xref: /linux/drivers/edac/skx_base.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * EDAC driver for Intel(R) Xeon(R) Skylake processors
4  * Copyright (c) 2016, Intel Corporation.
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/processor.h>
9 #include <asm/cpu_device_id.h>
10 #include <asm/intel-family.h>
11 #include <asm/mce.h>
12 
13 #include "edac_module.h"
14 #include "skx_common.h"
15 
16 #define EDAC_MOD_STR    "skx_edac"
17 
18 /*
19  * Debug macros
20  */
21 #define skx_printk(level, fmt, arg...)			\
22 	edac_printk(level, "skx", fmt, ##arg)
23 
24 #define skx_mc_printk(mci, level, fmt, arg...)		\
25 	edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg)
26 
27 static struct list_head *skx_edac_list;
28 
29 static u64 skx_tolm, skx_tohm;
30 static int skx_num_sockets;
31 static unsigned int nvdimm_count;
32 
33 #define	MASK26	0x3FFFFFF		/* Mask for 2^26 */
34 #define MASK29	0x1FFFFFFF		/* Mask for 2^29 */
35 
36 static struct skx_dev *get_skx_dev(struct pci_bus *bus, u8 idx)
37 {
38 	struct skx_dev *d;
39 
40 	list_for_each_entry(d, skx_edac_list, list) {
41 		if (d->seg == pci_domain_nr(bus) && d->bus[idx] == bus->number)
42 			return d;
43 	}
44 
45 	return NULL;
46 }
47 
48 enum munittype {
49 	CHAN0, CHAN1, CHAN2, SAD_ALL, UTIL_ALL, SAD,
50 	ERRCHAN0, ERRCHAN1, ERRCHAN2,
51 };
52 
53 struct munit {
54 	u16	did;
55 	u16	devfn[SKX_NUM_IMC];
56 	u8	busidx;
57 	u8	per_socket;
58 	enum munittype mtype;
59 };
60 
61 /*
62  * List of PCI device ids that we need together with some device
63  * number and function numbers to tell which memory controller the
64  * device belongs to.
65  */
66 static const struct munit skx_all_munits[] = {
67 	{ 0x2054, { }, 1, 1, SAD_ALL },
68 	{ 0x2055, { }, 1, 1, UTIL_ALL },
69 	{ 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0 },
70 	{ 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1 },
71 	{ 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2 },
72 	{ 0x2043, { PCI_DEVFN(10, 3), PCI_DEVFN(12, 3) }, 2, 2, ERRCHAN0 },
73 	{ 0x2047, { PCI_DEVFN(10, 7), PCI_DEVFN(12, 7) }, 2, 2, ERRCHAN1 },
74 	{ 0x204b, { PCI_DEVFN(11, 3), PCI_DEVFN(13, 3) }, 2, 2, ERRCHAN2 },
75 	{ 0x208e, { }, 1, 0, SAD },
76 	{ }
77 };
78 
79 static int get_all_munits(const struct munit *m)
80 {
81 	struct pci_dev *pdev, *prev;
82 	struct skx_dev *d;
83 	u32 reg;
84 	int i = 0, ndev = 0;
85 
86 	prev = NULL;
87 	for (;;) {
88 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, m->did, prev);
89 		if (!pdev)
90 			break;
91 		ndev++;
92 		if (m->per_socket == SKX_NUM_IMC) {
93 			for (i = 0; i < SKX_NUM_IMC; i++)
94 				if (m->devfn[i] == pdev->devfn)
95 					break;
96 			if (i == SKX_NUM_IMC)
97 				goto fail;
98 		}
99 		d = get_skx_dev(pdev->bus, m->busidx);
100 		if (!d)
101 			goto fail;
102 
103 		/* Be sure that the device is enabled */
104 		if (unlikely(pci_enable_device(pdev) < 0)) {
105 			skx_printk(KERN_ERR, "Couldn't enable device %04x:%04x\n",
106 				   PCI_VENDOR_ID_INTEL, m->did);
107 			goto fail;
108 		}
109 
110 		switch (m->mtype) {
111 		case CHAN0:
112 		case CHAN1:
113 		case CHAN2:
114 			pci_dev_get(pdev);
115 			d->imc[i].chan[m->mtype].cdev = pdev;
116 			break;
117 		case ERRCHAN0:
118 		case ERRCHAN1:
119 		case ERRCHAN2:
120 			pci_dev_get(pdev);
121 			d->imc[i].chan[m->mtype - ERRCHAN0].edev = pdev;
122 			break;
123 		case SAD_ALL:
124 			pci_dev_get(pdev);
125 			d->sad_all = pdev;
126 			break;
127 		case UTIL_ALL:
128 			pci_dev_get(pdev);
129 			d->util_all = pdev;
130 			break;
131 		case SAD:
132 			/*
133 			 * one of these devices per core, including cores
134 			 * that don't exist on this SKU. Ignore any that
135 			 * read a route table of zero, make sure all the
136 			 * non-zero values match.
