xref: /linux/drivers/edac/skx_common.c (revision b77e0ce62d63a761ffb7f7245a215a49f5921c2f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *
4  * Shared code by both skx_edac and i10nm_edac. Originally split out
5  * from the skx_edac driver.
6  *
7  * This file is linked into both skx_edac and i10nm_edac drivers. In
8  * order to avoid link errors, this file must be like a pure library
9  * without including symbols and defines which would otherwise conflict,
10  * when linked once into a module and into a built-in object, at the
11  * same time. For example, __this_module symbol references when that
12  * file is being linked into a built-in object.
13  *
14  * Copyright (c) 2018, Intel Corporation.
15  */
16 
17 #include <linux/acpi.h>
18 #include <linux/dmi.h>
19 #include <linux/adxl.h>
20 #include <acpi/nfit.h>
21 #include <asm/mce.h>
22 #include "edac_module.h"
23 #include "skx_common.h"
24 
25 static const char * const component_names[] = {
26 	[INDEX_SOCKET]	= "ProcessorSocketId",
27 	[INDEX_MEMCTRL]	= "MemoryControllerId",
28 	[INDEX_CHANNEL]	= "ChannelId",
29 	[INDEX_DIMM]	= "DimmSlotId",
30 };
31 
32 static int component_indices[ARRAY_SIZE(component_names)];
33 static int adxl_component_count;
34 static const char * const *adxl_component_names;
35 static u64 *adxl_values;
36 static char *adxl_msg;
37 
38 static char skx_msg[MSG_SIZE];
39 static skx_decode_f skx_decode;
40 static skx_show_retry_log_f skx_show_retry_rd_err_log;
41 static u64 skx_tolm, skx_tohm;
42 static LIST_HEAD(dev_edac_list);
43 
44 int __init skx_adxl_get(void)
45 {
46 	const char * const *names;
47 	int i, j;
48 
49 	names = adxl_get_component_names();
50 	if (!names) {
51 		skx_printk(KERN_NOTICE, "No firmware support for address translation.\n");
52 		return -ENODEV;
53 	}
54 
55 	for (i = 0; i < INDEX_MAX; i++) {
56 		for (j = 0; names[j]; j++) {
57 			if (!strcmp(component_names[i], names[j])) {
58 				component_indices[i] = j;
59 				break;
60 			}
61 		}
62 
63 		if (!names[j])
64 			goto err;
65 	}
66 
67 	adxl_component_names = names;
68 	while (*names++)
69 		adxl_component_count++;
70 
71 	adxl_values = kcalloc(adxl_component_count, sizeof(*adxl_values),
72 			      GFP_KERNEL);
73 	if (!adxl_values) {
74 		adxl_component_count = 0;
75 		return -ENOMEM;
76 	}
77 
78 	adxl_msg = kzalloc(MSG_SIZE, GFP_KERNEL);
79 	if (!adxl_msg) {
80 		adxl_component_count = 0;
81 		kfree(adxl_values);
82 		return -ENOMEM;
83 	}
84 
85 	return 0;
86 err:
87 	skx_printk(KERN_ERR, "'%s' is not matched from DSM parameters: ",
88 		   component_names[i]);
89 	for (j = 0; names[j]; j++)
90 		skx_printk(KERN_CONT, "%s ", names[j]);
91 	skx_printk(KERN_CONT, "\n");
92 
93 	return -ENODEV;
94 }
95 
96 void __exit skx_adxl_put(void)
97 {
98 	kfree(adxl_values);
99 	kfree(adxl_msg);
100 }
101 
102 static bool skx_adxl_decode(struct decoded_addr *res)
103 {
104 	struct skx_dev *d;
105 	int i, len = 0;
106 
107 	if (res->addr >= skx_tohm || (res->addr >= skx_tolm &&
108 				      res->addr < BIT_ULL(32))) {
109 		edac_dbg(0, "Address 0x%llx out of range\n", res->addr);
110 		return false;
111 	}
112 
113 	if (adxl_decode(res->addr, adxl_values)) {
114 		edac_dbg(0, "Failed to decode 0x%llx\n", res->addr);
