1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * 4 * Shared code by both skx_edac and i10nm_edac. Originally split out 5 * from the skx_edac driver. 6 * 7 * This file is linked into both skx_edac and i10nm_edac drivers. In 8 * order to avoid link errors, this file must be like a pure library 9 * without including symbols and defines which would otherwise conflict, 10 * when linked once into a module and into a built-in object, at the 11 * same time. For example, __this_module symbol references when that 12 * file is being linked into a built-in object. 13 * 14 * Copyright (c) 2018, Intel Corporation. 15 */ 16 17 #include <linux/acpi.h> 18 #include <linux/dmi.h> 19 #include <linux/adxl.h> 20 #include <acpi/nfit.h> 21 #include <asm/mce.h> 22 #include "edac_module.h" 23 #include "skx_common.h" 24 25 static const char * const component_names[] = { 26 [INDEX_SOCKET] = "ProcessorSocketId", 27 [INDEX_MEMCTRL] = "MemoryControllerId", 28 [INDEX_CHANNEL] = "ChannelId", 29 [INDEX_DIMM] = "DimmSlotId", 30 [INDEX_CS] = "ChipSelect", 31 [INDEX_NM_MEMCTRL] = "NmMemoryControllerId", 32 [INDEX_NM_CHANNEL] = "NmChannelId", 33 [INDEX_NM_DIMM] = "NmDimmSlotId", 34 [INDEX_NM_CS] = "NmChipSelect", 35 }; 36 37 static int component_indices[ARRAY_SIZE(component_names)]; 38 static int adxl_component_count; 39 static const char * const *adxl_component_names; 40 static u64 *adxl_values; 41 static char *adxl_msg; 42 static unsigned long adxl_nm_bitmap; 43 44 static char skx_msg[MSG_SIZE]; 45 static skx_decode_f driver_decode; 46 static skx_show_retry_log_f skx_show_retry_rd_err_log; 47 static u64 skx_tolm, skx_tohm; 48 static LIST_HEAD(dev_edac_list); 49 static bool skx_mem_cfg_2lm; 50 51 int __init skx_adxl_get(void) 52 { 53 const char * const *names; 54 int i, j; 55 56 names = adxl_get_component_names(); 57 if (!names) { 58 skx_printk(KERN_NOTICE, "No firmware support for address translation.\n"); 59 return -ENODEV; 60 } 61 62 for (i = 0; i < INDEX_MAX; i++) { 63 for (j = 0; names[j]; j++) { 64 if (!strcmp(component_names[i], names[j])) { 65 component_indices[i] = j; 66 67 if (i >= INDEX_NM_FIRST) 68 adxl_nm_bitmap |= 1 << i; 69 70 break; 71 } 72 } 73 74 if (!names[j] && i < INDEX_NM_FIRST) 75 goto err; 76 } 77 78 if (skx_mem_cfg_2lm) { 79 if (!adxl_nm_bitmap) 80 skx_printk(KERN_NOTICE, "Not enough ADXL components for 2-level memory.\n"); 81 else 82 edac_dbg(2, "adxl_nm_bitmap: 0x%lx\n", adxl_nm_bitmap); 83 } 84 85 adxl_component_names = names; 86 while (*names++) 87 adxl_component_count++; 88 89 adxl_values = kcalloc(adxl_component_count, sizeof(*adxl_values), 90 GFP_KERNEL); 91 if (!adxl_values) { 92 adxl_component_count = 0; 93 return -ENOMEM; 94 } 95 96 adxl_msg = kzalloc(MSG_SIZE, GFP_KERNEL); 97 if (!adxl_msg) { 98 adxl_component_count = 0; 99 kfree(adxl_values); 100 return -ENOMEM; 101 } 102 103 return 0; 104 err: 105 skx_printk(KERN_ERR, "'%s' is not matched from DSM