1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * 4 * Shared code by both skx_edac and i10nm_edac. Originally split out 5 * from the skx_edac driver. 6 * 7 * This file is linked into both skx_edac and i10nm_edac drivers. In 8 * order to avoid link errors, this file must be like a pure library 9 * without including symbols and defines which would otherwise conflict, 10 * when linked once into a module and into a built-in object, at the 11 * same time. For example, __this_module symbol references when that 12 * file is being linked into a built-in object. 13 * 14 * Copyright (c) 2018, Intel Corporation. 15 */ 16 17 #include <linux/acpi.h> 18 #include <linux/dmi.h> 19 #include <linux/adxl.h> 20 #include <acpi/nfit.h> 21 #include <asm/mce.h> 22 #include "edac_module.h" 23 #include "skx_common.h" 24 25 static const char * const component_names[] = { 26 [INDEX_SOCKET] = "ProcessorSocketId", 27 [INDEX_MEMCTRL] = "MemoryControllerId", 28 [INDEX_CHANNEL] = "ChannelId", 29 [INDEX_DIMM] = "DimmSlotId", 30 [INDEX_NM_MEMCTRL] = "NmMemoryControllerId", 31 [INDEX_NM_CHANNEL] = "NmChannelId", 32 [INDEX_NM_DIMM] = "NmDimmSlotId", 33 }; 34 35 static int component_indices[ARRAY_SIZE(component_names)]; 36 static int adxl_component_count; 37 static const char * const *adxl_component_names; 38 static u64 *adxl_values; 39 static char *adxl_msg; 40 static unsigned long adxl_nm_bitmap; 41 42 static char skx_msg[MSG_SIZE]; 43 static skx_decode_f skx_decode; 44 static skx_show_retry_log_f skx_show_retry_rd_err_log; 45 static u64 skx_tolm, skx_tohm; 46 static LIST_HEAD(dev_edac_list); 47 static bool skx_mem_cfg_2lm; 48 49 int __init skx_adxl_get(void) 50 { 51 const char * const *names; 52 int i, j; 53 54 names = adxl_get_component_names(); 55 if (!names) { 56 skx_printk(KERN_NOTICE, "No firmware support for address translation.\n"); 57 return -ENODEV; 58 } 59 60 for (i = 0; i < INDEX_MAX; i++) { 61 for (j = 0; names[j]; j++) { 62 if (!strcmp(component_names[i], names[j])) { 63 component_indices[i] = j; 64 65 if (i >= INDEX_NM_FIRST) 66 adxl_nm_bitmap |= 1 << i; 67 68 break; 69 } 70 } 71 72 if (!names[j] && i < INDEX_NM_FIRST) 73 goto err; 74 } 75 76 if (skx_mem_cfg_2lm) { 77 if (!adxl_nm_bitmap) 78 skx_printk(KERN_NOTICE, "Not enough ADXL components for 2-level memory.\n"); 79 else 80 edac_dbg(2, "adxl_nm_bitmap: 0x%lx\n", adxl_nm_bitmap); 81 } 82 83 adxl_component_names = names; 84 while (*names++) 85 adxl_component_count++; 86 87 adxl_values = kcalloc(adxl_component_count, sizeof(*adxl_values), 88 GFP_KERNEL); 89 if (!adxl_values) { 90 adxl_component_count = 0; 91 return -ENOMEM; 92 } 93 94 adxl_msg = kzalloc(MSG_SIZE, GFP_KERNEL); 95 if (!adxl_msg) { 96 adxl_component_count = 0; 97 kfree(adxl_values); 98 return -ENOMEM; 99 } 100 101 return 0; 102 err: 103 skx_printk(KERN_ERR, "'%s' is not matched