xref: /linux/drivers/edac/synopsys_edac.c (revision a44e4f3ab16bc808590763a543a93b6fbf3abcc4)
1 /*
2  * Synopsys DDR ECC Driver
3  * This driver is based on ppc4xx_edac.c drivers
4  *
5  * Copyright (C) 2012 - 2014 Xilinx, Inc.
6  *
7  * This program is free software: you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation, either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * This file is subject to the terms and conditions of the GNU General Public
18  * License.  See the file "COPYING" in the main directory of this archive
19  * for more details
20  */
21 
22 #include <linux/edac.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/interrupt.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 
29 #include "edac_module.h"
30 
31 /* Number of cs_rows needed per memory controller */
32 #define SYNPS_EDAC_NR_CSROWS		1
33 
34 /* Number of channels per memory controller */
35 #define SYNPS_EDAC_NR_CHANS		1
36 
37 /* Granularity of reported error in bytes */
38 #define SYNPS_EDAC_ERR_GRAIN		1
39 
40 #define SYNPS_EDAC_MSG_SIZE		256
41 
42 #define SYNPS_EDAC_MOD_STRING		"synps_edac"
43 #define SYNPS_EDAC_MOD_VER		"1"
44 
45 /* Synopsys DDR memory controller registers that are relevant to ECC */
46 #define CTRL_OFST			0x0
47 #define T_ZQ_OFST			0xA4
48 
49 /* ECC control register */
50 #define ECC_CTRL_OFST			0xC4
51 /* ECC log register */
52 #define CE_LOG_OFST			0xC8
53 /* ECC address register */
54 #define CE_ADDR_OFST			0xCC
55 /* ECC data[31:0] register */
56 #define CE_DATA_31_0_OFST		0xD0
57 
58 /* Uncorrectable error info registers */
59 #define UE_LOG_OFST			0xDC
60 #define UE_ADDR_OFST			0xE0
61 #define UE_DATA_31_0_OFST		0xE4
62 
63 #define STAT_OFST			0xF0
64 #define SCRUB_OFST			0xF4
65 
66 /* Control register bit field definitions */
67 #define CTRL_BW_MASK			0xC
68 #define CTRL_BW_SHIFT			2
69 
70 #define DDRCTL_WDTH_16			1
71 #define DDRCTL_WDTH_32			0
72 
73 /* ZQ register bit field definitions */
74 #define T_ZQ_DDRMODE_MASK		0x2
75 
76 /* ECC control register bit field definitions */
77 #define ECC_CTRL_CLR_CE_ERR		0x2
78 #define ECC_CTRL_CLR_UE_ERR		0x1
79 
80 /* ECC correctable/uncorrectable error log register definitions */
81 #define LOG_VALID			0x1
82 #define CE_LOG_BITPOS_MASK		0xFE
83 #define CE_LOG_BITPOS_SHIFT		1
84 
85 /* ECC correctable/uncorrectable error address register definitions */
86 #define ADDR_COL_MASK			0xFFF
87 #define ADDR_ROW_MASK			0xFFFF000
88 #define ADDR_ROW_SHIFT			12
89 #define ADDR_BANK_MASK			0x70000000
90 #define ADDR_BANK_SHIFT			28
91 
92 /* ECC statistic register definitions */
93 #define STAT_UECNT_MASK			0xFF
94 #define STAT_CECNT_MASK			0xFF00
95 #define STAT_CECNT_SHIFT		8
96 
97 /* ECC scrub register definitions */
98 #define SCRUB_MODE_MASK			0x7
99 #define SCRUB_MODE_SECDED		0x4
100 
101 /* DDR ECC Quirks */
102 #define DDR_ECC_INTR_SUPPORT		BIT(0)
103 #define DDR_ECC_DATA_POISON_SUPPORT	BIT(1)
104 
105 /* ZynqMP Enhanced DDR memory controller registers that are relevant to ECC */
106 /* ECC Configuration Registers */
107 #define ECC_CFG0_OFST			0x70
108 #define ECC_CFG1_OFST			0x74
109 
110 /* ECC Status Register */
111 #define ECC_STAT_OFST			0x78
112 
113 /* ECC Clear Register */
114 #define ECC_CLR_OFST			0x7C
115 
116 /* ECC Error count Register */
117 #define ECC_ERRCNT_OFST			0x80
118 
119 /* ECC Corrected Error Address Register */
120 #define ECC_CEADDR0_OFST		0x84
121 #define ECC_CEADDR1_OFST		0x88
122 
123 /* ECC Syndrome Registers */
124 #define ECC_CSYND0_OFST			0x8C
125 #define ECC_CSYND1_OFST			0x90
126 #define ECC_CSYND2_OFST			0x94
127 
128 /* ECC Bit Mask0 Address Register */
129 #define ECC_BITMASK0_OFST		0x98
130 #define ECC_BITMASK1_OFST		0x9C
131 #define ECC_BITMASK2_OFST		0xA0
132 
133 /* ECC UnCorrected Error Address Register */
134 #define ECC_UEADDR0_OFST		0xA4
135 #define ECC_UEADDR1_OFST		0xA8
136 
137 /* ECC Syndrome Registers */
138 #define ECC_UESYND0_OFST		0xAC
139 #define ECC_UESYND1_OFST		0xB0
140 #define ECC_UESYND2_OFST		0xB4
141 
142 /* ECC Poison Address Reg */
143 #define ECC_POISON0_OFST		0xB8
144 #define ECC_POISON1_OFST		0xBC
145 
146 #define ECC_ADDRMAP0_OFFSET		0x200
147 
148 /* Control register bitfield definitions */
149 #define ECC_CTRL_BUSWIDTH_MASK		0x3000
150 #define ECC_CTRL_BUSWIDTH_SHIFT		12
151 #define ECC_CTRL_CLR_CE_ERRCNT		BIT(2)
152 #define ECC_CTRL_CLR_UE_ERRCNT		BIT(3)
153 
154 /* DDR Control Register width definitions  */
155 #define DDRCTL_EWDTH_16			2
156 #define DDRCTL_EWDTH_32			1
157 #define DDRCTL_EWDTH_64			0
158 
159 /* ECC status register definitions */
160 #define ECC_STAT_UECNT_MASK		0xF0000
161 #define ECC_STAT_UECNT_SHIFT		16
162 #define ECC_STAT_CECNT_MASK		0xF00
163 #define ECC_STAT_CECNT_SHIFT		8
164 #define ECC_STAT_BITNUM_MASK		0x7F
165 
166 /* DDR QOS Interrupt register definitions */
167 #define DDR_QOS_IRQ_STAT_OFST		0x20200
168 #define DDR_QOSUE_MASK			0x4
169 #define	DDR_QOSCE_MASK			0x2
170 #define	ECC_CE_UE_INTR_MASK		0x6
171 #define DDR_QOS_IRQ_EN_OFST		0x20208
172 #define DDR_QOS_IRQ_DB_OFST		0x2020C
173 
174 /* ECC Corrected Error Register Mask and Shifts*/
175 #define ECC_CEADDR0_RW_MASK		0x3FFFF
176 #define ECC_CEADDR0_RNK_MASK		BIT(24)
177 #define ECC_CEADDR1_BNKGRP_MASK		0x3000000
178 #define ECC_CEADDR1_BNKNR_MASK		0x70000