parameters: ", 106 component_names[i]); 107 for (j = 0; names[j]; j++) 108 skx_printk(KERN_CONT, "%s ", names[j]); 109 skx_printk(KERN_CONT, "\n"); 110 111 return -ENODEV; 112 } 113 114 void __exit skx_adxl_put(void) 115 { 116 kfree(adxl_values); 117 kfree(adxl_msg); 118 } 119 120 static bool skx_adxl_decode(struct decoded_addr *res, bool error_in_1st_level_mem) 121 { 122 struct skx_dev *d; 123 int i, len = 0; 124 125 if (res->addr >= skx_tohm || (res->addr >= skx_tolm && 126 res->addr < BIT_ULL(32))) { 127 edac_dbg(0, "Address 0x%llx out of range\n", res->addr); 128 return false; 129 } 130 131 if (adxl_decode(res->addr, adxl_values)) { 132 edac_dbg(0, "Failed to decode 0x%llx\n", res->addr); 133 return false; 134 } 135 136 res->socket = (int)adxl_values[component_indices[INDEX_SOCKET]]; 137 if (error_in_1st_level_mem) { 138 res->imc = (adxl_nm_bitmap & BIT_NM_MEMCTRL) ? 139 (int)adxl_values[component_indices[INDEX_NM_MEMCTRL]] : -1; 140 res->channel = (adxl_nm_bitmap & BIT_NM_CHANNEL) ? 141 (int)adxl_values[component_indices[INDEX_NM_CHANNEL]] : -1; 142 res->dimm = (adxl_nm_bitmap & BIT_NM_DIMM) ? 143 (int)adxl_values[component_indices[INDEX_NM_DIMM]] : -1; 144 res->cs = (adxl_nm_bitmap & BIT_NM_CS) ? 145 (int)adxl_values[component_indices[INDEX_NM_CS]] : -1; 146 } else { 147 res->imc = (int)adxl_values[component_indices[INDEX_MEMCTRL]]; 148 res->channel = (int)adxl_values[component_indices[INDEX_CHANNEL]]; 149 res->dimm = (int)adxl_values[component_indices[INDEX_DIMM]]; 150 res->cs = (int)adxl_values[component_indices[INDEX_CS]]; 151 } 152 153 if (res->imc > NUM_IMC - 1 || res->imc < 0) { 154 skx_printk(KERN_ERR, "Bad imc %d\n", res->imc); 155 return false; 156 } 157 158 list_for_each_entry(d, &dev_edac_list, list) { 159 if (d->imc[0].src_id == res->socket) { 160 res->dev = d; 161 break; 162 } 163 } 164 165 if (!res->dev) { 166 skx_printk(KERN_ERR, "No device for src_id %d imc %d\n", 167 res->socket, res->imc); 168 return false; 169 } 170 171 for (i = 0; i < adxl_component_count; i++) { 172 if (adxl_values[i] == ~0x0ull) 173 continue; 174 175 len += snprintf(adxl_msg + len, MSG_SIZE - len, " %s:0x%llx", 176 adxl_component_names[i], adxl_values[i]); 177 if (MSG_SIZE - len <= 0) 178 break; 179 } 180 181 res->decoded_by_adxl = true; 182 183 return true; 184 } 185 186 void skx_set_mem_cfg(bool mem_cfg_2lm) 187 { 188 skx_mem_cfg_2lm = mem_cfg_2lm; 189 } 190 191 void skx_set_decode(skx_decode_f decode, skx_show_retry_log_f show_retry_log) 192 { 193 driver_decode = decode; 194 skx_show_retry_rd_err_log = show_retry_log; 195 } 196 197 int skx_get_src_id(struct skx_dev *d, int off, u8 *id) 198 { 199 u32 reg; 200 201 if (pci_read_config_dword(d->util_all, off, ®)) { 202 skx_printk(KERN_ERR, "Failed to read src id\n"); 203 return -ENODEV; 204 } 205 206 *id = GET_BITFIELD(reg, 12, 14); 207 return 0; 208 } 209 210 int skx_get_node_id(struct skx_dev *d, u8 *id) 211 { 212 u32 reg; 213 214 if (pci_read_config_dword(d->util_all, 0xf4, ®)) { 215 skx_printk(KERN_ERR, "Failed to read node id\n"); 216 return -ENODEV; 217 } 218 219 *id = GET_BITFIELD(reg, 0, 2); 220 return 0; 221 } 222 223 static int get_width(u32 mtr) 224 { 225 switch (GET_BITFIELD(mtr, 8, 9)) { 226 case 0: 227 return DEV_X4; 228 case 1: 229 return DEV_X8; 230 case 2: 231 return DEV_X16; 232 } 233 return DEV_UNKNOWN; 234 } 235 236 /* 237 * We use the per-socket device @cfg->did to count how many sockets are present, 238 * and to detemine which PCI buses are associated with each socket. Allocate 239 * and build the full list of all the skx_dev structures that we need here. 240 */ 241 int skx_get_all_bus_mappings(struct res_config *cfg, struct list_head **list) 242 { 243 struct pci_dev *pdev, *prev; 244 struct skx_dev *d; 245 u32 reg; 246 int ndev = 0; 247 248 prev = NULL; 249 for (;;) { 250 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, cfg->decs_did, prev); 251 if (!pdev) 252 break; 253 ndev++; 254 d = kzalloc(sizeof(*d), GFP_KERNEL); 255 if (!d) { 256 pci_dev_put(pdev); 257 return -ENOMEM; 258 } 259 260 if (pci_read_config_dword(pdev, cfg->busno_cfg_offset, ®)) { 261 kfree(d); 262 pci_dev_put(pdev); 263 skx_printk(KERN_ERR, "Failed to read bus idx\n"); 264 return -ENODEV; 265 } 266 267 d->bus[0] = GET_BITFIELD(reg, 0, 7); 268 d->bus[1] = GET_BITFIELD(reg, 8, 15); 269 if (cfg->type == SKX) { 270 d->seg = pci_domain_nr(pdev->bus); 271 d->bus[2] = GET_BITFIELD(reg, 16, 23); 272 d->bus[3] = GET_BITFIELD(reg, 24, 31); 273 } else { 274 d->seg = GET_BITFIELD(reg, 16, 23); 275 } 276 277 edac_dbg(2, "busses: 0x%x, 0x%x, 0x%x, 0x%x\n", 278 d->bus[0], d->bus[1], d->bus[2], d->bus[3]); 279 list_add_tail(&d->list, &dev_edac_list); 280 prev = pdev; 281 } 282 283 if (list) 284 *list = &dev_edac_list; 285 return ndev; 286 } 287 288 int skx_get_hi_lo(unsigned int did, int off[], u64 *tolm, u64 *tohm) 289 { 290 struct pci_dev *pdev; 291 u32 reg; 292 293 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, did, NULL); 294 if (!pdev) { 295 edac_dbg(2, "Can't get tolm/tohm\n"); 296 return -ENODEV; 297 } 298 299 if (pci_read_config_dword(pdev, off[0], ®)) { 300 skx_printk(KERN_ERR, "Failed to read tolm\n"); 301 goto fail; 302 } 303 skx_tolm = reg; 304 305 if (pci_read_config_dword(pdev, off[1], ®)) { 306 skx_printk(KERN_ERR, "Failed to read lower tohm\n"); 307 goto fail; 308 } 309 skx_tohm = reg; 310 311 if (pci_read_config_dword(pdev, off[2], ®)) { 312 skx_printk(KERN_ERR, "Failed to read upper tohm\n"); 313 goto fail; 314 } 315 skx_tohm |= (u64)reg << 32; 316 317 pci_dev_put(pdev); 318 *tolm = skx_tolm; 319 *tohm = skx_tohm; 320 edac_dbg(2, "tolm = 0x%llx tohm = 0x%llx\n", skx_tolm, skx_tohm); 321 return 0; 322 fail: 323 pci_dev_put(pdev); 324 return -ENODEV; 325 } 326 327 static int skx_get_dimm_attr(u32 reg, int lobit, int hibit, int add, 328 int minval, int