xref: /linux/drivers/edac/skx_common.c (revision 4cf1bc1f10452065a29d576fc5693fc4fab5b919)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *
4  * Shared code by both skx_edac and i10nm_edac. Originally split out
5  * from the skx_edac driver.
6  *
7  * This file is linked into both skx_edac and i10nm_edac drivers. In
8  * order to avoid link errors, this file must be like a pure library
9  * without including symbols and defines which would otherwise conflict,
10  * when linked once into a module and into a built-in object, at the
11  * same time. For example, __this_module symbol references when that
12  * file is being linked into a built-in object.
13  *
14  * Copyright (c) 2018, Intel Corporation.
15  */
16 
17 #include <linux/acpi.h>
18 #include <linux/dmi.h>
19 #include <linux/adxl.h>
20 #include <acpi/nfit.h>
21 #include <asm/mce.h>
22 #include "edac_module.h"
23 #include "skx_common.h"
24 
25 static const char * const component_names[] = {
26 	[INDEX_SOCKET]	= "ProcessorSocketId",
27 	[INDEX_MEMCTRL]	= "MemoryControllerId",
28 	[INDEX_CHANNEL]	= "ChannelId",
29 	[INDEX_DIMM]	= "DimmSlotId",
30 };
31 
32 static int component_indices[ARRAY_SIZE(component_names)];
33 static int adxl_component_count;
34 static const char * const *adxl_component_names;
35 static u64 *adxl_values;
36 static char *adxl_msg;
37 
38 static char skx_msg[MSG_SIZE];
39 static skx_decode_f skx_decode;
40 static skx_show_retry_log_f skx_show_retry_rd_err_log;
41 static u64 skx_tolm, skx_tohm;
42 static LIST_HEAD(dev_edac_list);
43 
44 int __init skx_adxl_get(void)
45 {
46 	const char * const *names;
47 	int i, j;
48 
49 	names = adxl_get_component_names();
50 	if (!names) {
51 		skx_printk(KERN_NOTICE, "No firmware support for address translation.\n");
52 		return -ENODEV;
53 	}
54 
55 	for (i = 0; i < INDEX_MAX; i++) {
56 		for (j = 0; names[j]; j++) {
57 			if (!strcmp(component_names[i], names[j])) {
58 				component_indices[i] = j;
59 				break;
60 			}
61 		}
62 
63 		if (!names[j])
64 			goto err;
65 	}
66 
67 	adxl_component_names = names;
68 	while (*names++)
69 		adxl_component_count++;
70 
71 	adxl_values = kcalloc(adxl_component_count, sizeof(*adxl_values),
72 			      GFP_KERNEL);
73 	if (!adxl_values) {
74 		adxl_component_count = 0;
75 		return -ENOMEM;
76 	}
77 
78 	adxl_msg = kzalloc(MSG_SIZE, GFP_KERNEL);
79 	if (!adxl_msg) {
80 		adxl_component_count = 0;
81 		kfree(adxl_values);
82 		return -ENOMEM;
83 	}
84 
85 	return 0;
86 err:
87 	skx_printk(KERN_ERR, "'%s' is not matched from DSM parameters: ",
88 		   component_names[i]);
89 	for (j = 0; names[j]; j++)
90 		skx_printk(KERN_CONT, "%s ", names[j]);
91 	skx_printk(KERN_CONT, "\n");
92 
93 	return -ENODEV;
94 }
95 
96 void __exit skx_adxl_put(void)
97 {
98 	kfree(adxl_values);
99 	kfree(adxl_msg);
100 }
101 
102 static bool skx_adxl_decode(struct decoded_addr *res)
103 {
104 	struct skx_dev *d;
105 	int i, len = 0;
106 
107 	if (res->addr >= skx_tohm || (res->addr >= skx_tolm &&
108 				      res->addr < BIT_ULL(32))) {
109 		edac_dbg(0, "Address 0x%llx out of range\n", res->addr);
110 		return false;
111 	}
112 
113 	if (adxl_decode(res->addr, adxl_values)) {