179 #define ECC_CEADDR1_BLKNR_MASK		0xFFF
180 #define ECC_CEADDR1_BNKGRP_SHIFT	24
181 #define ECC_CEADDR1_BNKNR_SHIFT		16
182 
183 /* ECC Poison register shifts */
184 #define ECC_POISON0_RANK_SHIFT		24
185 #define ECC_POISON0_RANK_MASK		BIT(24)
186 #define ECC_POISON0_COLUMN_SHIFT	0
187 #define ECC_POISON0_COLUMN_MASK		0xFFF
188 #define ECC_POISON1_BG_SHIFT		28
189 #define ECC_POISON1_BG_MASK		0x30000000
190 #define ECC_POISON1_BANKNR_SHIFT	24
191 #define ECC_POISON1_BANKNR_MASK		0x7000000
192 #define ECC_POISON1_ROW_SHIFT		0
193 #define ECC_POISON1_ROW_MASK		0x3FFFF
194 
195 /* DDR Memory type defines */
196 #define MEM_TYPE_DDR3			0x1
197 #define MEM_TYPE_LPDDR3			0x8
198 #define MEM_TYPE_DDR2			0x4
199 #define MEM_TYPE_DDR4			0x10
200 #define MEM_TYPE_LPDDR4			0x20
201 
202 /* DDRC Software control register */
203 #define DDRC_SWCTL			0x320
204 
205 /* DDRC ECC CE & UE poison mask */
206 #define ECC_CEPOISON_MASK		0x3
207 #define ECC_UEPOISON_MASK		0x1
208 
209 /* DDRC Device config masks */
210 #define DDRC_MSTR_CFG_MASK		0xC0000000
211 #define DDRC_MSTR_CFG_SHIFT		30
212 #define DDRC_MSTR_CFG_X4_MASK		0x0
213 #define DDRC_MSTR_CFG_X8_MASK		0x1
214 #define DDRC_MSTR_CFG_X16_MASK		0x2
215 #define DDRC_MSTR_CFG_X32_MASK		0x3
216 
217 #define DDR_MAX_ROW_SHIFT		18
218 #define DDR_MAX_COL_SHIFT		14
219 #define DDR_MAX_BANK_SHIFT		3
220 #define DDR_MAX_BANKGRP_SHIFT		2
221 
222 #define ROW_MAX_VAL_MASK		0xF
223 #define COL_MAX_VAL_MASK		0xF
224 #define BANK_MAX_VAL_MASK		0x1F
225 #define BANKGRP_MAX_VAL_MASK		0x1F
226 #define RANK_MAX_VAL_MASK		0x1F
227 
228 #define ROW_B0_BASE			6
229 #define ROW_B1_BASE			7
230 #define ROW_B2_BASE			8
231 #define ROW_B3_BASE			9
232 #define ROW_B4_BASE			10
233 #define ROW_B5_BASE			11
234 #define ROW_B6_BASE			12
235 #define ROW_B7_BASE			13
236 #define ROW_B8_BASE			14
237 #define ROW_B9_BASE			15
238 #define ROW_B10_BASE			16
239 #define ROW_B11_BASE			17
240 #define ROW_B12_BASE			18
241 #define ROW_B13_BASE			19
242 #define ROW_B14_BASE			20
243 #define ROW_B15_BASE			21
244 #define ROW_B16_BASE			22
245 #define ROW_B17_BASE			23
246 
247 #define COL_B2_BASE			2
248 #define COL_B3_BASE			3
249 #define COL_B4_BASE			4
250 #define COL_B5_BASE			5
251 #define COL_B6_BASE			6
252 #define COL_B7_BASE			7
253 #define COL_B8_BASE			8
254 #define COL_B9_BASE			9
255 #define COL_B10_BASE			10
256 #define COL_B11_BASE			11
257 #define COL_B12_BASE			12
258 #define COL_B13_BASE			13
259 
260 #define BANK_B0_BASE			2
261 #define BANK_B1_BASE			3
262 #define BANK_B2_BASE			4
263 
264 #define BANKGRP_B0_BASE			2
265 #define BANKGRP_B1_BASE			3
266 
267 #define RANK_B0_BASE			6
268 
269 /**
270  * struct ecc_error_info - ECC error log information.
271  * @row:	Row number.
272  * @col:	Column number.
273  * @bank:	Bank number.
274  * @bitpos:	Bit position.
275  * @data:	Data causing the error.
276  * @bankgrpnr:	Bank group number.
277  * @blknr:	Block number.
278  */
279 struct ecc_error_info {
280 	u32 row;
281 	u32 col;
282 	u32 bank;
283 	u32 bitpos;
284 	u32 data;
285 	u32 bankgrpnr;
286 	u32 blknr;
287 };
288 
289 /**
290  * struct synps_ecc_status - ECC status information to report.
291  * @ce_cnt:	Correctable error count.
292  * @ue_cnt:	Uncorrectable error count.
293  * @ceinfo:	Correctable error log information.
294  * @ueinfo:	Uncorrectable error log information.
295  */
296 struct synps_ecc_status {
297 	u32 ce_cnt;
298 	u32 ue_cnt;
299 	struct ecc_error_info ceinfo;
300 	struct ecc_error_info ueinfo;
301 };
302 
303 /**
304  * struct synps_edac_priv - DDR memory controller private instance data.
305  * @baseaddr:		Base address of the DDR controller.
306  * @message:		Buffer for framing the event specific info.
307  * @stat:		ECC status information.
308  * @p_data:		Platform data.
309  * @ce_cnt:		Correctable Error count.
310  * @ue_cnt:		Uncorrectable Error count.
311  * @poison_addr:	Data poison address.
312  * @row_shift:		Bit shifts for row bit.
313  * @col_shift:		Bit shifts for column bit.
314  * @bank_shift:		Bit shifts for bank bit.
315  * @bankgrp_shift:	Bit shifts for bank group bit.
316  * @rank_shift:		Bit shifts for rank bit.
317  */
318 struct synps_edac_priv {
319 	void __iomem *baseaddr;
320 	char message[SYNPS_EDAC_MSG_SIZE];
321 	struct synps_ecc_status stat;
322 	const struct synps_platform_data *p_data;
323 	u32 ce_cnt;
324 	u32 ue_cnt;
325 #ifdef CONFIG_EDAC_DEBUG
326 	ulong poison_addr;
327 	u32 row_shift[18];
328 	u32 col_shift[14];
329 	u32 bank_shift[3];
330 	u32 bankgrp_shift[2];
331 	u32 rank_shift[1];
332 #endif
333 };
334 
335 /**
336  * struct synps_platform_data -  synps platform data structure.
337  * @get_error_info:	Get EDAC error info.
338  * @get_mtype:		Get mtype.
339  * @get_dtype:		Get dtype.
340  * @get_ecc_state:	Get ECC state.
341  * @quirks:		To differentiate IPs.
342  */
343 struct synps_platform_data {
344 	int (*get_error_info)(struct synps_edac_priv *priv);
345 	enum mem_type (*get_mtype)(const void __iomem *base);
346 	enum dev_type (*get_dtype)(const void __iomem *base);
347 	bool (*get_ecc_state)(void __iomem *base);
348 	int quirks;
349 };
350 
351 /**
352  * zynq_get_error_info - Get the current ECC error info.
353  * @priv:	DDR memory controller private instance data.
354  *
355  * Return: one if there is no error, otherwise zero.
