1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Xilinx Versal memory controller driver 4 * Copyright (C) 2023 Advanced Micro Devices, Inc. 5 */ 6 #include <linux/bitfield.h> 7 #include <linux/edac.h> 8 #include <linux/interrupt.h> 9 #include <linux/module.h> 10 #include <linux/of.h> 11 #include <linux/of_address.h> 12 #include <linux/of_device.h> 13 #include <linux/platform_device.h> 14 #include <linux/sizes.h> 15 #include <linux/firmware/xlnx-zynqmp.h> 16 #include <linux/firmware/xlnx-event-manager.h> 17 18 #include "edac_module.h" 19 20 /* Granularity of reported error in bytes */ 21 #define XDDR_EDAC_ERR_GRAIN 1 22 23 #define XDDR_EDAC_MSG_SIZE 256 24 #define EVENT 2 25 26 #define XDDR_PCSR_OFFSET 0xC 27 #define XDDR_ISR_OFFSET 0x14 28 #define XDDR_IRQ_EN_OFFSET 0x20 29 #define XDDR_IRQ1_EN_OFFSET 0x2C 30 #define XDDR_IRQ_DIS_OFFSET 0x24 31 #define XDDR_IRQ_CE_MASK GENMASK(18, 15) 32 #define XDDR_IRQ_UE_MASK GENMASK(14, 11) 33 34 #define XDDR_REG_CONFIG0_OFFSET 0x258 35 #define XDDR_REG_CONFIG0_BUS_WIDTH_MASK GENMASK(19, 18) 36 #define XDDR_REG_CONFIG0_NUM_CHANS_MASK BIT(17) 37 #define XDDR_REG_CONFIG0_NUM_RANKS_MASK GENMASK(15, 14) 38 #define XDDR_REG_CONFIG0_SIZE_MASK GENMASK(10, 8) 39 40 #define XDDR_REG_PINOUT_OFFSET 0x25C 41 #define XDDR_REG_PINOUT_ECC_EN_MASK GENMASK(7, 5) 42 43 #define ECCW0_FLIP_CTRL 0x109C 44 #define ECCW0_FLIP0_OFFSET 0x10A0 45 #define ECCW0_FLIP0_BITS 31 46 #define ECCW0_FLIP1_OFFSET 0x10A4 47 #define ECCW1_FLIP_CTRL 0x10AC 48 #define ECCW1_FLIP0_OFFSET 0x10B0 49 #define ECCW1_FLIP1_OFFSET 0x10B4 50 #define ECCR0_CERR_STAT_OFFSET 0x10BC 51 #define ECCR0_CE_ADDR_LO_OFFSET 0x10C0 52 #define ECCR0_CE_ADDR_HI_OFFSET 0x10C4 53 #define ECCR0_CE_DATA_LO_OFFSET 0x10C8 54 #define ECCR0_CE_DATA_HI_OFFSET 0x10CC 55 #define ECCR0_CE_DATA_PAR_OFFSET 0x10D0 56 57 #define ECCR0_UERR_STAT_OFFSET 0x10D4 58 #define ECCR0_UE_ADDR_LO_OFFSET 0x10D8 59 #define ECCR0_UE_ADDR_HI_OFFSET 0x10DC 60 #define ECCR0_UE_DATA_LO_OFFSET 0x10E0 61 #define ECCR0_UE_DATA_HI_OFFSET 0x10E4 62 #define ECCR0_UE_DATA_PAR_OFFSET 0x10E8 63 64 #define ECCR1_CERR_STAT_OFFSET 0x10F4 65 #define ECCR1_CE_ADDR_LO_OFFSET 0x10F8 66 #define ECCR1_CE_ADDR_HI_OFFSET 0x10FC 67 #define ECCR1_CE_DATA_LO_OFFSET 0x1100 68 #define ECCR1_CE_DATA_HI_OFFSET 0x110C 69 #define ECCR1_CE_DATA_PAR_OFFSET 0x1108 70 71 #define ECCR1_UERR_STAT_OFFSET 0x110C 72 #define ECCR1_UE_ADDR_LO_OFFSET 0x1110 73 #define ECCR1_UE_ADDR_HI_OFFSET 0x1114 74 #define ECCR1_UE_DATA_LO_OFFSET 0x1118 75 #define ECCR1_UE_DATA_HI_OFFSET 0x111C 76 #define ECCR1_UE_DATA_PAR_OFFSET 0x1120 77 78 #define XDDR_NOC_REG_ADEC4_OFFSET 0x44 79 #define RANK_1_MASK GENMASK(11, 6) 80 #define LRANK_0_MASK GENMASK(17, 12) 81 #define LRANK_1_MASK GENMASK(23, 18) 82 #define MASK_24 GENMASK(29, 24) 83 84 #define XDDR_NOC_REG_ADEC5_OFFSET 0x48 85 #define XDDR_NOC_REG_ADEC6_OFFSET 0x4C 86 #define XDDR_NOC_REG_ADEC7_OFFSET 0x50 87 #define XDDR_NOC_REG_ADEC8_OFFSET 0x54 88 #define XDDR_NOC_REG_ADEC9_OFFSET 0x58 89 #define XDDR_NOC_REG_ADEC10_OFFSET 0x5C 90 91 #define XDDR_NOC_REG_ADEC11_OFFSET 0x60 92 #define MASK_0 GENMASK(5, 0) 93 #define GRP_0_MASK GENMASK(11, 6) 94 #define GRP_1_MASK GENMASK(17, 12) 95 #define CH_0_MASK GENMASK(23, 18) 96 97 #define XDDR_NOC_REG_ADEC12_OFFSET 0x71C 98 #define XDDR_NOC_REG_ADEC13_OFFSET 0x720 99 100 #define XDDR_NOC_REG_ADEC14_OFFSET 0x724 101 #define XDDR_NOC_ROW_MATCH_MASK GENMASK(17, 0) 102 #define XDDR_NOC_COL_MATCH_MASK GENMASK(27, 18) 103 #define XDDR_NOC_BANK_MATCH_MASK GENMASK(29, 28) 104 #define XDDR_NOC_GRP_MATCH_MASK GENMASK(31, 30) 105 106 #define XDDR_NOC_REG_ADEC15_OFFSET 0x728 107 #define XDDR_NOC_RANK_MATCH_MASK GENMASK(1, 0) 108 #define XDDR_NOC_LRANK_MATCH_MASK GENMASK(4, 2) 109 #define XDDR_NOC_CH_MATCH_MASK BIT(5) 110 #define XDDR_NOC_MOD_SEL_MASK BIT(6) 111 #define XDDR_NOC_MATCH_EN_MASK BIT(8) 112 113 #define ECCR_UE_CE_ADDR_HI_ROW_MASK GENMASK(7, 0) 114 115 #define XDDR_EDAC_NR_CSROWS 1 116 #define XDDR_EDAC_NR_CHANS 1 117 118 #define XDDR_BUS_WIDTH_64 0 119 #define XDDR_BUS_WIDTH_32 1 120 #define XDDR_BUS_WIDTH_16 2 121 122 #define XDDR_MAX_ROW_CNT 18 123 #define XDDR_MAX_COL_CNT 10 124 #define XDDR_MAX_RANK_CNT 2 125 #define XDDR_MAX_LRANK_CNT 3 126 #define XDDR_MAX_BANK_CNT 2 127 #define XDDR_MAX_GRP_CNT 2 128 129 /* 130 * Config and system registers are usually locked. This is the 131 * code which unlocks them in order to accept writes. See 132 * 133 * https://docs.xilinx.com/r/en-US/am012-versal-register-reference/PCSR_LOCK-XRAM_SLCR-Register 134 */ 135 #define PCSR_UNLOCK_VAL 0xF9E8D7C6 136 #define PCSR_LOCK_VAL 1 137 #define XDDR_ERR_TYPE_CE 0 138 #define XDDR_ERR_TYPE_UE 1 139 140 #define XILINX_DRAM_SIZE_4G 0 141 #define XILINX_DRAM_SIZE_6G 1 142 #define XILINX_DRAM_SIZE_8G 2 143 #define XILINX_DRAM_SIZE_12G 3 144 #define XILINX_DRAM_SIZE_16G 4 145 #define XILINX_DRAM_SIZE_32G 5 146 #define NUM_UE_BITPOS 2 147 148 /** 149 * struct ecc_error_info - ECC error log information. 