from DSM parameters: ", 104 component_names[i]); 105 for (j = 0; names[j]; j++) 106 skx_printk(KERN_CONT, "%s ", names[j]); 107 skx_printk(KERN_CONT, "\n"); 108 109 return -ENODEV; 110 } 111 112 void __exit skx_adxl_put(void) 113 { 114 kfree(adxl_values); 115 kfree(adxl_msg); 116 } 117 118 static bool skx_adxl_decode(struct decoded_addr *res, bool error_in_1st_level_mem) 119 { 120 struct skx_dev *d; 121 int i, len = 0; 122 123 if (res->addr >= skx_tohm || (res->addr >= skx_tolm && 124 res->addr < BIT_ULL(32))) { 125 edac_dbg(0, "Address 0x%llx out of range\n", res->addr); 126 return false; 127 } 128 129 if (adxl_decode(res->addr, adxl_values)) { 130 edac_dbg(0, "Failed to decode 0x%llx\n", res->addr); 131 return false; 132 } 133 134 res->socket = (int)adxl_values[component_indices[INDEX_SOCKET]]; 135 if (error_in_1st_level_mem) { 136 res->imc = (adxl_nm_bitmap & BIT_NM_MEMCTRL) ? 137 (int)adxl_values[component_indices[INDEX_NM_MEMCTRL]] : -1; 138 res->channel = (adxl_nm_bitmap & BIT_NM_CHANNEL) ? 139 (int)adxl_values[component_indices[INDEX_NM_CHANNEL]] : -1; 140 res->dimm = (adxl_nm_bitmap & BIT_NM_DIMM) ? 141 (int)adxl_values[component_indices[INDEX_NM_DIMM]] : -1; 142 } else { 143 res->imc = (int)adxl_values[component_indices[INDEX_MEMCTRL]]; 144 res->channel = (int)adxl_values[component_indices[INDEX_CHANNEL]]; 145 res->dimm = (int)adxl_values[component_indices[INDEX_DIMM]]; 146 } 147 148 if (res->imc > NUM_IMC - 1 || res->imc < 0) { 149 skx_printk(KERN_ERR, "Bad imc %d\n", res->imc); 150 return false; 151 } 152 153 list_for_each_entry(d, &dev_edac_list, list) { 154 if (d->imc[0].src_id == res->socket) { 155 res->dev = d; 156 break; 157 } 158 } 159 160 if (!res->dev) { 161 skx_printk(KERN_ERR, "No device for src_id %d imc %d\n", 162 res->socket, res->imc); 163 return false; 164 } 165 166 for (i = 0; i < adxl_component_count; i++) { 167 if (adxl_values[i] == ~0x0ull) 168 continue; 169 170 len += snprintf(adxl_msg + len, MSG_SIZE - len, " %s:0x%llx", 171 adxl_component_names[i], adxl_values[i]); 172 if (MSG_SIZE - len <= 0) 173 break; 174 } 175 176 return true; 177 } 178 179 void skx_set_mem_cfg(bool mem_cfg_2lm) 180 { 181 skx_mem_cfg_2lm = mem_cfg_2lm; 182 } 183 184 void skx_set_decode(skx_decode_f decode, skx_show_retry_log_f show_retry_log) 185 { 186 skx_decode = decode; 187 skx_show_retry_rd_err_log = show_retry_log; 188 } 189 190 int skx_get_src_id(struct skx_dev *d, int off, u8 *id) 191 { 192 u32 reg; 193 194 if (pci_read_config_dword(d->util_all, off, ®)) { 195 skx_printk(KERN_ERR, "Failed to read src id\n"); 196 return -ENODEV; 197 } 198 199 *id = GET_BITFIELD(reg, 12, 14); 200 return 0; 201 } 202 203 int skx_get_node_id(struct skx_dev *d, u8 *id) 204 { 205 u32 reg; 206 207 if (pci_read_config_dword(d->util_all, 0xf4, ®)) { 208 skx_printk(KERN_ERR, "Failed to read node