356  */
357 static int zynq_get_error_info(struct synps_edac_priv *priv)
358 {
359 	struct synps_ecc_status *p;
360 	u32 regval, clearval = 0;
361 	void __iomem *base;
362 
363 	base = priv->baseaddr;
364 	p = &priv->stat;
365 
366 	regval = readl(base + STAT_OFST);
367 	if (!regval)
368 		return 1;
369 
370 	p->ce_cnt = (regval & STAT_CECNT_MASK) >> STAT_CECNT_SHIFT;
371 	p->ue_cnt = regval & STAT_UECNT_MASK;
372 
373 	regval = readl(base + CE_LOG_OFST);
374 	if (!(p->ce_cnt && (regval & LOG_VALID)))
375 		goto ue_err;
376 
377 	p->ceinfo.bitpos = (regval & CE_LOG_BITPOS_MASK) >> CE_LOG_BITPOS_SHIFT;
378 	regval = readl(base + CE_ADDR_OFST);
379 	p->ceinfo.row = (regval & ADDR_ROW_MASK) >> ADDR_ROW_SHIFT;
380 	p->ceinfo.col = regval & ADDR_COL_MASK;
381 	p->ceinfo.bank = (regval & ADDR_BANK_MASK) >> ADDR_BANK_SHIFT;
382 	p->ceinfo.data = readl(base + CE_DATA_31_0_OFST);
383 	edac_dbg(3, "CE bit position: %d data: %d\n", p->ceinfo.bitpos,
384 		 p->ceinfo.data);
385 	clearval = ECC_CTRL_CLR_CE_ERR;
386 
387 ue_err:
388 	regval = readl(base + UE_LOG_OFST);
389 	if (!(p->ue_cnt && (regval & LOG_VALID)))
390 		goto out;
391 
392 	regval = readl(base + UE_ADDR_OFST);
393 	p->ueinfo.row = (regval & ADDR_ROW_MASK) >> ADDR_ROW_SHIFT;
394 	p->ueinfo.col = regval & ADDR_COL_MASK;
395 	p->ueinfo.bank = (regval & ADDR_BANK_MASK) >> ADDR_BANK_SHIFT;
396 	p->ueinfo.data = readl(base + UE_DATA_31_0_OFST);
397 	clearval |= ECC_CTRL_CLR_UE_ERR;
398 
399 out:
400 	writel(clearval, base + ECC_CTRL_OFST);
401 	writel(0x0, base + ECC_CTRL_OFST);
402 
403 	return 0;
404 }
405 
406 /**
407  * zynqmp_get_error_info - Get the current ECC error info.
408  * @priv:	DDR memory controller private instance data.
409  *
410  * Return: one if there is no error otherwise returns zero.
411  */
412 static int zynqmp_get_error_info(struct synps_edac_priv *priv)
413 {
414 	struct synps_ecc_status *p;
415 	u32 regval, clearval = 0;
416 	void __iomem *base;
417 
418 	base = priv->baseaddr;
419 	p = &priv->stat;
420 
421 	regval = readl(base + ECC_STAT_OFST);
422 	if (!regval)
423 		return 1;
424 
425 	p->ce_cnt = (regval & ECC_STAT_CECNT_MASK) >> ECC_STAT_CECNT_SHIFT;
426 	p->ue_cnt = (regval & ECC_STAT_UECNT_MASK) >> ECC_STAT_UECNT_SHIFT;
427 	if (!p->ce_cnt)
428 		goto ue_err;
429 
430 	p->ceinfo.bitpos = (regval & ECC_STAT_BITNUM_MASK);
431 
432 	regval = readl(base + ECC_CEADDR0_OFST);
433 	p->ceinfo.row = (regval & ECC_CEADDR0_RW_MASK);
434 	regval = readl(base + ECC_CEADDR1_OFST);
435 	p->ceinfo.bank = (regval & ECC_CEADDR1_BNKNR_MASK) >>
436 					ECC_CEADDR1_BNKNR_SHIFT;
437 	p->ceinfo.bankgrpnr = (regval &	ECC_CEADDR1_BNKGRP_MASK) >>
438 					ECC_CEADDR1_BNKGRP_SHIFT;
439 	p->ceinfo.blknr = (regval & ECC_CEADDR1_BLKNR_MASK);
440 	p->ceinfo.data = readl(base + ECC_CSYND0_OFST);
441 	edac_dbg(2, "ECCCSYN0: 0x%08X ECCCSYN1: 0x%08X ECCCSYN2: 0x%08X\n",
442 		 readl(base + ECC_CSYND0_OFST), readl(base + ECC_CSYND1_OFST),
443 		 readl(base + ECC_CSYND2_OFST));
444 ue_err:
445 	if (!p->ue_cnt)
446 		goto out;
447 
448 	regval = readl(base + ECC_UEADDR0_OFST);
449 	p->ueinfo.row = (regval & ECC_CEADDR0_RW_MASK);
450 	regval = readl(base + ECC_UEADDR1_OFST);
451 	p->ueinfo.bankgrpnr = (regval & ECC_CEADDR1_BNKGRP_MASK) >>
452 					ECC_CEADDR1_BNKGRP_SHIFT;
453 	p->ueinfo.bank = (regval & ECC_CEADDR1_BNKNR_MASK) >>
454 					ECC_CEADDR1_BNKNR_SHIFT;
455 	p->ueinfo.blknr = (regval & ECC_CEADDR1_BLKNR_MASK);
456 	p->ueinfo.data = readl(base + ECC_UESYND0_OFST);
457 out:
458 	clearval = ECC_CTRL_CLR_CE_ERR | ECC_CTRL_CLR_CE_ERRCNT;
459 	clearval |= ECC_CTRL_CLR_UE_ERR | ECC_CTRL_CLR_UE_ERRCNT;
460 	writel(clearval, base + ECC_CLR_OFST);
461 	writel(0x0, base + ECC_CLR_OFST);
462 
463 	return 0;
464 }
465 
466 /**
467  * handle_error - Handle Correctable and Uncorrectable errors.
468  * @mci:	EDAC memory controller instance.
469  * @p:		Synopsys ECC status structure.
470  *
471  * Handles ECC correctable and uncorrectable errors.
472  */
473 static void handle_error(struct mem_ctl_info *mci, struct synps_ecc_status *p)
474 {
475 	struct synps_edac_priv *priv = mci->pvt_info;
476 	struct ecc_error_info *pinf;
477 
478 	if (p->ce_cnt) {
479 		pinf = &p->ceinfo;
480 		if (!priv->p_data->quirks) {
481 			snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
482 				 "DDR ECC error type:%s Row %d Bank %d Col %d ",
483 				  "CE", pinf->row, pinf->bank, pinf->col);
484 			snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
485 				 "Bit Position: %d Data: 0x%08x\n",
486 				 pinf->bitpos, pinf->data);
487 		} else {
488 			snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
489 				 "DDR ECC error type:%s Row %d Bank %d Col %d ",
490 				  "CE", pinf->row, pinf->bank, pinf->col);
491 			snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
492 				 "BankGroup Number %d Block Number %d ",
493 				 pinf->bankgrpnr, pinf->blknr);
494 			snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
495 				 "Bit Position: %d Data: 0x%08x\n",
496 				 pinf->bitpos, pinf->data);
497 		}
498 
499 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
500 				     p->ce_cnt, 0, 0, 0, 0, 0, -1,
501 				     priv->message, "");
502 	}
503 
504 	if (p->ue_cnt) {
505 		pinf = &p->ueinfo;
506 		if (!priv->p_data->quirks) {
507 			snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
508 				 "DDR ECC error type :%s Row %d Bank %d Col %d ",
509 				"UE", pinf->row, pinf->bank, pinf->col);
510 		} else {
511 			snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
512 				 "DDR ECC error type :%s Row %d Bank %d Col %d ",
513 				 "UE", pinf->row, pinf->bank, pinf->col);
514 			snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
515 				 "BankGroup Number %d Block Number %d",
516 				 pinf->bankgrpnr, pinf->blknr);
517 		}
518 
519 		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
520 				     p->ue_cnt, 0, 0, 0, 0, 0, -1,
521 				     priv->message, "");
522 	}
523 
524 	memset(p, 0, sizeof(*p));
525 }
526 
527 /**
528  * intr_handler - Interrupt Handler for ECC interrupts.