150 * @burstpos: Burst position. 151 * @lrank: Logical Rank number. 152 * @rank: Rank number. 153 * @group: Group number. 154 * @bank: Bank number. 155 * @col: Column number. 156 * @row: Row number. 157 * @rowhi: Row number higher bits. 158 * @i: ECC error info. 159 */ 160 union ecc_error_info { 161 struct { 162 u32 burstpos:3; 163 u32 lrank:3; 164 u32 rank:2; 165 u32 group:2; 166 u32 bank:2; 167 u32 col:10; 168 u32 row:10; 169 u32 rowhi; 170 }; 171 u64 i; 172 } __packed; 173 174 union edac_info { 175 struct { 176 u32 row0:6; 177 u32 row1:6; 178 u32 row2:6; 179 u32 row3:6; 180 u32 row4:6; 181 u32 reserved:2; 182 }; 183 struct { 184 u32 col1:6; 185 u32 col2:6; 186 u32 col3:6; 187 u32 col4:6; 188 u32 col5:6; 189 u32 reservedcol:2; 190 }; 191 u32 i; 192 } __packed; 193 194 /** 195 * struct ecc_status - ECC status information to report. 196 * @ceinfo: Correctable error log information. 197 * @ueinfo: Uncorrectable error log information. 198 * @channel: Channel number. 199 * @error_type: Error type information. 200 */ 201 struct ecc_status { 202 union ecc_error_info ceinfo[2]; 203 union ecc_error_info ueinfo[2]; 204 u8 channel; 205 u8 error_type; 206 }; 207 208 /** 209 * struct edac_priv - DDR memory controller private instance data. 210 * @ddrmc_baseaddr: Base address of the DDR controller. 211 * @ddrmc_noc_baseaddr: Base address of the DDRMC NOC. 212 * @message: Buffer for framing the event specific info. 213 * @mc_id: Memory controller ID. 214 * @ce_cnt: Correctable error count. 215 * @ue_cnt: UnCorrectable error count. 216 * @stat: ECC status information. 217 * @lrank_bit: Bit shifts for lrank bit. 218 * @rank_bit: Bit shifts for rank bit. 219 * @row_bit: Bit shifts for row bit. 220 * @col_bit: Bit shifts for column bit. 221 * @bank_bit: Bit shifts for bank bit. 222 * @grp_bit: Bit shifts for group bit. 223 * @ch_bit: Bit shifts for channel bit. 224 * @err_inject_addr: Data poison address. 225 * @debugfs: Debugfs handle. 226 */ 227 struct edac_priv { 228 void __iomem *ddrmc_baseaddr; 229 void __iomem *ddrmc_noc_baseaddr; 230 char message[XDDR_EDAC_MSG_SIZE]; 231 u32 mc_id; 232 u32 ce_cnt; 233 u32 ue_cnt; 234 struct ecc_status stat; 235 u32 lrank_bit[3]; 236 u32 rank_bit[2]; 237 u32 row_bit[18]; 238 u32 col_bit[10]; 239 u32 bank_bit[2]; 240 u32 grp_bit[2]; 241 u32 ch_bit; 242 #ifdef CONFIG_EDAC_DEBUG 243 u64 err_inject_addr; 244 struct dentry *debugfs; 245 #endif 246 }; 247 248 static void get_ce_error_info(struct edac_priv *priv) 249 { 250 void __iomem *ddrmc_base; 251 struct ecc_status *p; 252 u32 regval; 253 u64 reghi; 254 255 ddrmc_base = priv->ddrmc_baseaddr; 256 p = &priv->stat; 257 258 p->error_type = XDDR_ERR_TYPE_CE; 259 regval = readl(ddrmc_base + ECCR0_CE_ADDR_LO_OFFSET); 260 reghi = regval & ECCR_UE_CE_ADDR_HI_ROW_MASK; 261 p->ceinfo[0].i = regval | reghi << 32; 262 regval = readl(ddrmc_base + ECCR0_CE_ADDR_HI_OFFSET); 263 264 edac_dbg(2, "ERR DATA: 0x%08X%08X ERR DATA PARITY: 0x%08X\n", 265 readl(ddrmc_base + ECCR0_CE_DATA_LO_OFFSET), 266 readl(ddrmc_base + ECCR0_CE_DATA_HI_OFFSET), 267 readl(ddrmc_base + ECCR0_CE_DATA_PAR_OFFSET)); 268 269 regval = readl(ddrmc_base + ECCR1_CE_ADDR_LO_OFFSET); 270 reghi = readl(ddrmc_base + ECCR1_CE_ADDR_HI_OFFSET); 271 p->ceinfo[1].i = regval | reghi << 32; 272 regval = readl(ddrmc_base + ECCR1_CE_ADDR_HI_OFFSET); 273 274 edac_dbg(2, "ERR DATA: 0x%08X%08X ERR DATA PARITY: 0x%08X\n", 275 readl(ddrmc_base + ECCR1_CE_DATA_LO_OFFSET), 276 readl(ddrmc_base + ECCR1_CE_DATA_HI_OFFSET), 277 readl(ddrmc_base + ECCR1_CE_DATA_PAR_OFFSET)); 278 } 279 280 static void get_ue_error_info(struct edac_priv *priv) 281 { 282 void __iomem *ddrmc_base; 283 struct ecc_status *p; 284 u32 regval; 285 u64 reghi; 286 287 ddrmc_base = priv->ddrmc_baseaddr; 288 p = &priv->stat; 289 290 p->error_type = XDDR_ERR_TYPE_UE; 291 regval = readl(ddrmc_base + ECCR0_UE_ADDR_LO_OFFSET); 292 reghi = readl(ddrmc_base + ECCR0_UE_ADDR_HI_OFFSET); 293 294 p->ueinfo[0].i = regval | reghi << 32; 295 regval = readl(ddrmc_base + ECCR0_UE_ADDR_HI_OFFSET); 296 297 edac_dbg(2, "ERR DATA: 0x%08X%08X ERR DATA PARITY: 0x%08X\n", 298 readl(ddrmc_base + ECCR0_UE_DATA_LO_OFFSET), 