xref: /linux/drivers/edac/synopsys_edac.c (revision 3630400697a3d334a391c1dba1b601d852145f2c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Synopsys DDR ECC Driver
4  * This driver is based on ppc4xx_edac.c drivers
5  *
6  * Copyright (C) 2012 - 2014 Xilinx, Inc.
7  */
8 
9 #include <linux/edac.h>
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/spinlock.h>
13 #include <linux/sizes.h>
14 #include <linux/interrupt.h>
15 #include <linux/of.h>
16 
17 #include "edac_module.h"
18 
19 /* Number of cs_rows needed per memory controller */
20 #define SYNPS_EDAC_NR_CSROWS		1
21 
22 /* Number of channels per memory controller */
23 #define SYNPS_EDAC_NR_CHANS		1
24 
25 /* Granularity of reported error in bytes */
26 #define SYNPS_EDAC_ERR_GRAIN		1
27 
28 #define SYNPS_EDAC_MSG_SIZE		256
29 
30 #define SYNPS_EDAC_MOD_STRING		"synps_edac"
31 #define SYNPS_EDAC_MOD_VER		"1"
32 
33 /* Synopsys DDR memory controller registers that are relevant to ECC */
34 #define CTRL_OFST			0x0
35 #define T_ZQ_OFST			0xA4
36 
37 /* ECC control register */
38 #define ECC_CTRL_OFST			0xC4
39 /* ECC log register */
40 #define CE_LOG_OFST			0xC8
41 /* ECC address register */
42 #define CE_ADDR_OFST			0xCC
43 /* ECC data[31:0] register */
44 #define CE_DATA_31_0_OFST		0xD0
45 
46 /* Uncorrectable error info registers */
47 #define UE_LOG_OFST			0xDC
48 #define UE_ADDR_OFST			0xE0
49 #define UE_DATA_31_0_OFST		0xE4
50 
51 #define STAT_OFST			0xF0
52 #define SCRUB_OFST			0xF4
53 
54 /* Control register bit field definitions */
55 #define CTRL_BW_MASK			0xC
56 #define CTRL_BW_SHIFT			2
57 
58 #define DDRCTL_WDTH_16			1
59 #define DDRCTL_WDTH_32			0
60 
61 /* ZQ register bit field definitions */
62 #define T_ZQ_DDRMODE_MASK		0x2
63 
64 /* ECC control register bit field definitions */
65 #define ECC_CTRL_CLR_CE_ERR		0x2
66 #define ECC_CTRL_CLR_UE_ERR		0x1
67 
68 /* ECC correctable/uncorrectable error log register definitions */
69 #define LOG_VALID			0x1
70 #define CE_LOG_BITPOS_MASK		0xFE
71 #define CE_LOG_BITPOS_SHIFT		1
72 
73 /* ECC correctable/uncorrectable error address register definitions */
74 #define ADDR_COL_MASK			0xFFF
75 #define ADDR_ROW_MASK			0xFFFF000
76 #define ADDR_ROW_SHIFT			12
77 #define ADDR_BANK_MASK			0x70000000
78 #define ADDR_BANK_SHIFT			28
79 
80 /* ECC statistic register definitions */
81 #define STAT_UECNT_MASK			0xFF
82 #define STAT_CECNT_MASK			0xFF00
83 #define STAT_CECNT_SHIFT		8
84 
85 /* ECC scrub register definitions */
86 #define SCRUB_MODE_MASK			0x7
87 #define SCRUB_MODE_SECDED		0x4
88 
89 /* DDR ECC Quirks */
90 #define DDR_ECC_INTR_SUPPORT		BIT(0)
91 #define DDR_ECC_DATA_POISON_SUPPORT	BIT(1)
92 #define DDR_ECC_INTR_SELF_CLEAR		BIT(2)
93 
94 /* ZynqMP Enhanced DDR memory controller registers that are relevant to ECC */
95 /* ECC Configuration Registers */
96 #define ECC_CFG0_OFST			0x70
97 #define ECC_CFG1_OFST			0x74
98 
99 /* ECC Status Register */
100 #define ECC_STAT_OFST			0x78
101 
102 /* ECC Clear Register */
103 #define ECC_CLR_OFST			0x7C
104 
105 /* ECC Error count Register */
106 #define ECC_ERRCNT_OFST			0x80
107 
108 /* ECC Corrected Error Address Register */
109 #define ECC_CEADDR0_OFST		0x84
110 #define ECC_CEADDR1_OFST		0x88
111 
112 /* ECC Syndrome Registers */
113 #define ECC_CSYND0_OFST			0x8C
114 #define ECC_CSYND1_OFST			0x90
115 #define ECC_CSYND2_OFST			0x94
116 
117 /* ECC Bit Mask0 Address Register */
118 #define ECC_BITMASK0_OFST		0x98
119 #define ECC_BITMASK1_OFST		0x9C
120 #define ECC_BITMASK2_OFST		0xA0
121 
122 /* ECC UnCorrected Error Address Register */
123 #define ECC_UEADDR0_OFST		0xA4
124 #define ECC_UEADDR1_OFST		0xA8
125 
126 /* ECC Syndrome Registers */
127 #define ECC_UESYND0_OFST		0xAC
128 #define ECC_UESYND1_OFST		0xB0
129 #define ECC_UESYND2_OFST		0xB4
130 
131 /* ECC Poison Address Reg */
132 #define ECC_POISON0_OFST		0xB8
133 #define ECC_POISON1_OFST		0xBC
134 
135 #define ECC_ADDRMAP0_OFFSET		0x200
136 
137 /* Control register bitfield definitions */
138 #define ECC_CTRL_BUSWIDTH_MASK		0x3000
139 #define ECC_CTRL_BUSWIDTH_SHIFT		12
140 #define ECC_CTRL_CLR_CE_ERRCNT		BIT(2)
141 #define ECC_CTRL_CLR_UE_ERRCNT		BIT(3)
142 
143 /* DDR Control Register width definitions  */
144 #define DDRCTL_EWDTH_16			2
145 #define DDRCTL_EWDTH_32			1
146 #define DDRCTL_EWDTH_64			0
147 
148 /* ECC status register definitions */
149 #define ECC_STAT_UECNT_MASK		0xF0000
150 #define ECC_STAT_UECNT_SHIFT		16
151 #define ECC_STAT_CECNT_MASK		0xF00
152 #define ECC_STAT_CECNT_SHIFT		8
153 #define ECC_STAT_BITNUM_MASK		0x7F
154 
155 /* ECC error count register definitions */
156 #define ECC_ERRCNT_UECNT_MASK		0xFFFF0000
157 #define ECC_ERRCNT_UECNT_SHIFT		16
158 #define ECC_ERRCNT_CECNT_MASK		0xFFFF
159 
160 /* DDR QOS Interrupt register definitions */
161 #define DDR_QOS_IRQ_STAT_OFST		0x20200
162 #define DDR_QOSUE_MASK			0x4
163 #define	DDR_QOSCE_MASK			0x2
164 #define	ECC_CE_UE_INTR_MASK		0x6
165 #define DDR_QOS_IRQ_EN_OFST		0x20208
166 #define DDR_QOS_IRQ_DB_OFST		0x2020C
167 
168 /* DDR QOS Interrupt register definitions */
169 #define DDR_UE_MASK			BIT(9)
170 #define DDR_CE_MASK			BIT(8)
171 
172 /* ECC Corrected Error Register Mask and Shifts*/
173 #define ECC_CEADDR0_RW_MASK		0x3FFFF
174 #define ECC_CEADDR0_RNK_MASK		BIT(24)
175 #define ECC_CEADDR1_BNKGRP_MASK		0x3000000
176 #define ECC_CEADDR1_BNKNR_MASK		0x70000
177 #define ECC_CEADDR1_BLKNR_MASK		0xFFF
178 #define ECC_CEADDR1_BNKGRP_SHIFT	24