114 		edac_dbg(0, "Failed to decode 0x%llx\n", res->addr);
115 		return false;
116 	}
117 
118 	res->socket  = (int)adxl_values[component_indices[INDEX_SOCKET]];
119 	res->imc     = (int)adxl_values[component_indices[INDEX_MEMCTRL]];
120 	res->channel = (int)adxl_values[component_indices[INDEX_CHANNEL]];
121 	res->dimm    = (int)adxl_values[component_indices[INDEX_DIMM]];
122 
123 	if (res->imc > NUM_IMC - 1) {
124 		skx_printk(KERN_ERR, "Bad imc %d\n", res->imc);
125 		return false;
126 	}
127 
128 	list_for_each_entry(d, &dev_edac_list, list) {
129 		if (d->imc[0].src_id == res->socket) {
130 			res->dev = d;
131 			break;
132 		}
133 	}
134 
135 	if (!res->dev) {
136 		skx_printk(KERN_ERR, "No device for src_id %d imc %d\n",
137 			   res->socket, res->imc);
138 		return false;
139 	}
140 
141 	for (i = 0; i < adxl_component_count; i++) {
142 		if (adxl_values[i] == ~0x0ull)
143 			continue;
144 
145 		len += snprintf(adxl_msg + len, MSG_SIZE - len, " %s:0x%llx",
146 				adxl_component_names[i], adxl_values[i]);
147 		if (MSG_SIZE - len <= 0)
148 			break;
149 	}
150 
151 	return true;
152 }
153 
154 void skx_set_decode(skx_decode_f decode, skx_show_retry_log_f show_retry_log)
155 {
156 	skx_decode = decode;
157 	skx_show_retry_rd_err_log = show_retry_log;
158 }
159 
160 int skx_get_src_id(struct skx_dev *d, int off, u8 *id)
161 {
162 	u32 reg;
163 
164 	if (pci_read_config_dword(d->util_all, off, &reg)) {
165 		skx_printk(KERN_ERR, "Failed to read src id\n");
166 		return -ENODEV;
167 	}
168 
169 	*id = GET_BITFIELD(reg, 12, 14);
170 	return 0;
171 }
172 
173 int skx_get_node_id(struct skx_dev *d, u8 *id)
174 {
175 	u32 reg;
176 
177 	if (pci_read_config_dword(d->util_all, 0xf4, &reg)) {
178 		skx_printk(KERN_ERR, "Failed to read node id\n");
179 		return -ENODEV;
180 	}
181 
182 	*id = GET_BITFIELD(reg, 0, 2);
183 	return 0;
184 }
185 
186 static int get_width(u32 mtr)
187 {
188 	switch (GET_BITFIELD(mtr, 8, 9)) {
189 	case 0:
190 		return DEV_X4;
191 	case 1:
192 		return DEV_X8;
193 	case 2:
194 		return DEV_X16;
195 	}
196 	return DEV_UNKNOWN;
197 }
198 
199 /*
200  * We use the per-socket device @cfg->did to count how many sockets are present,
201  * and to detemine which PCI buses are associated with each socket. Allocate
202  * and build the full list of all the skx_dev structures that we need here.
203  */
204 int skx_get_all_bus_mappings(struct res_config *cfg, struct list_head **list)
205 {
206 	struct pci_dev *pdev, *prev;
207 	struct skx_dev *d;
208 	u32 reg;
209 	int ndev = 0;
210 
211 	prev = NULL;
212 	for (;;) {
213 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, cfg->decs_did, prev);
214 		if (!pdev)
215 			break;
216 		ndev++;
217 		d = kzalloc(sizeof(*d), GFP_KERNEL);
218 		if (!d) {
219 			pci_dev_put(pdev);
220 			return -ENOMEM;
221 		}
222 
223 		if (pci_read_config_dword(pdev, cfg->busno_cfg_offset, &reg)) {
224 			kfree(d);
225 			pci_dev_put(pdev);
226 			skx_printk(KERN_ERR, "Failed to read bus idx\n");
227 			return -ENODEV;
228 		}
229 
230 		d->bus[0] = GET_BITFIELD(reg, 0, 7);
231 		d->bus[1] = GET_BITFIELD(reg, 8, 15);
232 		if (cfg->type == SKX) {
233 			d->seg = pci_domain_nr(pdev->bus);
