1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Synopsys DDR ECC Driver 4 * This driver is based on ppc4xx_edac.c drivers 5 * 6 * Copyright (C) 2012 - 2014 Xilinx, Inc. 7 */ 8 9 #include <linux/edac.h> 10 #include <linux/module.h> 11 #include <linux/platform_device.h> 12 #include <linux/spinlock.h> 13 #include <linux/sizes.h> 14 #include <linux/interrupt.h> 15 #include <linux/of.h> 16 17 #include "edac_module.h" 18 19 /* Number of cs_rows needed per memory controller */ 20 #define SYNPS_EDAC_NR_CSROWS 1 21 22 /* Number of channels per memory controller */ 23 #define SYNPS_EDAC_NR_CHANS 1 24 25 /* Granularity of reported error in bytes */ 26 #define SYNPS_EDAC_ERR_GRAIN 1 27 28 #define SYNPS_EDAC_MSG_SIZE 256 29 30 #define SYNPS_EDAC_MOD_STRING "synps_edac" 31 #define SYNPS_EDAC_MOD_VER "1" 32 33 /* Synopsys DDR memory controller registers that are relevant to ECC */ 34 #define CTRL_OFST 0x0 35 #define T_ZQ_OFST 0xA4 36 37 /* ECC control register */ 38 #define ECC_CTRL_OFST 0xC4 39 /* ECC log register */ 40 #define CE_LOG_OFST 0xC8 41 /* ECC address register */ 42 #define CE_ADDR_OFST 0xCC 43 /* ECC data[31:0] register */ 44 #define CE_DATA_31_0_OFST 0xD0 45 46 /* Uncorrectable error info registers */ 47 #define UE_LOG_OFST 0xDC 48 #define UE_ADDR_OFST 0xE0 49 #define UE_DATA_31_0_OFST 0xE4 50 51 #define STAT_OFST 0xF0 52 #define SCRUB_OFST 0xF4 53 54 /* Control register bit field definitions */ 55 #define CTRL_BW_MASK 0xC 56 #define CTRL_BW_SHIFT 2 57 58 #define DDRCTL_WDTH_16 1 59 #define DDRCTL_WDTH_32 0 60 61 /* ZQ register bit field definitions */ 62 #define T_ZQ_DDRMODE_MASK 0x2 63 64 /* ECC control register bit field definitions */ 65 #define ECC_CTRL_CLR_CE_ERR 0x2 66 #define ECC_CTRL_CLR_UE_ERR 0x1 67 68 /* ECC correctable/uncorrectable error log register definitions */ 69 #define LOG_VALID 0x1 70 #define CE_LOG_BITPOS_MASK 0xFE 71 #define CE_LOG_BITPOS_SHIFT 1 72 73 /* ECC correctable/uncorrectable error address register definitions */ 74 #define ADDR_COL_MASK 0xFFF 75 #define ADDR_ROW_MASK 0xFFFF000 76 #define ADDR_ROW_SHIFT 12 77 #define ADDR_BANK_MASK 0x70000000 78 #define ADDR_BANK_SHIFT 28 79 80 /* ECC statistic register definitions */ 81 #define STAT_UECNT_MASK 0xFF 82 #define STAT_CECNT_MASK 0xFF00 83 #define STAT_CECNT_SHIFT 8 84 85 /* ECC scrub register definitions */ 86 #define SCRUB_MODE_MASK 0x7 87 #define SCRUB_MODE_SECDED 0x4 88 89 /* DDR ECC Quirks */ 90 #define DDR_ECC_INTR_SUPPORT BIT(0) 91 #define DDR_ECC_DATA_POISON_SUPPORT BIT(1) 92 #define DDR_ECC_INTR_SELF_CLEAR BIT(2) 93 94 /* ZynqMP Enhanced DDR memory controller registers that are relevant to ECC */ 95 /* ECC Configuration Registers */ 96 #define ECC_CFG0_OFST 0x70 97 #define ECC_CFG1_OFST 0x74 98 99 /* ECC Status Register */ 100 #define ECC_STAT_OFST 0x78 101 102 /* ECC Clear Register */ 103 #define ECC_CLR_OFST 0x7C 104 105 /* ECC Error count Register */ 106 #define ECC_ERRCNT_OFST 0x80 107 108 /* ECC Corrected Error Address Register */ 109 #define ECC_CEADDR0_OFST 0x84 110 #define ECC_CEADDR1_OFST 0x88 111 112 /* ECC Syndrome Registers */ 113 #define ECC_CSYND0_OFST 0x8C 114 #define ECC_CSYND1_OFST 0x90 115 #define ECC_CSYND2_OFST 0x94 116 117 /* ECC Bit Mask0 Address Register */ 118 #define ECC_BITMASK0_OFST 0x98 119 #define ECC_BITMASK1_OFST 0x9C 120 #define ECC_BITMASK2_OFST 0xA0 121 122 /* ECC UnCorrected Error Address Register */ 123 #define ECC_UEADDR0_OFST 0xA4 124 #define ECC_UEADDR1_OFST 0xA8 125 126 /* ECC Syndrome Registers */ 127 #define ECC_UESYND0_OFST 0xAC 128 #define ECC_UESYND1_OFST 0xB0 129 #define ECC_UESYND2_OFST 0xB4 130 131 /* ECC Poison Address Reg */ 132 #define ECC_POISON0_OFST 0xB8 133 #define ECC_POISON1_OFST 0xBC 134 135 #define ECC_ADDRMAP0_OFFSET 0x200 136 137 /* Control register bitfield definitions */ 138 #define ECC_CTRL_BUSWIDTH_MASK 0x3000 139 #define ECC_CTRL_BUSWIDTH_SHIFT 12 140 #define ECC_CTRL_CLR_CE_ERRCNT BIT(2) 141 #define ECC_CTRL_CLR_UE_ERRCNT BIT(3) 142 143 /* DDR Control Register width definitions */ 144 #define DDRCTL_EWDTH_16 2 145 #define DDRCTL_EWDTH_32 1 146 #define DDRCTL_EWDTH_64 0 147 148 /* ECC status register definitions */ 149 #define ECC_STAT_UECNT_MASK 0xF0000 150 #define ECC_STAT_UECNT_SHIFT 16 151 #define ECC_STAT_CECNT_MASK 0xF00 152 #define ECC_STAT_CECNT_SHIFT 8 153 #define ECC_STAT_BITNUM_MASK 0x7F 154 155 /* ECC error count register definitions */ 156 #define ECC_ERRCNT_UECNT_MASK 0xFFFF0000 157 #define ECC_ERRCNT_UECNT_SHIFT 16 158 #define ECC_ERRCNT_CECNT_MASK 0xFFFF 159 160 /* DDR QOS Interrupt register definitions */ 161 #define DDR_QOS_IRQ_STAT_OFST 0x20200 162 #define DDR_QOSUE_MASK 0x4 163 #define DDR_QOSCE_MASK 0x2 164 #define ECC_CE_UE_INTR_MASK 0x6 165 #define DDR_QOS_IRQ_EN_OFST 0x20208 166 #define DDR_QOS_IRQ_DB_OFST 0x2020C 167 168 /* DDR QOS Interrupt register definitions */ 169 #define DDR_UE_MASK BIT(9) 170 #define DDR_CE_MASK BIT(8) 171 172 /* ECC Corrected Error Register Mask and Shifts*/ 173 #define ECC_CEADDR0_RW_MASK 0x3FFFF 174 #define ECC_CEADDR0_RNK_MASK BIT(24) 175 #define ECC_CEADDR1_BNKGRP_MASK 0x3000000 176 #define ECC_CEADDR1_BNKNR_MASK 0x70000 177 #define ECC_CEADDR1_BLKNR_MASK 0xFFF 178 #define ECC_CEADDR1_BNKGRP_SHIFT 24 179 #define ECC_CEADDR1_BNKNR_SHIFT 16 180 181 /* ECC Poison register shifts */ 182 #define ECC_POISON0_RANK_SHIFT 24 183 #define ECC_POISON0_RANK_MASK BIT(24) 184 #define ECC_POISON0_COLUMN_SHIFT 0 185 #define ECC_POISON0_COLUMN_MASK 0xFFF 186 #define ECC_POISON1_BG_SHIFT 28 187 #define ECC_POISON1_BG_MASK 0x30000000 188 #define ECC_POISON1_BANKNR_SHIFT 24 189 #define