179 #define ECC_CEADDR1_BNKNR_SHIFT		16
180 
181 /* ECC Poison register shifts */
182 #define ECC_POISON0_RANK_SHIFT		24
183 #define ECC_POISON0_RANK_MASK		BIT(24)
184 #define ECC_POISON0_COLUMN_SHIFT	0
185 #define ECC_POISON0_COLUMN_MASK		0xFFF
186 #define ECC_POISON1_BG_SHIFT		28
187 #define ECC_POISON1_BG_MASK		0x30000000
188 #define ECC_POISON1_BANKNR_SHIFT	24
189 #define ECC_POISON1_BANKNR_MASK		0x7000000
190 #define ECC_POISON1_ROW_SHIFT		0
191 #define ECC_POISON1_ROW_MASK		0x3FFFF
192 
193 /* DDR Memory type defines */
194 #define MEM_TYPE_DDR3			0x1
195 #define MEM_TYPE_LPDDR3			0x8
196 #define MEM_TYPE_DDR2			0x4
197 #define MEM_TYPE_DDR4			0x10
198 #define MEM_TYPE_LPDDR4			0x20
199 
200 /* DDRC Software control register */
201 #define DDRC_SWCTL			0x320
202 
203 /* DDRC ECC CE & UE poison mask */
204 #define ECC_CEPOISON_MASK		0x3
205 #define ECC_UEPOISON_MASK		0x1
206 
207 /* DDRC Device config masks */
208 #define DDRC_MSTR_CFG_MASK		0xC0000000
209 #define DDRC_MSTR_CFG_SHIFT		30
210 #define DDRC_MSTR_CFG_X4_MASK		0x0
211 #define DDRC_MSTR_CFG_X8_MASK		0x1
212 #define DDRC_MSTR_CFG_X16_MASK		0x2
213 #define DDRC_MSTR_CFG_X32_MASK		0x3
214 
215 #define DDR_MAX_ROW_SHIFT		18
216 #define DDR_MAX_COL_SHIFT		14
217 #define DDR_MAX_BANK_SHIFT		3
218 #define DDR_MAX_BANKGRP_SHIFT		2
219 
220 #define ROW_MAX_VAL_MASK		0xF
221 #define COL_MAX_VAL_MASK		0xF
222 #define BANK_MAX_VAL_MASK		0x1F
223 #define BANKGRP_MAX_VAL_MASK		0x1F
224 #define RANK_MAX_VAL_MASK		0x1F
225 
226 #define ROW_B0_BASE			6
227 #define ROW_B1_BASE			7
228 #define ROW_B2_BASE			8
229 #define ROW_B3_BASE			9
230 #define ROW_B4_BASE			10
231 #define ROW_B5_BASE			11
232 #define ROW_B6_BASE			12
233 #define ROW_B7_BASE			13
234 #define ROW_B8_BASE			14
235 #define ROW_B9_BASE			15
236 #define ROW_B10_BASE			16
237 #define ROW_B11_BASE			17
238 #define ROW_B12_BASE			18
239 #define ROW_B13_BASE			19
240 #define ROW_B14_BASE			20
241 #define ROW_B15_BASE			21
242 #define ROW_B16_BASE			22
243 #define ROW_B17_BASE			23
244 
245 #define COL_B2_BASE			2
246 #define COL_B3_BASE			3
247 #define COL_B4_BASE			4
248 #define COL_B5_BASE			5
249 #define COL_B6_BASE			6
250 #define COL_B7_BASE			7
251 #define COL_B8_BASE			8
252 #define COL_B9_BASE			9
253 #define COL_B10_BASE			10
254 #define COL_B11_BASE			11
255 #define COL_B12_BASE			12
256 #define COL_B13_BASE			13
257 
258 #define BANK_B0_BASE			2
259 #define BANK_B1_BASE			3
260 #define BANK_B2_BASE			4
261 
262 #define BANKGRP_B0_BASE			2
263 #define BANKGRP_B1_BASE			3
264 
265 #define RANK_B0_BASE			6
266 
267 /**
268  * struct ecc_error_info - ECC error log information.
269  * @row:	Row number.
270  * @col:	Column number.
271  * @bank:	Bank number.
272  * @bitpos:	Bit position.
273  * @data:	Data causing the error.
274  * @bankgrpnr:	Bank group number.
275  * @blknr:	Block number.
276  */
277 struct ecc_error_info {
278 	u32 row;
279 	u32 col;
280 	u32 bank;
281 	u32 bitpos;
282 	u32 data;
283 	u32 bankgrpnr;
284 	u32 blknr;
285 };
286 
287 /**
288  * struct synps_ecc_status - ECC status information to report.
289  * @ce_cnt:	Correctable error count.
290  * @ue_cnt:	Uncorrectable error count.
291  * @ceinfo:	Correctable error log information.
292  * @ueinfo:	Uncorrectable error log information.
293  */
294 struct synps_ecc_status {
295 	u32 ce_cnt;
296 	u32 ue_cnt;
297 	struct ecc_error_info ceinfo;
298 	struct ecc_error_info ueinfo;
299 };
300 
301 /**
302  * struct synps_edac_priv - DDR memory controller private instance data.
303  * @baseaddr:		Base address of the DDR controller.
304  * @reglock:		Concurrent CSRs access lock.
305  * @message:		Buffer for framing the event specific info.
306  * @stat:		ECC status information.
307  * @p_data:		Platform data.
308  * @ce_cnt:		Correctable Error count.
309  * @ue_cnt:		Uncorrectable Error count.
310  * @poison_addr:	Data poison address.
311  * @row_shift:		Bit shifts for row bit.
312  * @col_shift:		Bit shifts for column bit.
313  * @bank_shift:		Bit shifts for bank bit.
314  * @bankgrp_shift:	Bit shifts for bank group bit.
315  * @rank_shift:		Bit shifts for rank bit.
316  */
317 struct synps_edac_priv {
318 	void __iomem *baseaddr;
319 	spinlock_t reglock;
320 	char message[SYNPS_EDAC_MSG_SIZE];
321 	struct synps_ecc_status stat;
322 	const struct synps_platform_data *p_data;
323 	u32 ce_cnt;
324 	u32 ue_cnt;
325 #ifdef CONFIG_EDAC_DEBUG
326 	ulong poison_addr;
327 	u32 row_shift[18];
328 	u32 col_shift[14];
329 	u32 bank_shift[3];
330 	u32 bankgrp_shift[2];
331 	u32 rank_shift[1];
332 #endif
333 };
334 
335 /**
336  * struct synps_platform_data -  synps platform data structure.
337  * @get_error_info:	Get EDAC error info.
338  * @get_mtype:		Get mtype.
339  * @get_dtype:		Get dtype.
340  * @get_ecc_state:	Get ECC state.
341  * @get_mem_info:	Get EDAC memory info
342  * @quirks:		To differentiate IPs.
343  */
344 struct synps_platform_data {
345 	int (*get_error_info)(struct synps_edac_priv *priv);
346 	enum mem_type (*get_mtype)(const void __iomem *base);
347 	enum dev_type (*get_dtype)(const void __iomem *base);
348 	bool (*get_ecc_state)(void __iomem *base);
349 #ifdef CONFIG_EDAC_DEBUG
350 	u64 (*get_mem_info)(struct synps_edac_priv *priv);
351 #endif
352 	int quirks;
353 };
354 
355 /**
356  * zynq_get_error_info - Get the current ECC error info.
357  * @priv:	DDR memory controller private instance data.
358  *
359  * Return: one if there is no error, otherwise zero.
