a bus 536 * may set different gap counts after a bus reset. On a mixed 537 * 1394/1394a bus, a short bus reset can get doubled. Some 538 * nodes may treat the double reset as one bus reset and others 539 * may treat it as two, causing a gap count inconsistency 540 * again. Using a long bus reset prevents this. 541 */ 542 reset_bus(card, card_gap_count != 0); 543 /* Will allocate broadcast channel after the reset. */ 544 } else { 545 struct fw_device *root_device = fw_node_get_device(root_node); 546 547 spin_unlock_irq(&card->lock); 548 549 if (root_device && root_device->cmc) { 550 // Make sure that the cycle master sends cycle start packets. 551 __be32 data = cpu_to_be32(CSR_STATE_BIT_CMSTR); 552 int rcode = fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST, 553 root_id, generation, SCODE_100, 554 CSR_REGISTER_BASE + CSR_STATE_SET, 555 &data, sizeof(data)); 556 if (rcode == RCODE_GENERATION) 557 return; 558 } 559 560 if (local_id == irm_id) 561 allocate_broadcast_channel(card, generation); 562 } 563 } 564 565 void fw_card_initialize(struct fw_card *card, 566 const struct fw_card_driver *driver, 567 struct device *device) 568 { 569 static atomic_t index = ATOMIC_INIT(-1); 570 571 card->index = atomic_inc_return(&index); 572 card->driver = driver; 573 card->device = device; 574 575 card->transactions.current_tlabel = 0; 576 card->transactions.tlabel_mask = 0; 577 INIT_LIST_HEAD(&card->transactions.list); 578 spin_lock_init(&card->transactions.lock); 579 580 card->split_timeout.hi = DEFAULT_SPLIT_TIMEOUT / 8000; 581 card->split_timeout.lo = (DEFAULT_SPLIT_TIMEOUT % 8000) << 19; 582 card->split_timeout.cycles = DEFAULT_SPLIT_TIMEOUT; 583 card->split_timeout.jiffies = isoc_cycles_to_jiffies(DEFAULT_SPLIT_TIMEOUT); 584 spin_lock_init(&card->split_timeout.lock); 585 586 card->color = 0; 587 card->broadcast_channel = BROADCAST_CHANNEL_INITIAL; 588 589 kref_init(&card->kref); 590 init_completion(&card->done); 591 592 spin_lock_init(&card->lock); 593 594 card->local_node = NULL; 595 596 INIT_DELAYED_WORK(&card->br_work, br_work); 597 INIT_DELAYED_WORK(&card->bm_work, bm_work); 598 } 599 EXPORT_SYMBOL(fw_card_initialize); 600 601 DEFINE_FREE(workqueue_destroy, struct workqueue_struct *, if (_T) destroy_workqueue(_T)) 602 603 int fw_card_add(struct fw_card *card, u32 max_receive, u32 link_speed, u64 guid, 604 unsigned int supported_isoc_contexts) 605 { 606 struct workqueue_struct *isoc_wq __free(workqueue_destroy) = NULL; 607 struct workqueue_struct *async_wq __free(workqueue_destroy) = NULL; 608 int ret; 609 610 // This workqueue should be: 611 // * != WQ_BH Sleepable. 612 // * == WQ_UNBOUND Any core can process data for isoc context. The 613 // implementation of unit protocol could consumes the core 614 // longer somehow. 615 // * != WQ_MEM_RECLAIM Not used for any backend of block device. 616 // * == WQ_FREEZABLE Isochronous communication is at regular interval in real 617 // time, thus should be drained if possible at freeze phase. 618 // * == WQ_HIGHPRI High priority to process semi-realtime timestamped data. 619 // * == WQ_SYSFS Parameters are available via sysfs. 620 // * max_active == n_it + n_ir A hardIRQ could notify events for multiple isochronous 621 // contexts if they are scheduled to the same cycle. 622 isoc_wq = alloc_workqueue("firewire-isoc-card%u", 623 WQ_UNBOUND | WQ_FREEZABLE | WQ_HIGHPRI | WQ_SYSFS, 624 supported_isoc_contexts, card->index); 625 if (!isoc_wq) 626 return -ENOMEM; 627 628 // This workqueue should be: 629 // * != WQ_BH Sleepable. 