1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * 4 * Shared code by both skx_edac and i10nm_edac. Originally split out 5 * from the skx_edac driver. 6 * 7 * This file is linked into both skx_edac and i10nm_edac drivers. In 8 * order to avoid link errors, this file must be like a pure library 9 * without including symbols and defines which would otherwise conflict, 10 * when linked once into a module and into a built-in object, at the 11 * same time. For example, __this_module symbol references when that 12 * file is being linked into a built-in object. 13 * 14 * Copyright (c) 2018, Intel Corporation. 15 */ 16 17 #include <linux/acpi.h> 18 #include <linux/dmi.h> 19 #include <linux/adxl.h> 20 #include <acpi/nfit.h> 21 #include <asm/mce.h> 22 #include "edac_module.h" 23 #include "skx_common.h" 24 25 static const char * const component_names[] = { 26 [INDEX_SOCKET] = "ProcessorSocketId", 27 [INDEX_MEMCTRL] = "MemoryControllerId", 28 [INDEX_CHANNEL] = "ChannelId", 29 [INDEX_DIMM] = "DimmSlotId", 30 [INDEX_CS] = "ChipSelect", 31 [INDEX_NM_MEMCTRL] = "NmMemoryControllerId", 32 [INDEX_NM_CHANNEL] = "NmChannelId", 33 [INDEX_NM_DIMM] = "NmDimmSlotId", 34 [INDEX_NM_CS] = "NmChipSelect", 35 }; 36 37 static int component_indices[ARRAY_SIZE(component_names)]; 38 static int adxl_component_count; 39 static const char * const *adxl_component_names; 40 static u64 *adxl_values; 41 static char *adxl_msg; 42 static unsigned long adxl_nm_bitmap; 43 44 static char skx_msg[MSG_SIZE]; 45 static skx_decode_f driver_decode; 46 static skx_show_retry_log_f skx_show_retry_rd_err_log; 47 static u64 skx_tolm, skx_tohm; 48 static LIST_HEAD(dev_edac_list); 49 static bool skx_mem_cfg_2lm; 50 51 int skx_adxl_get(void) 52 { 53 const char * const *names; 54 int i, j; 55 56 names = adxl_get_component_names(); 57 if (!names) { 58 skx_printk(KERN_NOTICE, "No firmware support for address translation.\n"); 59 return -ENODEV; 60 } 61 62 for (i = 0; i < INDEX_MAX; i++) { 63 for (j = 0; names[j]; j++) { 64 if (!strcmp(component_names[i], names[j])) { 65 component_indices[i] = j; 66 67 if (i >= INDEX_NM_FIRST) 68 adxl_nm_bitmap |= 1 << i; 69 70 break; 71 } 72 } 73 74 if (!names[j] && i < INDEX_NM_FIRST) 75 goto err; 76 } 77 78 if (skx_mem_cfg_2lm) { 79 if (!adxl_nm_bitmap) 80 skx_printk(KERN_NOTICE, "Not enough ADXL components for 2-level memory.\n"); 81 else 82 edac_dbg(2, "adxl_nm_bitmap: 0x%lx\n", adxl_nm_bitmap); 83 } 84 85 adxl_component_names = names; 86 while (*names++) 87 adxl_component_count++; 88 89 adxl_values = kcalloc(adxl_component_count, sizeof(*adxl_values), 90 GFP_KERNEL); 91 if (!adxl_values) { 92 adxl_component_count = 0; 93 return -ENOMEM; 94 } 95 96 adxl_msg = kzalloc(MSG_SIZE, GFP_KERNEL); 97 if (!adxl_msg) { 98 adxl_component_count = 0; 99 kfree(adxl_values); 100 return -ENOMEM; 101 } 102 103 return 0; 104 err: 105 skx_printk(KERN_ERR, "'%s' is not matched from DSM parameters: ", 106 component_names[i]); 107 for (j = 0; names[j]; j++) 108 skx_printk(KERN_CONT, "%s ", names[j]); 109 skx_printk(KERN_CONT, "\n"); 110 111 return -ENODEV; 112 } 113 EXPORT_SYMBOL_GPL(skx_adxl_get); 114 115 void skx_adxl_put(void) 