360  */
361 static int zynq_get_error_info(struct synps_edac_priv *priv)
362 {
363 	struct synps_ecc_status *p;
364 	u32 regval, clearval = 0;
365 	void __iomem *base;
366 
367 	base = priv->baseaddr;
368 	p = &priv->stat;
369 
370 	regval = readl(base + STAT_OFST);
371 	if (!regval)
372 		return 1;
373 
374 	p->ce_cnt = (regval & STAT_CECNT_MASK) >> STAT_CECNT_SHIFT;
375 	p->ue_cnt = regval & STAT_UECNT_MASK;
376 
377 	regval = readl(base + CE_LOG_OFST);
378 	if (!(p->ce_cnt && (regval & LOG_VALID)))
379 		goto ue_err;
380 
381 	p->ceinfo.bitpos = (regval & CE_LOG_BITPOS_MASK) >> CE_LOG_BITPOS_SHIFT;
382 	regval = readl(base + CE_ADDR_OFST);
383 	p->ceinfo.row = (regval & ADDR_ROW_MASK) >> ADDR_ROW_SHIFT;
384 	p->ceinfo.col = regval & ADDR_COL_MASK;
385 	p->ceinfo.bank = (regval & ADDR_BANK_MASK) >> ADDR_BANK_SHIFT;
386 	p->ceinfo.data = readl(base + CE_DATA_31_0_OFST);
387 	edac_dbg(3, "CE bit position: %d data: %d\n", p->ceinfo.bitpos,
388 		 p->ceinfo.data);
389 	clearval = ECC_CTRL_CLR_CE_ERR;
390 
391 ue_err:
392 	regval = readl(base + UE_LOG_OFST);
393 	if (!(p->ue_cnt && (regval & LOG_VALID)))
394 		goto out;
395 
396 	regval = readl(base + UE_ADDR_OFST);
397 	p->ueinfo.row = (regval & ADDR_ROW_MASK) >> ADDR_ROW_SHIFT;
398 	p->ueinfo.col = regval & ADDR_COL_MASK;
399 	p->ueinfo.bank = (regval & ADDR_BANK_MASK) >> ADDR_BANK_SHIFT;
400 	p->ueinfo.data = readl(base + UE_DATA_31_0_OFST);
401 	clearval |= ECC_CTRL_CLR_UE_ERR;
402 
403 out:
404 	writel(clearval, base + ECC_CTRL_OFST);
405 	writel(0x0, base + ECC_CTRL_OFST);
406 
407 	return 0;
408 }
409 
410 #ifdef CONFIG_EDAC_DEBUG
411 /**
412  * zynqmp_get_mem_info - Get the current memory info.
413  * @priv:	DDR memory controller private instance data.
414  *
415  * Return: host interface address.
416  */
417 static u64 zynqmp_get_mem_info(struct synps_edac_priv *priv)
418 {
419 	u64 hif_addr = 0, linear_addr;
420 
421 	linear_addr = priv->poison_addr;
422 	if (linear_addr >= SZ_32G)
423 		linear_addr = linear_addr - SZ_32G + SZ_2G;
424 	hif_addr = linear_addr >> 3;
425 	return hif_addr;
426 }
427 #endif
428 
429 /**
430  * zynqmp_get_error_info - Get the current ECC error info.
431  * @priv:	DDR memory controller private instance data.
432  *
433  * Return: one if there is no error otherwise returns zero.
434  */
435 static int zynqmp_get_error_info(struct synps_edac_priv *priv)
436 {
437 	struct synps_ecc_status *p;
438 	u32 regval, clearval;
439 	unsigned long flags;
440 	void __iomem *base;
441 
442 	base = priv->baseaddr;
443 	p = &priv->stat;
444 
445 	regval = readl(base + ECC_ERRCNT_OFST);
446 	p->ce_cnt = regval & ECC_ERRCNT_CECNT_MASK;
447 	p->ue_cnt = (regval & ECC_ERRCNT_UECNT_MASK) >> ECC_ERRCNT_UECNT_SHIFT;
448 	if (!p->ce_cnt)
449 		goto ue_err;
450 
451 	regval = readl(base + ECC_STAT_OFST);
452 	if (!regval)
453 		return 1;
454 
455 	p->ceinfo.bitpos = (regval & ECC_STAT_BITNUM_MASK);
456 
457 	regval = readl(base + ECC_CEADDR0_OFST);
458 	p->ceinfo.row = (regval & ECC_CEADDR0_RW_MASK);
459 	regval = readl(base + ECC_CEADDR1_OFST);
460 	p->ceinfo.bank = (regval & ECC_CEADDR1_BNKNR_MASK) >>
461 					ECC_CEADDR1_BNKNR_SHIFT;
462 	p->ceinfo.bankgrpnr = (regval &	ECC_CEADDR1_BNKGRP_MASK) >>
463 					ECC_CEADDR1_BNKGRP_SHIFT;
464 	p->ceinfo.blknr = (regval & ECC_CEADDR1_BLKNR_MASK);
465 	p->ceinfo.data = readl(base + ECC_CSYND0_OFST);
466 	edac_dbg(2, "ECCCSYN0: 0x%08X ECCCSYN1: 0x%08X ECCCSYN2: 0x%08X\n",
467 		 readl(base + ECC_CSYND0_OFST), readl(base + ECC_CSYND1_OFST),
468 		 readl(base + ECC_CSYND2_OFST));
469 ue_err:
470 	if (!p->ue_cnt)
471 		goto out;
472 
473 	regval = readl(base + ECC_UEADDR0_OFST);
474 	p->ueinfo.row = (regval & ECC_CEADDR0_RW_MASK);
475 	regval = readl(base + ECC_UEADDR1_OFST);
476 	p->ueinfo.bankgrpnr = (regval & ECC_CEADDR1_BNKGRP_MASK) >>
477 					ECC_CEADDR1_BNKGRP_SHIFT;
478 	p->ueinfo.bank = (regval & ECC_CEADDR1_BNKNR_MASK) >>
479 					ECC_CEADDR1_BNKNR_SHIFT;
480 	p->ueinfo.blknr = (regval & ECC_CEADDR1_BLKNR_MASK);
481 	p->ueinfo.data = readl(base + ECC_UESYND0_OFST);
482 out:
483 	spin_lock_irqsave(&priv->reglock, flags);
484 
485 	clearval = readl(base + ECC_CLR_OFST) |
486 		   ECC_CTRL_CLR_CE_ERR | ECC_CTRL_CLR_CE_ERRCNT |
487 		   ECC_CTRL_CLR_UE_ERR | ECC_CTRL_CLR_UE_ERRCNT;
488 	writel(clearval, base + ECC_CLR_OFST);
489 
490 	spin_unlock_irqrestore(&priv->reglock, flags);
491 
492 	return 0;
493 }
494 
495 /**
496  * handle_error - Handle Correctable and Uncorrectable errors.
497  * @mci:	EDAC memory controller instance.
498  * @p:		Synopsys ECC status structure.
499  *
500  * Handles ECC correctable and uncorrectable errors.