299 readl(ddrmc_base + ECCR0_UE_DATA_HI_OFFSET), 300 readl(ddrmc_base + ECCR0_UE_DATA_PAR_OFFSET)); 301 302 regval = readl(ddrmc_base + ECCR1_UE_ADDR_LO_OFFSET); 303 reghi = readl(ddrmc_base + ECCR1_UE_ADDR_HI_OFFSET); 304 p->ueinfo[1].i = regval | reghi << 32; 305 306 edac_dbg(2, "ERR DATA: 0x%08X%08X ERR DATA PARITY: 0x%08X\n", 307 readl(ddrmc_base + ECCR1_UE_DATA_LO_OFFSET), 308 readl(ddrmc_base + ECCR1_UE_DATA_HI_OFFSET), 309 readl(ddrmc_base + ECCR1_UE_DATA_PAR_OFFSET)); 310 } 311 312 static bool get_error_info(struct edac_priv *priv) 313 { 314 u32 eccr0_ceval, eccr1_ceval, eccr0_ueval, eccr1_ueval; 315 void __iomem *ddrmc_base; 316 struct ecc_status *p; 317 318 ddrmc_base = priv->ddrmc_baseaddr; 319 p = &priv->stat; 320 321 eccr0_ceval = readl(ddrmc_base + ECCR0_CERR_STAT_OFFSET); 322 eccr1_ceval = readl(ddrmc_base + ECCR1_CERR_STAT_OFFSET); 323 eccr0_ueval = readl(ddrmc_base + ECCR0_UERR_STAT_OFFSET); 324 eccr1_ueval = readl(ddrmc_base + ECCR1_UERR_STAT_OFFSET); 325 326 if (!eccr0_ceval && !eccr1_ceval && !eccr0_ueval && !eccr1_ueval) 327 return 1; 328 if (!eccr0_ceval) 329 p->channel = 1; 330 else 331 p->channel = 0; 332 333 if (eccr0_ceval || eccr1_ceval) 334 get_ce_error_info(priv); 335 336 if (eccr0_ueval || eccr1_ueval) { 337 if (!eccr0_ueval) 338 p->channel = 1; 339 else 340 p->channel = 0; 341 get_ue_error_info(priv); 342 } 343 344 /* Unlock the PCSR registers */ 345 writel(PCSR_UNLOCK_VAL, ddrmc_base + XDDR_PCSR_OFFSET); 346 347 writel(0, ddrmc_base + ECCR0_CERR_STAT_OFFSET); 348 writel(0, ddrmc_base + ECCR1_CERR_STAT_OFFSET); 349 writel(0, ddrmc_base + ECCR0_UERR_STAT_OFFSET); 350 writel(0, ddrmc_base + ECCR1_UERR_STAT_OFFSET); 351 352 /* Lock the PCSR registers */ 353 writel(1, ddrmc_base + XDDR_PCSR_OFFSET); 354 355 return 0; 356 } 357 358 /** 359 * convert_to_physical - Convert to physical address. 360 * @priv: DDR memory controller private instance data. 361 * @pinf: ECC error info structure. 362 * 363 * Return: Physical address of the DDR memory. 364 */ 365 static unsigned long convert_to_physical(struct edac_priv *priv, union ecc_error_info pinf) 366 { 367 unsigned long err_addr = 0; 368 u32 index; 369 u32 row; 370 371 row = pinf.rowhi << 10 | pinf.row; 372 for (index = 0; index < XDDR_MAX_ROW_CNT; index++) { 373 err_addr |= (row & BIT(0)) << priv->row_bit[index]; 374 row >>= 1; 375 } 376 377 for (index = 0; index < XDDR_MAX_COL_CNT; index++) { 378 err_addr |= (pinf.col & BIT(0)) << priv->col_bit[index]; 379 pinf.col >>= 1; 380 } 381 382 for (index = 0; index < XDDR_MAX_BANK_CNT; index++) { 383 err_addr |= (pinf.bank & BIT(0)) << priv->bank_bit[index]; 384 pinf.bank >>= 1; 385 } 386 387 for (index = 0; index < XDDR_MAX_GRP_CNT; index++) { 388 err_addr |= (pinf.group & BIT(0)) << priv->grp_bit[index]; 389 pinf.group >>= 1; 390 } 391 392 for (index = 0; index < XDDR_MAX_RANK_CNT; index++) { 393 err_addr |= (pinf.rank & BIT(0)) << priv->rank_bit[index]; 394 pinf.rank >>= 1; 395 } 396 397 for (index = 0; index < XDDR_MAX_LRANK_CNT; index++) { 398 err_addr |= (pinf.lrank & BIT(0)) << priv->lrank_bit[index]; 399 pinf.lrank >>= 1; 400 } 401 402 err_addr |= (priv->stat.channel & BIT(0)) << priv->ch_bit; 403 404 return err_addr; 405 } 406 407 /** 408 * handle_error - Handle Correctable and Uncorrectable errors. 409 * @mci: EDAC memory controller instance. 410 * @stat: ECC status structure. 411 * 412 * Handles ECC correctable and uncorrectable errors. 413 */ 414 static void handle_error(struct mem_ctl_info *mci, struct ecc_status *stat) 415 { 416 struct edac_priv *priv = mci->pvt_info; 417 union ecc_error_info pinf; 418 419 if (stat->error_type == XDDR_ERR_TYPE_CE) { 420 priv->ce_cnt++; 421 pinf = stat->ceinfo[stat->channel]; 422 snprintf(priv->message, XDDR_EDAC_MSG_SIZE, 423 "Error type:%s MC ID: %d Addr at %lx Burst Pos: %d\n", 424 "CE", priv->mc_id, 425 convert_to_physical(priv, pinf), pinf.burstpos); 426 427 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 428 1, 0, 0, 0, 0, 0, -1, 429 priv->message, ""); 430 } 431 432 if (stat->error_type == XDDR_ERR_TYPE_UE) { 433 priv->ue_cnt++; 434 pinf = stat->ueinfo[stat->channel]; 435 snprintf(priv->message, XDDR_EDAC_MSG_SIZE, 436 "Error type:%s MC ID: %d Addr at %lx Burst Pos: %d\n", 437 "UE", priv->mc_id, 438 convert_to_physical(priv, pinf), pinf.burstpos); 439 440 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 441 1, 0, 0, 0, 0, 0, -1, 442 priv->message, ""); 443 } 444 445 memset(stat, 0, sizeof(*stat)); 446 } 447 448 /** 449 * err_callback - Handle Correctable and Uncorrectable errors. 