137 			 */
138 			pci_read_config_dword(pdev, 0xB4, &reg);
139 			if (reg != 0) {
140 				if (d->mcroute == 0) {
141 					d->mcroute = reg;
142 				} else if (d->mcroute != reg) {
143 					skx_printk(KERN_ERR, "mcroute mismatch\n");
144 					goto fail;
145 				}
146 			}
147 			ndev--;
148 			break;
149 		}
150 
151 		prev = pdev;
152 	}
153 
154 	return ndev;
155 fail:
156 	pci_dev_put(pdev);
157 	return -ENODEV;
158 }
159 
160 static struct res_config skx_cfg = {
161 	.type			= SKX,
162 	.decs_did		= 0x2016,
163 	.busno_cfg_offset	= 0xcc,
164 };
165 
166 static const struct x86_cpu_id skx_cpuids[] = {
167 	X86_MATCH_VFM_STEPPINGS(INTEL_SKYLAKE_X, X86_STEPPINGS(0x0, 0xf), &skx_cfg),
168 	{ }
169 };
170 MODULE_DEVICE_TABLE(x86cpu, skx_cpuids);
171 
172 static bool skx_check_ecc(u32 mcmtr)
173 {
174 	return !!GET_BITFIELD(mcmtr, 2, 2);
175 }
176 
177 static int skx_get_dimm_config(struct mem_ctl_info *mci, struct res_config *cfg)
178 {
179 	struct skx_pvt *pvt = mci->pvt_info;
180 	u32 mtr, mcmtr, amap, mcddrtcfg;
181 	struct skx_imc *imc = pvt->imc;
182 	struct dimm_info *dimm;
183 	int i, j;
184 	int ndimms;
185 
186 	/* Only the mcmtr on the first channel is effective */
187 	pci_read_config_dword(imc->chan[0].cdev, 0x87c, &mcmtr);
188 
189 	for (i = 0; i < SKX_NUM_CHANNELS; i++) {
190 		ndimms = 0;
191 		pci_read_config_dword(imc->chan[i].cdev, 0x8C, &amap);
192 		pci_read_config_dword(imc->chan[i].cdev, 0x400, &mcddrtcfg);
193 		for (j = 0; j < SKX_NUM_DIMMS; j++) {
194 			dimm = edac_get_dimm(mci, i, j, 0);
195 			pci_read_config_dword(imc->chan[i].cdev,
196 					      0x80 + 4 * j, &mtr);
197 			if (IS_DIMM_PRESENT(mtr)) {
198 				ndimms += skx_get_dimm_info(mtr, mcmtr, amap, dimm, imc, i, j, cfg);
199 			} else if (IS_NVDIMM_PRESENT(mcddrtcfg, j)) {
200 				ndimms += skx_get_nvdimm_info(dimm, imc, i, j,
201 							      EDAC_MOD_STR);
202 				nvdimm_count++;
203 			}
204 		}
205 		if (ndimms && !skx_check_ecc(mcmtr)) {
206 			skx_printk(KERN_ERR, "ECC is disabled on imc %d\n", imc->mc);
207 			return -ENODEV;
208 		}
209 	}
210 
211 	return 0;
212 }
213 
214 #define	SKX_MAX_SAD 24
215 
216 #define SKX_GET_SAD(d, i, reg)	\
217 	pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), &(reg))
218 #define SKX_GET_ILV(d, i, reg)	\
219 	pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), &(reg))
220 
221 #define	SKX_SAD_MOD3MODE(sad)	GET_BITFIELD((sad), 30, 31)
222 #define	SKX_SAD_MOD3(sad)	GET_BITFIELD((sad), 27, 27)
223 #define SKX_SAD_LIMIT(sad)	(((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26)
224 #define	SKX_SAD_MOD3ASMOD2(sad)	GET_BITFIELD((sad), 5, 6)
225 #define	SKX_SAD_ATTR(sad)	GET_BITFIELD((sad), 3, 4)
226 #define	SKX_SAD_INTERLEAVE(sad)	GET_BITFIELD((sad), 1, 2)
227 #define SKX_SAD_ENABLE(sad)	GET_BITFIELD((sad), 0, 0)
228 
229 #define SKX_ILV_REMOTE(tgt)	(((tgt) & 8) == 0)
230 #define SKX_ILV_TARGET(tgt)	((tgt) & 7)
231 
232 static void skx_show_retry_rd_err_log(struct decoded_addr *res,
233 				      char *msg, int len,
234 				      bool scrub_err)
235 {
236 	u32 log0, log1, log2, log3, log4;
237 	u32 corr0, corr1, corr2, corr3;
238 	struct pci_dev *edev;
239 	int n;
240 
241 	edev = res->dev->imc[res->imc].chan[res->channel].edev;
242 
243 	pci_read_config_dword(edev, 0x154, &log0);
244 	pci_read_config_dword(edev, 0x148, &log1);
245 	pci_read_config_dword(edev, 0x150, &log2);
246 	pci_read_config_dword(edev, 0x15c, &log3);
247 	pci_read_config_dword(edev, 0x114, &log4);
248 
249 	n = snprintf(msg, len, " retry_rd_err_log[%.8x %.8x %.8x %.8x %.8x]",