115 		return false;
116 	}
117 
118 	res->socket  = (int)adxl_values[component_indices[INDEX_SOCKET]];
119 	res->imc     = (int)adxl_values[component_indices[INDEX_MEMCTRL]];
120 	res->channel = (int)adxl_values[component_indices[INDEX_CHANNEL]];
121 	res->dimm    = (int)adxl_values[component_indices[INDEX_DIMM]];
122 
123 	if (res->imc > NUM_IMC - 1) {
124 		skx_printk(KERN_ERR, "Bad imc %d\n", res->imc);
125 		return false;
126 	}
127 
128 	list_for_each_entry(d, &dev_edac_list, list) {
129 		if (d->imc[0].src_id == res->socket) {
130 			res->dev = d;
131 			break;
132 		}
133 	}
134 
135 	if (!res->dev) {
136 		skx_printk(KERN_ERR, "No device for src_id %d imc %d\n",
137 			   res->socket, res->imc);
138 		return false;
139 	}
140 
141 	for (i = 0; i < adxl_component_count; i++) {
142 		if (adxl_values[i] == ~0x0ull)
143 			continue;
144 
145 		len += snprintf(adxl_msg + len, MSG_SIZE - len, " %s:0x%llx",
146 				adxl_component_names[i], adxl_values[i]);
147 		if (MSG_SIZE - len <= 0)
148 			break;
149 	}
150 
151 	return true;
152 }
153 
154 void skx_set_decode(skx_decode_f decode, skx_show_retry_log_f show_retry_log)
155 {
156 	skx_decode = decode;
157 	skx_show_retry_rd_err_log = show_retry_log;
158 }
159 
160 int skx_get_src_id(struct skx_dev *d, int off, u8 *id)
161 {
162 	u32 reg;
163 
164 	if (pci_read_config_dword(d->util_all, off, &reg)) {
165 		skx_printk(KERN_ERR, "Failed to read src id\n");
166 		return -ENODEV;
167 	}
168 
169 	*id = GET_BITFIELD(reg, 12, 14);
170 	return 0;
171 }
172 
173 int skx_get_node_id(struct skx_dev *d, u8 *id)
174 {
175 	u32 reg;
176 
177 	if (pci_read_config_dword(d->util_all, 0xf4, &reg)) {
178 		skx_printk(KERN_ERR, "Failed to read node id\n");
179 		return -ENODEV;
180 	}
181 
182 	*id = GET_BITFIELD(reg, 0, 2);
183 	return 0;
184 }
185 
186 static int get_width(u32 mtr)
187 {
188 	switch (GET_BITFIELD(mtr, 8, 9)) {
189 	case 0:
190 		return DEV_X4;
191 	case 1:
192 		return DEV_X8;
193 	case 2:
194 		return DEV_X16;
195 	}
196 	return DEV_UNKNOWN;
197 }
198 
199 /*
200  * We use the per-socket device @cfg->did to count how many sockets are present,
201  * and to detemine which PCI buses are associated with each socket. Allocate
202  * and build the full list of all the skx_dev structures that we need here.
203  */
204 int skx_get_all_bus_mappings(struct res_config *cfg, struct list_head **list)
205 {
206 	struct pci_dev *pdev, *prev;
207 	struct skx_dev *d;
208 	u32 reg;
209 	int ndev = 0;
210 
211 	prev = NULL;
212 	for (;;) {
213 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, cfg->decs_did, prev);
214 		if (!pdev)
215 			break;
216 		ndev++;
217 		d = kzalloc(sizeof(*d), GFP_KERNEL);
218 		if (!d) {
219 			pci_dev_put(pdev);
220 			return -ENOMEM;
221 		}
222 
223 		if (pci_read_config_dword(pdev, cfg->busno_cfg_offset, &reg)) {
224 			kfree(d);
225 			pci_dev_put(pdev);
226 			skx_printk(KERN_ERR, "Failed to read bus idx\n");
227 			return -ENODEV;
228 		}
229 
230 		d->bus[0] = GET_BITFIELD(reg, 0, 7);
231 		d->bus[1] = GET_BITFIELD(reg, 8, 15);
232 		if (cfg->type == SKX) {
233 			d->seg = pci_domain_nr(pdev->bus);
234 			d->bus[2] = GET_BITFIELD(reg, 16, 23);
235 			d->bus[3] = GET_BITFIELD(reg, 24, 31);