450 * @payload: payload data. 451 * @data: mci controller data. 452 * 453 * Handles ECC correctable and uncorrectable errors. 454 */ 455 static void err_callback(const u32 *payload, void *data) 456 { 457 struct mem_ctl_info *mci = (struct mem_ctl_info *)data; 458 struct edac_priv *priv; 459 struct ecc_status *p; 460 int regval; 461 462 priv = mci->pvt_info; 463 p = &priv->stat; 464 465 regval = readl(priv->ddrmc_baseaddr + XDDR_ISR_OFFSET); 466 467 if (payload[EVENT] == XPM_EVENT_ERROR_MASK_DDRMC_CR) 468 p->error_type = XDDR_ERR_TYPE_CE; 469 if (payload[EVENT] == XPM_EVENT_ERROR_MASK_DDRMC_NCR) 470 p->error_type = XDDR_ERR_TYPE_UE; 471 472 if (get_error_info(priv)) 473 return; 474 475 handle_error(mci, &priv->stat); 476 477 /* Unlock the PCSR registers */ 478 writel(PCSR_UNLOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET); 479 480 /* Clear the ISR */ 481 writel(regval, priv->ddrmc_baseaddr + XDDR_ISR_OFFSET); 482 483 /* Lock the PCSR registers */ 484 writel(PCSR_LOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET); 485 edac_dbg(3, "Total error count CE %d UE %d\n", 486 priv->ce_cnt, priv->ue_cnt); 487 } 488 489 /** 490 * get_dwidth - Return the controller memory width. 491 * @base: DDR memory controller base address. 492 * 493 * Get the EDAC device type width appropriate for the controller 494 * configuration. 495 * 496 * Return: a device type width enumeration. 497 */ 498 static enum dev_type get_dwidth(const void __iomem *base) 499 { 500 enum dev_type dt; 501 u32 regval; 502 u32 width; 503 504 regval = readl(base + XDDR_REG_CONFIG0_OFFSET); 505 width = FIELD_GET(XDDR_REG_CONFIG0_BUS_WIDTH_MASK, regval); 506 507 switch (width) { 508 case XDDR_BUS_WIDTH_16: 509 dt = DEV_X2; 510 break; 511 case XDDR_BUS_WIDTH_32: 512 dt = DEV_X4; 513 break; 514 case XDDR_BUS_WIDTH_64: 515 dt = DEV_X8; 516 break; 517 default: 518 dt = DEV_UNKNOWN; 519 } 520 521 return dt; 522 } 523 524 /** 525 * get_ecc_state - Return the controller ECC enable/disable status. 526 * @base: DDR memory controller base address. 527 * 528 * Get the ECC enable/disable status for the controller. 529 * 530 * Return: a ECC status boolean i.e true/false - enabled/disabled. 531 */ 532 static bool get_ecc_state(void __iomem *base) 533 { 534 enum dev_type dt; 535 u32 ecctype; 536 537 dt = get_dwidth(base); 538 if (dt == DEV_UNKNOWN) 539 return false; 540 541 ecctype = readl(base + XDDR_REG_PINOUT_OFFSET); 542 ecctype &= XDDR_REG_PINOUT_ECC_EN_MASK; 543 544 return !!ecctype; 545 } 546 547 /** 548 * get_memsize - Get the size of the attached memory device. 549 * @priv: DDR memory controller private instance data. 550 * 551 * Return: the memory size in bytes. 552 */ 553 static u64 get_memsize(struct edac_priv *priv) 554 { 555 u32 regval; 556 u64 size; 557 558 regval = readl(priv->ddrmc_baseaddr + XDDR_REG_CONFIG0_OFFSET); 559 regval = FIELD_GET(XDDR_REG_CONFIG0_SIZE_MASK, regval); 560 561 switch (regval) { 562 case XILINX_DRAM_SIZE_4G: 563 size = 4U; break; 564 case XILINX_DRAM_SIZE_6G: 565 size = 6U; break; 566 case XILINX_DRAM_SIZE_8G: 567 size = 8U; break; 568 case XILINX_DRAM_SIZE_12G: 569 size = 12U; break; 570 case XILINX_DRAM_SIZE_16G: 571 size = 16U; break; 572 case XILINX_DRAM_SIZE_32G: 573 size = 32U; break; 574 /* Invalid configuration */ 575 default: 576 size = 0; break; 577 } 578 579 size *= SZ_1G; 580 return size; 581 } 582 583 /** 584 * init_csrows - Initialize the csrow data. 585 * @mci: EDAC memory controller instance. 586 * 587 * Initialize the chip select rows associated with the EDAC memory 588 * controller instance. 589 */ 590 static void init_csrows(struct mem_ctl_info *mci) 591 { 592 struct edac_priv *priv = mci->pvt_info; 593 struct csrow_info *csi; 594 struct dimm_info *dimm; 595 unsigned long size; 596 u32 row; 597 int ch; 598 599 size = get_memsize(priv); 600 for (row = 0; row < mci->nr_csrows; row++) { 601 csi = mci->csrows[row]; 602 for (ch = 0; ch < csi->nr_channels; ch++) { 603 dimm = csi->channels[ch]->dimm; 604 dimm->edac_mode = EDAC_SECDED; 605 dimm->mtype = MEM_DDR4; 606 dimm->nr_pages = (size >> PAGE_SHIFT) / csi->nr_channels; 607 dimm->grain = XDDR_EDAC_ERR_GRAIN; 608 dimm->dtype = get_dwidth(priv->ddrmc_baseaddr); 609 } 610 } 611 } 612 613 /** 614 * mc_init - Initialize one driver instance. 615 * @mci: EDAC memory controller instance. 616 * @pdev: platform device. 