234 			d->bus[2] = GET_BITFIELD(reg, 16, 23);
235 			d->bus[3] = GET_BITFIELD(reg, 24, 31);
236 		} else {
237 			d->seg = GET_BITFIELD(reg, 16, 23);
238 		}
239 
240 		edac_dbg(2, "busses: 0x%x, 0x%x, 0x%x, 0x%x\n",
241 			 d->bus[0], d->bus[1], d->bus[2], d->bus[3]);
242 		list_add_tail(&d->list, &dev_edac_list);
243 		prev = pdev;
244 	}
245 
246 	if (list)
247 		*list = &dev_edac_list;
248 	return ndev;
249 }
250 
251 int skx_get_hi_lo(unsigned int did, int off[], u64 *tolm, u64 *tohm)
252 {
253 	struct pci_dev *pdev;
254 	u32 reg;
255 
256 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, did, NULL);
257 	if (!pdev) {
258 		edac_dbg(2, "Can't get tolm/tohm\n");
259 		return -ENODEV;
260 	}
261 
262 	if (pci_read_config_dword(pdev, off[0], &reg)) {
263 		skx_printk(KERN_ERR, "Failed to read tolm\n");
264 		goto fail;
265 	}
266 	skx_tolm = reg;
267 
268 	if (pci_read_config_dword(pdev, off[1], &reg)) {
269 		skx_printk(KERN_ERR, "Failed to read lower tohm\n");
270 		goto fail;
271 	}
272 	skx_tohm = reg;
273 
274 	if (pci_read_config_dword(pdev, off[2], &reg)) {
275 		skx_printk(KERN_ERR, "Failed to read upper tohm\n");
276 		goto fail;
277 	}
278 	skx_tohm |= (u64)reg << 32;
279 
280 	pci_dev_put(pdev);
281 	*tolm = skx_tolm;
282 	*tohm = skx_tohm;
283 	edac_dbg(2, "tolm = 0x%llx tohm = 0x%llx\n", skx_tolm, skx_tohm);
284 	return 0;
285 fail:
286 	pci_dev_put(pdev);
287 	return -ENODEV;
288 }
289 
290 static int skx_get_dimm_attr(u32 reg, int lobit, int hibit, int add,
291 			     int minval, int maxval, const char *name)
292 {
293 	u32 val = GET_BITFIELD(reg, lobit, hibit);
294 
295 	if (val < minval || val > maxval) {
296 		edac_dbg(2, "bad %s = %d (raw=0x%x)\n", name, val, reg);
297 		return -EINVAL;
298 	}
299 	return val + add;
300 }
301 
302 #define numrank(reg)	skx_get_dimm_attr(reg, 12, 13, 0, 0, 2, "ranks")
303 #define numrow(reg)	skx_get_dimm_attr(reg, 2, 4, 12, 1, 6, "rows")
304 #define numcol(reg)	skx_get_dimm_attr(reg, 0, 1, 10, 0, 2, "cols")
305 
306 int skx_get_dimm_info(u32 mtr, u32 mcmtr, u32 amap, struct dimm_info *dimm,
307 		      struct skx_imc *imc, int chan, int dimmno)
308 {
309 	int  banks = 16, ranks, rows, cols, npages;
310 	u64 size;
311 
312 	ranks = numrank(mtr);
313 	rows = numrow(mtr);
314 	cols = numcol(mtr);
315 
316 	/*
317 	 * Compute size in 8-byte (2^3) words, then shift to MiB (2^20)
318 	 */
319 	size = ((1ull << (rows + cols + ranks)) * banks) >> (20 - 3);
320 	npages = MiB_TO_PAGES(size);
321 
322 	edac_dbg(0, "mc#%d: channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: 0x%x, col: 0x%x\n",
323 		 imc->mc, chan, dimmno, size, npages,
324 		 banks, 1 << ranks, rows, cols);
325 
326 	imc->chan[chan].dimms[dimmno].close_pg = GET_BITFIELD(mcmtr, 0, 0);
327 	imc->chan[chan].dimms[dimmno].bank_xor_enable = GET_BITFIELD(mcmtr, 9, 9);
328 	imc->chan[chan].dimms[dimmno].fine_grain_bank = GET_BITFIELD(amap, 0, 0);
329 	imc->chan[chan].dimms[dimmno].rowbits = rows;
330 	imc->chan[chan].dimms[dimmno].colbits = cols;
331 
332 	dimm->nr_pages = npages;
333 	dimm->grain = 32;
334 	dimm->dtype = get_width(mtr);
335 	dimm->mtype = MEM_DDR4;