529  * @irq:        IRQ number.
530  * @dev_id:     Device ID.
531  *
532  * Return: IRQ_NONE, if interrupt not set or IRQ_HANDLED otherwise.
533  */
534 static irqreturn_t intr_handler(int irq, void *dev_id)
535 {
536 	const struct synps_platform_data *p_data;
537 	struct mem_ctl_info *mci = dev_id;
538 	struct synps_edac_priv *priv;
539 	int status, regval;
540 
541 	priv = mci->pvt_info;
542 	p_data = priv->p_data;
543 
544 	regval = readl(priv->baseaddr + DDR_QOS_IRQ_STAT_OFST);
545 	regval &= (DDR_QOSCE_MASK | DDR_QOSUE_MASK);
546 	if (!(regval & ECC_CE_UE_INTR_MASK))
547 		return IRQ_NONE;
548 
549 	status = p_data->get_error_info(priv);
550 	if (status)
551 		return IRQ_NONE;
552 
553 	priv->ce_cnt += priv->stat.ce_cnt;
554 	priv->ue_cnt += priv->stat.ue_cnt;
555 	handle_error(mci, &priv->stat);
556 
557 	edac_dbg(3, "Total error count CE %d UE %d\n",
558 		 priv->ce_cnt, priv->ue_cnt);
559 	writel(regval, priv->baseaddr + DDR_QOS_IRQ_STAT_OFST);
560 	return IRQ_HANDLED;
561 }
562 
563 /**
564  * check_errors - Check controller for ECC errors.
565  * @mci:	EDAC memory controller instance.
566  *
567  * Check and post ECC errors. Called by the polling thread.
568  */
569 static void check_errors(struct mem_ctl_info *mci)
570 {
571 	const struct synps_platform_data *p_data;
572 	struct synps_edac_priv *priv;
573 	int status;
574 
575 	priv = mci->pvt_info;
576 	p_data = priv->p_data;
577 
578 	status = p_data->get_error_info(priv);
579 	if (status)
580 		return;
581 
582 	priv->ce_cnt += priv->stat.ce_cnt;
583 	priv->ue_cnt += priv->stat.ue_cnt;
584 	handle_error(mci, &priv->stat);
585 
586 	edac_dbg(3, "Total error count CE %d UE %d\n",
587 		 priv->ce_cnt, priv->ue_cnt);
588 }
589 
590 /**
591  * zynq_get_dtype - Return the controller memory width.
592  * @base:	DDR memory controller base address.
593  *
594  * Get the EDAC device type width appropriate for the current controller
595  * configuration.
596  *
597  * Return: a device type width enumeration.
598  */
599 static enum dev_type zynq_get_dtype(const void __iomem *base)
600 {
601 	enum dev_type dt;
602 	u32 width;
603 
604 	width = readl(base + CTRL_OFST);
605 	width = (width & CTRL_BW_MASK) >> CTRL_BW_SHIFT;
606 
607 	switch (width) {
608 	case DDRCTL_WDTH_16:
609 		dt = DEV_X2;
610 		break;
611 	case DDRCTL_WDTH_32:
612 		dt = DEV_X4;
613 		break;
614 	default:
615 		dt = DEV_UNKNOWN;
616 	}
617 
618 	return dt;
619 }
620 
621 /**
622  * zynqmp_get_dtype - Return the controller memory width.
623  * @base:	DDR memory controller base address.
624  *
625  * Get the EDAC device type width appropriate for the current controller
626  * configuration.
627  *
628  * Return: a device type width enumeration.
629  */
630 static enum dev_type zynqmp_get_dtype(const void __iomem *base)
631 {
632 	enum dev_type dt;
633 	u32 width;
634 
635 	width = readl(base + CTRL_OFST);
636 	width = (width & ECC_CTRL_BUSWIDTH_MASK) >> ECC_CTRL_BUSWIDTH_SHIFT;
637 	switch (width) {
638 	case DDRCTL_EWDTH_16:
639 		dt = DEV_X2;
640 		break;
641 	case DDRCTL_EWDTH_32:
642 		dt = DEV_X4;
643 		break;
644 	case DDRCTL_EWDTH_64:
645 		dt = DEV_X8;
646 		break;
647 	default:
648 		dt = DEV_UNKNOWN;
649 	}
650 
651 	return dt;
652 }
653 
654 /**
655  * zynq_get_ecc_state - Return the controller ECC enable/disable status.
656  * @base:	DDR memory controller base address.
657  *
658  * Get the ECC enable/disable status of the controller.
659  *
660  * Return: true if enabled, otherwise false.
661  */
662 static bool zynq_get_ecc_state(void __iomem *base)
663 {
664 	enum dev_type dt;
665 	u32 ecctype;
666 
667 	dt = zynq_get_dtype(base);
668 	if (dt == DEV_UNKNOWN)
669 		return false;
670 
671 	ecctype = readl(base + SCRUB_OFST) & SCRUB_MODE_MASK;
672 	if ((ecctype == SCRUB_MODE_SECDED) && (dt == DEV_X2))
673 		return true;
674 
675 	return false;
676 }
677 
678 /**
679  * zynqmp_get_ecc_state - Return the controller ECC enable/disable status.
680  * @base:	DDR memory controller base address.
681  *
682  * Get the ECC enable/disable status for the controller.
683  *
684  * Return: a ECC status boolean i.e true/false - enabled/disabled.
685  */
686 static bool zynqmp_get_ecc_state(void __iomem *base)
687 {
688 	enum dev_type dt;
689 	u32 ecctype;
690 
691 	dt = zynqmp_get_dtype(base);
692 	if (dt == DEV_UNKNOWN)
693 		return false;
694 
695 	ecctype = readl(base + ECC_CFG0_OFST) & SCRUB_MODE_MASK;
696 	if ((ecctype == SCRUB_MODE_SECDED) &&
697 	    ((dt == DEV_X2) || (dt == DEV_X4) || (dt == DEV_X8)))
698 		return true;
699 
700 	return false;
701 }
702 
703 /**
704  * get_memsize - Read the size of the attached memory device.
705  *
706  * Return: the memory size in bytes.
707  */
708 static u32 get_memsize(void)
709 {
710 	struct sysinfo inf;
711 
712 	si_meminfo(&inf);
713 
714 	return inf.totalram * inf.mem_unit;
715 }
716 
717 /**
718  * zynq_get_mtype - Return the controller memory type.
719  * @base:	Synopsys ECC status structure.
720  *
721  * Get the EDAC memory type appropriate for the current controller
722  * configuration.
723  *
724  * Return: a memory type enumeration.
725  */
726 static enum mem_type zynq_get_mtype(const void __iomem *base)
727 {
728 	enum mem_type mt;
729 	u32 memtype;
730 
731 	memtype = readl(base + T_ZQ_OFST);
732 
733 	if (memtype & T_ZQ_DDRMODE_MASK)
734 		mt = MEM_DDR3;
735 	else
736 		mt = MEM_DDR2;
737 
738 	return mt;
739 }
740 
741 /**
742  * zynqmp_get_mtype - Returns controller memory type.