id\n"); 209 return -ENODEV; 210 } 211 212 *id = GET_BITFIELD(reg, 0, 2); 213 return 0; 214 } 215 216 static int get_width(u32 mtr) 217 { 218 switch (GET_BITFIELD(mtr, 8, 9)) { 219 case 0: 220 return DEV_X4; 221 case 1: 222 return DEV_X8; 223 case 2: 224 return DEV_X16; 225 } 226 return DEV_UNKNOWN; 227 } 228 229 /* 230 * We use the per-socket device @cfg->did to count how many sockets are present, 231 * and to detemine which PCI buses are associated with each socket. Allocate 232 * and build the full list of all the skx_dev structures that we need here. 233 */ 234 int skx_get_all_bus_mappings(struct res_config *cfg, struct list_head **list) 235 { 236 struct pci_dev *pdev, *prev; 237 struct skx_dev *d; 238 u32 reg; 239 int ndev = 0; 240 241 prev = NULL; 242 for (;;) { 243 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, cfg->decs_did, prev); 244 if (!pdev) 245 break; 246 ndev++; 247 d = kzalloc(sizeof(*d), GFP_KERNEL); 248 if (!d) { 249 pci_dev_put(pdev); 250 return -ENOMEM; 251 } 252 253 if (pci_read_config_dword(pdev, cfg->busno_cfg_offset, ®)) { 254 kfree(d); 255 pci_dev_put(pdev); 256 skx_printk(KERN_ERR, "Failed to read bus idx\n"); 257 return -ENODEV; 258 } 259 260 d->bus[0] = GET_BITFIELD(reg, 0, 7); 261 d->bus[1] = GET_BITFIELD(reg, 8, 15); 262 if (cfg->type == SKX) { 263 d->seg = pci_domain_nr(pdev->bus); 264 d->bus[2] = GET_BITFIELD(reg, 16, 23); 265 d->bus[3] = GET_BITFIELD(reg, 24, 31); 266 } else { 267 d->seg = GET_BITFIELD(reg, 16, 23); 268 } 269 270 edac_dbg(2, "busses: 0x%x, 0x%x, 0x%x, 0x%x\n", 271 d->bus[0], d->bus[1], d->bus[2], d->bus[3]); 272 list_add_tail(&d->list, &dev_edac_list); 273 prev = pdev; 274 } 275 276 if (list) 277 *list = &dev_edac_list; 278 return ndev; 279 } 280 281 int skx_get_hi_lo(unsigned int did, int off[], u64 *tolm, u64 *tohm) 282 { 283 struct pci_dev *pdev; 284 u32 reg; 285 286 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, did, NULL); 287 if (!pdev) { 288 edac_dbg(2, "Can't get tolm/tohm\n"); 289 return -ENODEV; 290 } 291 292 if (pci_read_config_dword(pdev, off[0], ®)) { 293 skx_printk(KERN_ERR, "Failed to read tolm\n"); 294 goto fail; 295 } 296 skx_tolm = reg; 297 298 if (pci_read_config_dword(pdev, off[1], ®)) { 299 skx_printk(KERN_ERR, "Failed to read lower tohm\n"); 300 goto fail; 301 } 302 skx_tohm = reg; 303 304 if (pci_read_config_dword(pdev, off[2], ®)) { 305 skx_printk(KERN_ERR, "Failed to read upper tohm\n"); 306 goto fail; 307 } 308 skx_tohm |= (u64)reg << 32; 309 310 pci_dev_put(pdev); 311 *tolm = skx_tolm; 312 *tohm = skx_tohm; 313 edac_dbg(2, "tolm = 0x%llx tohm = 0x%llx\n", skx_tolm, skx_tohm); 314 return 0; 315 fail: 316 pci_dev_put(pdev); 317 return -ENODEV; 318 } 319 320 static int skx_get_dimm_attr(u32 reg, int lobit, int hibit, int add, 321 int minval, int maxval, const char *name) 322 { 323 u32 val = GET_BITFIELD(reg, lobit, hibit); 324 325 if (val < minval || val > maxval) { 326 edac_dbg(2, "bad %s = %d (raw=0x%x)\n", name, val, reg); 327 return -EINVAL; 328 } 329 return val + add; 330 } 331 332 #define numrank(reg) skx_get_dimm_attr(reg, 12, 13, 0, 0, 2, "ranks") 333 #define numrow(reg) skx_get_dimm_attr(reg, 2, 4, 12, 1, 6, "rows") 334 #define numcol(reg) skx_get_dimm_attr(reg, 0, 1, 10, 0, 2, "cols") 335 336 int skx_get_dimm_info(u32 mtr, u32 mcmtr, u32 amap, struct dimm_info *dimm, 337 struct skx_imc *imc, int chan, int dimmno, 338 struct res_config *cfg) 339 { 340 int banks, ranks, rows, cols, npages; 341 enum mem_type mtype; 342 u64 size; 343 344 ranks = numrank(mtr); 345 rows = numrow(mtr); 346 cols = imc->hbm_mc ? 6 : numcol(mtr); 347 348 if (cfg->support_ddr5 && ((amap & 0x8) || imc->hbm_mc)) { 349 banks = 32; 350 mtype = MEM_DDR5; 351 } else { 352 banks = 16; 353 mtype = MEM_DDR4; 354 } 355 356 /* 357 * Compute size in 8-byte (2^3) words, then shift to MiB (2^20) 358 */ 359 size = ((1ull << (rows + cols + ranks)) * banks) >> (20 - 3); 360 npages = MiB_TO_PAGES(size); 361 362 edac_dbg(0, "mc#%d: channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: 0x%x, col: 0x%x\n", 363 imc->mc, chan, dimmno, size, npages, 364 banks, 1 << ranks, rows, cols); 365 366 imc->chan[chan].dimms[dimmno].close_pg = GET_BITFIELD(mcmtr, 0, 0); 367 imc->chan[chan].dimms[dimmno].bank_xor_enable = GET_BITFIELD(mcmtr, 9, 9); 368 imc->chan[chan].dimms[dimmno].fine_grain_bank = GET_BITFIELD(amap, 0, 0); 369 imc->chan[chan].dimms[dimmno].rowbits = rows; 370 imc->chan[chan].dimms[dimmno].colbits = cols; 371 372 dimm->nr_pages = npages; 373 dimm->grain = 32; 374 dimm->dtype = get_width(mtr); 375 dimm->mtype = mtype; 376 dimm->edac_mode = EDAC_SECDED; /* likely better than this */ 377 378 if (imc->hbm_mc) 379 snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_HBMC#%u_Chan#%u", 380 imc->src_id, imc->lmc, chan); 381 else 382 snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u", 383 imc->src_id, imc->lmc, chan, dimmno); 384 385 return 1; 386 } 387 388 int skx_get_nvdimm_info(struct dimm_info *dimm, struct skx_imc *imc, 389 int chan, int dimmno, const char *mod_str) 390 { 391 int smbios_handle; 392 u32 dev_handle; 393 u16 flags; 394 u64 size = 0; 395 396 dev_handle = ACPI_NFIT_BUILD_DEVICE_HANDLE(dimmno, chan, imc->lmc, 397 imc->src_id, 0); 398 399 smbios_handle = nfit_get_smbios_id(dev_handle, &flags); 400 if (smbios_handle == -EOPNOTSUPP) { 401 pr_warn_once("%s: Can't find size of NVDIMM. Try enabling CONFIG_ACPI_NFIT\n", mod_str); 402 goto unknown_size; 403 } 404 405 if (smbios_handle < 0) { 406 skx_printk(KERN_ERR, "Can't find handle for NVDIMM ADR=0x%x\n", dev_handle); 407 goto unknown_size; 408 } 409 410 if (flags & ACPI_NFIT_MEM_MAP_FAILED) { 411 skx_printk(KERN_ERR, "NVDIMM ADR=0x%x is not