116 { 117 kfree(adxl_values); 118 kfree(adxl_msg); 119 } 120 EXPORT_SYMBOL_GPL(skx_adxl_put); 121 122 static bool skx_adxl_decode(struct decoded_addr *res, bool error_in_1st_level_mem) 123 { 124 struct skx_dev *d; 125 int i, len = 0; 126 127 if (res->addr >= skx_tohm || (res->addr >= skx_tolm && 128 res->addr < BIT_ULL(32))) { 129 edac_dbg(0, "Address 0x%llx out of range\n", res->addr); 130 return false; 131 } 132 133 if (adxl_decode(res->addr, adxl_values)) { 134 edac_dbg(0, "Failed to decode 0x%llx\n", res->addr); 135 return false; 136 } 137 138 res->socket = (int)adxl_values[component_indices[INDEX_SOCKET]]; 139 if (error_in_1st_level_mem) { 140 res->imc = (adxl_nm_bitmap & BIT_NM_MEMCTRL) ? 141 (int)adxl_values[component_indices[INDEX_NM_MEMCTRL]] : -1; 142 res->channel = (adxl_nm_bitmap & BIT_NM_CHANNEL) ? 143 (int)adxl_values[component_indices[INDEX_NM_CHANNEL]] : -1; 144 res->dimm = (adxl_nm_bitmap & BIT_NM_DIMM) ? 145 (int)adxl_values[component_indices[INDEX_NM_DIMM]] : -1; 146 res->cs = (adxl_nm_bitmap & BIT_NM_CS) ? 147 (int)adxl_values[component_indices[INDEX_NM_CS]] : -1; 148 } else { 149 res->imc = (int)adxl_values[component_indices[INDEX_MEMCTRL]]; 150 res->channel = (int)adxl_values[component_indices[INDEX_CHANNEL]]; 151 res->dimm = (int)adxl_values[component_indices[INDEX_DIMM]]; 152 res->cs = (int)adxl_values[component_indices[INDEX_CS]]; 153 } 154 155 if (res->imc > NUM_IMC - 1 || res->imc < 0) { 156 skx_printk(KERN_ERR, "Bad imc %d\n", res->imc); 157 return false; 158 } 159 160 list_for_each_entry(d, &dev_edac_list, list) { 161 if (d->imc[0].src_id == res->socket) { 162 res->dev = d; 163 break; 164 } 165 } 166 167 if (!res->dev) { 168 skx_printk(KERN_ERR, "No device for src_id %d imc %d\n", 169 res->socket, res->imc); 170 return false; 171 } 172 173 for (i = 0; i < adxl_component_count; i++) { 174 if (adxl_values[i] == ~0x0ull) 175 continue; 176 177 len += snprintf(adxl_msg + len, MSG_SIZE - len, " %s:0x%llx", 178 adxl_component_names[i], adxl_values[i]); 179 if (MSG_SIZE - len <= 0) 180 break; 181 } 182 183 res->decoded_by_adxl = true; 184 185 return true; 186 } 187 188 void skx_set_mem_cfg(bool mem_cfg_2lm) 189 { 190 skx_mem_cfg_2lm = mem_cfg_2lm; 191 } 192 EXPORT_SYMBOL_GPL(skx_set_mem_cfg); 193 194 void skx_set_decode(skx_decode_f decode, skx_show_retry_log_f show_retry_log) 195 { 196 driver_decode = decode; 197 skx_show_retry_rd_err_log = show_retry_log; 198 } 199 EXPORT_SYMBOL_GPL(skx_set_decode); 200 201 int skx_get_src_id(struct skx_dev *d, int off, u8 *id) 202 { 203 u32 reg; 204 205 if (pci_read_config_dword(d->util_all, off, ®)) { 206 skx_printk(KERN_ERR, "Failed to read src id\n"); 207 return -ENODEV; 208 } 209 210 *id = GET_BITFIELD(reg, 12, 14); 211 return 0; 212 } 213 EXPORT_SYMBOL_GPL(skx_get_src_id); 214 215 int skx_get_node_id(struct skx_dev *d, u8 *id) 216 { 217 u32 reg; 218 219 if (pci_read_config_dword(d->util_all, 0xf4, ®)) { 220 skx_printk(KERN_ERR, "Failed to read node id\n"); 221 return -ENODEV; 222 } 223 224 *id = GET_BITFIELD(reg, 0, 2); 225 return 0; 226 } 227 EXPORT_SYMBOL_GPL(skx_get_node_id); 228 229 static int get_width(u32 mtr) 