ECC_POISON1_BANKNR_MASK 0x7000000 190 #define ECC_POISON1_ROW_SHIFT 0 191 #define ECC_POISON1_ROW_MASK 0x3FFFF 192 193 /* DDR Memory type defines */ 194 #define MEM_TYPE_DDR3 0x1 195 #define MEM_TYPE_LPDDR3 0x8 196 #define MEM_TYPE_DDR2 0x4 197 #define MEM_TYPE_DDR4 0x10 198 #define MEM_TYPE_LPDDR4 0x20 199 200 /* DDRC Software control register */ 201 #define DDRC_SWCTL 0x320 202 203 /* DDRC ECC CE & UE poison mask */ 204 #define ECC_CEPOISON_MASK 0x3 205 #define ECC_UEPOISON_MASK 0x1 206 207 /* DDRC Device config masks */ 208 #define DDRC_MSTR_CFG_MASK 0xC0000000 209 #define DDRC_MSTR_CFG_SHIFT 30 210 #define DDRC_MSTR_CFG_X4_MASK 0x0 211 #define DDRC_MSTR_CFG_X8_MASK 0x1 212 #define DDRC_MSTR_CFG_X16_MASK 0x2 213 #define DDRC_MSTR_CFG_X32_MASK 0x3 214 215 #define DDR_MAX_ROW_SHIFT 18 216 #define DDR_MAX_COL_SHIFT 14 217 #define DDR_MAX_BANK_SHIFT 3 218 #define DDR_MAX_BANKGRP_SHIFT 2 219 220 #define ROW_MAX_VAL_MASK 0xF 221 #define COL_MAX_VAL_MASK 0xF 222 #define BANK_MAX_VAL_MASK 0x1F 223 #define BANKGRP_MAX_VAL_MASK 0x1F 224 #define RANK_MAX_VAL_MASK 0x1F 225 226 #define ROW_B0_BASE 6 227 #define ROW_B1_BASE 7 228 #define ROW_B2_BASE 8 229 #define ROW_B3_BASE 9 230 #define ROW_B4_BASE 10 231 #define ROW_B5_BASE 11 232 #define ROW_B6_BASE 12 233 #define ROW_B7_BASE 13 234 #define ROW_B8_BASE 14 235 #define ROW_B9_BASE 15 236 #define ROW_B10_BASE 16 237 #define ROW_B11_BASE 17 238 #define ROW_B12_BASE 18 239 #define ROW_B13_BASE 19 240 #define ROW_B14_BASE 20 241 #define ROW_B15_BASE 21 242 #define ROW_B16_BASE 22 243 #define ROW_B17_BASE 23 244 245 #define COL_B2_BASE 2 246 #define COL_B3_BASE 3 247 #define COL_B4_BASE 4 248 #define COL_B5_BASE 5 249 #define COL_B6_BASE 6 250 #define COL_B7_BASE 7 251 #define COL_B8_BASE 8 252 #define COL_B9_BASE 9 253 #define COL_B10_BASE 10 254 #define COL_B11_BASE 11 255 #define COL_B12_BASE 12 256 #define COL_B13_BASE 13 257 258 #define BANK_B0_BASE 2 259 #define BANK_B1_BASE 3 260 #define BANK_B2_BASE 4 261 262 #define BANKGRP_B0_BASE 2 263 #define BANKGRP_B1_BASE 3 264 265 #define RANK_B0_BASE 6 266 267 /** 268 * struct ecc_error_info - ECC error log information. 269 * @row: Row number. 270 * @col: Column number. 271 * @bank: Bank number. 272 * @bitpos: Bit position. 273 * @data: Data causing the error. 274 * @bankgrpnr: Bank group number. 275 * @blknr: Block number. 276 */ 277 struct ecc_error_info { 278 u32 row; 279 u32 col; 280 u32 bank; 281 u32 bitpos; 282 u32 data; 283 u32 bankgrpnr; 284 u32 blknr; 285 }; 286 287 /** 288 * struct synps_ecc_status - ECC status information to report. 289 * @ce_cnt: Correctable error count. 290 * @ue_cnt: Uncorrectable error count. 291 * @ceinfo: Correctable error log information. 292 * @ueinfo: Uncorrectable error log information. 293 */ 294 struct synps_ecc_status { 295 u32 ce_cnt; 296 u32 ue_cnt; 297 struct ecc_error_info ceinfo; 298 struct ecc_error_info ueinfo; 299 }; 300 301 /** 302 * struct synps_edac_priv - DDR memory controller private instance data. 303 * @baseaddr: Base address of the DDR controller. 304 * @reglock: Concurrent CSRs access lock. 305 * @message: Buffer for framing the event specific info. 306 * @stat: ECC status information. 307 * @p_data: Platform data. 308 * @ce_cnt: Correctable Error count. 309 * @ue_cnt: Uncorrectable Error count. 310 * @poison_addr: Data poison address. 311 * @row_shift: Bit shifts for row bit. 312 * @col_shift: Bit shifts for column bit. 313 * @bank_shift: Bit shifts for bank bit. 314 * @bankgrp_shift: Bit shifts for bank group bit. 315 * @rank_shift: Bit shifts for rank bit. 316 */ 317 struct synps_edac_priv { 318 void __iomem *baseaddr; 319 spinlock_t reglock; 320 char message[SYNPS_EDAC_MSG_SIZE]; 321 struct synps_ecc_status stat; 322 const struct synps_platform_data *p_data; 323 u32 ce_cnt; 324 u32 ue_cnt; 325 #ifdef CONFIG_EDAC_DEBUG 326 ulong poison_addr; 327 u32 row_shift[18]; 328 u32 col_shift[14]; 329 u32 bank_shift[3]; 330 u32 bankgrp_shift[2]; 331 u32 rank_shift[1]; 332 #endif 333 }; 334 335 /** 336 * struct synps_platform_data - synps platform data structure. 337 * @get_error_info: Get EDAC error info. 338 * @get_mtype: Get mtype. 339 * @get_dtype: Get dtype. 340 * @get_ecc_state: Get ECC state. 341 * @get_mem_info: Get EDAC memory info 342 * @quirks: To differentiate IPs. 343 */ 344 struct synps_platform_data { 345 int (*get_error_info)(struct synps_edac_priv *priv); 346 enum mem_type (*get_mtype)(const void __iomem *base); 347 enum dev_type (*get_dtype)(const void __iomem *base); 348 bool (*get_ecc_state)(void __iomem *base); 349 #ifdef CONFIG_EDAC_DEBUG 350 u64 (*get_mem_info)(struct synps_edac_priv *priv); 351 #endif 352 int quirks; 353 }; 354 355 /** 356 * zynq_get_error_info - Get the current ECC error info. 357 * @priv: DDR memory controller private instance data. 358 * 359 * Return: one if there is no error, otherwise zero. 360 */ 361 static int zynq_get_error_info(struct synps_edac_priv *priv) 362 { 363 struct synps_ecc_status *p; 364 u32 regval, clearval = 0; 365 void __iomem *base; 366 367 base = priv->baseaddr; 368 p = &priv->stat; 369 370 regval = readl(base + STAT_OFST); 371 if (!regval) 372 return 1; 373 374 p->ce_cnt = (regval & STAT_CECNT_MASK) >> STAT_CECNT_SHIFT; 375 p->ue_cnt = regval & STAT_UECNT_MASK; 376 377 regval = readl(base + CE_LOG_OFST); 378 if (!