501  */
502 static void handle_error(struct mem_ctl_info *mci, struct synps_ecc_status *p)
503 {
504 	struct synps_edac_priv *priv = mci->pvt_info;
505 	struct ecc_error_info *pinf;
506 
507 	if (p->ce_cnt) {
508 		pinf = &p->ceinfo;
509 		if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
510 			snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
511 				 "DDR ECC error type:%s Row %d Bank %d BankGroup Number %d Block Number %d Bit Position: %d Data: 0x%08x",
512 				 "CE", pinf->row, pinf->bank,
513 				 pinf->bankgrpnr, pinf->blknr,
514 				 pinf->bitpos, pinf->data);
515 		} else {
516 			snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
517 				 "DDR ECC error type:%s Row %d Bank %d Col %d Bit Position: %d Data: 0x%08x",
518 				 "CE", pinf->row, pinf->bank, pinf->col,
519 				 pinf->bitpos, pinf->data);
520 		}
521 
522 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
523 				     p->ce_cnt, 0, 0, 0, 0, 0, -1,
524 				     priv->message, "");
525 	}
526 
527 	if (p->ue_cnt) {
528 		pinf = &p->ueinfo;
529 		if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
530 			snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
531 				 "DDR ECC error type :%s Row %d Bank %d BankGroup Number %d Block Number %d",
532 				 "UE", pinf->row, pinf->bank,
533 				 pinf->bankgrpnr, pinf->blknr);
534 		} else {
535 			snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
536 				 "DDR ECC error type :%s Row %d Bank %d Col %d ",
537 				 "UE", pinf->row, pinf->bank, pinf->col);
538 		}
539 
540 		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
541 				     p->ue_cnt, 0, 0, 0, 0, 0, -1,
542 				     priv->message, "");
543 	}
544 
545 	memset(p, 0, sizeof(*p));
546 }
547 
548 static void enable_intr(struct synps_edac_priv *priv)
549 {
550 	unsigned long flags;
551 
552 	/* Enable UE/CE Interrupts */
553 	if (!(priv->p_data->quirks & DDR_ECC_INTR_SELF_CLEAR)) {
554 		writel(DDR_QOSUE_MASK | DDR_QOSCE_MASK,
555 		       priv->baseaddr + DDR_QOS_IRQ_EN_OFST);
556 
557 		return;
558 	}
559 
560 	spin_lock_irqsave(&priv->reglock, flags);
561 
562 	writel(DDR_UE_MASK | DDR_CE_MASK,
563 	       priv->baseaddr + ECC_CLR_OFST);
564 
565 	spin_unlock_irqrestore(&priv->reglock, flags);
566 }
567 
568 static void disable_intr(struct synps_edac_priv *priv)
569 {
570 	unsigned long flags;
571 
572 	/* Disable UE/CE Interrupts */
573 	if (!(priv->p_data->quirks & DDR_ECC_INTR_SELF_CLEAR)) {
574 		writel(DDR_QOSUE_MASK | DDR_QOSCE_MASK,
575 		       priv->baseaddr + DDR_QOS_IRQ_DB_OFST);
576 
577 		return;
578 	}
579 
580 	spin_lock_irqsave(&priv->reglock, flags);
581 
582 	writel(0, priv->baseaddr + ECC_CLR_OFST);
583 
584 	spin_unlock_irqrestore(&priv->reglock, flags);
585 }
586 
587 /**
588  * intr_handler - Interrupt Handler for ECC interrupts.
589  * @irq:        IRQ number.
590  * @dev_id:     Device ID.
591  *
592  * Return: IRQ_NONE, if interrupt not set or IRQ_HANDLED otherwise.
593  */
594 static irqreturn_t intr_handler(int irq, void *dev_id)
595 {
596 	const struct synps_platform_data *p_data;
597 	struct mem_ctl_info *mci = dev_id;
598 	struct synps_edac_priv *priv;
599 	int status, regval;
600 
601 	priv = mci->pvt_info;
602 	p_data = priv->p_data;
603 
604 	/*
605 	 * v3.0 of the controller has the ce/ue bits cleared automatically,
606 	 * so this condition does not apply.
607 	 */
608 	if (!(priv->p_data->quirks & DDR_ECC_INTR_SELF_CLEAR)) {
609 		regval = readl(priv->baseaddr + DDR_QOS_IRQ_STAT_OFST);
610 		regval &= (DDR_QOSCE_MASK | DDR_QOSUE_MASK);
611 		if (!(regval & ECC_CE_UE_INTR_MASK))
612 			return IRQ_NONE;
613 	}
614 
615 	status = p_data->get_error_info(priv);
616 	if (status)
617 		return IRQ_NONE;
618 
619 	priv->ce_cnt += priv->stat.ce_cnt;
620 	priv->ue_cnt += priv->stat.ue_cnt;
621 	handle_error(mci, &priv->stat);
622 
623 	edac_dbg(3, "Total error count CE %d UE %d\n",
624 		 priv->ce_cnt, priv->ue_cnt);
625 	/* v3.0 of the controller does not have this register */
626 	if (!(priv->p_data->quirks & DDR_ECC_INTR_SELF_CLEAR))
627 		writel(regval, priv->baseaddr + DDR_QOS_IRQ_STAT_OFST);
628 
629 	return IRQ_HANDLED;
630 }
631 
632 /**
633  * check_errors - Check controller for ECC errors.
634  * @mci:	EDAC memory controller instance.
635  *
636  * Check and post ECC errors. Called by the polling thread.
637  */
638 static void check_errors(struct mem_ctl_info *mci)
639 {
640 	const struct synps_platform_data *p_data;
641 	struct synps_edac_priv *priv;
642 	int status;
643 
644 	priv = mci->pvt_info;
645 	p_data = priv->p_data;
646 
647 	status = p_data->get_error_info(priv);
648 	if (status)
649 		return;
650 
651 	priv->ce_cnt += priv->stat.ce_cnt;
652 	priv->ue_cnt += priv->stat.ue_cnt;
653 	handle_error(mci, &priv->stat);
654 
655 	edac_dbg(3, "Total error count CE %d UE %d\n",
656 		 priv->ce_cnt, priv->ue_cnt);
657 }
658 
659 /**
660  * zynq_get_dtype - Return the controller memory width.
661  * @base:	DDR memory controller base address.
662  *
663  * Get the EDAC device type width appropriate for the current controller
664  * configuration.
665  *
666  * Return: a device type width enumeration.
667  */
668 static enum dev_type zynq_get_dtype(const void __iomem *base)
669 {
670 	enum dev_type dt;
671 	u32 width;
672 
673 	width = readl(base + CTRL_OFST);
674 	width = (width & CTRL_BW_MASK) >> CTRL_BW_SHIFT;
675 
676 	switch (width) {
677 	case DDRCTL_WDTH_16:
678 		dt = DEV_X2;
679 		break;
680 	case DDRCTL_WDTH_32:
681 		dt = DEV_X4;
682 		break;
683 	default:
684 		dt = DEV_UNKNOWN;
685 	}
686 
687 	return dt;
688 }
689 
690 /**
691  * zynqmp_get_dtype - Return the controller memory width.
692  * @base:	DDR memory controller base address.
693  *
694  * Get the EDAC device type width appropriate for the current controller
695  * configuration.
696  *
697  * Return: a device type width enumeration.
698  */
699 static enum dev_type zynqmp_get_dtype(const void __iomem *base)
700 {
701 	enum dev_type dt;
702 	u32 width;
703 
704 	width = readl(base + CTRL_OFST);
705 	width = (width & ECC_CTRL_BUSWIDTH_MASK) >> ECC_CTRL_BUSWIDTH_SHIFT;
706 	switch (width) {
707 	case DDRCTL_EWDTH_16:
708 		dt = DEV_X2;
709 		break;
710 	case DDRCTL_EWDTH_32:
711 		dt = DEV_X4;
712 		break;
713 	case DDRCTL_EWDTH_64:
714 		dt = DEV_X8;
715 		break;
716 	default:
717 		dt = DEV_UNKNOWN;
718 	}
719 
720 	return dt;
721 }
722 
723 /**
724  * zynq_get_ecc_state - Return the controller ECC enable/disable status.
725  * @base:	DDR memory controller base address.
726  *
727  * Get the ECC enable/disable status of the controller.
728  *
729  * Return: true if enabled, otherwise false.
730  */
731 static bool zynq_get_ecc_state(void __iomem *base)
732 {
733 	enum dev_type dt;
734 	u32 ecctype;
735 
736 	dt = zynq_get_dtype(base);
737 	if (dt == DEV_UNKNOWN)
738 		return false;
739 
740 	ecctype = readl(base + SCRUB_OFST) & SCRUB_MODE_MASK;
741 	if ((ecctype == SCRUB_MODE_SECDED) && (dt == DEV_X2))
742 		return true;
743 
744 	return false;
745 }
746 
747 /**
748  * zynqmp_get_ecc_state - Return the controller ECC enable/disable status.
749  * @base:	DDR memory controller base address.
750  *
751  * Get the ECC enable/disable status for the controller.
752  *
753  * Return: a ECC status boolean i.e true/false - enabled/disabled.
754  */
755 static bool zynqmp_get_ecc_state(void __iomem *base)
756 {
757 	enum dev_type dt;
758 	u32 ecctype;
759 
760 	dt = zynqmp_get_dtype(base);
761 	if (dt == DEV_UNKNOWN)
762 		return false;
763 
764 	ecctype = readl(base + ECC_CFG0_OFST) & SCRUB_MODE_MASK;
765 	if ((ecctype == SCRUB_MODE_SECDED) &&
766 	    ((dt == DEV_X2) || (dt == DEV_X4) || (dt == DEV_X8)))
767 		return true;
768 
769 	return false;
770 }
771 
772 /**
773  * get_memsize - Read the size of the attached memory device.