maxval, const char *name) 329 { 330 u32 val = GET_BITFIELD(reg, lobit, hibit); 331 332 if (val < minval || val > maxval) { 333 edac_dbg(2, "bad %s = %d (raw=0x%x)\n", name, val, reg); 334 return -EINVAL; 335 } 336 return val + add; 337 } 338 339 #define numrank(reg) skx_get_dimm_attr(reg, 12, 13, 0, 0, 2, "ranks") 340 #define numrow(reg) skx_get_dimm_attr(reg, 2, 4, 12, 1, 6, "rows") 341 #define numcol(reg) skx_get_dimm_attr(reg, 0, 1, 10, 0, 2, "cols") 342 343 int skx_get_dimm_info(u32 mtr, u32 mcmtr, u32 amap, struct dimm_info *dimm, 344 struct skx_imc *imc, int chan, int dimmno, 345 struct res_config *cfg) 346 { 347 int banks, ranks, rows, cols, npages; 348 enum mem_type mtype; 349 u64 size; 350 351 ranks = numrank(mtr); 352 rows = numrow(mtr); 353 cols = imc->hbm_mc ? 6 : numcol(mtr); 354 355 if (imc->hbm_mc) { 356 banks = 32; 357 mtype = MEM_HBM2; 358 } else if (cfg->support_ddr5 && (amap & 0x8)) { 359 banks = 32; 360 mtype = MEM_DDR5; 361 } else { 362 banks = 16; 363 mtype = MEM_DDR4; 364 } 365 366 /* 367 * Compute size in 8-byte (2^3) words, then shift to MiB (2^20) 368 */ 369 size = ((1ull << (rows + cols + ranks)) * banks) >> (20 - 3); 370 npages = MiB_TO_PAGES(size); 371 372 edac_dbg(0, "mc#%d: channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: 0x%x, col: 0x%x\n", 373 imc->mc, chan, dimmno, size, npages, 374 banks, 1 << ranks, rows, cols); 375 376 imc->chan[chan].dimms[dimmno].close_pg = GET_BITFIELD(mcmtr, 0, 0); 377 imc->chan[chan].dimms[dimmno].bank_xor_enable = GET_BITFIELD(mcmtr, 9, 9); 378 imc->chan[chan].dimms[dimmno].fine_grain_bank = GET_BITFIELD(amap, 0, 0); 379 imc->chan[chan].dimms[dimmno].rowbits = rows; 380 imc->chan[chan].dimms[dimmno].colbits = cols; 381 382 dimm->nr_pages = npages; 383 dimm->grain = 32; 384 dimm->dtype = get_width(mtr); 385 dimm->mtype = mtype; 386 dimm->edac_mode = EDAC_SECDED; /* likely better than this */ 387 388 if (imc->hbm_mc) 389 snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_HBMC#%u_Chan#%u", 390 imc->src_id, imc->lmc, chan); 391 else 392 snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u", 393 imc->src_id, imc->lmc, chan, dimmno); 394 395 return 1; 396 } 397 398 int skx_get_nvdimm_info(struct dimm_info *dimm, struct skx_imc *imc, 399 int chan, int dimmno, const char *mod_str) 400 { 401 int smbios_handle; 402 u32 dev_handle; 403 u16 flags; 404 u64 size = 0; 405 406 dev_handle = ACPI_NFIT_BUILD_DEVICE_HANDLE(dimmno, chan, imc->lmc, 407 imc->src_id, 0); 408 409 smbios_handle = nfit_get_smbios_id(dev_handle, &flags); 410 if (smbios_handle == -EOPNOTSUPP) { 411 pr_warn_once("%s: Can't find size of NVDIMM. Try enabling CONFIG_ACPI_NFIT\n", mod_str); 412 goto unknown_size; 413 } 414 415 if (smbios_handle < 0) { 416 skx_printk(KERN_ERR, "Can't find handle for NVDIMM ADR=0x%x\n", dev_handle); 417 goto unknown_size; 418 } 419 420 if (flags & ACPI_NFIT_MEM_MAP_FAILED) { 421 skx_printk(KERN_ERR, "NVDIMM