230 { 231 switch (GET_BITFIELD(mtr, 8, 9)) { 232 case 0: 233 return DEV_X4; 234 case 1: 235 return DEV_X8; 236 case 2: 237 return DEV_X16; 238 } 239 return DEV_UNKNOWN; 240 } 241 242 /* 243 * We use the per-socket device @cfg->did to count how many sockets are present, 244 * and to detemine which PCI buses are associated with each socket. Allocate 245 * and build the full list of all the skx_dev structures that we need here. 246 */ 247 int skx_get_all_bus_mappings(struct res_config *cfg, struct list_head **list) 248 { 249 struct pci_dev *pdev, *prev; 250 struct skx_dev *d; 251 u32 reg; 252 int ndev = 0; 253 254 prev = NULL; 255 for (;;) { 256 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, cfg->decs_did, prev); 257 if (!pdev) 258 break; 259 ndev++; 260 d = kzalloc(sizeof(*d), GFP_KERNEL); 261 if (!d) { 262 pci_dev_put(pdev); 263 return -ENOMEM; 264 } 265 266 if (pci_read_config_dword(pdev, cfg->busno_cfg_offset, ®)) { 267 kfree(d); 268 pci_dev_put(pdev); 269 skx_printk(KERN_ERR, "Failed to read bus idx\n"); 270 return -ENODEV; 271 } 272 273 d->bus[0] = GET_BITFIELD(reg, 0, 7); 274 d->bus[1] = GET_BITFIELD(reg, 8, 15); 275 if (cfg->type == SKX) { 276 d->seg = pci_domain_nr(pdev->bus); 277 d->bus[2] = GET_BITFIELD(reg, 16, 23); 278 d->bus[3] = GET_BITFIELD(reg, 24, 31); 279 } else { 280 d->seg = GET_BITFIELD(reg, 16, 23); 281 } 282 283 edac_dbg(2, "busses: 0x%x, 0x%x, 0x%x, 0x%x\n", 284 d->bus[0], d->bus[1], d->bus[2], d->bus[3]); 285 list_add_tail(&d->list, &dev_edac_list); 286 prev = pdev; 287 } 288 289 if (list) 290 *list = &dev_edac_list; 291 return ndev; 292 } 293 EXPORT_SYMBOL_GPL(skx_get_all_bus_mappings); 294 295 int skx_get_hi_lo(unsigned int did, int off[], u64 *tolm, u64 *tohm) 296 { 297 struct pci_dev *pdev; 298 u32 reg; 299 300 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, did, NULL); 301 if (!pdev) { 302 edac_dbg(2, "Can't get tolm/tohm\n"); 303 return -ENODEV; 304 } 305 306 if (pci_read_config_dword(pdev, off[0], ®)) { 307 skx_printk(KERN_ERR, "Failed to read tolm\n"); 308 goto fail; 309 } 310 skx_tolm = reg; 311 312 if (pci_read_config_dword(pdev, off[1], ®)) { 313 skx_printk(KERN_ERR, "Failed to read lower tohm\n"); 314 goto fail; 315 } 316 skx_tohm = reg; 317 318 if (pci_read_config_dword(pdev, off[2], ®)) { 319 skx_printk(KERN_ERR, "Failed to read upper tohm\n"); 320 goto fail; 321 } 322 skx_tohm |= (u64)reg << 32; 323 324 pci_dev_put(pdev); 325 *tolm = skx_tolm; 326 *tohm = skx_tohm; 327 edac_dbg(2, "tolm = 0x%llx tohm = 0x%llx\n", skx_tolm, skx_tohm); 328 return 0; 329 fail: 330 pci_dev_put(pdev); 331 return -ENODEV; 332 } 333 EXPORT_SYMBOL_GPL(skx_get_hi_lo); 334 335 static int skx_get_dimm_attr(u32 reg, int lobit, int hibit, int add, 336 int minval, int maxval, const char *name) 337 { 338 u32 val = GET_BITFIELD(reg, lobit, hibit); 339 340 if (val < minval || val > maxval) { 341 edac_dbg(2, "bad %s = %d (raw=0x%x)\n", name, val, reg); 342 return -EINVAL; 343 } 344 return val + add; 345 } 346 347 #define numrank(reg) skx_get_dimm_attr(reg, 12, 13, 0, 0, 2, "ranks") 348 #define numrow(reg) skx_get_dimm_attr(reg, 2, 4, 12, 1, 6, "rows") 349 #define numcol(reg) skx_get_dimm_attr(reg, 0, 1, 10, 0, 2, "cols") 350 351 int skx_get_dimm_info(u32 mtr, u32 mcmtr, u32 amap, struct dimm_info *dimm, 352 struct skx_imc *imc, int chan, int dimmno, 353 struct res_config *cfg) 354 { 355 int banks, ranks, rows, cols, npages; 356 enum mem_type mtype; 357 u64 size; 358 359 ranks = numrank(mtr); 360 rows = numrow(mtr); 361 cols = imc->hbm_mc ? 