774  *
775  * Return: the memory size in bytes.
776  */
777 static u32 get_memsize(void)
778 {
779 	struct sysinfo inf;
780 
781 	si_meminfo(&inf);
782 
783 	return inf.totalram * inf.mem_unit;
784 }
785 
786 /**
787  * zynq_get_mtype - Return the controller memory type.
788  * @base:	Synopsys ECC status structure.
789  *
790  * Get the EDAC memory type appropriate for the current controller
791  * configuration.
792  *
793  * Return: a memory type enumeration.
794  */
795 static enum mem_type zynq_get_mtype(const void __iomem *base)
796 {
797 	enum mem_type mt;
798 	u32 memtype;
799 
800 	memtype = readl(base + T_ZQ_OFST);
801 
802 	if (memtype & T_ZQ_DDRMODE_MASK)
803 		mt = MEM_DDR3;
804 	else
805 		mt = MEM_DDR2;
806 
807 	return mt;
808 }
809 
810 /**
811  * zynqmp_get_mtype - Returns controller memory type.
812  * @base:	Synopsys ECC status structure.
813  *
814  * Get the EDAC memory type appropriate for the current controller
815  * configuration.
816  *
817  * Return: a memory type enumeration.
818  */
819 static enum mem_type zynqmp_get_mtype(const void __iomem *base)
820 {
821 	enum mem_type mt;
822 	u32 memtype;
823 
824 	memtype = readl(base + CTRL_OFST);
825 
826 	if ((memtype & MEM_TYPE_DDR3) || (memtype & MEM_TYPE_LPDDR3))
827 		mt = MEM_DDR3;
828 	else if (memtype & MEM_TYPE_DDR2)
829 		mt = MEM_RDDR2;
830 	else if ((memtype & MEM_TYPE_LPDDR4) || (memtype & MEM_TYPE_DDR4))
831 		mt = MEM_DDR4;
832 	else
833 		mt = MEM_EMPTY;
834 
835 	return mt;
836 }
837 
838 /**
839  * init_csrows - Initialize the csrow data.
840  * @mci:	EDAC memory controller instance.
841  *
842  * Initialize the chip select rows associated with the EDAC memory
843  * controller instance.
844  */
845 static void init_csrows(struct mem_ctl_info *mci)
846 {
847 	struct synps_edac_priv *priv = mci->pvt_info;
848 	const struct synps_platform_data *p_data;
849 	struct csrow_info *csi;
850 	struct dimm_info *dimm;
851 	u32 size, row;
852 	int j;
853 
854 	p_data = priv->p_data;
855 
856 	for (row = 0; row < mci->nr_csrows; row++) {
857 		csi = mci->csrows[row];
858 		size = get_memsize();
859 
860 		for (j = 0; j < csi->nr_channels; j++) {
861 			dimm		= csi->channels[j]->dimm;
862 			dimm->edac_mode	= EDAC_SECDED;
863 			dimm->mtype	= p_data->get_mtype(priv->baseaddr);
864 			dimm->nr_pages	= (size >> PAGE_SHIFT) / csi->nr_channels;
865 			dimm->grain	= SYNPS_EDAC_ERR_GRAIN;
866 			dimm->dtype	= p_data->get_dtype(priv->baseaddr);
867 		}
868 	}
869 }
870 
871 /**
872  * mc_init - Initialize one driver instance.
873  * @mci:	EDAC memory controller instance.
874  * @pdev:	platform device.
875  *
876  * Perform initialization of the EDAC memory controller instance and
877  * related driver-private data associated with the memory controller the
878  * instance is bound to.
879  */
880 static void mc_init(struct mem_ctl_info *mci, struct platform_device *pdev)
881 {
882 	struct synps_edac_priv *priv;
883 
884 	mci->pdev = &pdev->dev;
885 	priv = mci->pvt_info;
886 	platform_set_drvdata(pdev, mci);
887 
888 	/* Initialize controller capabilities and configuration */
889 	mci->mtype_cap = MEM_FLAG_DDR3 | MEM_FLAG_DDR2;
890 	mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
891 	mci->scrub_cap = SCRUB_HW_SRC;
892 	mci->scrub_mode = SCRUB_NONE;
893 
894 	mci->edac_cap = EDAC_FLAG_SECDED;
895 	mci->ctl_name = "synps_ddr_controller";
896 	mci->dev_name = SYNPS_EDAC_MOD_STRING;
897 	mci->mod_name = SYNPS_EDAC_MOD_VER;
898 
899 	if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
900 		edac_op_state = EDAC_OPSTATE_INT;
901 	} else {
902 		edac_op_state = EDAC_OPSTATE_POLL;
903 		mci->edac_check = check_errors;
904 	}
905 
906 	mci->ctl_page_to_phys = NULL;
907 
908 	init_csrows(mci);
909 }
910 
911 static int setup_irq(struct mem_ctl_info *mci,
912 		     struct platform_device *pdev)
913 {
914 	struct synps_edac_priv *priv = mci->pvt_info;
915 	int ret, irq;
916 
917 	irq = platform_get_irq(pdev, 0);
918 	if (irq < 0) {
919 		edac_printk(KERN_ERR, EDAC_MC,
920 			    "No IRQ %d in DT\n", irq);
921 		return irq;
922 	}
923 
924 	ret = devm_request_irq(&pdev->dev, irq, intr_handler,
925 			       0, dev_name(&pdev->dev), mci);
926 	if (ret < 0) {
927 		edac_printk(KERN_ERR, EDAC_MC, "Failed to request IRQ\n");
928 		return ret;
929 	}
930 
931 	enable_intr(priv);
932 
933 	return 0;
934 }
935 
936 static const struct synps_platform_data zynq_edac_def = {
937 	.get_error_info	= zynq_get_error_info,
938 	.get_mtype	= zynq_get_mtype,
939 	.get_dtype	= zynq_get_dtype,
940 	.get_ecc_state	= zynq_get_ecc_state,
941 	.quirks		= 0,
942 };
943 
944 static const struct synps_platform_data zynqmp_edac_def = {
945 	.get_error_info	= zynqmp_get_error_info,
946 	.get_mtype	= zynqmp_get_mtype,
947 	.get_dtype	= zynqmp_get_dtype,
948 	.get_ecc_state	= zynqmp_get_ecc_state,
949 #ifdef CONFIG_EDAC_DEBUG
950 	.get_mem_info	= zynqmp_get_mem_info,
951 #endif
952 	.quirks         = (DDR_ECC_INTR_SUPPORT
953 #ifdef CONFIG_EDAC_DEBUG
954 			  | DDR_ECC_DATA_POISON_SUPPORT
955 #endif
956 			  ),
957 };
958 
959 static const struct synps_platform_data synopsys_edac_def = {
960 	.get_error_info	= zynqmp_get_error_info,
961 	.get_mtype	= zynqmp_get_mtype,
962 	.get_dtype	= zynqmp_get_dtype,
963 	.get_ecc_state	= zynqmp_get_ecc_state,
964 	.quirks         = (DDR_ECC_INTR_SUPPORT | DDR_ECC_INTR_SELF_CLEAR
965 #ifdef CONFIG_EDAC_DEBUG
966 			  | DDR_ECC_DATA_POISON_SUPPORT
967 #endif
968 			  ),
969 };
970 
971 
972 static const struct of_device_id synps_edac_match[] = {
973 	{
974 		.compatible = "xlnx,zynq-ddrc-a05",
975 		.data = (void *)&zynq_edac_def
976 	},
977 	{
978 		.compatible = "xlnx,zynqmp-ddrc-2.40a",
979 		.data = (void *)&zynqmp_edac_def
980 	},
981 	{
982 		.compatible = "snps,ddrc-3.80a",
983 		.data = (void *)&synopsys_edac_def
984 	},
985 	{
986 		/* end of table */
987 	}
988 };
989 
990 MODULE_DEVICE_TABLE(of, synps_edac_match);
991 
992 #ifdef CONFIG_EDAC_DEBUG
993 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
994 
995 /**
996  * ddr_poison_setup -	Update poison registers.