743  * @base:	Synopsys ECC status structure.
744  *
745  * Get the EDAC memory type appropriate for the current controller
746  * configuration.
747  *
748  * Return: a memory type enumeration.
749  */
750 static enum mem_type zynqmp_get_mtype(const void __iomem *base)
751 {
752 	enum mem_type mt;
753 	u32 memtype;
754 
755 	memtype = readl(base + CTRL_OFST);
756 
757 	if ((memtype & MEM_TYPE_DDR3) || (memtype & MEM_TYPE_LPDDR3))
758 		mt = MEM_DDR3;
759 	else if (memtype & MEM_TYPE_DDR2)
760 		mt = MEM_RDDR2;
761 	else if ((memtype & MEM_TYPE_LPDDR4) || (memtype & MEM_TYPE_DDR4))
762 		mt = MEM_DDR4;
763 	else
764 		mt = MEM_EMPTY;
765 
766 	return mt;
767 }
768 
769 /**
770  * init_csrows - Initialize the csrow data.
771  * @mci:	EDAC memory controller instance.
772  *
773  * Initialize the chip select rows associated with the EDAC memory
774  * controller instance.
775  */
776 static void init_csrows(struct mem_ctl_info *mci)
777 {
778 	struct synps_edac_priv *priv = mci->pvt_info;
779 	const struct synps_platform_data *p_data;
780 	struct csrow_info *csi;
781 	struct dimm_info *dimm;
782 	u32 size, row;
783 	int j;
784 
785 	p_data = priv->p_data;
786 
787 	for (row = 0; row < mci->nr_csrows; row++) {
788 		csi = mci->csrows[row];
789 		size = get_memsize();
790 
791 		for (j = 0; j < csi->nr_channels; j++) {
792 			dimm		= csi->channels[j]->dimm;
793 			dimm->edac_mode	= EDAC_FLAG_SECDED;
794 			dimm->mtype	= p_data->get_mtype(priv->baseaddr);
795 			dimm->nr_pages	= (size >> PAGE_SHIFT) / csi->nr_channels;
796 			dimm->grain	= SYNPS_EDAC_ERR_GRAIN;
797 			dimm->dtype	= p_data->get_dtype(priv->baseaddr);
798 		}
799 	}
800 }
801 
802 /**
803  * mc_init - Initialize one driver instance.
804  * @mci:	EDAC memory controller instance.
805  * @pdev:	platform device.
806  *
807  * Perform initialization of the EDAC memory controller instance and
808  * related driver-private data associated with the memory controller the
809  * instance is bound to.
810  */
811 static void mc_init(struct mem_ctl_info *mci, struct platform_device *pdev)
812 {
813 	struct synps_edac_priv *priv;
814 
815 	mci->pdev = &pdev->dev;
816 	priv = mci->pvt_info;
817 	platform_set_drvdata(pdev, mci);
818 
819 	/* Initialize controller capabilities and configuration */
820 	mci->mtype_cap = MEM_FLAG_DDR3 | MEM_FLAG_DDR2;
821 	mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
822 	mci->scrub_cap = SCRUB_HW_SRC;
823 	mci->scrub_mode = SCRUB_NONE;
824 
825 	mci->edac_cap = EDAC_FLAG_SECDED;
826 	mci->ctl_name = "synps_ddr_controller";
827 	mci->dev_name = SYNPS_EDAC_MOD_STRING;
828 	mci->mod_name = SYNPS_EDAC_MOD_VER;
829 
830 	if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
831 		edac_op_state = EDAC_OPSTATE_INT;
832 	} else {
833 		edac_op_state = EDAC_OPSTATE_POLL;
834 		mci->edac_check = check_errors;
835 	}
836 
837 	mci->ctl_page_to_phys = NULL;
838 
839 	init_csrows(mci);
840 }
841 
842 static void enable_intr(struct synps_edac_priv *priv)
843 {
844 	/* Enable UE/CE Interrupts */
845 	writel(DDR_QOSUE_MASK | DDR_QOSCE_MASK,
846 			priv->baseaddr + DDR_QOS_IRQ_EN_OFST);
847 }
848 
849 static void disable_intr(struct synps_edac_priv *priv)
850 {
851 	/* Disable UE/CE Interrupts */
852 	writel(DDR_QOSUE_MASK | DDR_QOSCE_MASK,
853 			priv->baseaddr + DDR_QOS_IRQ_DB_OFST);
854 }
855 
856 static int setup_irq(struct mem_ctl_info *mci,
857 		     struct platform_device *pdev)
858 {
859 	struct synps_edac_priv *priv = mci->pvt_info;
860 	int ret, irq;
861 
862 	irq = platform_get_irq(pdev, 0);
863 	if (irq < 0) {
864 		edac_printk(KERN_ERR, EDAC_MC,
865 			    "No IRQ %d in DT\n", irq);
866 		return irq;
867 	}
868 
869 	ret = devm_request_irq(&pdev->dev, irq, intr_handler,
870 			       0, dev_name(&pdev->dev), mci);
871 	if (ret < 0) {
872 		edac_printk(KERN_ERR, EDAC_MC, "Failed to request IRQ\n");
873 		return ret;
874 	}
875 
876 	enable_intr(priv);
877 
878 	return 0;
879 }
880 
881 static const struct synps_platform_data zynq_edac_def = {
882 	.get_error_info	= zynq_get_error_info,
883 	.get_mtype	= zynq_get_mtype,
884 	.get_dtype	= zynq_get_dtype,
885 	.get_ecc_state	= zynq_get_ecc_state,
886 	.quirks		= 0,
887 };
888 
889 static const struct synps_platform_data zynqmp_edac_def = {
890 	.get_error_info	= zynqmp_get_error_info,
891 	.get_mtype	= zynqmp_get_mtype,
892 	.get_dtype	= zynqmp_get_dtype,
893 	.get_ecc_state	= zynqmp_get_ecc_state,
894 	.quirks         = (DDR_ECC_INTR_SUPPORT
895 #ifdef CONFIG_EDAC_DEBUG
896 			  | DDR_ECC_DATA_POISON_SUPPORT
897 #endif
898 			  ),
899 };
900 
901 static const struct of_device_id synps_edac_match[] = {
902 	{
903 		.compatible = "xlnx,zynq-ddrc-a05",
904 		.data = (void *)&zynq_edac_def
905 	},
906 	{
907 		.compatible = "xlnx,zynqmp-ddrc-2.40a",
908 		.data = (void *)&zynqmp_edac_def
909 	},
910 	{
911 		/* end of table */
912 	}
913 };
914 
915 MODULE_DEVICE_TABLE(of, synps_edac_match);
916 
917 #ifdef CONFIG_EDAC_DEBUG
918 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
919 
920 /**
921  * ddr_poison_setup -	Update poison registers.
922  * @priv:		DDR memory controller private instance data.
923  *
924  * Update poison registers as per DDR mapping.
925  * Return: none.