617 * 618 * Perform initialization of the EDAC memory controller instance and 619 * related driver-private data associated with the memory controller the 620 * instance is bound to. 621 */ 622 static void mc_init(struct mem_ctl_info *mci, struct platform_device *pdev) 623 { 624 mci->pdev = &pdev->dev; 625 platform_set_drvdata(pdev, mci); 626 627 /* Initialize controller capabilities and configuration */ 628 mci->mtype_cap = MEM_FLAG_DDR4; 629 mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED; 630 mci->scrub_cap = SCRUB_HW_SRC; 631 mci->scrub_mode = SCRUB_NONE; 632 633 mci->edac_cap = EDAC_FLAG_SECDED; 634 mci->ctl_name = "xlnx_ddr_controller"; 635 mci->dev_name = dev_name(&pdev->dev); 636 mci->mod_name = "xlnx_edac"; 637 638 edac_op_state = EDAC_OPSTATE_INT; 639 640 init_csrows(mci); 641 } 642 643 static void enable_intr(struct edac_priv *priv) 644 { 645 /* Unlock the PCSR registers */ 646 writel(PCSR_UNLOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET); 647 648 /* Enable UE and CE Interrupts to support the interrupt case */ 649 writel(XDDR_IRQ_CE_MASK | XDDR_IRQ_UE_MASK, 650 priv->ddrmc_baseaddr + XDDR_IRQ_EN_OFFSET); 651 652 writel(XDDR_IRQ_UE_MASK, 653 priv->ddrmc_baseaddr + XDDR_IRQ1_EN_OFFSET); 654 /* Lock the PCSR registers */ 655 writel(PCSR_LOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET); 656 } 657 658 static void disable_intr(struct edac_priv *priv) 659 { 660 /* Unlock the PCSR registers */ 661 writel(PCSR_UNLOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET); 662 663 /* Disable UE/CE Interrupts */ 664 writel(XDDR_IRQ_CE_MASK | XDDR_IRQ_UE_MASK, 665 priv->ddrmc_baseaddr + XDDR_IRQ_DIS_OFFSET); 666 667 /* Lock the PCSR registers */ 668 writel(PCSR_LOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET); 669 } 670 671 #define to_mci(k) container_of(k, struct mem_ctl_info, dev) 672 673 #ifdef CONFIG_EDAC_DEBUG 674 /** 675 * poison_setup - Update poison registers. 676 * @priv: DDR memory controller private instance data. 677 * 678 * Update poison registers as per DDR mapping upon write of the address 679 * location the fault is injected. 680 * Return: none. 681 */ 682 static void poison_setup(struct edac_priv *priv) 683 { 684 u32 col = 0, row = 0, bank = 0, grp = 0, rank = 0, lrank = 0, ch = 0; 685 u32 index, regval; 686 687 for (index = 0; index < XDDR_MAX_ROW_CNT; index++) { 688 row |= (((priv->err_inject_addr >> priv->row_bit[index]) & 689 BIT(0)) << index); 690 } 691 692 for (index = 0; index < XDDR_MAX_COL_CNT; index++) { 693 col |= (((priv->err_inject_addr >> priv->col_bit[index]) & 694 BIT(0)) << index); 695 } 696 697 for (index = 0; index < XDDR_MAX_BANK_CNT; index++) { 698 bank |= (((priv->err_inject_addr >> priv->bank_bit[index]) & 699 BIT(0)) << index); 700 } 701 702 for (index = 0; index < XDDR_MAX_GRP_CNT; index++) { 703 grp |= (((priv->err_inject_addr >> priv->grp_bit[index]) & 704 BIT(0)) << index); 705 } 706 707 for (index = 0; index < XDDR_MAX_RANK_CNT; index++) { 708 rank |= (((priv->err_inject_addr >> priv->rank_bit[index]) & 709 BIT(0)) << index); 710 } 711 712 for (index = 0; index < XDDR_MAX_LRANK_CNT; index++) { 713 lrank |= (((priv->err_inject_addr >> priv->lrank_bit[index]) & 714 BIT(0)) << index); 715 } 716 717 ch = (priv->err_inject_addr >> priv->ch_bit) & BIT(0); 718 if (ch) 719 writel(0xFF, priv->ddrmc_baseaddr + ECCW1_FLIP_CTRL); 720 else 721 writel(0xFF, priv->ddrmc_baseaddr + ECCW0_FLIP_CTRL); 722 723 writel(0, priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC12_OFFSET); 724 writel(0, priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC13_OFFSET); 725 726 regval = row & XDDR_NOC_ROW_MATCH_MASK; 727 regval |= FIELD_PREP(XDDR_NOC_COL_MATCH_MASK, col); 728 regval |= FIELD_PREP(XDDR_NOC_BANK_MATCH_MASK, bank); 729 regval |= FIELD_PREP(XDDR_NOC_GRP_MATCH_MASK, grp); 730 writel(regval, priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC14_OFFSET); 731 732 regval = rank & XDDR_NOC_RANK_MATCH_MASK; 733 regval |= FIELD_PREP(XDDR_NOC_LRANK_MATCH_MASK, lrank); 734 regval |= FIELD_PREP(XDDR_NOC_CH_MATCH_MASK, ch); 735 regval |= (XDDR_NOC_MOD_SEL_MASK | XDDR_NOC_MATCH_EN_MASK); 736 writel(regval, priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC15_OFFSET); 737 } 738 739 static void xddr_inject_data_ce_store(struct mem_ctl_info *mci, u8 ce_bitpos) 740 { 741 u32 ecc0_flip0, ecc1_flip0, ecc0_flip1, ecc1_flip1; 742 struct edac_priv *priv = mci->pvt_info; 743 744 if (ce_bitpos < ECCW0_FLIP0_BITS) { 745 ecc0_flip0 = BIT(ce_bitpos); 746 ecc1_flip0 = BIT(ce_bitpos); 747 ecc0_flip1 = 0; 748 ecc1_flip1 = 0; 749 } else { 750 ce_bitpos = ce_bitpos - ECCW0_FLIP0_BITS; 751 ecc0_flip1 = BIT(ce_bitpos); 752 ecc1_flip1 = BIT(ce_bitpos); 753 ecc0_flip0 = 0; 754 ecc1_flip0 = 0; 755 } 