mapped\n", dev_handle); 412 goto unknown_size; 413 } 414 415 size = dmi_memdev_size(smbios_handle); 416 if (size == ~0ull) 417 skx_printk(KERN_ERR, "Can't find size for NVDIMM ADR=0x%x/SMBIOS=0x%x\n", 418 dev_handle, smbios_handle); 419 420 unknown_size: 421 dimm->nr_pages = size >> PAGE_SHIFT; 422 dimm->grain = 32; 423 dimm->dtype = DEV_UNKNOWN; 424 dimm->mtype = MEM_NVDIMM; 425 dimm->edac_mode = EDAC_SECDED; /* likely better than this */ 426 427 edac_dbg(0, "mc#%d: channel %d, dimm %d, %llu MiB (%u pages)\n", 428 imc->mc, chan, dimmno, size >> 20, dimm->nr_pages); 429 430 snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u", 431 imc->src_id, imc->lmc, chan, dimmno); 432 433 return (size == 0 || size == ~0ull) ? 0 : 1; 434 } 435 436 int skx_register_mci(struct skx_imc *imc, struct pci_dev *pdev, 437 const char *ctl_name, const char *mod_str, 438 get_dimm_config_f get_dimm_config, 439 struct res_config *cfg) 440 { 441 struct mem_ctl_info *mci; 442 struct edac_mc_layer layers[2]; 443 struct skx_pvt *pvt; 444 int rc; 445 446 /* Allocate a new MC control structure */ 447 layers[0].type = EDAC_MC_LAYER_CHANNEL; 448 layers[0].size = NUM_CHANNELS; 449 layers[0].is_virt_csrow = false; 450 layers[1].type = EDAC_MC_LAYER_SLOT; 451 layers[1].size = NUM_DIMMS; 452 layers[1].is_virt_csrow = true; 453 mci = edac_mc_alloc(imc->mc, ARRAY_SIZE(layers), layers, 454 sizeof(struct skx_pvt)); 455 456 if (unlikely(!mci)) 457 return -ENOMEM; 458 459 edac_dbg(0, "MC#%d: mci = %p\n", imc->mc, mci); 460 461 /* Associate skx_dev and mci for future usage */ 462 imc->mci = mci; 463 pvt = mci->pvt_info; 464 pvt->imc = imc; 465 466 mci->ctl_name = kasprintf(GFP_KERNEL, "%s#%d IMC#%d", ctl_name, 467 imc->node_id, imc->lmc); 468 if (!mci->ctl_name) { 469 rc = -ENOMEM; 470 goto fail0; 471 } 472 473 mci->mtype_cap = MEM_FLAG_DDR4 | MEM_FLAG_NVDIMM; 474 if (cfg->support_ddr5) 475 mci->mtype_cap |= MEM_FLAG_DDR5; 476 mci->edac_ctl_cap = EDAC_FLAG_NONE; 477 mci->edac_cap = EDAC_FLAG_NONE; 478 mci->mod_name = mod_str; 479 mci->dev_name = pci_name(pdev); 480 mci->ctl_page_to_phys = NULL; 481 482 rc = get_dimm_config(mci, cfg); 483 if (rc < 0) 484 goto fail; 485 486 /* Record ptr to the generic device */ 487 mci->pdev = &pdev->dev; 488 489 /* Add this new MC control structure to EDAC's list of MCs */ 490 if (unlikely(edac_mc_add_mc(mci))) { 491 edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); 492 rc = -EINVAL; 493 goto fail; 494 } 495 496 return 0; 497 498 fail: 499 kfree(mci->ctl_name); 500 fail0: 501 edac_mc_free(mci); 502 imc->mci = NULL; 503 return rc; 504 } 505 506 static void skx_unregister_mci(struct skx_imc *imc) 507 { 508 struct mem_ctl_info *mci = imc->mci; 509 510 if (!mci) 511 return; 512 513 edac_dbg(0, "MC%d: mci = %p\n", imc->mc, mci); 514 515 /* Remove MC sysfs nodes */ 516 edac_mc_del_mc(mci->pdev); 