926  */
927 static void ddr_poison_setup(struct synps_edac_priv *priv)
928 {
929 	int col = 0, row = 0, bank = 0, bankgrp = 0, rank = 0, regval;
930 	int index;
931 	ulong hif_addr = 0;
932 
933 	hif_addr = priv->poison_addr >> 3;
934 
935 	for (index = 0; index < DDR_MAX_ROW_SHIFT; index++) {
936 		if (priv->row_shift[index])
937 			row |= (((hif_addr >> priv->row_shift[index]) &
938 						BIT(0)) << index);
939 		else
940 			break;
941 	}
942 
943 	for (index = 0; index < DDR_MAX_COL_SHIFT; index++) {
944 		if (priv->col_shift[index] || index < 3)
945 			col |= (((hif_addr >> priv->col_shift[index]) &
946 						BIT(0)) << index);
947 		else
948 			break;
949 	}
950 
951 	for (index = 0; index < DDR_MAX_BANK_SHIFT; index++) {
952 		if (priv->bank_shift[index])
953 			bank |= (((hif_addr >> priv->bank_shift[index]) &
954 						BIT(0)) << index);
955 		else
956 			break;
957 	}
958 
959 	for (index = 0; index < DDR_MAX_BANKGRP_SHIFT; index++) {
960 		if (priv->bankgrp_shift[index])
961 			bankgrp |= (((hif_addr >> priv->bankgrp_shift[index])
962 						& BIT(0)) << index);
963 		else
964 			break;
965 	}
966 
967 	if (priv->rank_shift[0])
968 		rank = (hif_addr >> priv->rank_shift[0]) & BIT(0);
969 
970 	regval = (rank << ECC_POISON0_RANK_SHIFT) & ECC_POISON0_RANK_MASK;
971 	regval |= (col << ECC_POISON0_COLUMN_SHIFT) & ECC_POISON0_COLUMN_MASK;
972 	writel(regval, priv->baseaddr + ECC_POISON0_OFST);
973 
974 	regval = (bankgrp << ECC_POISON1_BG_SHIFT) & ECC_POISON1_BG_MASK;
975 	regval |= (bank << ECC_POISON1_BANKNR_SHIFT) & ECC_POISON1_BANKNR_MASK;
976 	regval |= (row << ECC_POISON1_ROW_SHIFT) & ECC_POISON1_ROW_MASK;
977 	writel(regval, priv->baseaddr + ECC_POISON1_OFST);
978 }
979 
980 static ssize_t inject_data_error_show(struct device *dev,
981 				      struct device_attribute *mattr,
982 				      char *data)
983 {
984 	struct mem_ctl_info *mci = to_mci(dev);
985 	struct synps_edac_priv *priv = mci->pvt_info;
986 
987 	return sprintf(data, "Poison0 Addr: 0x%08x\n\rPoison1 Addr: 0x%08x\n\r"
988 			"Error injection Address: 0x%lx\n\r",
989 			readl(priv->baseaddr + ECC_POISON0_OFST),
990 			readl(priv->baseaddr + ECC_POISON1_OFST),
991 			priv->poison_addr);
992 }
993 
994 static ssize_t inject_data_error_store(struct device *dev,
995 				       struct device_attribute *mattr,
996 				       const char *data, size_t count)
997 {
998 	struct mem_ctl_info *mci = to_mci(dev);
999 	struct synps_edac_priv *priv = mci->pvt_info;
1000 
1001 	if (kstrtoul(data, 0, &priv->poison_addr))
1002 		return -EINVAL;
1003 
1004 	ddr_poison_setup(priv);
1005 
1006 	return count;
1007 }
1008 
1009 static ssize_t inject_data_poison_show(struct device *dev,
1010 				       struct device_attribute *mattr,
1011 				       char *data)
1012 {
1013 	struct mem_ctl_info *mci = to_mci(dev);
1014 	struct synps_edac_priv *priv = mci->pvt_info;
1015 
1016 	return sprintf(data, "Data Poisoning: %s\n\r",
1017 			(((readl(priv->baseaddr + ECC_CFG1_OFST)) & 0x3) == 0x3)
1018 			? ("Correctable Error") : ("UnCorrectable Error"));
1019 }
1020 
1021 static ssize_t inject_data_poison_store(struct device *dev,
1022 					struct device_attribute *mattr,
1023 					const char *data, size_t count)
1024 {
1025 	struct mem_ctl_info *mci = to_mci(dev);
1026 	struct synps_edac_priv *priv = mci->pvt_info;
1027 
1028 	writel(0, priv->baseaddr + DDRC_SWCTL);
1029 	if (strncmp(data, "CE", 2) == 0)
1030 		writel(ECC_CEPOISON_MASK, priv->baseaddr + ECC_CFG1_OFST);
1031 	else
1032 		writel(ECC_UEPOISON_MASK, priv->baseaddr + ECC_CFG1_OFST);
1033 	writel(1, priv->baseaddr + DDRC_SWCTL);
1034 
1035 	return count;
1036 }
1037 
1038 static DEVICE_ATTR_RW(inject_data_error);
1039 static DEVICE_ATTR_RW(inject_data_poison);
1040 
1041 static int edac_create_sysfs_attributes(struct mem_ctl_info *mci)
1042 {
1043 	int rc;
1044 
1045 	rc = device_create_file(&mci->dev, &dev_attr_inject_data_error);
1046 	if (rc < 0)
1047 		return rc;
1048 	rc = device_create_file(&mci->dev, &dev_attr_inject_data_poison);
1049 	if (rc < 0)
1050 		return rc;
1051 	return 0;
1052 }
1053 
1054 static void edac_remove_sysfs_attributes(struct mem_ctl_info *mci)
1055 {
1056 	device_remove_file(&mci->dev, &dev_attr_inject_data_error);
1057 	device_remove_file(&mci->dev, &dev_attr_inject_data_poison);
1058 }
1059 
1060 static void setup_row_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1061 {
1062 	u32 addrmap_row_b2_10;
1063 	int index;
1064 
1065 	priv->row_shift[0] = (addrmap[5] & ROW_MAX_VAL_MASK) + ROW_B0_BASE;
1066 	priv->row_shift[1] = ((addrmap[5] >> 8) &
1067 			ROW_MAX_VAL_MASK) + ROW_B1_BASE;
1068 
1069 	addrmap_row_b2_10 = (addrmap[5] >> 16) & ROW_MAX_VAL_MASK;
1070 	if (addrmap_row_b2_10 != ROW_MAX_VAL_MASK) {
1071 		for (index = 2; index < 11; index++)
1072 			priv->row_shift[index] = addrmap_row_b2_10 +
1073 				index + ROW_B0_BASE;
1074 
1075 	} else {
1076 		priv->row_shift[2] = (addrmap[9] &
1077 				ROW_MAX_VAL_MASK) + ROW_B2_BASE;
1078 		priv->row_shift[3] = ((addrmap[9] >> 8) &
1079 				ROW_MAX_VAL_MASK) + ROW_B3_BASE;
1080 		priv->row_shift[4] = ((addrmap[9] >> 16) &
1081 				ROW_MAX_VAL_MASK) + ROW_B4_BASE;
1082 		priv->row_shift[5] = ((addrmap[9] >> 24) &
1083 				ROW_MAX_VAL_MASK) + ROW_B5_BASE;
1084 		priv->row_shift[6] = (addrmap[10] &
1085 				ROW_MAX_VAL_MASK) + ROW_B6_BASE;
1086 		priv->row_shift[7] = ((addrmap[10] >> 8) &
1087 				ROW_MAX_VAL_MASK) + ROW_B7_BASE;
1088 		priv->row_shift[8] = ((addrmap[10] >> 16) &
1089 				ROW_MAX_VAL_MASK) + ROW_B8_BASE;
1090 		priv->row_shift[9] = ((addrmap[10] >> 24) &
1091 				ROW_MAX_VAL_MASK) + ROW_B9_BASE;
1092 		priv->row_shift[10] = (addrmap[11] &
1093 				ROW_MAX_VAL_MASK) + ROW_B10_BASE;
1094 	}
1095 
1096 	priv->row_shift[11] = (((addrmap[5] >> 24) & ROW_MAX_VAL_MASK) ==
1097 				ROW_MAX_VAL_MASK) ? 0 : (((addrmap[5] >> 24) &
1098 				ROW_MAX_VAL_MASK) + ROW_B11_BASE);
1099 	priv->row_shift[12] = ((addrmap[6] & ROW_MAX_VAL_MASK) ==
1100 				ROW_MAX_VAL_MASK) ? 0 : ((addrmap[6] &
1101 				ROW_MAX_VAL_MASK) + ROW_B12_BASE);
1102 	priv->row_shift[13] = (((addrmap[6] >> 8) & ROW_MAX_VAL_MASK) ==
1103 				ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 8) &
1104 				ROW_MAX_VAL_MASK) + ROW_B13_BASE);
1105 	priv->row_shift[14] = (((addrmap[6] >> 16) & ROW_MAX_VAL_MASK) ==