ADR=0x%x is not mapped\n", dev_handle); 422 goto unknown_size; 423 } 424 425 size = dmi_memdev_size(smbios_handle); 426 if (size == ~0ull) 427 skx_printk(KERN_ERR, "Can't find size for NVDIMM ADR=0x%x/SMBIOS=0x%x\n", 428 dev_handle, smbios_handle); 429 430 unknown_size: 431 dimm->nr_pages = size >> PAGE_SHIFT; 432 dimm->grain = 32; 433 dimm->dtype = DEV_UNKNOWN; 434 dimm->mtype = MEM_NVDIMM; 435 dimm->edac_mode = EDAC_SECDED; /* likely better than this */ 436 437 edac_dbg(0, "mc#%d: channel %d, dimm %d, %llu MiB (%u pages)\n", 438 imc->mc, chan, dimmno, size >> 20, dimm->nr_pages); 439 440 snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u", 441 imc->src_id, imc->lmc, chan, dimmno); 442 443 return (size == 0 || size == ~0ull) ? 0 : 1; 444 } 445 446 int skx_register_mci(struct skx_imc *imc, struct pci_dev *pdev, 447 const char *ctl_name, const char *mod_str, 448 get_dimm_config_f get_dimm_config, 449 struct res_config *cfg) 450 { 451 struct mem_ctl_info *mci; 452 struct edac_mc_layer layers[2]; 453 struct skx_pvt *pvt; 454 int rc; 455 456 /* Allocate a new MC control structure */ 457 layers[0].type = EDAC_MC_LAYER_CHANNEL; 458 layers[0].size = NUM_CHANNELS; 459 layers[0].is_virt_csrow = false; 460 layers[1].type = EDAC_MC_LAYER_SLOT; 461 layers[1].size = NUM_DIMMS; 462 layers[1].is_virt_csrow = true; 463 mci = edac_mc_alloc(imc->mc, ARRAY_SIZE(layers), layers, 464 sizeof(struct skx_pvt)); 465 466 if (unlikely(!mci)) 467 return -ENOMEM; 468 469 edac_dbg(0, "MC#%d: mci = %p\n", imc->mc, mci); 470 471 /* Associate skx_dev and mci for future usage */ 472 imc->mci = mci; 473 pvt = mci->pvt_info; 474 pvt->imc = imc; 475 476 mci->ctl_name = kasprintf(GFP_KERNEL, "%s#%d IMC#%d", ctl_name, 477 imc->node_id, imc->lmc); 478 if (!mci->ctl_name) { 479 rc = -ENOMEM; 480 goto fail0; 481 } 482 483 mci->mtype_cap = MEM_FLAG_DDR4 | MEM_FLAG_NVDIMM; 484 if (cfg->support_ddr5) 485 mci->mtype_cap |= MEM_FLAG_DDR5; 486 mci->edac_ctl_cap = EDAC_FLAG_NONE; 487 mci->edac_cap = EDAC_FLAG_NONE; 488 mci->mod_name = mod_str; 489 mci->dev_name = pci_name(pdev); 490 mci->ctl_page_to_phys = NULL; 491 492 rc = get_dimm_config(mci, cfg); 493 if (rc < 0) 494 goto fail; 495 496 /* Record ptr to the generic device */ 497 mci->pdev = &pdev->dev; 498 499 /* Add this new MC control structure to EDAC's list of MCs */ 500 if (unlikely(edac_mc_add_mc(mci))) { 501 edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); 502 rc = -EINVAL; 503 goto fail; 504 } 505 506 return 0; 507 508 fail: 509 kfree(mci->ctl_name); 510 fail0: 511 edac_mc_free(mci); 512 imc->mci = NULL; 513 return rc; 514 } 515 516 static void skx_unregister_mci(struct skx_imc *imc) 517 { 518 struct mem_ctl_info *mci = imc->mci; 519 520 if (!mci) 521 return; 522 523 edac_dbg(0, "MC%d: mci = %p\n", imc->mc, mci); 524 525 /* Remove MC sysfs nodes */ 526 edac_mc_del_mc(mci->pdev); 527 528 edac_dbg(1, "%s: free mci