236 		} else {
237 			d->seg = GET_BITFIELD(reg, 16, 23);
238 		}
239 
240 		edac_dbg(2, "busses: 0x%x, 0x%x, 0x%x, 0x%x\n",
241 			 d->bus[0], d->bus[1], d->bus[2], d->bus[3]);
242 		list_add_tail(&d->list, &dev_edac_list);
243 		prev = pdev;
244 	}
245 
246 	if (list)
247 		*list = &dev_edac_list;
248 	return ndev;
249 }
250 
251 int skx_get_hi_lo(unsigned int did, int off[], u64 *tolm, u64 *tohm)
252 {
253 	struct pci_dev *pdev;
254 	u32 reg;
255 
256 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, did, NULL);
257 	if (!pdev) {
258 		edac_dbg(2, "Can't get tolm/tohm\n");
259 		return -ENODEV;
260 	}
261 
262 	if (pci_read_config_dword(pdev, off[0], &reg)) {
263 		skx_printk(KERN_ERR, "Failed to read tolm\n");
264 		goto fail;
265 	}
266 	skx_tolm = reg;
267 
268 	if (pci_read_config_dword(pdev, off[1], &reg)) {
269 		skx_printk(KERN_ERR, "Failed to read lower tohm\n");
270 		goto fail;
271 	}
272 	skx_tohm = reg;
273 
274 	if (pci_read_config_dword(pdev, off[2], &reg)) {
275 		skx_printk(KERN_ERR, "Failed to read upper tohm\n");
276 		goto fail;
277 	}
278 	skx_tohm |= (u64)reg << 32;
279 
280 	pci_dev_put(pdev);
281 	*tolm = skx_tolm;
282 	*tohm = skx_tohm;
283 	edac_dbg(2, "tolm = 0x%llx tohm = 0x%llx\n", skx_tolm, skx_tohm);
284 	return 0;
285 fail:
286 	pci_dev_put(pdev);
287 	return -ENODEV;
288 }
289 
290 static int skx_get_dimm_attr(u32 reg, int lobit, int hibit, int add,
291 			     int minval, int maxval, const char *name)
292 {
293 	u32 val = GET_BITFIELD(reg, lobit, hibit);
294 
295 	if (val < minval || val > maxval) {
296 		edac_dbg(2, "bad %s = %d (raw=0x%x)\n", name, val, reg);
297 		return -EINVAL;
298 	}
299 	return val + add;
300 }
301 
302 #define numrank(reg)	skx_get_dimm_attr(reg, 12, 13, 0, 0, 2, "ranks")
303 #define numrow(reg)	skx_get_dimm_attr(reg, 2, 4, 12, 1, 6, "rows")
304 #define numcol(reg)	skx_get_dimm_attr(reg, 0, 1, 10, 0, 2, "cols")
305 
306 int skx_get_dimm_info(u32 mtr, u32 mcmtr, u32 amap, struct dimm_info *dimm,
307 		      struct skx_imc *imc, int chan, int dimmno,
308 		      struct res_config *cfg)
309 {
310 	int  banks, ranks, rows, cols, npages;
311 	enum mem_type mtype;
312 	u64 size;
313 
314 	ranks = numrank(mtr);
315 	rows = numrow(mtr);
316 	cols = numcol(mtr);
317 
318 	if (cfg->support_ddr5 && (amap & 0x8)) {
319 		banks = 32;
320 		mtype = MEM_DDR5;
321 	} else {
322 		banks = 16;
323 		mtype = MEM_DDR4;
324 	}
325 
326 	/*
327 	 * Compute size in 8-byte (2^3) words, then shift to MiB (2^20)
328 	 */
329 	size = ((1ull << (rows + cols + ranks)) * banks) >> (20 - 3);
330 	npages = MiB_TO_PAGES(size);
331 
332 	edac_dbg(0, "mc#%d: channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: 0x%x, col: 0x%x\n",
333 		 imc->mc, chan, dimmno, size, npages,
334 		 banks, 1 << ranks, rows, cols);
335 
336 	imc->chan[chan].dimms[dimmno].close_pg = GET_BITFIELD(mcmtr, 0, 0);
337 	imc->chan[chan].dimms[dimmno].bank_xor_enable = GET_BITFIELD(mcmtr, 9, 9);
338 	imc->chan[chan].dimms[dimmno].fine_grain_bank = GET_BITFIELD(amap, 0, 0);
339 	imc->chan[chan].dimms[dimmno].rowbits = rows;
340 	imc->chan[chan].dimms[dimmno].colbits = cols;
341 
342 	dimm->nr_pages = npages;
343 	dimm->grain = 32;
344 	dimm->dtype = get_width(mtr);