336 	dimm->edac_mode = EDAC_SECDED; /* likely better than this */
337 	snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
338 		 imc->src_id, imc->lmc, chan, dimmno);
339 
340 	return 1;
341 }
342 
343 int skx_get_nvdimm_info(struct dimm_info *dimm, struct skx_imc *imc,
344 			int chan, int dimmno, const char *mod_str)
345 {
346 	int smbios_handle;
347 	u32 dev_handle;
348 	u16 flags;
349 	u64 size = 0;
350 
351 	dev_handle = ACPI_NFIT_BUILD_DEVICE_HANDLE(dimmno, chan, imc->lmc,
352 						   imc->src_id, 0);
353 
354 	smbios_handle = nfit_get_smbios_id(dev_handle, &flags);
355 	if (smbios_handle == -EOPNOTSUPP) {
356 		pr_warn_once("%s: Can't find size of NVDIMM. Try enabling CONFIG_ACPI_NFIT\n", mod_str);
357 		goto unknown_size;
358 	}
359 
360 	if (smbios_handle < 0) {
361 		skx_printk(KERN_ERR, "Can't find handle for NVDIMM ADR=0x%x\n", dev_handle);
362 		goto unknown_size;
363 	}
364 
365 	if (flags & ACPI_NFIT_MEM_MAP_FAILED) {
366 		skx_printk(KERN_ERR, "NVDIMM ADR=0x%x is not mapped\n", dev_handle);
367 		goto unknown_size;
368 	}
369 
370 	size = dmi_memdev_size(smbios_handle);
371 	if (size == ~0ull)
372 		skx_printk(KERN_ERR, "Can't find size for NVDIMM ADR=0x%x/SMBIOS=0x%x\n",
373 			   dev_handle, smbios_handle);
374 
375 unknown_size:
376 	dimm->nr_pages = size >> PAGE_SHIFT;
377 	dimm->grain = 32;
378 	dimm->dtype = DEV_UNKNOWN;
379 	dimm->mtype = MEM_NVDIMM;
380 	dimm->edac_mode = EDAC_SECDED; /* likely better than this */
381 
382 	edac_dbg(0, "mc#%d: channel %d, dimm %d, %llu MiB (%u pages)\n",
383 		 imc->mc, chan, dimmno, size >> 20, dimm->nr_pages);
384 
385 	snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
386 		 imc->src_id, imc->lmc, chan, dimmno);
387 
388 	return (size == 0 || size == ~0ull) ? 0 : 1;
389 }
390 
391 int skx_register_mci(struct skx_imc *imc, struct pci_dev *pdev,
392 		     const char *ctl_name, const char *mod_str,
393 		     get_dimm_config_f get_dimm_config)
394 {
395 	struct mem_ctl_info *mci;
396 	struct edac_mc_layer layers[2];
397 	struct skx_pvt *pvt;
398 	int rc;
399 
400 	/* Allocate a new MC control structure */
401 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
402 	layers[0].size = NUM_CHANNELS;
403 	layers[0].is_virt_csrow = false;
404 	layers[1].type = EDAC_MC_LAYER_SLOT;
405 	layers[1].size = NUM_DIMMS;
406 	layers[1].is_virt_csrow = true;
407 	mci = edac_mc_alloc(imc->mc, ARRAY_SIZE(layers), layers,
408 			    sizeof(struct skx_pvt));
409 
410 	if (unlikely(!mci))
411 		return -ENOMEM;
412 
413 	edac_dbg(0, "MC#%d: mci = %p\n", imc->mc, mci);
414 
415 	/* Associate skx_dev and mci for future usage */
416 	imc->mci = mci;
417 	pvt = mci->pvt_info;
418 	pvt->imc = imc;
419 
420 	mci->ctl_name = kasprintf(GFP_KERNEL, "%s#%d IMC#%d", ctl_name,
421 				  imc->node_id, imc->lmc);
422 	if (!mci->ctl_name) {
423 		rc = -ENOMEM;
424 		goto fail0;
425 	}
426 
427 	mci->mtype_cap = MEM_FLAG_DDR4 | MEM_FLAG_NVDIMM;
428 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
429 	mci->edac_cap = EDAC_FLAG_NONE;
430 	mci->mod_name = mod_str;
431 	mci->dev_name = pci_name(pdev);
432 	mci->ctl_page_to_phys = NULL;
433 
434 	rc = get_dimm_config(mci);
435 	if (rc < 0)