6 : numcol(mtr); 362 363 if (imc->hbm_mc) { 364 banks = 32; 365 mtype = MEM_HBM2; 366 } else if (cfg->support_ddr5 && (amap & 0x8)) { 367 banks = 32; 368 mtype = MEM_DDR5; 369 } else { 370 banks = 16; 371 mtype = MEM_DDR4; 372 } 373 374 /* 375 * Compute size in 8-byte (2^3) words, then shift to MiB (2^20) 376 */ 377 size = ((1ull << (rows + cols + ranks)) * banks) >> (20 - 3); 378 npages = MiB_TO_PAGES(size); 379 380 edac_dbg(0, "mc#%d: channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: 0x%x, col: 0x%x\n", 381 imc->mc, chan, dimmno, size, npages, 382 banks, 1 << ranks, rows, cols); 383 384 imc->chan[chan].dimms[dimmno].close_pg = GET_BITFIELD(mcmtr, 0, 0); 385 imc->chan[chan].dimms[dimmno].bank_xor_enable = GET_BITFIELD(mcmtr, 9, 9); 386 imc->chan[chan].dimms[dimmno].fine_grain_bank = GET_BITFIELD(amap, 0, 0); 387 imc->chan[chan].dimms[dimmno].rowbits = rows; 388 imc->chan[chan].dimms[dimmno].colbits = cols; 389 390 dimm->nr_pages = npages; 391 dimm->grain = 32; 392 dimm->dtype = get_width(mtr); 393 dimm->mtype = mtype; 394 dimm->edac_mode = EDAC_SECDED; /* likely better than this */ 395 396 if (imc->hbm_mc) 397 snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_HBMC#%u_Chan#%u", 398 imc->src_id, imc->lmc, chan); 399 else 400 snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u", 401 imc->src_id, imc->lmc, chan, dimmno); 402 403 return 1; 404 } 405 EXPORT_SYMBOL_GPL(skx_get_dimm_info); 406 407 int skx_get_nvdimm_info(struct dimm_info *dimm, struct skx_imc *imc, 408 int chan, int dimmno, const char *mod_str) 409 { 410 int smbios_handle; 411 u32 dev_handle; 412 u16 flags; 413 u64 size = 0; 414 415 dev_handle = ACPI_NFIT_BUILD_DEVICE_HANDLE(dimmno, chan, imc->lmc, 416 imc->src_id, 0); 417 418 smbios_handle = nfit_get_smbios_id(dev_handle, &flags); 419 if (smbios_handle == -EOPNOTSUPP) { 420 pr_warn_once("%s: Can't find size of NVDIMM. Try enabling CONFIG_ACPI_NFIT\n", mod_str); 421 goto unknown_size; 422 } 423 424 if (smbios_handle < 0) { 425 skx_printk(KERN_ERR, "Can't find handle for NVDIMM ADR=0x%x\n", dev_handle); 426 goto unknown_size; 427 } 428 429 if (flags & ACPI_NFIT_MEM_MAP_FAILED) { 430 skx_printk(KERN_ERR, "NVDIMM ADR=0x%x is not mapped\n", dev_handle); 431 goto unknown_size; 432 } 433 434 size = dmi_memdev_size(smbios_handle); 435 if (size == ~0ull) 436 skx_printk(KERN_ERR, "Can't find size for NVDIMM ADR=0x%x/SMBIOS=0x%x\n", 437 dev_handle, smbios_handle); 438 439 unknown_size: 440 dimm->nr_pages = size >> PAGE_SHIFT; 441 dimm->grain = 32; 442 dimm->dtype = DEV_UNKNOWN; 443 dimm->mtype = MEM_NVDIMM; 444 dimm->edac_mode = EDAC_SECDED; /* likely better than this */ 445 446 edac_dbg(0, "mc#%d: channel %d, dimm %d, %llu MiB (%u pages)\n", 447 imc->mc, chan, dimmno, size >> 20, dimm->nr_pages); 448 449 snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u", 450 imc->src_id, imc->lmc, chan, dimmno); 451 452 return (size == 0 || size == ~0ull) ? 