345 	dimm->mtype = mtype;
346 	dimm->edac_mode = EDAC_SECDED; /* likely better than this */
347 	snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
348 		 imc->src_id, imc->lmc, chan, dimmno);
349 
350 	return 1;
351 }
352 
353 int skx_get_nvdimm_info(struct dimm_info *dimm, struct skx_imc *imc,
354 			int chan, int dimmno, const char *mod_str)
355 {
356 	int smbios_handle;
357 	u32 dev_handle;
358 	u16 flags;
359 	u64 size = 0;
360 
361 	dev_handle = ACPI_NFIT_BUILD_DEVICE_HANDLE(dimmno, chan, imc->lmc,
362 						   imc->src_id, 0);
363 
364 	smbios_handle = nfit_get_smbios_id(dev_handle, &flags);
365 	if (smbios_handle == -EOPNOTSUPP) {
366 		pr_warn_once("%s: Can't find size of NVDIMM. Try enabling CONFIG_ACPI_NFIT\n", mod_str);
367 		goto unknown_size;
368 	}
369 
370 	if (smbios_handle < 0) {
371 		skx_printk(KERN_ERR, "Can't find handle for NVDIMM ADR=0x%x\n", dev_handle);
372 		goto unknown_size;
373 	}
374 
375 	if (flags & ACPI_NFIT_MEM_MAP_FAILED) {
376 		skx_printk(KERN_ERR, "NVDIMM ADR=0x%x is not mapped\n", dev_handle);
377 		goto unknown_size;
378 	}
379 
380 	size = dmi_memdev_size(smbios_handle);
381 	if (size == ~0ull)
382 		skx_printk(KERN_ERR, "Can't find size for NVDIMM ADR=0x%x/SMBIOS=0x%x\n",
383 			   dev_handle, smbios_handle);
384 
385 unknown_size:
386 	dimm->nr_pages = size >> PAGE_SHIFT;
387 	dimm->grain = 32;
388 	dimm->dtype = DEV_UNKNOWN;
389 	dimm->mtype = MEM_NVDIMM;
390 	dimm->edac_mode = EDAC_SECDED; /* likely better than this */
391 
392 	edac_dbg(0, "mc#%d: channel %d, dimm %d, %llu MiB (%u pages)\n",
393 		 imc->mc, chan, dimmno, size >> 20, dimm->nr_pages);
394 
395 	snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
396 		 imc->src_id, imc->lmc, chan, dimmno);
397 
398 	return (size == 0 || size == ~0ull) ? 0 : 1;
399 }
400 
401 int skx_register_mci(struct skx_imc *imc, struct pci_dev *pdev,
402 		     const char *ctl_name, const char *mod_str,
403 		     get_dimm_config_f get_dimm_config,
404 		     struct res_config *cfg)
405 {
406 	struct mem_ctl_info *mci;
407 	struct edac_mc_layer layers[2];
408 	struct skx_pvt *pvt;
409 	int rc;
410 
411 	/* Allocate a new MC control structure */
412 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
413 	layers[0].size = NUM_CHANNELS;
414 	layers[0].is_virt_csrow = false;
415 	layers[1].type = EDAC_MC_LAYER_SLOT;
416 	layers[1].size = NUM_DIMMS;
417 	layers[1].is_virt_csrow = true;
418 	mci = edac_mc_alloc(imc->mc, ARRAY_SIZE(layers), layers,
419 			    sizeof(struct skx_pvt));
420 
421 	if (unlikely(!mci))
422 		return -ENOMEM;
423 
424 	edac_dbg(0, "MC#%d: mci = %p\n", imc->mc, mci);
425 
426 	/* Associate skx_dev and mci for future usage */
427 	imc->mci = mci;
428 	pvt = mci->pvt_info;
429 	pvt->imc = imc;
430 
431 	mci->ctl_name = kasprintf(GFP_KERNEL, "%s#%d IMC#%d", ctl_name,
432 				  imc->node_id, imc->lmc);
433 	if (!mci->ctl_name) {
434 		rc = -ENOMEM;
435 		goto fail0;
436 	}
437 
438 	mci->mtype_cap = MEM_FLAG_DDR4 | MEM_FLAG_NVDIMM;
439 	if (cfg->support_ddr5)
440 		mci->mtype_cap |= MEM_FLAG_DDR5;
441 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
442 	mci->edac_cap = EDAC_FLAG_NONE;
443 	mci->mod_name = mod_str;
444 	mci->dev_name = pci_name(pdev);