436 		goto fail;
437 
438 	/* Record ptr to the generic device */
439 	mci->pdev = &pdev->dev;
440 
441 	/* Add this new MC control structure to EDAC's list of MCs */
442 	if (unlikely(edac_mc_add_mc(mci))) {
443 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
444 		rc = -EINVAL;
445 		goto fail;
446 	}
447 
448 	return 0;
449 
450 fail:
451 	kfree(mci->ctl_name);
452 fail0:
453 	edac_mc_free(mci);
454 	imc->mci = NULL;
455 	return rc;
456 }
457 
458 static void skx_unregister_mci(struct skx_imc *imc)
459 {
460 	struct mem_ctl_info *mci = imc->mci;
461 
462 	if (!mci)
463 		return;
464 
465 	edac_dbg(0, "MC%d: mci = %p\n", imc->mc, mci);
466 
467 	/* Remove MC sysfs nodes */
468 	edac_mc_del_mc(mci->pdev);
469 
470 	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
471 	kfree(mci->ctl_name);
472 	edac_mc_free(mci);
473 }
474 
475 static void skx_mce_output_error(struct mem_ctl_info *mci,
476 				 const struct mce *m,
477 				 struct decoded_addr *res)
478 {
479 	enum hw_event_mc_err_type tp_event;
480 	char *optype;
481 	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
482 	bool overflow = GET_BITFIELD(m->status, 62, 62);
483 	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
484 	bool recoverable;
485 	int len;
486 	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
487 	u32 mscod = GET_BITFIELD(m->status, 16, 31);
488 	u32 errcode = GET_BITFIELD(m->status, 0, 15);
489 	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
490 
491 	recoverable = GET_BITFIELD(m->status, 56, 56);
492 
493 	if (uncorrected_error) {
494 		core_err_cnt = 1;
495 		if (ripv) {
496 			tp_event = HW_EVENT_ERR_UNCORRECTED;
497 		} else {
498 			tp_event = HW_EVENT_ERR_FATAL;
499 		}
500 	} else {
501 		tp_event = HW_EVENT_ERR_CORRECTED;
502 	}
503 
504 	/*
505 	 * According to Intel Architecture spec vol 3B,
506 	 * Table 15-10 "IA32_MCi_Status [15:0] Compound Error Code Encoding"
507 	 * memory errors should fit one of these masks:
508 	 *	000f 0000 1mmm cccc (binary)
509 	 *	000f 0010 1mmm cccc (binary)	[RAM used as cache]
510 	 * where:
511 	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
512 	 *	    won't be shown
513 	 *	mmm = error type
514 	 *	cccc = channel
515 	 * If the mask doesn't match, report an error to the parsing logic
516 	 */
517 	if (!((errcode & 0xef80) == 0x80 || (errcode & 0xef80) == 0x280)) {
518 		optype = "Can't parse: it is not a mem";
519 	} else {
520 		switch (optypenum) {
521 		case 0:
522 			optype = "generic undef request error";
523 			break;
524 		case 1:
525 			optype = "memory read error";
526 			break;
527 		case 2:
528 			optype = "memory write error";
529 			break;
530 		case 3:
531 			optype = "addr/cmd error";
532 			break;
533 		case 4:
534 			optype = "memory scrubbing error";
535 			break;
536 		default:
537 			optype = "reserved";
538 			break;
539 		}
540 	}
541 	if (adxl_component_count) {
542 		len = snprintf(skx_msg, MSG_SIZE, "%s%s err_code:0x%04x:0x%04x %s",
543 			 overflow ? " OVERFLOW" : "",
544 			 (uncorrected_error && recoverable) ? " recoverable" : "",
545 			 mscod, errcode, adxl_msg);
546 	} else {
547 		len = snprintf(skx_msg, MSG_SIZE,