997  * @priv:		DDR memory controller private instance data.
998  *
999  * Update poison registers as per DDR mapping.
1000  * Return: none.
1001  */
1002 static void ddr_poison_setup(struct synps_edac_priv *priv)
1003 {
1004 	int col = 0, row = 0, bank = 0, bankgrp = 0, rank = 0, regval;
1005 	const struct synps_platform_data *p_data;
1006 	int index;
1007 	ulong hif_addr = 0;
1008 
1009 	p_data = priv->p_data;
1010 
1011 	if (p_data->get_mem_info)
1012 		hif_addr = p_data->get_mem_info(priv);
1013 	else
1014 		hif_addr = priv->poison_addr >> 3;
1015 
1016 	for (index = 0; index < DDR_MAX_ROW_SHIFT; index++) {
1017 		if (priv->row_shift[index])
1018 			row |= (((hif_addr >> priv->row_shift[index]) &
1019 						BIT(0)) << index);
1020 		else
1021 			break;
1022 	}
1023 
1024 	for (index = 0; index < DDR_MAX_COL_SHIFT; index++) {
1025 		if (priv->col_shift[index] || index < 3)
1026 			col |= (((hif_addr >> priv->col_shift[index]) &
1027 						BIT(0)) << index);
1028 		else
1029 			break;
1030 	}
1031 
1032 	for (index = 0; index < DDR_MAX_BANK_SHIFT; index++) {
1033 		if (priv->bank_shift[index])
1034 			bank |= (((hif_addr >> priv->bank_shift[index]) &
1035 						BIT(0)) << index);
1036 		else
1037 			break;
1038 	}
1039 
1040 	for (index = 0; index < DDR_MAX_BANKGRP_SHIFT; index++) {
1041 		if (priv->bankgrp_shift[index])
1042 			bankgrp |= (((hif_addr >> priv->bankgrp_shift[index])
1043 						& BIT(0)) << index);
1044 		else
1045 			break;
1046 	}
1047 
1048 	if (priv->rank_shift[0])
1049 		rank = (hif_addr >> priv->rank_shift[0]) & BIT(0);
1050 
1051 	regval = (rank << ECC_POISON0_RANK_SHIFT) & ECC_POISON0_RANK_MASK;
1052 	regval |= (col << ECC_POISON0_COLUMN_SHIFT) & ECC_POISON0_COLUMN_MASK;
1053 	writel(regval, priv->baseaddr + ECC_POISON0_OFST);
1054 
1055 	regval = (bankgrp << ECC_POISON1_BG_SHIFT) & ECC_POISON1_BG_MASK;
1056 	regval |= (bank << ECC_POISON1_BANKNR_SHIFT) & ECC_POISON1_BANKNR_MASK;
1057 	regval |= (row << ECC_POISON1_ROW_SHIFT) & ECC_POISON1_ROW_MASK;
1058 	writel(regval, priv->baseaddr + ECC_POISON1_OFST);
1059 }
1060 
1061 static ssize_t inject_data_error_show(struct device *dev,
1062 				      struct device_attribute *mattr,
1063 				      char *data)
1064 {
1065 	struct mem_ctl_info *mci = to_mci(dev);
1066 	struct synps_edac_priv *priv = mci->pvt_info;
1067 
1068 	return sprintf(data, "Poison0 Addr: 0x%08x\n\rPoison1 Addr: 0x%08x\n\r"
1069 			"Error injection Address: 0x%lx\n\r",
1070 			readl(priv->baseaddr + ECC_POISON0_OFST),
1071 			readl(priv->baseaddr + ECC_POISON1_OFST),
1072 			priv->poison_addr);
1073 }
1074 
1075 static ssize_t inject_data_error_store(struct device *dev,
1076 				       struct device_attribute *mattr,
1077 				       const char *data, size_t count)
1078 {
1079 	struct mem_ctl_info *mci = to_mci(dev);
1080 	struct synps_edac_priv *priv = mci->pvt_info;
1081 
1082 	if (kstrtoul(data, 0, &priv->poison_addr))
1083 		return -EINVAL;
1084 
1085 	ddr_poison_setup(priv);
1086 
1087 	return count;
1088 }
1089 
1090 static ssize_t inject_data_poison_show(struct device *dev,
1091 				       struct device_attribute *mattr,
1092 				       char *data)
1093 {
1094 	struct mem_ctl_info *mci = to_mci(dev);
1095 	struct synps_edac_priv *priv = mci->pvt_info;
1096 
1097 	return sprintf(data, "Data Poisoning: %s\n\r",
1098 			(((readl(priv->baseaddr + ECC_CFG1_OFST)) & 0x3) == 0x3)
1099 			? ("Correctable Error") : ("UnCorrectable Error"));
1100 }
1101 
1102 static ssize_t inject_data_poison_store(struct device *dev,
1103 					struct device_attribute *mattr,
1104 					const char *data, size_t count)
1105 {
1106 	struct mem_ctl_info *mci = to_mci(dev);
1107 	struct synps_edac_priv *priv = mci->pvt_info;
1108 
1109 	writel(0, priv->baseaddr + DDRC_SWCTL);
1110 	if (strncmp(data, "CE", 2) == 0)
1111 		writel(ECC_CEPOISON_MASK, priv->baseaddr + ECC_CFG1_OFST);
1112 	else
1113 		writel(ECC_UEPOISON_MASK, priv->baseaddr + ECC_CFG1_OFST);
1114 	writel(1, priv->baseaddr + DDRC_SWCTL);
1115 
1116 	return count;
1117 }
1118 
1119 static DEVICE_ATTR_RW(inject_data_error);
1120 static DEVICE_ATTR_RW(inject_data_poison);
1121 
1122 static int edac_create_sysfs_attributes(struct mem_ctl_info *mci)
1123 {
1124 	int rc;
1125 
1126 	rc = device_create_file(&mci->dev, &dev_attr_inject_data_error);
1127 	if (rc < 0)
1128 		return rc;
1129 	rc = device_create_file(&mci->dev, &dev_attr_inject_data_poison);
1130 	if (rc < 0)
1131 		return rc;
1132 	return 0;
1133 }
1134 
1135 static void edac_remove_sysfs_attributes(struct mem_ctl_info *mci)
1136 {
1137 	device_remove_file(&mci->dev, &dev_attr_inject_data_error);
1138 	device_remove_file(&mci->dev, &dev_attr_inject_data_poison);
1139 }
1140 
1141 static void setup_row_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1142 {
1143 	u32 addrmap_row_b2_10;
1144 	int index;
1145 
1146 	priv->row_shift[0] = (addrmap[5] & ROW_MAX_VAL_MASK) + ROW_B0_BASE;
1147 	priv->row_shift[1] = ((addrmap[5] >> 8) &
1148 			ROW_MAX_VAL_MASK) + ROW_B1_BASE;
1149 
1150 	addrmap_row_b2_10 = (addrmap[5] >> 16) & ROW_MAX_VAL_MASK;
1151 	if (addrmap_row_b2_10 != ROW_MAX_VAL_MASK) {
1152 		for (index = 2; index < 11; index++)
1153 			priv->row_shift[index] = addrmap_row_b2_10 +
1154 				index + ROW_B0_BASE;
1155 
1156 	} else {
1157 		priv->row_shift[2] = (addrmap[9] &
1158 				ROW_MAX_VAL_MASK) + ROW_B2_BASE;
1159 		priv->row_shift[3] = ((addrmap[9] >> 8) &
1160 				ROW_MAX_VAL_MASK) + ROW_B3_BASE;
1161 		priv->row_shift[4] = ((addrmap[9] >> 16) &
1162 				ROW_MAX_VAL_MASK) + ROW_B4_BASE;
1163 		priv->row_shift[5] = ((addrmap[9] >> 24) &
1164 				ROW_MAX_VAL_MASK) + ROW_B5_BASE;
1165 		priv->row_shift[6] = (addrmap[10] &
1166 				ROW_MAX_VAL_MASK) + ROW_B6_BASE;
1167 		priv->row_shift[7] = ((addrmap[10] >> 8) &
1168 				ROW_MAX_VAL_MASK) + ROW_B7_BASE;
1169 		priv->row_shift[8] = ((addrmap[10] >> 16) &
1170 				ROW_MAX_VAL_MASK) + ROW_B8_BASE;
1171 		priv->row_shift[9] = ((addrmap[10] >> 24) &
1172 				ROW_MAX_VAL_MASK) + ROW_B9_BASE;
1173 		priv->row_shift[10] = (addrmap[11] &
1174 				ROW_MAX_VAL_MASK) + ROW_B10_BASE;
1175 	}
1176 
1177 	priv->row_shift[11] = (((addrmap[5] >> 24) & ROW_MAX_VAL_MASK) ==
1178 				ROW_MAX_VAL_MASK) ? 0 : (((addrmap[5] >> 24) &
1179 				ROW_MAX_VAL_MASK) + ROW_B11_BASE);
1180 	priv->row_shift[12] = ((addrmap[6] & ROW_MAX_VAL_MASK) ==
1181 				ROW_MAX_VAL_MASK) ? 0 : ((addrmap[6] &
1182 				ROW_MAX_VAL_MASK) + ROW_B12_BASE);
1183 	priv->row_shift[13] = (((addrmap[6] >> 8) & ROW_MAX_VAL_MASK) ==