(p->ce_cnt && (regval & LOG_VALID))) 379 goto ue_err; 380 381 p->ceinfo.bitpos = (regval & CE_LOG_BITPOS_MASK) >> CE_LOG_BITPOS_SHIFT; 382 regval = readl(base + CE_ADDR_OFST); 383 p->ceinfo.row = (regval & ADDR_ROW_MASK) >> ADDR_ROW_SHIFT; 384 p->ceinfo.col = regval & ADDR_COL_MASK; 385 p->ceinfo.bank = (regval & ADDR_BANK_MASK) >> ADDR_BANK_SHIFT; 386 p->ceinfo.data = readl(base + CE_DATA_31_0_OFST); 387 edac_dbg(3, "CE bit position: %d data: %d\n", p->ceinfo.bitpos, 388 p->ceinfo.data); 389 clearval = ECC_CTRL_CLR_CE_ERR; 390 391 ue_err: 392 regval = readl(base + UE_LOG_OFST); 393 if (!(p->ue_cnt && (regval & LOG_VALID))) 394 goto out; 395 396 regval = readl(base + UE_ADDR_OFST); 397 p->ueinfo.row = (regval & ADDR_ROW_MASK) >> ADDR_ROW_SHIFT; 398 p->ueinfo.col = regval & ADDR_COL_MASK; 399 p->ueinfo.bank = (regval & ADDR_BANK_MASK) >> ADDR_BANK_SHIFT; 400 p->ueinfo.data = readl(base + UE_DATA_31_0_OFST); 401 clearval |= ECC_CTRL_CLR_UE_ERR; 402 403 out: 404 writel(clearval, base + ECC_CTRL_OFST); 405 writel(0x0, base + ECC_CTRL_OFST); 406 407 return 0; 408 } 409 410 #ifdef CONFIG_EDAC_DEBUG 411 /** 412 * zynqmp_get_mem_info - Get the current memory info. 413 * @priv: DDR memory controller private instance data. 414 * 415 * Return: host interface address. 416 */ 417 static u64 zynqmp_get_mem_info(struct synps_edac_priv *priv) 418 { 419 u64 hif_addr = 0, linear_addr; 420 421 linear_addr = priv->poison_addr; 422 if (linear_addr >= SZ_32G) 423 linear_addr = linear_addr - SZ_32G + SZ_2G; 424 hif_addr = linear_addr >> 3; 425 return hif_addr; 426 } 427 #endif 428 429 /** 430 * zynqmp_get_error_info - Get the current ECC error info. 431 * @priv: DDR memory controller private instance data. 432 * 433 * Return: one if there is no error otherwise returns zero. 434 */ 435 static int zynqmp_get_error_info(struct synps_edac_priv *priv) 436 { 437 struct synps_ecc_status *p; 438 u32 regval, clearval; 439 unsigned long flags; 440 void __iomem *base; 441 442 base = priv->baseaddr; 443 p = &priv->stat; 444 445 regval = readl(base + ECC_ERRCNT_OFST); 446 p->ce_cnt = regval & ECC_ERRCNT_CECNT_MASK; 447 p->ue_cnt = (regval & ECC_ERRCNT_UECNT_MASK) >> ECC_ERRCNT_UECNT_SHIFT; 448 if (!p->ce_cnt) 449 goto ue_err; 450 451 regval = readl(base + ECC_STAT_OFST); 452 if (!regval) 453 return 1; 454 455 p->ceinfo.bitpos = (regval & ECC_STAT_BITNUM_MASK); 456 457 regval = readl(base + ECC_CEADDR0_OFST); 458 p->ceinfo.row = (regval & ECC_CEADDR0_RW_MASK); 459 regval = readl(base + ECC_CEADDR1_OFST); 460 p->ceinfo.bank = (regval & ECC_CEADDR1_BNKNR_MASK) >> 461 ECC_CEADDR1_BNKNR_SHIFT; 462 p->ceinfo.bankgrpnr = (regval & ECC_CEADDR1_BNKGRP_MASK) >> 463 ECC_CEADDR1_BNKGRP_SHIFT; 464 p->ceinfo.blknr = (regval & ECC_CEADDR1_BLKNR_MASK); 465 p->ceinfo.data = readl(base + ECC_CSYND0_OFST); 466 edac_dbg(2, "ECCCSYN0: 0x%08X ECCCSYN1: 0x%08X ECCCSYN2: 0x%08X\n", 467 readl(base + ECC_CSYND0_OFST), readl(base + ECC_CSYND1_OFST), 468 readl(base + ECC_CSYND2_OFST)); 469 ue_err: 470 if (!p->ue_cnt) 471 goto out; 472 473 regval = readl(base + ECC_UEADDR0_OFST); 474 p->ueinfo.row = (regval & ECC_CEADDR0_RW_MASK); 475 regval = readl(base + ECC_UEADDR1_OFST); 476 p->ueinfo.bankgrpnr = (regval & ECC_CEADDR1_BNKGRP_MASK) >> 477 ECC_CEADDR1_BNKGRP_SHIFT; 478 p->ueinfo.bank = (regval & ECC_CEADDR1_BNKNR_MASK) >> 479 ECC_CEADDR1_BNKNR_SHIFT; 480 p->ueinfo.blknr = (regval & ECC_CEADDR1_BLKNR_MASK); 481 p->ueinfo.data = readl(base + ECC_UESYND0_OFST); 482 out: 483 spin_lock_irqsave(&priv->reglock, flags); 484 485 clearval = readl(base + ECC_CLR_OFST) | 486 ECC_CTRL_CLR_CE_ERR | ECC_CTRL_CLR_CE_ERRCNT | 487 ECC_CTRL_CLR_UE_ERR | ECC_CTRL_CLR_UE_ERRCNT; 488 writel(clearval, base + ECC_CLR_OFST); 489 490 spin_unlock_irqrestore(&priv->reglock, flags); 491 492 return 0; 493 } 494 495 /** 496 * handle_error - Handle Correctable and Uncorrectable errors. 497 * @mci: EDAC memory controller instance. 498 * @p: Synopsys ECC status structure. 499 * 500 * Handles ECC correctable and uncorrectable errors. 501 */ 502 static void handle_error(struct mem_ctl_info *mci, struct synps_ecc_status *p) 503 { 504 struct synps_edac_priv *priv = mci->pvt_info; 505 struct ecc_error_info *pinf; 506 507 if (p->ce_cnt) { 508 pinf = &p->ceinfo; 509 if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) { 510 snprintf(priv->message, SYNPS_EDAC_MSG_SIZE, 511 "DDR ECC error type:%s Row %d Bank %d BankGroup Number %d Block Number %d Bit Position: %d Data: 0x%08x", 512 "CE", pinf->row, pinf->bank, 513 pinf->bankgrpnr, pinf->blknr, 514 pinf->bitpos, pinf->data); 515 } else { 516 snprintf(priv->message, SYNPS_EDAC_MSG_SIZE, 517 "DDR ECC error type:%s Row %d Bank %d Col %d Bit Position: %d Data: 0x%08x", 518 "CE", pinf->row, pinf->bank, pinf->col, 519 pinf->bitpos, pinf->data); 520 } 521 522 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 523 p->ce_cnt, 0, 0, 0, 0, 0, -1, 524 priv->message, ""); 525 } 526 527 if (p->ue_cnt) { 528 pinf = &p->ueinfo; 529 if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) { 530 snprintf(priv->message, SYNPS_EDAC_MSG_SIZE, 531 "DDR ECC error type :%s Row %d Bank %d BankGroup Number %d Block Number %d", 532 "UE", pinf->row, pinf->bank, 533 pinf->bankgrpnr, pinf->blknr); 534 } else { 535 snprintf(priv->message, SYNPS_EDAC_MSG_SIZE, 536 "DDR ECC error type :%s Row %d Bank %d Col %d ", 537 "UE", pinf->row, pinf->bank, pinf->col); 538 } 539 540 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 541 p->ue_cnt, 0, 0, 0, 0, 0, -1, 542 priv->message, ""); 543 } 544 545 memset(p, 0, sizeof(*p)); 546 } 547 548 static void enable_intr(struct synps_edac_priv *priv) 549 { 550 unsigned long flags; 551 552 /* Enable UE/CE Interrupts */ 553 if (!