756 757 writel(ecc0_flip0, priv->ddrmc_baseaddr + ECCW0_FLIP0_OFFSET); 758 writel(ecc1_flip0, priv->ddrmc_baseaddr + ECCW1_FLIP0_OFFSET); 759 writel(ecc0_flip1, priv->ddrmc_baseaddr + ECCW0_FLIP1_OFFSET); 760 writel(ecc1_flip1, priv->ddrmc_baseaddr + ECCW1_FLIP1_OFFSET); 761 } 762 763 /* 764 * To inject a correctable error, the following steps are needed: 765 * 766 * - Write the correctable error bit position value: 767 * echo <bit_pos val> > /sys/kernel/debug/edac/<controller instance>/inject_ce 768 * 769 * poison_setup() derives the row, column, bank, group and rank and 770 * writes to the ADEC registers based on the address given by the user. 771 * 772 * The ADEC12 and ADEC13 are mask registers; write 0 to make sure default 773 * configuration is there and no addresses are masked. 774 * 775 * The row, column, bank, group and rank registers are written to the 776 * match ADEC bit to generate errors at the particular address. ADEC14 777 * and ADEC15 have the match bits. 778 * 779 * xddr_inject_data_ce_store() updates the ECC FLIP registers with the 780 * bits to be corrupted based on the bit position given by the user. 781 * 782 * Upon doing a read to the address the errors are injected. 783 */ 784 static ssize_t inject_data_ce_store(struct file *file, const char __user *data, 785 size_t count, loff_t *ppos) 786 { 787 struct device *dev = file->private_data; 788 struct mem_ctl_info *mci = to_mci(dev); 789 struct edac_priv *priv = mci->pvt_info; 790 u8 ce_bitpos; 791 int ret; 792 793 ret = kstrtou8_from_user(data, count, 0, &ce_bitpos); 794 if (ret) 795 return ret; 796 797 /* Unlock the PCSR registers */ 798 writel(PCSR_UNLOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET); 799 writel(PCSR_UNLOCK_VAL, priv->ddrmc_noc_baseaddr + XDDR_PCSR_OFFSET); 800 801 poison_setup(priv); 802 803 xddr_inject_data_ce_store(mci, ce_bitpos); 804 ret = count; 805 806 /* Lock the PCSR registers */ 807 writel(PCSR_LOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET); 808 writel(PCSR_LOCK_VAL, priv->ddrmc_noc_baseaddr + XDDR_PCSR_OFFSET); 809 810 return ret; 811 } 812 813 static const struct file_operations xddr_inject_ce_fops = { 814 .open = simple_open, 815 .write = inject_data_ce_store, 816 .llseek = generic_file_llseek, 817 }; 818 819 static void xddr_inject_data_ue_store(struct mem_ctl_info *mci, u32 val0, u32 val1) 820 { 821 struct edac_priv *priv = mci->pvt_info; 822 823 writel(val0, priv->ddrmc_baseaddr + ECCW0_FLIP0_OFFSET); 824 writel(val0, priv->ddrmc_baseaddr + ECCW0_FLIP1_OFFSET); 825 writel(val1, priv->ddrmc_baseaddr + ECCW1_FLIP1_OFFSET); 826 writel(val1, priv->ddrmc_baseaddr + ECCW1_FLIP1_OFFSET); 827 } 828 829 /* 830 * To inject an uncorrectable error, the following steps are needed: 831 * echo <bit_pos val> > /sys/kernel/debug/edac/<controller instance>/inject_ue 832 * 833 * poison_setup() derives the row, column, bank, group and rank and 834 * writes to the ADEC registers based on the address given by the user. 835 * 836 * The ADEC12 and ADEC13 are mask registers; write 0 so that none of the 837 * addresses are masked. The row, column, bank, group and rank registers 838 * are written to the match ADEC bit to generate errors at the 839 * particular address. ADEC14 and ADEC15 have the match bits. 840 * 841 * xddr_inject_data_ue_store() updates the ECC FLIP registers with the 842 * bits to be corrupted based on the bit position given by the user. For 843 * uncorrectable errors 844 * 2 bit errors are injected. 845 * 846 * Upon doing a read to the address the errors are injected. 847 */ 848 static ssize_t inject_data_ue_store(struct file *file, const char __user *data, 849 size_t count, loff_t *ppos) 850 { 851 struct device *dev = file->private_data; 852 struct mem_ctl_info *mci = to_mci(dev); 853 struct edac_priv *priv = mci->pvt_info; 854 char buf[6], *pbuf, *token[2]; 855 u32 val0 = 0, val1 = 0; 856 u8 len, ue0, ue1; 857 int i, ret; 858 859 len = min_t(size_t, count, sizeof(buf)); 860 if (copy_from_user(buf, data, len)) 861 return -EFAULT; 862 863 buf[len] = '\0'; 864 pbuf = &buf[0]; 865 for (i = 0; i < NUM_UE_BITPOS; i++) 866 token[i] = strsep(&pbuf, ","); 867 868 if (!token[0] || !token[1]) 869 return -EFAULT; 870 871 ret = kstrtou8(token[0], 0, &ue0); 872 if (ret) 873 return ret; 874 875 ret = kstrtou8(token[1], 0, &ue1); 876 if (ret) 877 return ret; 878 879 if (ue0 < ECCW0_FLIP0_BITS) { 880 val0 = BIT(ue0); 881 } else { 882 ue0 = ue0 - ECCW0_FLIP0_BITS; 883 val1 = BIT(ue0); 884 } 885 886 if (ue1 < ECCW0_FLIP0_BITS) { 887 val0 |= BIT(ue1); 888 } else { 889 ue1 = ue1 - ECCW0_FLIP0_BITS; 890 val1 |= BIT(ue1); 891 } 892 893 /* Unlock the PCSR registers */ 894 writel(PCSR_UNLOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET); 895 writel(PCSR_UNLOCK_VAL, priv->ddrmc_noc_baseaddr + XDDR_PCSR_OFFSET); 896 897 poison_setup(priv); 898 899 xddr_inject_data_ue_store(mci, val0, val1); 900 901 /* Lock the PCSR registers */ 902 writel(PCSR_LOCK_VAL, priv->ddrmc_noc_baseaddr + XDDR_PCSR_OFFSET); 903 writel(PCSR_LOCK_VAL, priv->ddrmc_baseaddr + XDDR_PCSR_OFFSET); 904 return count; 905 } 906 907 static const struct file_operations xddr_inject_ue_fops = { 908 .open = simple_open, 909 .write = inject_data_ue_store, 910 .llseek = generic_file_llseek, 911 }; 912 913 static void create_debugfs_attributes(struct mem_ctl_info *mci) 914 { 915 struct edac_priv *priv = mci->pvt_info; 916 917 priv->debugfs = edac_debugfs_create_dir(mci->dev_name); 918 if (!priv->debugfs) 919 return; 920 921 if (!edac_debugfs_create_file("inject_ce", 0200, priv->debugfs, 922 &mci->dev, &xddr_inject_ce_fops)) { 923 debugfs_remove_recursive(priv->debugfs); 924 return; 925 } 926 927 if (!edac_debugfs_create_file("inject_ue", 0200, priv->debugfs, 928 &mci->dev, &xddr_inject_ue_fops)) { 929 debugfs_remove_recursive(priv->debugfs); 930 return; 931 } 932 debugfs_create_x64("address", 0600, priv->debugfs, 933 &priv->err_inject_addr); 934 mci->debugfs = priv->debugfs; 935 } 936 937 static inline void process_bit(struct edac_priv *priv, unsigned int start, u32 regval) 938 { 939 union edac_info rows; 940 941 rows.i = regval; 942 priv->row_bit[start] = rows.row0; 943 priv->row_bit[start + 1] = rows.row1; 944 priv->row_bit[start + 2] = rows.row2; 945 priv->row_bit[start + 3] = rows.row3; 946 priv->row_bit[start + 4] = rows.row4; 947 } 948 949 static void setup_row_address_map(struct edac_priv *priv) 950 { 951 u32 regval; 952 union edac_info rows; 953 954 regval = readl(priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC5_OFFSET); 955 process_bit(priv, 0, regval); 956 957 regval = readl(priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC6_OFFSET); 958 process_bit(priv, 5, regval); 959 960 regval = readl(priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC7_OFFSET); 961 process_bit(priv, 10, regval); 962 963 regval = readl(priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC8_OFFSET); 964 rows.i = regval; 965 966 priv->row_bit[15] = rows.row0; 967 priv->row_bit[16] = rows.row1; 968 priv->row_bit[17] = rows.row2; 969 } 970 971 static void setup_column_address_map(struct edac_priv *priv) 972 { 973 u32 regval; 974 union edac_info cols; 975 976 regval = readl(priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC8_OFFSET); 977 priv->col_bit[0] = FIELD_GET(MASK_24, regval); 978 979 regval = readl(priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC9_OFFSET); 980 cols.i = regval; 981 priv->col_bit[1] = cols.col1; 982 priv->col_bit[2] = cols.col2; 983 priv->col_bit[3] = cols.col3; 984 priv->col_bit[4] = cols.col4; 985 priv->col_bit[5] = cols.col5; 986 987 regval = readl(priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC10_OFFSET); 988 cols.i = regval; 989 priv->col_bit[6] = cols.col1; 990 priv->col_bit[7] = cols.col2; 991 priv->col_bit[8] = cols.col3; 992 priv->col_bit[9] = cols.col4; 993 } 994 995 static void setup_bank_grp_ch_address_map(struct edac_priv *priv) 996 { 997 u32 regval; 998 999 regval = readl(priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC10_OFFSET); 1000 priv->bank_bit[0] = FIELD_GET(MASK_24, regval); 1001 1002 regval = readl(priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC11_OFFSET); 1003 priv->bank_bit[1] = (regval & MASK_0); 1004 priv->grp_bit[0] = FIELD_GET(GRP_0_MASK, regval); 1005 priv->grp_bit[1] = FIELD_GET(GRP_1_MASK, regval); 1006 priv->ch_bit = FIELD_GET(CH_0_MASK, regval); 1007 } 1008 1009 static void setup_rank_lrank_address_map(struct edac_priv *priv) 1010 { 1011 u32 regval; 1012 1013 regval = readl(priv->ddrmc_noc_baseaddr + XDDR_NOC_REG_ADEC4_OFFSET); 1014 priv->rank_bit[0] = (regval & MASK_0); 1015 priv->rank_bit[1] = FIELD_GET(RANK_1_MASK, regval); 1016 priv->lrank_bit[0] = FIELD_GET(LRANK_0_MASK, regval); 1017 priv->lrank_bit[1] = FIELD_GET(LRANK_1_MASK, regval); 1018 priv->lrank_bit[2] = FIELD_GET(MASK_24, regval); 1019 } 1020 1021 /** 1022 * setup_address_map - Set Address Map by querying ADDRMAP registers. 1023 * @priv: DDR memory controller private instance data. 1024 * 1025 * Set Address Map by querying ADDRMAP registers. 