445 	mci->ctl_page_to_phys = NULL;
446 
447 	rc = get_dimm_config(mci, cfg);
448 	if (rc < 0)
449 		goto fail;
450 
451 	/* Record ptr to the generic device */
452 	mci->pdev = &pdev->dev;
453 
454 	/* Add this new MC control structure to EDAC's list of MCs */
455 	if (unlikely(edac_mc_add_mc(mci))) {
456 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
457 		rc = -EINVAL;
458 		goto fail;
459 	}
460 
461 	return 0;
462 
463 fail:
464 	kfree(mci->ctl_name);
465 fail0:
466 	edac_mc_free(mci);
467 	imc->mci = NULL;
468 	return rc;
469 }
470 
471 static void skx_unregister_mci(struct skx_imc *imc)
472 {
473 	struct mem_ctl_info *mci = imc->mci;
474 
475 	if (!mci)
476 		return;
477 
478 	edac_dbg(0, "MC%d: mci = %p\n", imc->mc, mci);
479 
480 	/* Remove MC sysfs nodes */
481 	edac_mc_del_mc(mci->pdev);
482 
483 	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
484 	kfree(mci->ctl_name);
485 	edac_mc_free(mci);
486 }
487 
488 static void skx_mce_output_error(struct mem_ctl_info *mci,
489 				 const struct mce *m,
490 				 struct decoded_addr *res)
491 {
492 	enum hw_event_mc_err_type tp_event;
493 	char *optype;
494 	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
495 	bool overflow = GET_BITFIELD(m->status, 62, 62);
496 	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
497 	bool recoverable;
498 	int len;
499 	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
500 	u32 mscod = GET_BITFIELD(m->status, 16, 31);
501 	u32 errcode = GET_BITFIELD(m->status, 0, 15);
502 	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
503 
504 	recoverable = GET_BITFIELD(m->status, 56, 56);
505 
506 	if (uncorrected_error) {
507 		core_err_cnt = 1;
508 		if (ripv) {
509 			tp_event = HW_EVENT_ERR_UNCORRECTED;
510 		} else {
511 			tp_event = HW_EVENT_ERR_FATAL;
512 		}
513 	} else {
514 		tp_event = HW_EVENT_ERR_CORRECTED;
515 	}
516 
517 	/*
518 	 * According to Intel Architecture spec vol 3B,
519 	 * Table 15-10 "IA32_MCi_Status [15:0] Compound Error Code Encoding"
520 	 * memory errors should fit one of these masks:
521 	 *	000f 0000 1mmm cccc (binary)
522 	 *	000f 0010 1mmm cccc (binary)	[RAM used as cache]
523 	 * where:
524 	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
525 	 *	    won't be shown
526 	 *	mmm = error type
527 	 *	cccc = channel
528 	 * If the mask doesn't match, report an error to the parsing logic
529 	 */
530 	if (!((errcode & 0xef80) == 0x80 || (errcode & 0xef80) == 0x280)) {
531 		optype = "Can't parse: it is not a mem";
532 	} else {
533 		switch (optypenum) {
534 		case 0:
535 			optype = "generic undef request error";
536 			break;
537 		case 1:
538 			optype = "memory read error";
539 			break;
540 		case 2:
541 			optype = "memory write error";
542 			break;
543 		case 3:
544 			optype = "addr/cmd error";
545 			break;
546 		case 4:
547 			optype = "memory scrubbing error";
548 			break;
549 		default:
550 			optype = "reserved";
551 			break;
552 		}
553 	}
554 	if (adxl_component_count) {
555 		len = snprintf(skx_msg, MSG_SIZE, "%s%s err_code:0x%04x:0x%04x %s",
556 			 overflow ? " OVERFLOW" : "",
557 			 (uncorrected_error && recoverable) ? " recoverable" : "",
558 			 mscod, errcode, adxl_msg);
559 	} else {