1106 				ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 16) &
1107 				ROW_MAX_VAL_MASK) + ROW_B14_BASE);
1108 	priv->row_shift[15] = (((addrmap[6] >> 24) & ROW_MAX_VAL_MASK) ==
1109 				ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 24) &
1110 				ROW_MAX_VAL_MASK) + ROW_B15_BASE);
1111 	priv->row_shift[16] = ((addrmap[7] & ROW_MAX_VAL_MASK) ==
1112 				ROW_MAX_VAL_MASK) ? 0 : ((addrmap[7] &
1113 				ROW_MAX_VAL_MASK) + ROW_B16_BASE);
1114 	priv->row_shift[17] = (((addrmap[7] >> 8) & ROW_MAX_VAL_MASK) ==
1115 				ROW_MAX_VAL_MASK) ? 0 : (((addrmap[7] >> 8) &
1116 				ROW_MAX_VAL_MASK) + ROW_B17_BASE);
1117 }
1118 
1119 static void setup_column_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1120 {
1121 	u32 width, memtype;
1122 	int index;
1123 
1124 	memtype = readl(priv->baseaddr + CTRL_OFST);
1125 	width = (memtype & ECC_CTRL_BUSWIDTH_MASK) >> ECC_CTRL_BUSWIDTH_SHIFT;
1126 
1127 	priv->col_shift[0] = 0;
1128 	priv->col_shift[1] = 1;
1129 	priv->col_shift[2] = (addrmap[2] & COL_MAX_VAL_MASK) + COL_B2_BASE;
1130 	priv->col_shift[3] = ((addrmap[2] >> 8) &
1131 			COL_MAX_VAL_MASK) + COL_B3_BASE;
1132 	priv->col_shift[4] = (((addrmap[2] >> 16) & COL_MAX_VAL_MASK) ==
1133 			COL_MAX_VAL_MASK) ? 0 : (((addrmap[2] >> 16) &
1134 					COL_MAX_VAL_MASK) + COL_B4_BASE);
1135 	priv->col_shift[5] = (((addrmap[2] >> 24) & COL_MAX_VAL_MASK) ==
1136 			COL_MAX_VAL_MASK) ? 0 : (((addrmap[2] >> 24) &
1137 					COL_MAX_VAL_MASK) + COL_B5_BASE);
1138 	priv->col_shift[6] = ((addrmap[3] & COL_MAX_VAL_MASK) ==
1139 			COL_MAX_VAL_MASK) ? 0 : ((addrmap[3] &
1140 					COL_MAX_VAL_MASK) + COL_B6_BASE);
1141 	priv->col_shift[7] = (((addrmap[3] >> 8) & COL_MAX_VAL_MASK) ==
1142 			COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 8) &
1143 					COL_MAX_VAL_MASK) + COL_B7_BASE);
1144 	priv->col_shift[8] = (((addrmap[3] >> 16) & COL_MAX_VAL_MASK) ==
1145 			COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 16) &
1146 					COL_MAX_VAL_MASK) + COL_B8_BASE);
1147 	priv->col_shift[9] = (((addrmap[3] >> 24) & COL_MAX_VAL_MASK) ==
1148 			COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 24) &
1149 					COL_MAX_VAL_MASK) + COL_B9_BASE);
1150 	if (width == DDRCTL_EWDTH_64) {
1151 		if (memtype & MEM_TYPE_LPDDR3) {
1152 			priv->col_shift[10] = ((addrmap[4] &
1153 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1154 				((addrmap[4] & COL_MAX_VAL_MASK) +
1155 				 COL_B10_BASE);
1156 			priv->col_shift[11] = (((addrmap[4] >> 8) &
1157 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1158 				(((addrmap[4] >> 8) & COL_MAX_VAL_MASK) +
1159 				 COL_B11_BASE);
1160 		} else {
1161 			priv->col_shift[11] = ((addrmap[4] &
1162 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1163 				((addrmap[4] & COL_MAX_VAL_MASK) +
1164 				 COL_B10_BASE);
1165 			priv->col_shift[13] = (((addrmap[4] >> 8) &
1166 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1167 				(((addrmap[4] >> 8) & COL_MAX_VAL_MASK) +
1168 				 COL_B11_BASE);
1169 		}
1170 	} else if (width == DDRCTL_EWDTH_32) {
1171 		if (memtype & MEM_TYPE_LPDDR3) {
1172 			priv->col_shift[10] = (((addrmap[3] >> 24) &
1173 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1174 				(((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
1175 				 COL_B9_BASE);
1176 			priv->col_shift[11] = ((addrmap[4] &
1177 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1178 				((addrmap[4] & COL_MAX_VAL_MASK) +
1179 				 COL_B10_BASE);
1180 		} else {
1181 			priv->col_shift[11] = (((addrmap[3] >> 24) &
1182 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1183 				(((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
1184 				 COL_B9_BASE);
1185 			priv->col_shift[13] = ((addrmap[4] &
1186 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1187 				((addrmap[4] & COL_MAX_VAL_MASK) +
1188 				 COL_B10_BASE);
1189 		}
1190 	} else {
1191 		if (memtype & MEM_TYPE_LPDDR3) {
1192 			priv->col_shift[10] = (((addrmap[3] >> 16) &
1193 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1194 				(((addrmap[3] >> 16) & COL_MAX_VAL_MASK) +
1195 				 COL_B8_BASE);
1196 			priv->col_shift[11] = (((addrmap[3] >> 24) &
1197 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1198 				(((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
1199 				 COL_B9_BASE);
1200 			priv->col_shift[13] = ((addrmap[4] &
1201 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1202 				((addrmap[4] & COL_MAX_VAL_MASK) +
1203 				 COL_B10_BASE);
1204 		} else {
1205 			priv->col_shift[11] = (((addrmap[3] >> 16) &
1206 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1207 				(((addrmap[3] >> 16) & COL_MAX_VAL_MASK) +
1208 				 COL_B8_BASE);
1209 			priv->col_shift[13] = (((addrmap[3] >> 24) &
1210 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1211 				(((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
1212 				 COL_B9_BASE);
1213 		}
1214 	}
1215 
1216 	if (width) {
1217 		for (index = 9; index > width; index--) {
1218 			priv->col_shift[index] = priv->col_shift[index - width];
1219 			priv->col_shift[index - width] = 0;
1220 		}
1221 	}
1222 
1223 }
1224 
1225 static void setup_bank_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1226 {
1227 	priv->bank_shift[0] = (addrmap[1] & BANK_MAX_VAL_MASK) + BANK_B0_BASE;
1228 	priv->bank_shift[1] = ((addrmap[1] >> 8) &
1229 				BANK_MAX_VAL_MASK) + BANK_B1_BASE;
1230 	priv->bank_shift[2] = (((addrmap[1] >> 16) &
1231 				BANK_MAX_VAL_MASK) == BANK_MAX_VAL_MASK) ? 0 :
1232 				(((addrmap[1] >> 16) & BANK_MAX_VAL_MASK) +
1233 				 BANK_B2_BASE);
1234 
1235 }
1236 
1237 static void setup_bg_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1238 {
1239 	priv->bankgrp_shift[0] = (addrmap[8] &
1240 				BANKGRP_MAX_VAL_MASK) + BANKGRP_B0_BASE;
1241 	priv->bankgrp_shift[1] = (((addrmap[8] >> 8) & BANKGRP_MAX_VAL_MASK) ==
1242 				BANKGRP_MAX_VAL_MASK) ? 0 : (((addrmap[8] >> 8)
1243 				& BANKGRP_MAX_VAL_MASK) + BANKGRP_B1_BASE);
1244 
1245 }
1246 
1247 static void setup_rank_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1248 {
1249 	priv->rank_shift[0] = ((addrmap[0] & RANK_MAX_VAL_MASK) ==
1250 				RANK_MAX_VAL_MASK) ? 0 : ((addrmap[0] &
1251 				RANK_MAX_VAL_MASK) + RANK_B0_BASE);
1252 }
1253 
1254 /**
1255  * setup_address_map -	Set Address Map by querying ADDRMAP registers.