1026 * 1027 * Return: none. 1028 */ 1029 static void setup_address_map(struct edac_priv *priv) 1030 { 1031 setup_row_address_map(priv); 1032 1033 setup_column_address_map(priv); 1034 1035 setup_bank_grp_ch_address_map(priv); 1036 1037 setup_rank_lrank_address_map(priv); 1038 } 1039 #endif /* CONFIG_EDAC_DEBUG */ 1040 1041 static const struct of_device_id xlnx_edac_match[] = { 1042 { .compatible = "xlnx,versal-ddrmc", }, 1043 { 1044 /* end of table */ 1045 } 1046 }; 1047 1048 MODULE_DEVICE_TABLE(of, xlnx_edac_match); 1049 static u32 emif_get_id(struct device_node *node) 1050 { 1051 u32 addr, my_addr, my_id = 0; 1052 struct device_node *np; 1053 const __be32 *addrp; 1054 1055 addrp = of_get_address(node, 0, NULL, NULL); 1056 my_addr = (u32)of_translate_address(node, addrp); 1057 1058 for_each_matching_node(np, xlnx_edac_match) { 1059 if (np == node) 1060 continue; 1061 1062 addrp = of_get_address(np, 0, NULL, NULL); 1063 addr = (u32)of_translate_address(np, addrp); 1064 1065 edac_printk(KERN_INFO, EDAC_MC, 1066 "addr=%x, my_addr=%x\n", 1067 addr, my_addr); 1068 1069 if (addr < my_addr) 1070 my_id++; 1071 } 1072 1073 return my_id; 1074 } 1075 1076 static int mc_probe(struct platform_device *pdev) 1077 { 1078 void __iomem *ddrmc_baseaddr, *ddrmc_noc_baseaddr; 1079 struct edac_mc_layer layers[2]; 1080 struct mem_ctl_info *mci; 1081 u8 num_chans, num_csrows; 1082 struct edac_priv *priv; 1083 u32 edac_mc_id, regval; 1084 int rc; 1085 1086 ddrmc_baseaddr = devm_platform_ioremap_resource_byname(pdev, "base"); 1087 if (IS_ERR(ddrmc_baseaddr)) 1088 return PTR_ERR(ddrmc_baseaddr); 1089 1090 ddrmc_noc_baseaddr = devm_platform_ioremap_resource_byname(pdev, "noc"); 1091 if (IS_ERR(ddrmc_noc_baseaddr)) 1092 return PTR_ERR(ddrmc_noc_baseaddr); 1093 1094 if (!get_ecc_state(ddrmc_baseaddr)) 1095 return -ENXIO; 1096 1097 /* Allocate ID number for the EMIF controller */ 1098 edac_mc_id = emif_get_id(pdev->dev.of_node); 1099 1100 regval = readl(ddrmc_baseaddr + XDDR_REG_CONFIG0_OFFSET); 1101 num_chans = FIELD_GET(XDDR_REG_CONFIG0_NUM_CHANS_MASK, regval); 1102 num_chans++; 1103 1104 num_csrows = FIELD_GET(XDDR_REG_CONFIG0_NUM_RANKS_MASK, regval); 1105 num_csrows *= 2; 1106 if (!num_csrows) 1107 num_csrows = 1; 1108 1109 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; 1110 layers[0].size = num_csrows; 1111 layers[0].is_virt_csrow = true; 1112 layers[1].type = EDAC_MC_LAYER_CHANNEL; 1113 layers[1].size = num_chans; 1114 layers[1].is_virt_csrow = false; 1115 1116 mci = edac_mc_alloc(edac_mc_id, ARRAY_SIZE(layers), layers, 1117 sizeof(struct edac_priv)); 1118 if (!mci) { 1119 edac_printk(KERN_ERR, EDAC_MC, 1120 "Failed memory allocation for mc instance\n"); 1121 return -ENOMEM; 1122 } 1123 1124 priv = mci->pvt_info; 1125 priv->ddrmc_baseaddr = ddrmc_baseaddr; 1126 priv->ddrmc_noc_baseaddr = ddrmc_noc_baseaddr; 1127 priv->ce_cnt = 0; 1128 priv->ue_cnt = 0; 1129 priv->mc_id = edac_mc_id; 1130 1131 mc_init(mci, pdev); 1132 1133 rc = edac_mc_add_mc(mci); 1134 if (rc) { 1135 edac_printk(KERN_ERR, EDAC_MC, 1136 "Failed to register with EDAC core\n"); 1137 goto free_edac_mc; 1138 } 1139 1140 rc = xlnx_register_event(PM_NOTIFY_CB, VERSAL_EVENT_ERROR_PMC_ERR1, 1141 XPM_EVENT_ERROR_MASK_DDRMC_CR | XPM_EVENT_ERROR_MASK_DDRMC_NCR, 1142 false, err_callback, mci); 1143 if (rc) { 1144 if (rc == -EACCES) 1145 rc = -EPROBE_DEFER; 1146 1147 goto del_mc; 1148 } 1149 1150 #ifdef CONFIG_EDAC_DEBUG 1151 create_debugfs_attributes(mci); 1152 setup_address_map(priv); 1153 #endif 1154 enable_intr(priv); 1155 return rc; 1156 1157 del_mc: 1158 edac_mc_del_mc(&pdev->dev); 1159 free_edac_mc: 1160 edac_mc_free(mci); 1161 1162 return rc; 1163 } 1164 1165 static void mc_remove(struct platform_device *pdev) 1166 { 1167 struct mem_ctl_info *mci = platform_get_drvdata(pdev); 1168 struct edac_priv *priv = mci->pvt_info; 1169 1170 disable_intr(priv); 1171 1172 #ifdef CONFIG_EDAC_DEBUG 1173 debugfs_remove_recursive(priv->debugfs); 1174 #endif 1175 1176 xlnx_unregister_event(PM_NOTIFY_CB, VERSAL_EVENT_ERROR_PMC_ERR1, 1177 XPM_EVENT_ERROR_MASK_DDRMC_CR | 1178 XPM_EVENT_ERROR_MASK_DDRMC_NCR, err_callback, mci); 1179 edac_mc_del_mc(&pdev->dev); 1180 edac_mc_free(mci); 1181 } 1182 1183 static struct platform_driver xilinx_ddr_edac_mc_driver = { 1184 .driver = { 1185 .name = "xilinx-ddrmc-edac", 1186 .of_match_table = xlnx_edac_match, 1187 }, 1188 .probe = mc_probe, 1189 .remove = mc_remove, 1190 }; 1191 1192 module_platform_driver(xilinx_ddr_edac_mc_driver); 1193 1194 MODULE_AUTHOR("AMD Inc"); 1195 MODULE_DESCRIPTION("Xilinx DDRMC ECC driver"); 1196 MODULE_LICENSE("GPL"); 1197