struct\n", mci->ctl_name); 529 kfree(mci->ctl_name); 530 edac_mc_free(mci); 531 } 532 533 static void skx_mce_output_error(struct mem_ctl_info *mci, 534 const struct mce *m, 535 struct decoded_addr *res) 536 { 537 enum hw_event_mc_err_type tp_event; 538 char *optype; 539 bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0); 540 bool overflow = GET_BITFIELD(m->status, 62, 62); 541 bool uncorrected_error = GET_BITFIELD(m->status, 61, 61); 542 bool scrub_err = false; 543 bool recoverable; 544 int len; 545 u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52); 546 u32 mscod = GET_BITFIELD(m->status, 16, 31); 547 u32 errcode = GET_BITFIELD(m->status, 0, 15); 548 u32 optypenum = GET_BITFIELD(m->status, 4, 6); 549 550 recoverable = GET_BITFIELD(m->status, 56, 56); 551 552 if (uncorrected_error) { 553 core_err_cnt = 1; 554 if (ripv) { 555 tp_event = HW_EVENT_ERR_UNCORRECTED; 556 } else { 557 tp_event = HW_EVENT_ERR_FATAL; 558 } 559 } else { 560 tp_event = HW_EVENT_ERR_CORRECTED; 561 } 562 563 /* 564 * According to Intel Architecture spec vol 3B, 565 * Table 15-10 "IA32_MCi_Status [15:0] Compound Error Code Encoding" 566 * memory errors should fit one of these masks: 567 * 000f 0000 1mmm cccc (binary) 568 * 000f 0010 1mmm cccc (binary) [RAM used as cache] 569 * where: 570 * f = Correction Report Filtering Bit. If 1, subsequent errors 571 * won't be shown 572 * mmm = error type 573 * cccc = channel 574 * If the mask doesn't match, report an error to the parsing logic 575 */ 576 if (!((errcode & 0xef80) == 0x80 || (errcode & 0xef80) == 0x280)) { 577 optype = "Can't parse: it is not a mem"; 578 } else { 579 switch (optypenum) { 580 case 0: 581 optype = "generic undef request error"; 582 break; 583 case 1: 584 optype = "memory read error"; 585 break; 586 case 2: 587 optype = "memory write error"; 588 break; 589 case 3: 590 optype = "addr/cmd error"; 591 break; 592 case 4: 593 optype = "memory scrubbing error"; 594 scrub_err = true; 595 break; 596 default: 597 optype = "reserved"; 598 break; 599 } 600 } 601 if (res->decoded_by_adxl) { 602 len = snprintf(skx_msg, MSG_SIZE, "%s%s err_code:0x%04x:0x%04x %s", 603 overflow ? " OVERFLOW" : "", 604 (uncorrected_error && recoverable) ? " recoverable" : "", 605 mscod, errcode, adxl_msg); 606 } else { 607 len = snprintf(skx_msg, MSG_SIZE, 608 "%s%s err_code:0x%04x:0x%04x ProcessorSocketId:0x%x MemoryControllerId:0x%x PhysicalRankId:0x%x Row:0x%x Column:0x%x Bank:0x%x BankGroup:0x%x", 609 overflow ? " OVERFLOW" : "", 610 (uncorrected_error && recoverable) ? " recoverable" : "", 611 mscod, errcode, 612 res->socket, res->imc, res->rank, 613 res->row, res->column, res->bank_address, res->bank_group); 614 } 615 616 if (skx_show_retry_rd_err_log) 617 skx_show_retry_rd_err_log(res, skx_msg + len, MSG_SIZE - len, scrub_err); 618 619 edac_dbg(0, "%s\n", skx_msg); 620 621 /* Call the helper to output message */ 622 