560 		len = snprintf(skx_msg, MSG_SIZE,
561 			 "%s%s err_code:0x%04x:0x%04x socket:%d imc:%d rank:%d bg:%d ba:%d row:0x%x col:0x%x",
562 			 overflow ? " OVERFLOW" : "",
563 			 (uncorrected_error && recoverable) ? " recoverable" : "",
564 			 mscod, errcode,
565 			 res->socket, res->imc, res->rank,
566 			 res->bank_group, res->bank_address, res->row, res->column);
567 	}
568 
569 	if (skx_show_retry_rd_err_log)
570 		skx_show_retry_rd_err_log(res, skx_msg + len, MSG_SIZE - len);
571 
572 	edac_dbg(0, "%s\n", skx_msg);
573 
574 	/* Call the helper to output message */
575 	edac_mc_handle_error(tp_event, mci, core_err_cnt,
576 			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
577 			     res->channel, res->dimm, -1,
578 			     optype, skx_msg);
579 }
580 
581 int skx_mce_check_error(struct notifier_block *nb, unsigned long val,
582 			void *data)
583 {
584 	struct mce *mce = (struct mce *)data;
585 	struct decoded_addr res;
586 	struct mem_ctl_info *mci;
587 	char *type;
588 
589 	if (mce->kflags & MCE_HANDLED_CEC)
590 		return NOTIFY_DONE;
591 
592 	/* ignore unless this is memory related with an address */
593 	if ((mce->status & 0xefff) >> 7 != 1 || !(mce->status & MCI_STATUS_ADDRV))
594 		return NOTIFY_DONE;
595 
596 	memset(&res, 0, sizeof(res));
597 	res.addr = mce->addr;
598 
599 	if (adxl_component_count) {
600 		if (!skx_adxl_decode(&res))
601 			return NOTIFY_DONE;
602 	} else if (!skx_decode || !skx_decode(&res)) {
603 		return NOTIFY_DONE;
604 	}
605 
606 	mci = res.dev->imc[res.imc].mci;
607 
608 	if (!mci)
609 		return NOTIFY_DONE;
610 
611 	if (mce->mcgstatus & MCG_STATUS_MCIP)
612 		type = "Exception";
613 	else
614 		type = "Event";
615 
616 	skx_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
617 
618 	skx_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: 0x%llx "
619 			   "Bank %d: 0x%llx\n", mce->extcpu, type,
620 			   mce->mcgstatus, mce->bank, mce->status);
621 	skx_mc_printk(mci, KERN_DEBUG, "TSC 0x%llx ", mce->tsc);
622 	skx_mc_printk(mci, KERN_DEBUG, "ADDR 0x%llx ", mce->addr);
623 	skx_mc_printk(mci, KERN_DEBUG, "MISC 0x%llx ", mce->misc);
624 
625 	skx_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:0x%x TIME %llu SOCKET "
626 			   "%u APIC 0x%x\n", mce->cpuvendor, mce->cpuid,
627 			   mce->time, mce->socketid, mce->apicid);
628 
629 	skx_mce_output_error(mci, mce, &res);
630 
631 	mce->kflags |= MCE_HANDLED_EDAC;
632 	return NOTIFY_DONE;
633 }
634 
635 void skx_remove(void)
636 {
637 	int i, j;
638 	struct skx_dev *d, *tmp;
639 
640 	edac_dbg(0, "\n");
641 
642 	list_for_each_entry_safe(d, tmp, &dev_edac_list, list) {
643 		list_del(&d->list);
644 		for (i = 0; i < NUM_IMC; i++) {
645 			if (d->imc[i].mci)
646 				skx_unregister_mci(&d->imc[i]);
647 
648 			if (d->imc[i].mdev)
649 				pci_dev_put(d->imc[i].mdev);
650 
651 			if (d->imc[i].mbase)
652 				iounmap(d->imc[i].mbase);
653 
654 			for (j = 0; j < NUM_CHANNELS; j++) {
655 				if (d->imc[i].chan[j].cdev)
656 					pci_dev_put(d->imc[i].chan[j].cdev);
657 			}
658 		}
659 		if (d->util_all)
660 			pci_dev_put(d->util_all);
661 		if (d->sad_all)
662 			pci_dev_put(d->sad_all);
663 		if (d->uracu)
664 			pci_dev_put(d->uracu);
665 
666 		kfree(d);
667 	}
668 }
669