(priv->p_data->quirks & DDR_ECC_INTR_SELF_CLEAR)) { 554 writel(DDR_QOSUE_MASK | DDR_QOSCE_MASK, 555 priv->baseaddr + DDR_QOS_IRQ_EN_OFST); 556 557 return; 558 } 559 560 spin_lock_irqsave(&priv->reglock, flags); 561 562 writel(DDR_UE_MASK | DDR_CE_MASK, 563 priv->baseaddr + ECC_CLR_OFST); 564 565 spin_unlock_irqrestore(&priv->reglock, flags); 566 } 567 568 static void disable_intr(struct synps_edac_priv *priv) 569 { 570 unsigned long flags; 571 572 /* Disable UE/CE Interrupts */ 573 if (!(priv->p_data->quirks & DDR_ECC_INTR_SELF_CLEAR)) { 574 writel(DDR_QOSUE_MASK | DDR_QOSCE_MASK, 575 priv->baseaddr + DDR_QOS_IRQ_DB_OFST); 576 577 return; 578 } 579 580 spin_lock_irqsave(&priv->reglock, flags); 581 582 writel(0, priv->baseaddr + ECC_CLR_OFST); 583 584 spin_unlock_irqrestore(&priv->reglock, flags); 585 } 586 587 /** 588 * intr_handler - Interrupt Handler for ECC interrupts. 589 * @irq: IRQ number. 590 * @dev_id: Device ID. 591 * 592 * Return: IRQ_NONE, if interrupt not set or IRQ_HANDLED otherwise. 593 */ 594 static irqreturn_t intr_handler(int irq, void *dev_id) 595 { 596 const struct synps_platform_data *p_data; 597 struct mem_ctl_info *mci = dev_id; 598 struct synps_edac_priv *priv; 599 int status, regval; 600 601 priv = mci->pvt_info; 602 p_data = priv->p_data; 603 604 /* 605 * v3.0 of the controller has the ce/ue bits cleared automatically, 606 * so this condition does not apply. 607 */ 608 if (!(priv->p_data->quirks & DDR_ECC_INTR_SELF_CLEAR)) { 609 regval = readl(priv->baseaddr + DDR_QOS_IRQ_STAT_OFST); 610 regval &= (DDR_QOSCE_MASK | DDR_QOSUE_MASK); 611 if (!(regval & ECC_CE_UE_INTR_MASK)) 612 return IRQ_NONE; 613 } 614 615 status = p_data->get_error_info(priv); 616 if (status) 617 return IRQ_NONE; 618 619 priv->ce_cnt += priv->stat.ce_cnt; 620 priv->ue_cnt += priv->stat.ue_cnt; 621 handle_error(mci, &priv->stat); 622 623 edac_dbg(3, "Total error count CE %d UE %d\n", 624 priv->ce_cnt, priv->ue_cnt); 625 /* v3.0 of the controller does not have this register */ 626 if (!(priv->p_data->quirks & DDR_ECC_INTR_SELF_CLEAR)) 627 writel(regval, priv->baseaddr + DDR_QOS_IRQ_STAT_OFST); 628 629 return IRQ_HANDLED; 630 } 631 632 /** 633 * check_errors - Check controller for ECC errors. 634 * @mci: EDAC memory controller instance. 635 * 636 * Check and post ECC errors. Called by the polling thread. 637 */ 638 static void check_errors(struct mem_ctl_info *mci) 639 { 640 const struct synps_platform_data *p_data; 641 struct synps_edac_priv *priv; 642 int status; 643 644 priv = mci->pvt_info; 645 p_data = priv->p_data; 646 647 status = p_data->get_error_info(priv); 648 if (status) 649 return; 650 651 priv->ce_cnt += priv->stat.ce_cnt; 652 priv->ue_cnt += priv->stat.ue_cnt; 653 handle_error(mci, &priv->stat); 654 655 edac_dbg(3, "Total error count CE %d UE %d\n", 656 priv->ce_cnt, priv->ue_cnt); 657 } 658 659 /** 660 * zynq_get_dtype - Return the controller memory width. 661 * @base: DDR memory controller base address. 662 * 663 * Get the EDAC device type width appropriate for the current controller 664 * configuration. 665 * 666 * Return: a device type width enumeration. 667 */ 668 static enum dev_type zynq_get_dtype(const void __iomem *base) 669 { 670 enum dev_type dt; 671 u32 width; 672 673 width = readl(base + CTRL_OFST); 674 width = (width & CTRL_BW_MASK) >> CTRL_BW_SHIFT; 675 676 switch (width) { 677 case DDRCTL_WDTH_16: 678 dt = DEV_X2; 679 break; 680 case DDRCTL_WDTH_32: 681 dt = DEV_X4; 682 break; 683 default: 684 dt = DEV_UNKNOWN; 685 } 686 687 return dt; 688 } 689 690 /** 691 * zynqmp_get_dtype - Return the controller memory width. 692 * @base: DDR memory controller base address. 693 * 694 * Get the EDAC device type width appropriate for the current controller 695 * configuration. 696 * 697 * Return: a device type width enumeration. 698 */ 699 static enum dev_type zynqmp_get_dtype(const void __iomem *base) 700 { 701 enum dev_type dt; 702 u32 width; 703 704 width = readl(base + CTRL_OFST); 705 width = (width & ECC_CTRL_BUSWIDTH_MASK) >> ECC_CTRL_BUSWIDTH_SHIFT; 706 switch (width) { 707 case DDRCTL_EWDTH_16: 708 dt = DEV_X2; 709 break; 710 case DDRCTL_EWDTH_32: 711 dt = DEV_X4; 712 break; 713 case DDRCTL_EWDTH_64: 714 dt = DEV_X8; 715 break; 716 default: 717 dt = DEV_UNKNOWN; 718 } 719 720 return dt; 721 } 722 723 /** 724 * zynq_get_ecc_state - Return the controller ECC enable/disable status. 725 * @base: DDR memory controller base address. 726 * 727 * Get the ECC enable/disable status of the controller. 728 * 729 * Return: true if enabled, otherwise false. 730 */ 731 static bool zynq_get_ecc_state(void __iomem *base) 732 { 733 enum dev_type dt; 734 u32 ecctype; 735 736 dt = zynq_get_dtype(base); 737 if (dt == DEV_UNKNOWN) 738 return false; 739 740 ecctype = readl(base + SCRUB_OFST) & SCRUB_MODE_MASK; 741 if ((ecctype == SCRUB_MODE_SECDED) && (dt == DEV_X2)) 742 return true; 743 744 return false; 745 } 746 747 /** 748 * zynqmp_get_ecc_state - Return the controller ECC enable/disable status. 749 * @base: DDR memory controller base address. 750 * 751 * Get the ECC enable/disable status for the controller. 752 * 753 * Return: a ECC status boolean i.e true/false - enabled/disabled. 754 */ 755 static bool zynqmp_get_ecc_state(void __iomem *base) 756 { 757 enum dev_type dt; 758 u32 ecctype; 759 760 dt = zynqmp_get_dtype(base); 761 if (dt == DEV_UNKNOWN) 762 return false; 763 764 ecctype = readl(base + ECC_CFG0_OFST) & SCRUB_MODE_MASK; 765 if ((ecctype == SCRUB_MODE_SECDED) && 766 ((dt == DEV_X2) || (dt == DEV_X4) || (dt == DEV_X8))) 767 return true; 768 769 return false; 770 } 771 772 /** 773 * get_memsize - Read the size of the attached memory device. 774 * 775 * Return: the memory size in bytes. 