1256  * @priv:		DDR memory controller private instance data.
1257  *
1258  * Set Address Map by querying ADDRMAP registers.
1259  *
1260  * Return: none.
1261  */
1262 static void setup_address_map(struct synps_edac_priv *priv)
1263 {
1264 	u32 addrmap[12];
1265 	int index;
1266 
1267 	for (index = 0; index < 12; index++) {
1268 		u32 addrmap_offset;
1269 
1270 		addrmap_offset = ECC_ADDRMAP0_OFFSET + (index * 4);
1271 		addrmap[index] = readl(priv->baseaddr + addrmap_offset);
1272 	}
1273 
1274 	setup_row_address_map(priv, addrmap);
1275 
1276 	setup_column_address_map(priv, addrmap);
1277 
1278 	setup_bank_address_map(priv, addrmap);
1279 
1280 	setup_bg_address_map(priv, addrmap);
1281 
1282 	setup_rank_address_map(priv, addrmap);
1283 }
1284 #endif /* CONFIG_EDAC_DEBUG */
1285 
1286 /**
1287  * mc_probe - Check controller and bind driver.
1288  * @pdev:	platform device.
1289  *
1290  * Probe a specific controller instance for binding with the driver.
1291  *
1292  * Return: 0 if the controller instance was successfully bound to the
1293  * driver; otherwise, < 0 on error.
1294  */
1295 static int mc_probe(struct platform_device *pdev)
1296 {
1297 	const struct synps_platform_data *p_data;
1298 	struct edac_mc_layer layers[2];
1299 	struct synps_edac_priv *priv;
1300 	struct mem_ctl_info *mci;
1301 	void __iomem *baseaddr;
1302 	struct resource *res;
1303 	int rc;
1304 
1305 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1306 	baseaddr = devm_ioremap_resource(&pdev->dev, res);
1307 	if (IS_ERR(baseaddr))
1308 		return PTR_ERR(baseaddr);
1309 
1310 	p_data = of_device_get_match_data(&pdev->dev);
1311 	if (!p_data)
1312 		return -ENODEV;
1313 
1314 	if (!p_data->get_ecc_state(baseaddr)) {
1315 		edac_printk(KERN_INFO, EDAC_MC, "ECC not enabled\n");
1316 		return -ENXIO;
1317 	}
1318 
1319 	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
1320 	layers[0].size = SYNPS_EDAC_NR_CSROWS;
1321 	layers[0].is_virt_csrow = true;
1322 	layers[1].type = EDAC_MC_LAYER_CHANNEL;
1323 	layers[1].size = SYNPS_EDAC_NR_CHANS;
1324 	layers[1].is_virt_csrow = false;
1325 
1326 	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers,
1327 			    sizeof(struct synps_edac_priv));
1328 	if (!mci) {
1329 		edac_printk(KERN_ERR, EDAC_MC,
1330 			    "Failed memory allocation for mc instance\n");
1331 		return -ENOMEM;
1332 	}
1333 
1334 	priv = mci->pvt_info;
1335 	priv->baseaddr = baseaddr;
1336 	priv->p_data = p_data;
1337 
1338 	mc_init(mci, pdev);
1339 
1340 	if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
1341 		rc = setup_irq(mci, pdev);
1342 		if (rc)
1343 			goto free_edac_mc;
1344 	}
1345 
1346 	rc = edac_mc_add_mc(mci);
1347 	if (rc) {
1348 		edac_printk(KERN_ERR, EDAC_MC,
1349 			    "Failed to register with EDAC core\n");
1350 		goto free_edac_mc;
1351 	}
1352 
1353 #ifdef CONFIG_EDAC_DEBUG
1354 	if (priv->p_data->quirks & DDR_ECC_DATA_POISON_SUPPORT) {
1355 		if (edac_create_sysfs_attributes(mci)) {
1356 			edac_printk(KERN_ERR, EDAC_MC,
1357 					"Failed to create sysfs entries\n");
1358 			goto free_edac_mc;
1359 		}
1360 	}
1361 
1362 	if (of_device_is_compatible(pdev->dev.of_node,
1363 				    "xlnx,zynqmp-ddrc-2.40a"))
1364 		setup_address_map(priv);
1365 #endif
1366 
1367 	/*
1368 	 * Start capturing the correctable and uncorrectable errors. A write of
1369 	 * 0 starts the counters.
1370 	 */
1371 	if (!(priv->p_data->quirks & DDR_ECC_INTR_SUPPORT))
1372 		writel(0x0, baseaddr + ECC_CTRL_OFST);
1373 
1374 	return rc;
1375 
1376 free_edac_mc:
1377 	edac_mc_free(mci);
1378 
1379 	return rc;
1380 }
1381 
1382 /**
1383  * mc_remove - Unbind driver from controller.
1384  * @pdev:	Platform device.
1385  *
1386  * Return: Unconditionally 0
1387  */
1388 static int mc_remove(struct platform_device *pdev)
1389 {
1390 	struct mem_ctl_info *mci = platform_get_drvdata(pdev);
1391 	struct synps_edac_priv *priv = mci->pvt_info;
1392 
1393 	if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT)
1394 		disable_intr(priv);
1395 
1396 #ifdef CONFIG_EDAC_DEBUG
1397 	if (priv->p_data->quirks & DDR_ECC_DATA_POISON_SUPPORT)
1398 		edac_remove_sysfs_attributes(mci);
1399 #endif
1400 
1401 	edac_mc_del_mc(&pdev->dev);
1402 	edac_mc_free(mci);
1403 
1404 	return 0;
1405 }
1406 
1407 static struct platform_driver synps_edac_mc_driver = {
1408 	.driver = {
1409 		   .name = "synopsys-edac",
1410 		   .of_match_table = synps_edac_match,
1411 		   },
1412 	.probe = mc_probe,
1413 	.remove = mc_remove,
1414 };
1415 
1416 module_platform_driver(synps_edac_mc_driver);
1417 
1418 MODULE_AUTHOR("Xilinx Inc");
1419 MODULE_DESCRIPTION("Synopsys DDR ECC driver");
1420 MODULE_LICENSE("GPL v2");
1421