1184 				ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 8) &
1185 				ROW_MAX_VAL_MASK) + ROW_B13_BASE);
1186 	priv->row_shift[14] = (((addrmap[6] >> 16) & ROW_MAX_VAL_MASK) ==
1187 				ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 16) &
1188 				ROW_MAX_VAL_MASK) + ROW_B14_BASE);
1189 	priv->row_shift[15] = (((addrmap[6] >> 24) & ROW_MAX_VAL_MASK) ==
1190 				ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 24) &
1191 				ROW_MAX_VAL_MASK) + ROW_B15_BASE);
1192 	priv->row_shift[16] = ((addrmap[7] & ROW_MAX_VAL_MASK) ==
1193 				ROW_MAX_VAL_MASK) ? 0 : ((addrmap[7] &
1194 				ROW_MAX_VAL_MASK) + ROW_B16_BASE);
1195 	priv->row_shift[17] = (((addrmap[7] >> 8) & ROW_MAX_VAL_MASK) ==
1196 				ROW_MAX_VAL_MASK) ? 0 : (((addrmap[7] >> 8) &
1197 				ROW_MAX_VAL_MASK) + ROW_B17_BASE);
1198 }
1199 
1200 static void setup_column_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1201 {
1202 	u32 width, memtype;
1203 	int index;
1204 
1205 	memtype = readl(priv->baseaddr + CTRL_OFST);
1206 	width = (memtype & ECC_CTRL_BUSWIDTH_MASK) >> ECC_CTRL_BUSWIDTH_SHIFT;
1207 
1208 	priv->col_shift[0] = 0;
1209 	priv->col_shift[1] = 1;
1210 	priv->col_shift[2] = (addrmap[2] & COL_MAX_VAL_MASK) + COL_B2_BASE;
1211 	priv->col_shift[3] = ((addrmap[2] >> 8) &
1212 			COL_MAX_VAL_MASK) + COL_B3_BASE;
1213 	priv->col_shift[4] = (((addrmap[2] >> 16) & COL_MAX_VAL_MASK) ==
1214 			COL_MAX_VAL_MASK) ? 0 : (((addrmap[2] >> 16) &
1215 					COL_MAX_VAL_MASK) + COL_B4_BASE);
1216 	priv->col_shift[5] = (((addrmap[2] >> 24) & COL_MAX_VAL_MASK) ==
1217 			COL_MAX_VAL_MASK) ? 0 : (((addrmap[2] >> 24) &
1218 					COL_MAX_VAL_MASK) + COL_B5_BASE);
1219 	priv->col_shift[6] = ((addrmap[3] & COL_MAX_VAL_MASK) ==
1220 			COL_MAX_VAL_MASK) ? 0 : ((addrmap[3] &
1221 					COL_MAX_VAL_MASK) + COL_B6_BASE);
1222 	priv->col_shift[7] = (((addrmap[3] >> 8) & COL_MAX_VAL_MASK) ==
1223 			COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 8) &
1224 					COL_MAX_VAL_MASK) + COL_B7_BASE);
1225 	priv->col_shift[8] = (((addrmap[3] >> 16) & COL_MAX_VAL_MASK) ==
1226 			COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 16) &
1227 					COL_MAX_VAL_MASK) + COL_B8_BASE);
1228 	priv->col_shift[9] = (((addrmap[3] >> 24) & COL_MAX_VAL_MASK) ==
1229 			COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 24) &
1230 					COL_MAX_VAL_MASK) + COL_B9_BASE);
1231 	if (width == DDRCTL_EWDTH_64) {
1232 		if (memtype & MEM_TYPE_LPDDR3) {
1233 			priv->col_shift[10] = ((addrmap[4] &
1234 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1235 				((addrmap[4] & COL_MAX_VAL_MASK) +
1236 				 COL_B10_BASE);
1237 			priv->col_shift[11] = (((addrmap[4] >> 8) &
1238 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1239 				(((addrmap[4] >> 8) & COL_MAX_VAL_MASK) +
1240 				 COL_B11_BASE);
1241 		} else {
1242 			priv->col_shift[11] = ((addrmap[4] &
1243 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1244 				((addrmap[4] & COL_MAX_VAL_MASK) +
1245 				 COL_B10_BASE);
1246 			priv->col_shift[13] = (((addrmap[4] >> 8) &
1247 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1248 				(((addrmap[4] >> 8) & COL_MAX_VAL_MASK) +
1249 				 COL_B11_BASE);
1250 		}
1251 	} else if (width == DDRCTL_EWDTH_32) {
1252 		if (memtype & MEM_TYPE_LPDDR3) {
1253 			priv->col_shift[10] = (((addrmap[3] >> 24) &
1254 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1255 				(((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
1256 				 COL_B9_BASE);
1257 			priv->col_shift[11] = ((addrmap[4] &
1258 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1259 				((addrmap[4] & COL_MAX_VAL_MASK) +
1260 				 COL_B10_BASE);
1261 		} else {
1262 			priv->col_shift[11] = (((addrmap[3] >> 24) &
1263 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1264 				(((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
1265 				 COL_B9_BASE);
1266 			priv->col_shift[13] = ((addrmap[4] &
1267 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1268 				((addrmap[4] & COL_MAX_VAL_MASK) +
1269 				 COL_B10_BASE);
1270 		}
1271 	} else {
1272 		if (memtype & MEM_TYPE_LPDDR3) {
1273 			priv->col_shift[10] = (((addrmap[3] >> 16) &
1274 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1275 				(((addrmap[3] >> 16) & COL_MAX_VAL_MASK) +
1276 				 COL_B8_BASE);
1277 			priv->col_shift[11] = (((addrmap[3] >> 24) &
1278 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1279 				(((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
1280 				 COL_B9_BASE);
1281 			priv->col_shift[13] = ((addrmap[4] &
1282 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1283 				((addrmap[4] & COL_MAX_VAL_MASK) +
1284 				 COL_B10_BASE);
1285 		} else {
1286 			priv->col_shift[11] = (((addrmap[3] >> 16) &
1287 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1288 				(((addrmap[3] >> 16) & COL_MAX_VAL_MASK) +
1289 				 COL_B8_BASE);
1290 			priv->col_shift[13] = (((addrmap[3] >> 24) &
1291 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1292 				(((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
1293 				 COL_B9_BASE);
1294 		}
1295 	}
1296 
1297 	if (width) {
1298 		for (index = 9; index > width; index--) {
1299 			priv->col_shift[index] = priv->col_shift[index - width];
1300 			priv->col_shift[index - width] = 0;
1301 		}
1302 	}
1303 
1304 }
1305 
1306 static void setup_bank_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1307 {
1308 	priv->bank_shift[0] = (addrmap[1] & BANK_MAX_VAL_MASK) + BANK_B0_BASE;
1309 	priv->bank_shift[1] = ((addrmap[1] >> 8) &
1310 				BANK_MAX_VAL_MASK) + BANK_B1_BASE;
1311 	priv->bank_shift[2] = (((addrmap[1] >> 16) &
1312 				BANK_MAX_VAL_MASK) == BANK_MAX_VAL_MASK) ? 0 :
1313 				(((addrmap[1] >> 16) & BANK_MAX_VAL_MASK) +
1314 				 BANK_B2_BASE);
1315 
1316 }
1317 
1318 static void setup_bg_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1319 {
1320 	priv->bankgrp_shift[0] = (addrmap[8] &
1321 				BANKGRP_MAX_VAL_MASK) + BANKGRP_B0_BASE;
1322 	priv->bankgrp_shift[1] = (((addrmap[8] >> 8) & BANKGRP_MAX_VAL_MASK) ==
1323 				BANKGRP_MAX_VAL_MASK) ? 0 : (((addrmap[8] >> 8)
1324 				& BANKGRP_MAX_VAL_MASK) + BANKGRP_B1_BASE);
1325 
1326 }
1327 
1328 static void setup_rank_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1329 {
1330 	priv->rank_shift[0] = ((addrmap[0] & RANK_MAX_VAL_MASK) ==
1331 				RANK_MAX_VAL_MASK) ? 0 : ((addrmap[0] &
1332 				RANK_MAX_VAL_MASK) + RANK_B0_BASE);
1333 }
1334 
1335 /**
1336  * setup_address_map -	Set Address Map by querying ADDRMAP registers.