0 : 1; 453 } 454 EXPORT_SYMBOL_GPL(skx_get_nvdimm_info); 455 456 int skx_register_mci(struct skx_imc *imc, struct pci_dev *pdev, 457 const char *ctl_name, const char *mod_str, 458 get_dimm_config_f get_dimm_config, 459 struct res_config *cfg) 460 { 461 struct mem_ctl_info *mci; 462 struct edac_mc_layer layers[2]; 463 struct skx_pvt *pvt; 464 int rc; 465 466 /* Allocate a new MC control structure */ 467 layers[0].type = EDAC_MC_LAYER_CHANNEL; 468 layers[0].size = NUM_CHANNELS; 469 layers[0].is_virt_csrow = false; 470 layers[1].type = EDAC_MC_LAYER_SLOT; 471 layers[1].size = NUM_DIMMS; 472 layers[1].is_virt_csrow = true; 473 mci = edac_mc_alloc(imc->mc, ARRAY_SIZE(layers), layers, 474 sizeof(struct skx_pvt)); 475 476 if (unlikely(!mci)) 477 return -ENOMEM; 478 479 edac_dbg(0, "MC#%d: mci = %p\n", imc->mc, mci); 480 481 /* Associate skx_dev and mci for future usage */ 482 imc->mci = mci; 483 pvt = mci->pvt_info; 484 pvt->imc = imc; 485 486 mci->ctl_name = kasprintf(GFP_KERNEL, "%s#%d IMC#%d", ctl_name, 487 imc->node_id, imc->lmc); 488 if (!mci->ctl_name) { 489 rc = -ENOMEM; 490 goto fail0; 491 } 492 493 mci->mtype_cap = MEM_FLAG_DDR4 | MEM_FLAG_NVDIMM; 494 if (cfg->support_ddr5) 495 mci->mtype_cap |= MEM_FLAG_DDR5; 496 mci->edac_ctl_cap = EDAC_FLAG_NONE; 497 mci->edac_cap = EDAC_FLAG_NONE; 498 mci->mod_name = mod_str; 499 mci->dev_name = pci_name(pdev); 500 mci->ctl_page_to_phys = NULL; 501 502 rc = get_dimm_config(mci, cfg); 503 if (rc < 0) 504 goto fail; 505 506 /* Record ptr to the generic device */ 507 mci->pdev = &pdev->dev; 508 509 /* Add this new MC control structure to EDAC's list of MCs */ 510 if (unlikely(edac_mc_add_mc(mci))) { 511 edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); 512 rc = -EINVAL; 513 goto fail; 514 } 515 516 return 0; 517 518 fail: 519 kfree(mci->ctl_name); 520 fail0: 521 edac_mc_free(mci); 522 imc->mci = NULL; 523 return rc; 524 } 525 EXPORT_SYMBOL_GPL(skx_register_mci); 526 527 static void skx_unregister_mci(struct skx_imc *imc) 528 { 529 struct mem_ctl_info *mci = imc->mci; 530 531 if (!mci) 532 return; 533 534 edac_dbg(0, "MC%d: mci = %p\n", imc->mc, mci); 535 536 /* Remove MC sysfs nodes */ 537 edac_mc_del_mc(mci->pdev); 538 539 edac_dbg(1, "%s: free mci struct\n", mci->ctl_name); 540 kfree(mci->ctl_name); 541 edac_mc_free(mci); 542 } 543 544 static void skx_mce_output_error(struct mem_ctl_info *mci, 545 const struct mce *m, 546 struct decoded_addr *res) 547 { 548 enum hw_event_mc_err_type tp_event; 549 char *optype; 550 bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0); 551 bool overflow = GET_BITFIELD(m->status, 62, 62); 552 bool uncorrected_error = GET_BITFIELD(m->status, 61, 61); 553 bool scrub_err = false; 554 bool recoverable; 555 int len; 556 u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52); 557 u32 mscod = GET_BITFIELD(m->status, 16, 31); 558 u32 errcode = GET_BITFIELD(m->status, 0, 15); 559 u32 optypenum = GET_BITFIELD(m->status, 4, 6); 560 561 recoverable = GET_BITFIELD(m->status, 56, 56); 562 563 if (uncorrected_error) { 564 core_err_cnt = 1; 565 if (ripv) { 566 tp_event = HW_EVENT_ERR_UNCORRECTED; 567 } else { 568 tp_event = HW_EVENT_ERR_FATAL; 569 } 570 } else { 571 tp_event = HW_EVENT_ERR_CORRECTED; 572 } 573 574 switch (optypenum) { 575 case 0: 576 optype = "generic undef request error"; 577 break; 578 case 1: 579 optype = "memory read error"; 580 break; 581 case 2: 582 optype = "memory write error"; 583 break; 584 case 3: 585 optype = "addr/cmd error"; 586 break; 587 case 4: 588 optype = "memory scrubbing error"; 589 scrub_err = true; 590 break; 591 default: 592 optype = "reserved"; 593 break; 594 } 595 596 if (res->decoded_by_adxl) { 597 len = snprintf(skx_msg, MSG_SIZE, "%s%s err_code:0x%04x:0x%04x %s", 598 overflow ? " OVERFLOW" : "", 599 (uncorrected_error && recoverable) ? " recoverable" : "", 600 mscod, errcode, adxl_msg); 601 } else { 602 len = snprintf(skx_msg, MSG_SIZE, 603 "%s%s err_code:0x%04x:0x%04x ProcessorSocketId:0x%x MemoryControllerId:0x%x PhysicalRankId:0x%x Row:0x%x Column:0x%x Bank:0x%x BankGroup:0x%x", 604 overflow ? " OVERFLOW" : "", 605 (uncorrected_error && recoverable) ? " recoverable" : "", 606 mscod, errcode, 607 res->socket, res->imc, res->rank, 608 res->row, res->column, res->bank_address, res->bank_group); 609 } 610 611 if (skx_show_retry_rd_err_log) 612 skx_show_retry_rd_err_log(res, skx_msg + len, MSG_SIZE - len, scrub_err); 613 614 edac_dbg(0, "%s\n", skx_msg); 615 616 /* Call the helper to output message */ 617 edac_mc_handle_error(tp_event, mci, core_err_cnt, 618 m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0, 619 res->channel, res->dimm, -1, 620 optype, skx_msg); 621 } 622 623 static bool skx_error_in_1st_level_mem(const struct mce *m) 624 { 625 u32 errcode; 626 627 if (!skx_mem_cfg_2lm) 628 return false; 629 630 errcode = GET_BITFIELD(m->status, 0, 15) & MCACOD_MEM_ERR_MASK; 631 632 return errcode == MCACOD_EXT_MEM_ERR; 633 } 634 635 static bool skx_error_in_mem(const struct mce *m) 636 { 637 u32 errcode; 638 639 errcode = GET_BITFIELD(m->status, 0, 15) & MCACOD_MEM_ERR_MASK; 640 641 return (errcode == MCACOD_MEM_CTL_ERR || errcode == MCACOD_EXT_MEM_ERR); 642 } 643 644 int skx_mce_check_error(struct notifier_block *nb, unsigned long val, 645 void *data) 646 { 647 struct mce *mce = (struct mce *)data; 648 struct decoded_addr res; 649 struct mem_ctl_info *mci; 650 char *type; 651 652 if (mce->kflags & MCE_HANDLED_CEC) 653 return NOTIFY_DONE; 654 655 /* Ignore unless this is memory related with an address */ 656 if (!skx_error_in_mem(mce) || !(mce->status & MCI_STATUS_ADDRV)) 657 return NOTIFY_DONE; 658 659 memset(&res, 0, sizeof(res)); 660 res.mce = mce; 661 res.addr = mce->addr & MCI_ADDR_PHYSADDR; 662 if (!pfn_to_online_page(res.addr >> PAGE_SHIFT) && !arch_is_platform_page(res.addr)) { 663 pr_err("Invalid address 0x%llx in IA32_MC%d_ADDR\n", mce->addr, mce->bank); 664 return NOTIFY_DONE; 665 } 666 667 /* Try driver decoder first */ 668 if (!(driver_decode && driver_decode(&res))) { 669 /* Then try firmware decoder (ACPI DSM methods) */ 670 if (!