776 */ 777 static u32 get_memsize(void) 778 { 779 struct sysinfo inf; 780 781 si_meminfo(&inf); 782 783 return inf.totalram * inf.mem_unit; 784 } 785 786 /** 787 * zynq_get_mtype - Return the controller memory type. 788 * @base: Synopsys ECC status structure. 789 * 790 * Get the EDAC memory type appropriate for the current controller 791 * configuration. 792 * 793 * Return: a memory type enumeration. 794 */ 795 static enum mem_type zynq_get_mtype(const void __iomem *base) 796 { 797 enum mem_type mt; 798 u32 memtype; 799 800 memtype = readl(base + T_ZQ_OFST); 801 802 if (memtype & T_ZQ_DDRMODE_MASK) 803 mt = MEM_DDR3; 804 else 805 mt = MEM_DDR2; 806 807 return mt; 808 } 809 810 /** 811 * zynqmp_get_mtype - Returns controller memory type. 812 * @base: Synopsys ECC status structure. 813 * 814 * Get the EDAC memory type appropriate for the current controller 815 * configuration. 816 * 817 * Return: a memory type enumeration. 818 */ 819 static enum mem_type zynqmp_get_mtype(const void __iomem *base) 820 { 821 enum mem_type mt; 822 u32 memtype; 823 824 memtype = readl(base + CTRL_OFST); 825 826 if ((memtype & MEM_TYPE_DDR3) || (memtype & MEM_TYPE_LPDDR3)) 827 mt = MEM_DDR3; 828 else if (memtype & MEM_TYPE_DDR2) 829 mt = MEM_RDDR2; 830 else if ((memtype & MEM_TYPE_LPDDR4) || (memtype & MEM_TYPE_DDR4)) 831 mt = MEM_DDR4; 832 else 833 mt = MEM_EMPTY; 834 835 return mt; 836 } 837 838 /** 839 * init_csrows - Initialize the csrow data. 840 * @mci: EDAC memory controller instance. 841 * 842 * Initialize the chip select rows associated with the EDAC memory 843 * controller instance. 844 */ 845 static void init_csrows(struct mem_ctl_info *mci) 846 { 847 struct synps_edac_priv *priv = mci->pvt_info; 848 const struct synps_platform_data *p_data; 849 struct csrow_info *csi; 850 struct dimm_info *dimm; 851 u32 size, row; 852 int j; 853 854 p_data = priv->p_data; 855 856 for (row = 0; row < mci->nr_csrows; row++) { 857 csi = mci->csrows[row]; 858 size = get_memsize(); 859 860 for (j = 0; j < csi->nr_channels; j++) { 861 dimm = csi->channels[j]->dimm; 862 dimm->edac_mode = EDAC_SECDED; 863 dimm->mtype = p_data->get_mtype(priv->baseaddr); 864 dimm->nr_pages = (size >> PAGE_SHIFT) / csi->nr_channels; 865 dimm->grain = SYNPS_EDAC_ERR_GRAIN; 866 dimm->dtype = p_data->get_dtype(priv->baseaddr); 867 } 868 } 869 } 870 871 /** 872 * mc_init - Initialize one driver instance. 873 * @mci: EDAC memory controller instance. 874 * @pdev: platform device. 875 * 876 * Perform initialization of the EDAC memory controller instance and 877 * related driver-private data associated with the memory controller the 878 * instance is bound to. 879 */ 880 static void mc_init(struct mem_ctl_info *mci, struct platform_device *pdev) 881 { 882 struct synps_edac_priv *priv; 883 884 mci->pdev = &pdev->dev; 885 priv = mci->pvt_info; 886 platform_set_drvdata(pdev, mci); 887 888 /* Initialize controller capabilities and configuration */ 889 mci->mtype_cap = MEM_FLAG_DDR3 | MEM_FLAG_DDR2; 890 mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED; 891 mci->scrub_cap = SCRUB_HW_SRC; 892 mci->scrub_mode = SCRUB_NONE; 893 894 mci->edac_cap = EDAC_FLAG_SECDED; 895 mci->ctl_name = "synps_ddr_controller"; 896 mci->dev_name = SYNPS_EDAC_MOD_STRING; 897 mci->mod_name = SYNPS_EDAC_MOD_VER; 898 899 if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) { 900 edac_op_state = EDAC_OPSTATE_INT; 901 } else { 902 edac_op_state = EDAC_OPSTATE_POLL; 903 mci->edac_check = check_errors; 904 } 905 906 mci->ctl_page_to_phys = NULL; 907 908 init_csrows(mci); 909 } 910 911 static int setup_irq(struct mem_ctl_info *mci, 912 struct platform_device *pdev) 913 { 914 struct synps_edac_priv *priv = mci->pvt_info; 915 int ret, irq; 916 917 irq = platform_get_irq(pdev, 0); 918 if (irq < 0) { 919 edac_printk(KERN_ERR, EDAC_MC, 920 "No IRQ %d in DT\n", irq); 921 return irq; 922 } 923 924 ret = devm_request_irq(&pdev->dev, irq, intr_handler, 925 0, dev_name(&pdev->dev), mci); 926 if (ret < 0) { 927 edac_printk(KERN_ERR, EDAC_MC, "Failed to request IRQ\n"); 928 return ret; 929 } 930 931 enable_intr(priv); 932 933 return 0; 934 } 935 936 static const struct synps_platform_data zynq_edac_def = { 937 .get_error_info = zynq_get_error_info, 938 .get_mtype = zynq_get_mtype, 939 .get_dtype = zynq_get_dtype, 940 .get_ecc_state = zynq_get_ecc_state, 941 .quirks = 0, 942 }; 943 944 static const struct synps_platform_data zynqmp_edac_def = { 945 .get_error_info = zynqmp_get_error_info, 946 .get_mtype = zynqmp_get_mtype, 947 .get_dtype = zynqmp_get_dtype, 948 .get_ecc_state = zynqmp_get_ecc_state, 949 #ifdef CONFIG_EDAC_DEBUG 950 .get_mem_info = zynqmp_get_mem_info, 951 #endif 952 .quirks = (DDR_ECC_INTR_SUPPORT 953 #ifdef CONFIG_EDAC_DEBUG 954 | DDR_ECC_DATA_POISON_SUPPORT 955 #endif 956 ), 957 }; 958 959 static const struct synps_platform_data synopsys_edac_def = { 960 .get_error_info = zynqmp_get_error_info, 961 .get_mtype = zynqmp_get_mtype, 962 .get_dtype = zynqmp_get_dtype, 963 .get_ecc_state = zynqmp_get_ecc_state, 964 .quirks = (DDR_ECC_INTR_SUPPORT | DDR_ECC_INTR_SELF_CLEAR 965 #ifdef CONFIG_EDAC_DEBUG 966 | DDR_ECC_DATA_POISON_SUPPORT 967 #endif 968 ), 969 }; 970 971 972 static const struct of_device_id synps_edac_match[] = { 973 { 974 .compatible = "xlnx,zynq-ddrc-a05", 975 .data = (void *)&zynq_edac_def 976 }, 977 { 978 .compatible = "xlnx,zynqmp-ddrc-2.40a", 979 .data = (void *)&zynqmp_edac_def 980 }, 981 { 982 .compatible = "snps,ddrc-3.80a", 983 .data = (void *)&synopsys_edac_def 984 }, 985 { 986 /* end of table */ 987 } 988 }; 989 990 MODULE_DEVICE_TABLE(of, synps_edac_match); 991 992 #ifdef CONFIG_EDAC_DEBUG 993 #define to_mci(k) container_of(k, struct mem_ctl_info, dev) 994 995 /** 996 * ddr_poison_setup - Update poison registers. 