1337  * @priv:		DDR memory controller private instance data.
1338  *
1339  * Set Address Map by querying ADDRMAP registers.
1340  *
1341  * Return: none.
1342  */
1343 static void setup_address_map(struct synps_edac_priv *priv)
1344 {
1345 	u32 addrmap[12];
1346 	int index;
1347 
1348 	for (index = 0; index < 12; index++) {
1349 		u32 addrmap_offset;
1350 
1351 		addrmap_offset = ECC_ADDRMAP0_OFFSET + (index * 4);
1352 		addrmap[index] = readl(priv->baseaddr + addrmap_offset);
1353 	}
1354 
1355 	setup_row_address_map(priv, addrmap);
1356 
1357 	setup_column_address_map(priv, addrmap);
1358 
1359 	setup_bank_address_map(priv, addrmap);
1360 
1361 	setup_bg_address_map(priv, addrmap);
1362 
1363 	setup_rank_address_map(priv, addrmap);
1364 }
1365 #endif /* CONFIG_EDAC_DEBUG */
1366 
1367 /**
1368  * mc_probe - Check controller and bind driver.
1369  * @pdev:	platform device.
1370  *
1371  * Probe a specific controller instance for binding with the driver.
1372  *
1373  * Return: 0 if the controller instance was successfully bound to the
1374  * driver; otherwise, < 0 on error.
1375  */
1376 static int mc_probe(struct platform_device *pdev)
1377 {
1378 	const struct synps_platform_data *p_data;
1379 	struct edac_mc_layer layers[2];
1380 	struct synps_edac_priv *priv;
1381 	struct mem_ctl_info *mci;
1382 	void __iomem *baseaddr;
1383 	int rc;
1384 
1385 	baseaddr = devm_platform_ioremap_resource(pdev, 0);
1386 	if (IS_ERR(baseaddr))
1387 		return PTR_ERR(baseaddr);
1388 
1389 	p_data = of_device_get_match_data(&pdev->dev);
1390 	if (!p_data)
1391 		return -ENODEV;
1392 
1393 	if (!p_data->get_ecc_state(baseaddr)) {
1394 		edac_printk(KERN_INFO, EDAC_MC, "ECC not enabled\n");
1395 		return -ENXIO;
1396 	}
1397 
1398 	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
1399 	layers[0].size = SYNPS_EDAC_NR_CSROWS;
1400 	layers[0].is_virt_csrow = true;
1401 	layers[1].type = EDAC_MC_LAYER_CHANNEL;
1402 	layers[1].size = SYNPS_EDAC_NR_CHANS;
1403 	layers[1].is_virt_csrow = false;
1404 
1405 	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers,
1406 			    sizeof(struct synps_edac_priv));
1407 	if (!mci) {
1408 		edac_printk(KERN_ERR, EDAC_MC,
1409 			    "Failed memory allocation for mc instance\n");
1410 		return -ENOMEM;
1411 	}
1412 
1413 	priv = mci->pvt_info;
1414 	priv->baseaddr = baseaddr;
1415 	priv->p_data = p_data;
1416 	spin_lock_init(&priv->reglock);
1417 
1418 	mc_init(mci, pdev);
1419 
1420 	if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
1421 		rc = setup_irq(mci, pdev);
1422 		if (rc)
1423 			goto free_edac_mc;
1424 	}
1425 
1426 	rc = edac_mc_add_mc(mci);
1427 	if (rc) {
1428 		edac_printk(KERN_ERR, EDAC_MC,
1429 			    "Failed to register with EDAC core\n");
1430 		goto free_edac_mc;
1431 	}
1432 
1433 #ifdef CONFIG_EDAC_DEBUG
1434 	if (priv->p_data->quirks & DDR_ECC_DATA_POISON_SUPPORT) {
1435 		rc = edac_create_sysfs_attributes(mci);
1436 		if (rc) {
1437 			edac_printk(KERN_ERR, EDAC_MC,
1438 					"Failed to create sysfs entries\n");
1439 			goto free_edac_mc;
1440 		}
1441 	}
1442 
1443 	if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT)
1444 		setup_address_map(priv);
1445 #endif
1446 
1447 	/*
1448 	 * Start capturing the correctable and uncorrectable errors. A write of
1449 	 * 0 starts the counters.
1450 	 */
1451 	if (!(priv->p_data->quirks & DDR_ECC_INTR_SUPPORT))
1452 		writel(0x0, baseaddr + ECC_CTRL_OFST);
1453 
1454 	return rc;
1455 
1456 free_edac_mc:
1457 	edac_mc_free(mci);
1458 
1459 	return rc;
1460 }
1461 
1462 /**
1463  * mc_remove - Unbind driver from controller.
1464  * @pdev:	Platform device.
1465  *
1466  * Return: Unconditionally 0
1467  */
1468 static void mc_remove(struct platform_device *pdev)
1469 {
1470 	struct mem_ctl_info *mci = platform_get_drvdata(pdev);
1471 	struct synps_edac_priv *priv = mci->pvt_info;
1472 
1473 	if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT)
1474 		disable_intr(priv);
1475 
1476 #ifdef CONFIG_EDAC_DEBUG
1477 	if (priv->p_data->quirks & DDR_ECC_DATA_POISON_SUPPORT)
1478 		edac_remove_sysfs_attributes(mci);
1479 #endif
1480 
1481 	edac_mc_del_mc(&pdev->dev);
1482 	edac_mc_free(mci);
1483 }
1484 
1485 static struct platform_driver synps_edac_mc_driver = {
1486 	.driver = {
1487 		   .name = "synopsys-edac",
1488 		   .of_match_table = synps_edac_match,
1489 		   },
1490 	.probe = mc_probe,
1491 	.remove_new = mc_remove,
1492 };
1493 
1494 module_platform_driver(synps_edac_mc_driver);
1495 
1496 MODULE_AUTHOR("Xilinx Inc");
1497 MODULE_DESCRIPTION("Synopsys DDR ECC driver");
1498 MODULE_LICENSE("GPL v2");
1499