edac_mc_handle_error(tp_event, mci, core_err_cnt, 623 m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0, 624 res->channel, res->dimm, -1, 625 optype, skx_msg); 626 } 627 628 static bool skx_error_in_1st_level_mem(const struct mce *m) 629 { 630 u32 errcode; 631 632 if (!skx_mem_cfg_2lm) 633 return false; 634 635 errcode = GET_BITFIELD(m->status, 0, 15); 636 637 if ((errcode & 0xef80) != 0x280) 638 return false; 639 640 return true; 641 } 642 643 int skx_mce_check_error(struct notifier_block *nb, unsigned long val, 644 void *data) 645 { 646 struct mce *mce = (struct mce *)data; 647 struct decoded_addr res; 648 struct mem_ctl_info *mci; 649 char *type; 650 651 if (mce->kflags & MCE_HANDLED_CEC) 652 return NOTIFY_DONE; 653 654 /* ignore unless this is memory related with an address */ 655 if ((mce->status & 0xefff) >> 7 != 1 || !(mce->status & MCI_STATUS_ADDRV)) 656 return NOTIFY_DONE; 657 658 memset(&res, 0, sizeof(res)); 659 res.mce = mce; 660 res.addr = mce->addr; 661 662 /* Try driver decoder first */ 663 if (!(driver_decode && driver_decode(&res))) { 664 /* Then try firmware decoder (ACPI DSM methods) */ 665 if (!(adxl_component_count && skx_adxl_decode(&res, skx_error_in_1st_level_mem(mce)))) 666 return NOTIFY_DONE; 667 } 668 669 mci = res.dev->imc[res.imc].mci; 670 671 if (!mci) 672 return NOTIFY_DONE; 673 674 if (mce->mcgstatus & MCG_STATUS_MCIP) 675 type = "Exception"; 676 else 677 type = "Event"; 678 679 skx_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n"); 680 681 skx_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: 0x%llx " 682 "Bank %d: 0x%llx\n", mce->extcpu, type, 683 mce->mcgstatus, mce->bank, mce->status); 684 skx_mc_printk(mci, KERN_DEBUG, "TSC 0x%llx ", mce->tsc); 685 skx_mc_printk(mci, KERN_DEBUG, "ADDR 0x%llx ", mce->addr); 686 skx_mc_printk(mci, KERN_DEBUG, "MISC 0x%llx ", mce->misc); 687 688 skx_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:0x%x TIME %llu SOCKET " 689 "%u APIC 0x%x\n", mce->cpuvendor, mce->cpuid, 690 mce->time, mce->socketid, mce->apicid); 691 692 skx_mce_output_error(mci, mce, &res); 693 694 mce->kflags |= MCE_HANDLED_EDAC; 695 return NOTIFY_DONE; 696 } 697 698 void skx_remove(void) 699 { 700 int i, j; 701 struct skx_dev *d, *tmp; 702 703 edac_dbg(0, "\n"); 704 705 list_for_each_entry_safe(d, tmp, &dev_edac_list, list) { 706 list_del(&d->list); 707 for (i = 0; i < NUM_IMC; i++) { 708 if (d->imc[i].mci) 709 skx_unregister_mci(&d->imc[i]); 710 711 if (d->imc[i].mdev) 712 pci_dev_put(d->imc[i].mdev); 713 714 if (d->imc[i].mbase) 715 iounmap(d->imc[i].mbase); 716 717 for (j = 0; j < NUM_CHANNELS; j++) { 718 if (d->imc[i].chan[j].cdev) 719 pci_dev_put(d->imc[i].chan[j].cdev); 720 } 721 } 722 if (d->util_all) 723 pci_dev_put(d->util_all); 724 if (d->pcu_cr3) 725 pci_dev_put(d->pcu_cr3); 726 if (d->sad_all) 727 pci_dev_put(d->sad_all); 728 if (d->uracu) 729 pci_dev_put(d->uracu); 730 731 kfree(d); 732 } 733 } 734