(adxl_component_count && skx_adxl_decode(&res, skx_error_in_1st_level_mem(mce)))) 671 return NOTIFY_DONE; 672 } 673 674 mci = res.dev->imc[res.imc].mci; 675 676 if (!mci) 677 return NOTIFY_DONE; 678 679 if (mce->mcgstatus & MCG_STATUS_MCIP) 680 type = "Exception"; 681 else 682 type = "Event"; 683 684 skx_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n"); 685 686 skx_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: 0x%llx " 687 "Bank %d: 0x%llx\n", mce->extcpu, type, 688 mce->mcgstatus, mce->bank, mce->status); 689 skx_mc_printk(mci, KERN_DEBUG, "TSC 0x%llx ", mce->tsc); 690 skx_mc_printk(mci, KERN_DEBUG, "ADDR 0x%llx ", mce->addr); 691 skx_mc_printk(mci, KERN_DEBUG, "MISC 0x%llx ", mce->misc); 692 693 skx_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:0x%x TIME %llu SOCKET " 694 "%u APIC 0x%x\n", mce->cpuvendor, mce->cpuid, 695 mce->time, mce->socketid, mce->apicid); 696 697 skx_mce_output_error(mci, mce, &res); 698 699 mce->kflags |= MCE_HANDLED_EDAC; 700 return NOTIFY_DONE; 701 } 702 EXPORT_SYMBOL_GPL(skx_mce_check_error); 703 704 void skx_remove(void) 705 { 706 int i, j; 707 struct skx_dev *d, *tmp; 708 709 edac_dbg(0, "\n"); 710 711 list_for_each_entry_safe(d, tmp, &dev_edac_list, list) { 712 list_del(&d->list); 713 for (i = 0; i < NUM_IMC; i++) { 714 if (d->imc[i].mci) 715 skx_unregister_mci(&d->imc[i]); 716 717 if (d->imc[i].mdev) 718 pci_dev_put(d->imc[i].mdev); 719 720 if (d->imc[i].mbase) 721 iounmap(d->imc[i].mbase); 722 723 for (j = 0; j < NUM_CHANNELS; j++) { 724 if (d->imc[i].chan[j].cdev) 725 pci_dev_put(d->imc[i].chan[j].cdev); 726 } 727 } 728 if (d->util_all) 729 pci_dev_put(d->util_all); 730 if (d->pcu_cr3) 731 pci_dev_put(d->pcu_cr3); 732 if (d->sad_all) 733 pci_dev_put(d->sad_all); 734 if (d->uracu) 735 pci_dev_put(d->uracu); 736 737 kfree(d); 738 } 739 } 740 EXPORT_SYMBOL_GPL(skx_remove); 741 742 #ifdef CONFIG_EDAC_DEBUG 743 /* 744 * Debug feature. 745 * Exercise the address decode logic by writing an address to 746 * /sys/kernel/debug/edac/{skx,i10nm}_test/addr. 747 */ 748 static struct dentry *skx_test; 749 750 static int debugfs_u64_set(void *data, u64 val) 751 { 752 struct mce m; 753 754 pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val); 755 756 memset(&m, 0, sizeof(m)); 757 /* ADDRV + MemRd + Unknown channel */ 758 m.status = MCI_STATUS_ADDRV + 0x90; 759 /* One corrected error */ 760 m.status |= BIT_ULL(MCI_STATUS_CEC_SHIFT); 761 m.addr = val; 762 skx_mce_check_error(NULL, 0, &m); 763 764 return 0; 765 } 766 DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n"); 767 768 void skx_setup_debug(const char *name) 769 { 770 skx_test = edac_debugfs_create_dir(name); 771 if (!skx_test) 772 return; 773 774 if (!edac_debugfs_create_file("addr", 0200, skx_test, 775 NULL, &fops_u64_wo)) { 776 debugfs_remove(skx_test); 777 skx_test = NULL; 778 } 779 } 780 EXPORT_SYMBOL_GPL(skx_setup_debug); 781 782 void skx_teardown_debug(void) 783 { 784 debugfs_remove_recursive(skx_test); 785 } 786 EXPORT_SYMBOL_GPL(skx_teardown_debug); 787 #endif /*CONFIG_EDAC_DEBUG*/ 788 789 MODULE_LICENSE("GPL v2"); 790 MODULE_AUTHOR("Tony Luck"); 791 MODULE_DESCRIPTION("MC Driver for Intel server processors"); 792