997 * @priv: DDR memory controller private instance data. 998 * 999 * Update poison registers as per DDR mapping. 1000 * Return: none. 1001 */ 1002 static void ddr_poison_setup(struct synps_edac_priv *priv) 1003 { 1004 int col = 0, row = 0, bank = 0, bankgrp = 0, rank = 0, regval; 1005 const struct synps_platform_data *p_data; 1006 int index; 1007 ulong hif_addr = 0; 1008 1009 p_data = priv->p_data; 1010 1011 if (p_data->get_mem_info) 1012 hif_addr = p_data->get_mem_info(priv); 1013 else 1014 hif_addr = priv->poison_addr >> 3; 1015 1016 for (index = 0; index < DDR_MAX_ROW_SHIFT; index++) { 1017 if (priv->row_shift[index]) 1018 row |= (((hif_addr >> priv->row_shift[index]) & 1019 BIT(0)) << index); 1020 else 1021 break; 1022 } 1023 1024 for (index = 0; index < DDR_MAX_COL_SHIFT; index++) { 1025 if (priv->col_shift[index] || index < 3) 1026 col |= (((hif_addr >> priv->col_shift[index]) & 1027 BIT(0)) << index); 1028 else 1029 break; 1030 } 1031 1032 for (index = 0; index < DDR_MAX_BANK_SHIFT; index++) { 1033 if (priv->bank_shift[index]) 1034 bank |= (((hif_addr >> priv->bank_shift[index]) & 1035 BIT(0)) << index); 1036 else 1037 break; 1038 } 1039 1040 for (index = 0; index < DDR_MAX_BANKGRP_SHIFT; index++) { 1041 if (priv->bankgrp_shift[index]) 1042 bankgrp |= (((hif_addr >> priv->bankgrp_shift[index]) 1043 & BIT(0)) << index); 1044 else 1045 break; 1046 } 1047 1048 if (priv->rank_shift[0]) 1049 rank = (hif_addr >> priv->rank_shift[0]) & BIT(0); 1050 1051 regval = (rank << ECC_POISON0_RANK_SHIFT) & ECC_POISON0_RANK_MASK; 1052 regval |= (col << ECC_POISON0_COLUMN_SHIFT) & ECC_POISON0_COLUMN_MASK; 1053 writel(regval, priv->baseaddr + ECC_POISON0_OFST); 1054 1055 regval = (bankgrp << ECC_POISON1_BG_SHIFT) & ECC_POISON1_BG_MASK; 1056 regval |= (bank << ECC_POISON1_BANKNR_SHIFT) & ECC_POISON1_BANKNR_MASK; 1057 regval |= (row << ECC_POISON1_ROW_SHIFT) & ECC_POISON1_ROW_MASK; 1058 writel(regval, priv->baseaddr + ECC_POISON1_OFST); 1059 } 1060 1061 static ssize_t inject_data_error_show(struct device *dev, 1062 struct device_attribute *mattr, 1063 char *data) 1064 { 1065 struct mem_ctl_info *mci = to_mci(dev); 1066 struct synps_edac_priv *priv = mci->pvt_info; 1067 1068 return sprintf(data, "Poison0 Addr: 0x%08x\n\rPoison1 Addr: 0x%08x\n\r" 1069 "Error injection Address: 0x%lx\n\r", 1070 readl(priv->baseaddr + ECC_POISON0_OFST), 1071 readl(priv->baseaddr + ECC_POISON1_OFST), 1072 priv->poison_addr); 1073 } 1074 1075 static ssize_t inject_data_error_store(struct device *dev, 1076 struct device_attribute *mattr, 1077 const char *data, size_t count) 1078 { 1079 struct mem_ctl_info *mci = to_mci(dev); 1080 struct synps_edac_priv *priv = mci->pvt_info; 1081 1082 if (kstrtoul(data, 0, &priv->poison_addr)) 1083 return -EINVAL; 1084 1085 ddr_poison_setup(priv); 1086 1087 return count; 1088 } 1089 1090 static ssize_t inject_data_poison_show(struct device *dev, 1091 struct device_attribute *mattr, 1092 char *data) 1093 { 1094 struct mem_ctl_info *mci = to_mci(dev); 1095 struct synps_edac_priv *priv = mci->pvt_info; 1096 1097 return sprintf(data, "Data Poisoning: %s\n\r", 1098 (((readl(priv->baseaddr + ECC_CFG1_OFST)) & 0x3) == 0x3) 1099 ? ("Correctable Error") : ("UnCorrectable Error")); 1100 } 1101 1102 static ssize_t inject_data_poison_store(struct device *dev, 1103 struct device_attribute *mattr, 1104 const char *data, size_t count) 1105 { 1106 struct mem_ctl_info *mci = to_mci(dev); 1107 struct synps_edac_priv *priv = mci->pvt_info; 1108 1109 writel(0, priv->baseaddr + DDRC_SWCTL); 1110 if (strncmp(data, "CE", 2) == 0) 1111 writel(ECC_CEPOISON_MASK, priv->baseaddr + ECC_CFG1_OFST); 1112 else 1113 writel(ECC_UEPOISON_MASK, priv->baseaddr + ECC_CFG1_OFST); 1114 writel(1, priv->baseaddr + DDRC_SWCTL); 1115 1116 return count; 1117 } 1118 1119 static DEVICE_ATTR_RW(inject_data_error); 1120 static DEVICE_ATTR_RW(inject_data_poison); 1121 1122 static int edac_create_sysfs_attributes(struct mem_ctl_info *mci) 1123 { 1124 int rc; 1125 1126 rc = device_create_file(&mci->dev, &dev_attr_inject_data_error); 1127 if (rc < 0) 1128 return rc; 1129 rc = device_create_file(&mci->dev, &dev_attr_inject_data_poison); 1130 if (rc < 0) 1131 return rc; 1132 return 0; 1133 } 1134 1135 static void edac_remove_sysfs_attributes(struct mem_ctl_info *mci) 1136 { 1137 device_remove_file(&mci->dev, &dev_attr_inject_data_error); 1138 device_remove_file(&mci->dev, &dev_attr_inject_data_poison); 1139 } 1140 1141 static void setup_row_address_map(struct synps_edac_priv *priv, u32 *addrmap) 1142 { 1143 u32 addrmap_row_b2_10; 1144 int index; 1145 1146 priv->row_shift[0] = (addrmap[5] & ROW_MAX_VAL_MASK) + ROW_B0_BASE; 1147 priv->row_shift[1] = ((addrmap[5] >> 8) & 1148 ROW_MAX_VAL_MASK) + ROW_B1_BASE; 1149 1150 addrmap_row_b2_10 = (addrmap[5] >> 16) & ROW_MAX_VAL_MASK; 1151 if (addrmap_row_b2_10 != ROW_MAX_VAL_MASK) { 1152 for (index = 2; index < 11; index++) 1153 priv->row_shift[index] = addrmap_row_b2_10 + 1154 index + ROW_B0_BASE; 1155 1156 } else { 1157 priv->row_shift[2] = (addrmap[9] & 1158 ROW_MAX_VAL_MASK) + ROW_B2_BASE; 1159 priv->row_shift[3] = ((addrmap[9] >> 8) & 1160 ROW_MAX_VAL_MASK) + ROW_B3_BASE; 1161 priv->row_shift[4] = ((addrmap[9] >> 16) & 1162 ROW_MAX_VAL_MASK) + ROW_B4_BASE; 1163 priv->row_shift[5] = ((addrmap[9] >> 24) & 1164 ROW_MAX_VAL_MASK) + ROW_B5_BASE; 1165 priv->row_shift[6] = (addrmap[10] & 1166 ROW_MAX_VAL_MASK) + ROW_B6_BASE; 1167 priv->row_shift[7] = ((addrmap[10] >> 8) & 1168 ROW_MAX_VAL_MASK) + ROW_B7_BASE; 1169 priv->row_shift[8] = ((addrmap[10] >> 16) & 1170 ROW_MAX_VAL_MASK) + ROW_B8_BASE; 1171 priv->row_shift[9] = ((addrmap[10] >> 24) & 1172 ROW_MAX_VAL_MASK) + ROW_B9_BASE; 1173 priv->row_shift[10] = (addrmap[11] & 1174 ROW_MAX_VAL_MASK) + ROW_B10_BASE; 1175 } 1176 1177 priv->row_shift[11] = (((addrmap[5] >> 24) & ROW_MAX_VAL_MASK) == 1178 ROW_MAX_VAL_MASK) ? 