517 518 edac_dbg(1, "%s: free mci struct\n", mci->ctl_name); 519 kfree(mci->ctl_name); 520 edac_mc_free(mci); 521 } 522 523 static void skx_mce_output_error(struct mem_ctl_info *mci, 524 const struct mce *m, 525 struct decoded_addr *res) 526 { 527 enum hw_event_mc_err_type tp_event; 528 char *optype; 529 bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0); 530 bool overflow = GET_BITFIELD(m->status, 62, 62); 531 bool uncorrected_error = GET_BITFIELD(m->status, 61, 61); 532 bool recoverable; 533 int len; 534 u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52); 535 u32 mscod = GET_BITFIELD(m->status, 16, 31); 536 u32 errcode = GET_BITFIELD(m->status, 0, 15); 537 u32 optypenum = GET_BITFIELD(m->status, 4, 6); 538 539 recoverable = GET_BITFIELD(m->status, 56, 56); 540 541 if (uncorrected_error) { 542 core_err_cnt = 1; 543 if (ripv) { 544 tp_event = HW_EVENT_ERR_UNCORRECTED; 545 } else { 546 tp_event = HW_EVENT_ERR_FATAL; 547 } 548 } else { 549 tp_event = HW_EVENT_ERR_CORRECTED; 550 } 551 552 /* 553 * According to Intel Architecture spec vol 3B, 554 * Table 15-10 "IA32_MCi_Status [15:0] Compound Error Code Encoding" 555 * memory errors should fit one of these masks: 556 * 000f 0000 1mmm cccc (binary) 557 * 000f 0010 1mmm cccc (binary) [RAM used as cache] 558 * where: 559 * f = Correction Report Filtering Bit. If 1, subsequent errors 560 * won't be shown 561 * mmm = error type 562 * cccc = channel 563 * If the mask doesn't match, report an error to the parsing logic 564 */ 565 if (!((errcode & 0xef80) == 0x80 || (errcode & 0xef80) == 0x280)) { 566 optype = "Can't parse: it is not a mem"; 567 } else { 568 switch (optypenum) { 569 case 0: 570 optype = "generic undef request error"; 571 break; 572 case 1: 573 optype = "memory read error"; 574 break; 575 case 2: 576 optype = "memory write error"; 577 break; 578 case 3: 579 optype = "addr/cmd error"; 580 break; 581 case 4: 582 optype = "memory scrubbing error"; 583 break; 584 default: 585 optype = "reserved"; 586 break; 587 } 588 } 589 if (adxl_component_count) { 590 len = snprintf(skx_msg, MSG_SIZE, "%s%s err_code:0x%04x:0x%04x %s", 591 overflow ? " OVERFLOW" : "", 592 (uncorrected_error && recoverable) ? " recoverable" : "", 593 mscod, errcode, adxl_msg); 594 } else { 595 len = snprintf(skx_msg, MSG_SIZE, 596 "%s%s err_code:0x%04x:0x%04x socket:%d imc:%d rank:%d bg:%d ba:%d row:0x%x col:0x%x", 597 overflow ? " OVERFLOW" : "", 598 (uncorrected_error && recoverable) ? " recoverable" : "", 599 mscod, errcode, 600 res->socket, res->imc, res->rank, 601 res->bank_group, res->bank_address, res->row, res->column); 602 } 603 604 if (skx_show_retry_rd_err_log) 605 skx_show_retry_rd_err_log(res, skx_msg + len, MSG_SIZE - len); 606 607 edac_dbg(0, "%s\n", skx_msg); 608 609 /* Call the helper to output message */ 610 