548 			 "%s%s err_code:0x%04x:0x%04x socket:%d imc:%d rank:%d bg:%d ba:%d row:0x%x col:0x%x",
549 			 overflow ? " OVERFLOW" : "",
550 			 (uncorrected_error && recoverable) ? " recoverable" : "",
551 			 mscod, errcode,
552 			 res->socket, res->imc, res->rank,
553 			 res->bank_group, res->bank_address, res->row, res->column);
554 	}
555 
556 	if (skx_show_retry_rd_err_log)
557 		skx_show_retry_rd_err_log(res, skx_msg + len, MSG_SIZE - len);
558 
559 	edac_dbg(0, "%s\n", skx_msg);
560 
561 	/* Call the helper to output message */
562 	edac_mc_handle_error(tp_event, mci, core_err_cnt,
563 			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
564 			     res->channel, res->dimm, -1,
565 			     optype, skx_msg);
566 }
567 
568 int skx_mce_check_error(struct notifier_block *nb, unsigned long val,
569 			void *data)
570 {
571 	struct mce *mce = (struct mce *)data;
572 	struct decoded_addr res;
573 	struct mem_ctl_info *mci;
574 	char *type;
575 
576 	if (mce->kflags & MCE_HANDLED_CEC)
577 		return NOTIFY_DONE;
578 
579 	/* ignore unless this is memory related with an address */
580 	if ((mce->status & 0xefff) >> 7 != 1 || !(mce->status & MCI_STATUS_ADDRV))
581 		return NOTIFY_DONE;
582 
583 	memset(&res, 0, sizeof(res));
584 	res.addr = mce->addr;
585 
586 	if (adxl_component_count) {
587 		if (!skx_adxl_decode(&res))
588 			return NOTIFY_DONE;
589 	} else if (!skx_decode || !skx_decode(&res)) {
590 		return NOTIFY_DONE;
591 	}
592 
593 	mci = res.dev->imc[res.imc].mci;
594 
595 	if (!mci)
596 		return NOTIFY_DONE;
597 
598 	if (mce->mcgstatus & MCG_STATUS_MCIP)
599 		type = "Exception";
600 	else
601 		type = "Event";
602 
603 	skx_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
604 
605 	skx_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: 0x%llx "
606 			   "Bank %d: 0x%llx\n", mce->extcpu, type,
607 			   mce->mcgstatus, mce->bank, mce->status);
608 	skx_mc_printk(mci, KERN_DEBUG, "TSC 0x%llx ", mce->tsc);
609 	skx_mc_printk(mci, KERN_DEBUG, "ADDR 0x%llx ", mce->addr);
610 	skx_mc_printk(mci, KERN_DEBUG, "MISC 0x%llx ", mce->misc);
611 
612 	skx_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:0x%x TIME %llu SOCKET "
613 			   "%u APIC 0x%x\n", mce->cpuvendor, mce->cpuid,
614 			   mce->time, mce->socketid, mce->apicid);
615 
616 	skx_mce_output_error(mci, mce, &res);
617 
618 	mce->kflags |= MCE_HANDLED_EDAC;
619 	return NOTIFY_DONE;
620 }
621 
622 void skx_remove(void)
623 {
624 	int i, j;
625 	struct skx_dev *d, *tmp;
626 
627 	edac_dbg(0, "\n");
628 
629 	list_for_each_entry_safe(d, tmp, &dev_edac_list, list) {
630 		list_del(&d->list);
631 		for (i = 0; i < NUM_IMC; i++) {
632 			if (d->imc[i].mci)
633 				skx_unregister_mci(&d->imc[i]);
634 
635 			if (d->imc[i].mdev)
636 				pci_dev_put(d->imc[i].mdev);
637 
638 			if (d->imc[i].mbase)
639 				iounmap(d->imc[i].mbase);
640 
641 			for (j = 0; j < NUM_CHANNELS; j++) {
642 				if (d->imc[i].chan[j].cdev)
643 					pci_dev_put(d->imc[i].chan[j].cdev);
644 			}
645 		}
646 		if (d->util_all)
647 			pci_dev_put(d->util_all);
648 		if (d->sad_all)
649 			pci_dev_put(d->sad_all);
650 		if (d->uracu)
651 			pci_dev_put(d->uracu);
652 
653 		kfree(d);
654 	}
655 }
656