630 // * == WQ_UNBOUND Any core can process data for asynchronous context. 631 // * == WQ_MEM_RECLAIM Used for any backend of block device. 632 // * == WQ_FREEZABLE The target device would not be available when being freezed. 633 // * == WQ_HIGHPRI High priority to process semi-realtime timestamped data. 634 // * == WQ_SYSFS Parameters are available via sysfs. 635 // * max_active == 4 A hardIRQ could notify events for a pair of requests and 636 // response AR/AT contexts. 637 async_wq = alloc_workqueue("firewire-async-card%u", 638 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_HIGHPRI | WQ_SYSFS, 639 4, card->index); 640 if (!async_wq) 641 return -ENOMEM; 642 643 card->isoc_wq = isoc_wq; 644 card->async_wq = async_wq; 645 card->max_receive = max_receive; 646 card->link_speed = link_speed; 647 card->guid = guid; 648 649 scoped_guard(mutex, &card_mutex) { 650 generate_config_rom(card, tmp_config_rom); 651 ret = card->driver->enable(card, tmp_config_rom, config_rom_length); 652 if (ret < 0) { 653 card->isoc_wq = NULL; 654 card->async_wq = NULL; 655 return ret; 656 } 657 retain_and_null_ptr(isoc_wq); 658 retain_and_null_ptr(async_wq); 659 660 list_add_tail(&card->link, &card_list); 661 } 662 663 return 0; 664 } 665 EXPORT_SYMBOL(fw_card_add); 666 667 /* 668 * The next few functions implement a dummy driver that is used once a card 669 * driver shuts down an fw_card. This allows the driver to cleanly unload, 670 * as all IO to the card will be handled (and failed) by the dummy driver 671 * instead of calling into the module. Only functions for iso context 672 * shutdown still need to be provided by the card driver. 673 * 674 * .read/write_csr() should never be called anymore after the dummy driver 675 * was bound since they are only used within request handler context. 676 * .set_config_rom() is never called since the card is taken out of card_list 677 * before switching to the dummy driver. 678 */ 679 680 static int dummy_read_phy_reg(struct fw_card *card, int address) 681 { 682 return -ENODEV; 683 } 684 685 static int dummy_update_phy_reg(struct fw_card *card, int address, 686 int clear_bits, int set_bits) 687 { 688 return -ENODEV; 689 } 690 691 static void dummy_send_request(struct fw_card *card, struct fw_packet *packet) 692 { 693 packet->callback(packet, card, RCODE_CANCELLED); 694 } 695 696 static void dummy_send_response(struct fw_card *card, struct fw_packet *packet) 697 { 698 packet->callback(packet, card, RCODE_CANCELLED); 699 } 700 701 static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet) 702 { 703 return -ENOENT; 704 } 705 706 static int dummy_enable_phys_dma(struct fw_card *card, 707 int node_id, int generation) 708 { 709 return -ENODEV; 710 } 711 712 static struct fw_iso_context *dummy_allocate_iso_context(struct fw_card *card, 713 int type, int channel, size_t header_size) 714 { 715 return ERR_PTR(-ENODEV); 716 } 717 718 static u32 dummy_read_csr(struct fw_card *card, int csr_offset) 719 { 720 return 0; 721 } 722 723 static void dummy_write_csr(struct fw_card *card, int csr_offset, u32 value) 724 { 725 } 726 727 static int dummy_start_iso(struct fw_iso_context *ctx, 728 s32 cycle, u32 sync, u32 tags) 729 { 730 return -ENODEV; 731 } 732 733 static int dummy_set_iso_channels(struct fw_iso_context *ctx, u64 *channels) 734 { 735 return -ENODEV; 736 } 737 738 static int dummy_queue_iso(struct fw_iso_context *ctx, struct fw_iso_packet *p, 739 struct fw_iso_buffer *buffer, unsigned long payload) 740 { 741 return -ENODEV; 742 } 743 744 static void dummy_flush_queue_iso(struct fw_iso_context *ctx) 745 { 746 } 747 748 static int dummy_flush_iso_completions(struct fw_iso_context *ctx) 749 { 750 return -ENODEV; 751 } 752 753 static const struct fw_card_driver dummy_driver_template = { 754 .read_phy_reg = dummy_read_phy_reg, 755 .update_phy_reg = dummy_update_phy_reg, 756 .send_request = dummy_send_request, 757 .send_response = dummy_send_response, 758 .cancel_packet = dummy_cancel_packet, 759 .enable_phys_dma = dummy_enable_phys_dma, 760 .read_csr = dummy_read_csr, 761 .write_csr = dummy_write_csr, 762 .allocate_iso_context = dummy_allocate_iso_context, 763 .start_iso = dummy_start_iso, 764 .set_iso_channels = dummy_set_iso_channels, 765 .queue_iso = dummy_queue_iso, 766 .flush_queue_iso = dummy_flush_queue_iso, 767 .flush_iso_completions = dummy_flush_iso_completions, 768 }; 769 770 void fw_card_release(struct kref *kref) 771 { 772 struct fw_card *card = container_of(kref, struct fw_card, kref); 773 774 complete(&card->done); 775 } 776 EXPORT_SYMBOL_GPL(fw_card_release); 777 778 void fw_core_remove_card(struct fw_card *card) 779 { 780 struct fw_card_driver dummy_driver = dummy_driver_template; 781 782 might_sleep(); 783 784 card->driver->update_phy_reg(card, 4, 785 PHY_LINK_ACTIVE | PHY_CONTENDER, 0); 786 fw_schedule_bus_reset(card, false, true); 787 788 scoped_guard(mutex, &card_mutex) 789 list_del_init(&card->link); 790 791 /* Switch off most of the card driver interface. */ 792 dummy_driver.free_iso_context = card->driver->free_iso_context; 793 dummy_driver.stop_iso = card->driver->stop_iso; 794 card->driver = &dummy_driver; 795 drain_workqueue(card->isoc_wq); 796 drain_workqueue(card->async_wq); 797 798 scoped_guard(spinlock_irqsave, &card->lock) 799 fw_destroy_nodes(card); 800 801 /* Wait for all users, especially device workqueue jobs, to finish. */ 802 fw_card_put(card); 803 wait_for_completion(&card->done); 804 805 destroy_workqueue(card->isoc_wq); 806 destroy_workqueue(card->async_wq); 807 808 WARN_ON(!list_empty(&card->transactions.list)); 809 } 810 EXPORT_SYMBOL(fw_core_remove_card); 811 812 /** 813 * fw_card_read_cycle_time: read from Isochronous Cycle Timer Register of 1394 OHCI in MMIO region 814 * for controller card. 815 * @card: The instance of card for 1394 OHCI controller. 816 * @cycle_time: The mutual reference to value of cycle time for the read operation. 817 * 818 * Read value from Isochronous Cycle Timer Register of 1394 OHCI in MMIO region for the given 819 * controller card. This function accesses the region without any lock primitives or IRQ mask. 820 * When returning successfully, the content of @value argument has value aligned to host endianness, 821 * formetted by CYCLE_TIME CSR Register of IEEE 1394 std. 822 * 823 * Context: Any context. 824 * Return: 825 * * 0 - Read successfully. 826 * * -ENODEV - The controller is unavailable due to being removed or unbound. 827 */ 828 int fw_card_read_cycle_time(struct fw_card *card, u32 *cycle_time) 829 { 830 if (card->driver->read_csr == dummy_read_csr) 831 return -ENODEV; 832 833 // It's possible to switch to dummy driver between the above and the below. This is the best 834 // effort to return -ENODEV. 835 *cycle_time = card->driver->read_csr(card, CSR_CYCLE_TIME); 836 return 0; 837 } 838 EXPORT_SYMBOL_GPL(fw_card_read_cycle_time); 839