edac_mc_handle_error(tp_event, mci, core_err_cnt, 611 m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0, 612 res->channel, res->dimm, -1, 613 optype, skx_msg); 614 } 615 616 static bool skx_error_in_1st_level_mem(const struct mce *m) 617 { 618 u32 errcode; 619 620 if (!skx_mem_cfg_2lm) 621 return false; 622 623 errcode = GET_BITFIELD(m->status, 0, 15); 624 625 if ((errcode & 0xef80) != 0x280) 626 return false; 627 628 return true; 629 } 630 631 int skx_mce_check_error(struct notifier_block *nb, unsigned long val, 632 void *data) 633 { 634 struct mce *mce = (struct mce *)data; 635 struct decoded_addr res; 636 struct mem_ctl_info *mci; 637 char *type; 638 639 if (mce->kflags & MCE_HANDLED_CEC) 640 return NOTIFY_DONE; 641 642 /* ignore unless this is memory related with an address */ 643 if ((mce->status & 0xefff) >> 7 != 1 || !(mce->status & MCI_STATUS_ADDRV)) 644 return NOTIFY_DONE; 645 646 memset(&res, 0, sizeof(res)); 647 res.addr = mce->addr; 648 649 if (adxl_component_count) { 650 if (!skx_adxl_decode(&res, skx_error_in_1st_level_mem(mce))) 651 return NOTIFY_DONE; 652 } else if (!skx_decode || !skx_decode(&res)) { 653 return NOTIFY_DONE; 654 } 655 656 mci = res.dev->imc[res.imc].mci; 657 658 if (!mci) 659 return NOTIFY_DONE; 660 661 if (mce->mcgstatus & MCG_STATUS_MCIP) 662 type = "Exception"; 663 else 664 type = "Event"; 665 666 skx_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n"); 667 668 skx_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: 0x%llx " 669 "Bank %d: 0x%llx\n", mce->extcpu, type, 670 mce->mcgstatus, mce->bank, mce->status); 671 skx_mc_printk(mci, KERN_DEBUG, "TSC 0x%llx ", mce->tsc); 672 skx_mc_printk(mci, KERN_DEBUG, "ADDR 0x%llx ", mce->addr); 673 skx_mc_printk(mci, KERN_DEBUG, "MISC 0x%llx ", mce->misc); 674 675 skx_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:0x%x TIME %llu SOCKET " 676 "%u APIC 0x%x\n", mce->cpuvendor, mce->cpuid, 677 mce->time, mce->socketid, mce->apicid); 678 679 skx_mce_output_error(mci, mce, &res); 680 681 mce->kflags |= MCE_HANDLED_EDAC; 682 return NOTIFY_DONE; 683 } 684 685 void skx_remove(void) 686 { 687 int i, j; 688 struct skx_dev *d, *tmp; 689 690 edac_dbg(0, "\n"); 691 692 list_for_each_entry_safe(d, tmp, &dev_edac_list, list) { 693 list_del(&d->list); 694 for (i = 0; i < NUM_IMC; i++) { 695 if (d->imc[i].mci) 696 skx_unregister_mci(&d->imc[i]); 697 698 if (d->imc[i].mdev) 699 pci_dev_put(d->imc[i].mdev); 700 701 if (d->imc[i].mbase) 702 iounmap(d->imc[i].mbase); 703 704 for (j = 0; j < NUM_CHANNELS; j++) { 705 if (d->imc[i].chan[j].cdev) 706 pci_dev_put(d->imc[i].chan[j].cdev); 707 } 708 } 709 if (d->util_all) 710 pci_dev_put(d->util_all); 711 if (d->pcu_cr3) 712 pci_dev_put(d->pcu_cr3); 713 if (d->sad_all) 714 pci_dev_put(d->sad_all); 715 if (d->uracu) 716 pci_dev_put(d->uracu); 717 718 kfree(d); 719 } 720 } 721