0 : (((addrmap[5] >> 24) & 1179 ROW_MAX_VAL_MASK) + ROW_B11_BASE); 1180 priv->row_shift[12] = ((addrmap[6] & ROW_MAX_VAL_MASK) == 1181 ROW_MAX_VAL_MASK) ? 0 : ((addrmap[6] & 1182 ROW_MAX_VAL_MASK) + ROW_B12_BASE); 1183 priv->row_shift[13] = (((addrmap[6] >> 8) & ROW_MAX_VAL_MASK) == 1184 ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 8) & 1185 ROW_MAX_VAL_MASK) + ROW_B13_BASE); 1186 priv->row_shift[14] = (((addrmap[6] >> 16) & ROW_MAX_VAL_MASK) == 1187 ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 16) & 1188 ROW_MAX_VAL_MASK) + ROW_B14_BASE); 1189 priv->row_shift[15] = (((addrmap[6] >> 24) & ROW_MAX_VAL_MASK) == 1190 ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 24) & 1191 ROW_MAX_VAL_MASK) + ROW_B15_BASE); 1192 priv->row_shift[16] = ((addrmap[7] & ROW_MAX_VAL_MASK) == 1193 ROW_MAX_VAL_MASK) ? 0 : ((addrmap[7] & 1194 ROW_MAX_VAL_MASK) + ROW_B16_BASE); 1195 priv->row_shift[17] = (((addrmap[7] >> 8) & ROW_MAX_VAL_MASK) == 1196 ROW_MAX_VAL_MASK) ? 0 : (((addrmap[7] >> 8) & 1197 ROW_MAX_VAL_MASK) + ROW_B17_BASE); 1198 } 1199 1200 static void setup_column_address_map(struct synps_edac_priv *priv, u32 *addrmap) 1201 { 1202 u32 width, memtype; 1203 int index; 1204 1205 memtype = readl(priv->baseaddr + CTRL_OFST); 1206 width = (memtype & ECC_CTRL_BUSWIDTH_MASK) >> ECC_CTRL_BUSWIDTH_SHIFT; 1207 1208 priv->col_shift[0] = 0; 1209 priv->col_shift[1] = 1; 1210 priv->col_shift[2] = (addrmap[2] & COL_MAX_VAL_MASK) + COL_B2_BASE; 1211 priv->col_shift[3] = ((addrmap[2] >> 8) & 1212 COL_MAX_VAL_MASK) + COL_B3_BASE; 1213 priv->col_shift[4] = (((addrmap[2] >> 16) & COL_MAX_VAL_MASK) == 1214 COL_MAX_VAL_MASK) ? 0 : (((addrmap[2] >> 16) & 1215 COL_MAX_VAL_MASK) + COL_B4_BASE); 1216 priv->col_shift[5] = (((addrmap[2] >> 24) & COL_MAX_VAL_MASK) == 1217 COL_MAX_VAL_MASK) ? 0 : (((addrmap[2] >> 24) & 1218 COL_MAX_VAL_MASK) + COL_B5_BASE); 1219 priv->col_shift[6] = ((addrmap[3] & COL_MAX_VAL_MASK) == 1220 COL_MAX_VAL_MASK) ? 0 : ((addrmap[3] & 1221 COL_MAX_VAL_MASK) + COL_B6_BASE); 1222 priv->col_shift[7] = (((addrmap[3] >> 8) & COL_MAX_VAL_MASK) == 1223 COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 8) & 1224 COL_MAX_VAL_MASK) + COL_B7_BASE); 1225 priv->col_shift[8] = (((addrmap[3] >> 16) & COL_MAX_VAL_MASK) == 1226 COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 16) & 1227 COL_MAX_VAL_MASK) + COL_B8_BASE); 1228 priv->col_shift[9] = (((addrmap[3] >> 24) & COL_MAX_VAL_MASK) == 1229 COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 24) & 1230 COL_MAX_VAL_MASK) + COL_B9_BASE); 1231 if (width == DDRCTL_EWDTH_64) { 1232 if (memtype & MEM_TYPE_LPDDR3) { 1233 priv->col_shift[10] = ((addrmap[4] & 1234 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 : 1235 ((addrmap[4] & COL_MAX_VAL_MASK) + 1236 COL_B10_BASE); 1237 priv->col_shift[11] = (((addrmap[4] >> 8) & 1238 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 : 1239 (((addrmap[4] >> 8) & COL_MAX_VAL_MASK) + 1240 COL_B11_BASE); 1241 } else { 1242 priv->col_shift[11] = ((addrmap[4] & 1243 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 : 1244 ((addrmap[4] & COL_MAX_VAL_MASK) + 1245 COL_B10_BASE); 1246 priv->col_shift[13] = (((addrmap[4] >> 8) & 1247 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 : 1248 (((addrmap[4] >> 8) & COL_MAX_VAL_MASK) + 1249 COL_B11_BASE); 1250 } 1251 } else if (width == DDRCTL_EWDTH_32) { 1252 if (memtype & MEM_TYPE_LPDDR3) { 1253 priv->col_shift[10] = (((addrmap[3] >> 24) & 1254 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 : 1255 (((addrmap[3] >> 24) & COL_MAX_VAL_MASK) + 1256 COL_B9_BASE); 1257 priv->col_shift[11] = ((addrmap[4] & 1258 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 : 1259 ((addrmap[4] & COL_MAX_VAL_MASK) + 1260 COL_B10_BASE); 1261 } else { 1262 priv->col_shift[11] = (((addrmap[3] >> 24) & 1263 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 : 1264 (((addrmap[3] >> 24) & COL_MAX_VAL_MASK) + 1265 COL_B9_BASE); 1266 priv->col_shift[13] = ((addrmap[4] & 1267 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 : 1268 ((addrmap[4] & COL_MAX_VAL_MASK) + 1269 COL_B10_BASE); 1270 } 1271 } else { 1272 if (memtype & MEM_TYPE_LPDDR3) { 1273 priv->col_shift[10] = (((addrmap[3] >> 16) & 1274 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 : 1275 (((addrmap[3] >> 16) & COL_MAX_VAL_MASK) + 1276 COL_B8_BASE); 1277 priv->col_shift[11] = (((addrmap[3] >> 24) & 1278 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 : 1279 (((addrmap[3] >> 24) & COL_MAX_VAL_MASK) + 1280 COL_B9_BASE); 1281 priv->col_shift[13] = ((addrmap[4] & 1282 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 : 1283 ((addrmap[4] & COL_MAX_VAL_MASK) + 1284 COL_B10_BASE); 1285 } else { 1286 priv->col_shift[11] = (((addrmap[3] >> 16) & 1287 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 : 1288 (((addrmap[3] >> 16) & COL_MAX_VAL_MASK) + 1289 COL_B8_BASE); 1290 priv->col_shift[13] = (((addrmap[3] >> 24) & 1291 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 : 1292 (((addrmap[3] >> 24) & COL_MAX_VAL_MASK) + 1293 COL_B9_BASE); 1294 } 1295 } 1296 1297 if (width) { 1298 for (index = 9; index > width; index--) { 1299 priv->col_shift[index] = priv->col_shift[index - width]; 1300 priv->col_shift[index - width] = 0; 1301 } 1302 } 1303 1304 } 1305 1306 static void setup_bank_address_map(struct synps_edac_priv *priv, u32 *addrmap) 1307 { 1308 priv->bank_shift[0] = (addrmap[1] & BANK_MAX_VAL_MASK) + BANK_B0_BASE; 1309 priv->bank_shift[1] = ((addrmap[1] >> 8) & 1310 BANK_MAX_VAL_MASK) + BANK_B1_BASE; 1311 priv->bank_shift[2] = (((addrmap[1] >> 16) & 1312 BANK_MAX_VAL_MASK) == BANK_MAX_VAL_MASK) ? 0 : 1313 (((addrmap[1] >> 16) & BANK_MAX_VAL_MASK) + 1314 BANK_B2_BASE); 1315 1316 } 1317 1318 static void setup_bg_address_map(struct synps_edac_priv *priv, u32 *addrmap) 1319 { 1320 priv->bankgrp_shift[0] = (addrmap[8] & 1321 BANKGRP_MAX_VAL_MASK) + BANKGRP_B0_BASE; 1322 priv->bankgrp_shift[1] = (((addrmap[8] >> 8) & BANKGRP_MAX_VAL_MASK) == 1323 BANKGRP_MAX_VAL_MASK) ? 0 : (((addrmap[8] >> 8) 1324 & BANKGRP_MAX_VAL_MASK) + BANKGRP_B1_BASE); 1325 1326 } 1327 1328 static void setup_rank_address_map(struct synps_edac_priv *priv, u32 *addrmap) 1329 { 1330 priv->rank_shift[0] = ((addrmap[0] & RANK_MAX_VAL_MASK) == 1331 RANK_MAX_VAL_MASK) ? 0 : ((addrmap[0] & 1332 RANK_MAX_VAL_MASK) + RANK_B0_BASE); 1333 } 1334 1335 /** 1336 * setup_address_map - Set Address Map by querying ADDRMAP registers. 1337 * @priv: DDR memory controller private instance data. 1338 * 1339 * Set Address Map by querying ADDRMAP registers. 1340 * 1341 * Return: none. 1342 */ 1343 static void setup_address_map(struct synps_edac_priv *priv) 1344 { 1345 u32 addrmap[12]; 1346 int index; 1347 1348 for (index = 0; index < 12; index++) { 1349 u32 addrmap_offset; 1350 1351 addrmap_offset = ECC_ADDRMAP0_OFFSET + (index * 4); 1352 addrmap[index] = readl(priv->baseaddr + addrmap_offset); 1353 } 1354 1355 setup_row_address_map(priv, addrmap); 1356 1357 setup_column_address_map(priv, addrmap); 1358 1359 setup_bank_address_map(priv, addrmap); 1360 1361 setup_bg_address_map(priv, addrmap); 1362 1363 setup_rank_address_map(priv, addrmap); 1364 } 1365 #endif /* CONFIG_EDAC_DEBUG */ 1366 1367 /** 1368 * mc_probe - Check controller and bind driver. 1369 * @pdev: platform device. 1370 * 1371 * Probe a specific controller instance for binding with the driver. 1372 * 1373 * Return: 0 if the controller instance was successfully bound to the 1374 * driver; otherwise, < 0 on error. 1375 */ 1376 static int mc_probe(struct platform_device *pdev) 1377 { 1378 const struct synps_platform_data *p_data; 1379 struct edac_mc_layer layers[2]; 1380 struct synps_edac_priv *priv; 1381 struct mem_ctl_info *mci; 1382 void __iomem *baseaddr; 1383 int rc; 1384 1385 baseaddr = devm_platform_ioremap_resource(pdev, 0); 1386 if (IS_ERR(baseaddr)) 1387 return PTR_ERR(baseaddr); 1388 1389 p_data = of_device_get_match_data(&pdev->dev); 1390 if (!p_data) 1391 return -ENODEV; 1392 1393 if (!p_data->get_ecc_state(baseaddr)) { 1394 edac_printk(KERN_INFO, EDAC_MC, "ECC not enabled\n"); 1395 return -ENXIO; 1396 } 1397 1398 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; 1399 layers[0].size = SYNPS_EDAC_NR_CSROWS; 1400 layers[0].is_virt_csrow = true; 1401 layers[1].type = EDAC_MC_LAYER_CHANNEL; 1402 layers[1].size = SYNPS_EDAC_NR_CHANS; 1403 layers[1].is_virt_csrow = false; 1404 1405 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, 1406 sizeof(struct synps_edac_priv)); 1407 if (!mci) { 1408 edac_printk(KERN_ERR, EDAC_MC, 1409 "Failed memory allocation for mc instance\n"); 1410 return -ENOMEM; 1411 } 1412 1413 priv = mci->pvt_info; 1414 priv->baseaddr = baseaddr; 1415 priv->p_data = p_data; 1416 spin_lock_init(&priv->reglock); 1417 1418 mc_init(mci, pdev); 1419 1420 if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) { 1421 rc = setup_irq(mci, pdev); 1422 if (rc) 1423 goto free_edac_mc; 1424 } 1425 1426 rc = edac_mc_add_mc(mci); 1427 if (rc) { 1428 edac_printk(KERN_ERR, EDAC_MC, 1429 "Failed to register with EDAC core\n"); 1430 goto free_edac_mc; 1431 } 1432 1433 #ifdef CONFIG_EDAC_DEBUG 1434 if (priv->p_data->quirks & DDR_ECC_DATA_POISON_SUPPORT) { 1435 rc = edac_create_sysfs_attributes(mci); 1436 if (rc) { 1437 edac_printk(KERN_ERR, EDAC_MC, 1438 "Failed to create sysfs entries\n"); 1439 goto free_edac_mc; 1440 } 1441 } 1442 1443 if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) 1444 setup_address_map(priv); 1445 #endif 1446 1447 /* 1448 * Start capturing the correctable and uncorrectable errors. A write of 1449 * 0 starts the counters. 1450 */ 1451 if (!(priv->p_data->quirks & DDR_ECC_INTR_SUPPORT)) 1452 writel(0x0, baseaddr + ECC_CTRL_OFST); 1453 1454 return rc; 1455 1456 free_edac_mc: 1457 edac_mc_free(mci); 1458 1459 return rc; 1460 } 1461 1462 /** 1463 * mc_remove - Unbind driver from controller. 1464 * @pdev: Platform device. 1465 * 1466 * Return: Unconditionally 0 1467 */ 1468 static void mc_remove(struct platform_device *pdev) 1469 { 1470 struct mem_ctl_info *mci = platform_get_drvdata(pdev); 1471 struct synps_edac_priv *priv = mci->pvt_info; 1472 1473 if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) 1474 disable_intr(priv); 1475 1476 #ifdef CONFIG_EDAC_DEBUG 1477 if (priv->p_data->quirks & DDR_ECC_DATA_POISON_SUPPORT) 1478 edac_remove_sysfs_attributes(mci); 1479 #endif 1480 1481 edac_mc_del_mc(&pdev->dev); 1482 edac_mc_free(mci); 1483 } 1484 1485 static struct platform_driver synps_edac_mc_driver = { 1486 .driver = { 1487 .name = "synopsys-edac", 1488 .of_match_table = synps_edac_match, 1489 }, 1490 .probe = mc_probe, 1491 .remove = mc_remove, 1492 }; 1493 1494 module_platform_driver(synps_edac_mc_driver); 1495 1496 MODULE_AUTHOR("Xilinx Inc"); 1497 MODULE_DESCRIPTION("Synopsys DDR ECC driver"); 1498 MODULE_LICENSE("GPL v2"); 1499