250 		     log0, log1, log2, log3, log4);
251 
252 	pci_read_config_dword(edev, 0x104, &corr0);
253 	pci_read_config_dword(edev, 0x108, &corr1);
254 	pci_read_config_dword(edev, 0x10c, &corr2);
255 	pci_read_config_dword(edev, 0x110, &corr3);
256 
257 	if (len - n > 0)
258 		snprintf(msg + n, len - n,
259 			 " correrrcnt[%.4x %.4x %.4x %.4x %.4x %.4x %.4x %.4x]",
260 			 corr0 & 0xffff, corr0 >> 16,
261 			 corr1 & 0xffff, corr1 >> 16,
262 			 corr2 & 0xffff, corr2 >> 16,
263 			 corr3 & 0xffff, corr3 >> 16);
264 }
265 
266 static bool skx_sad_decode(struct decoded_addr *res)
267 {
268 	struct skx_dev *d = list_first_entry(skx_edac_list, typeof(*d), list);
269 	u64 addr = res->addr;
270 	int i, idx, tgt, lchan, shift;
271 	u32 sad, ilv;
272 	u64 limit, prev_limit;
273 	int remote = 0;
274 
275 	/* Simple sanity check for I/O space or out of range */
276 	if (addr >= skx_tohm || (addr >= skx_tolm && addr < BIT_ULL(32))) {
277 		edac_dbg(0, "Address 0x%llx out of range\n", addr);
278 		return false;
279 	}
280 
281 restart:
282 	prev_limit = 0;
283 	for (i = 0; i < SKX_MAX_SAD; i++) {
284 		SKX_GET_SAD(d, i, sad);
285 		limit = SKX_SAD_LIMIT(sad);
286 		if (SKX_SAD_ENABLE(sad)) {
287 			if (addr >= prev_limit && addr <= limit)
288 				goto sad_found;
289 		}
290 		prev_limit = limit + 1;
291 	}
292 	edac_dbg(0, "No SAD entry for 0x%llx\n", addr);
293 	return false;
294 
295 sad_found:
296 	SKX_GET_ILV(d, i, ilv);
297 
298 	switch (SKX_SAD_INTERLEAVE(sad)) {
299 	case 0:
300 		idx = GET_BITFIELD(addr, 6, 8);
301 		break;
302 	case 1:
303 		idx = GET_BITFIELD(addr, 8, 10);
304 		break;
305 	case 2:
306 		idx = GET_BITFIELD(addr, 12, 14);
307 		break;
308 	case 3:
309 		idx = GET_BITFIELD(addr, 30, 32);
310 		break;
311 	}
312 
313 	tgt = GET_BITFIELD(ilv, 4 * idx, 4 * idx + 3);
314 
315 	/* If point to another node, find it and start over */
316 	if (SKX_ILV_REMOTE(tgt)) {
317 		if (remote) {
318 			edac_dbg(0, "Double remote!\n");
319 			return false;
320 		}
321 		remote = 1;
322 		list_for_each_entry(d, skx_edac_list, list) {
323 			if (d->imc[0].src_id == SKX_ILV_TARGET(tgt))
324 				goto restart;
325 		}
326 		edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt));
327 		return false;
328 	}
329 
330 	if (SKX_SAD_MOD3(sad) == 0) {
331 		lchan = SKX_ILV_TARGET(tgt);
332 	} else {
333 		switch (SKX_SAD_MOD3MODE(sad)) {
334 		case 0:
335 			shift = 6;
336 			break;
337 		case 1:
338 			shift = 8;
339 			break;
340 		case 2:
341 			shift = 12;
342 			break;
343 		default:
344 			edac_dbg(0, "illegal mod3mode\n");
345 			return false;
346 		}
347 		switch (SKX_SAD_MOD3ASMOD2(sad)) {
348 		case 0:
349 			lchan = (addr >> shift) % 3;
350 			break;
351 		case 1:
352 			lchan = (addr >> shift) % 2;
353 			break;
354 		case 2:
355 			lchan = (addr >> shift) % 2;
356 			lchan = (lchan << 1) | !lchan;
357 			break;
358 		case 3:
359 			lchan = ((addr >> shift) % 2) << 1;
360 			break;
361 		}
362 		lchan = (lchan << 1) | (SKX_ILV_TARGET(tgt) & 1);
363 	}
364 
365 	res->dev = d;
366 	res->socket = d->imc[0].src_id;
367 	res->imc = GET_BITFIELD(d->mcroute, lchan * 3, lchan * 3 + 2);
368 	res->channel = GET_BITFIELD(d->mcroute, lchan * 2 + 18, lchan * 2 + 19);
369 
370 	edac_dbg(2, "0x%llx: socket=%d imc=%d channel=%d\n",
371 		 res->addr, res->socket, res->imc, res->channel);
372 	return true;
373 }
374 
375 #define	SKX_MAX_TAD 8
376 
377 #define SKX_GET_TADBASE(d, mc, i, reg)			\
378 	pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), &(reg))
379 #define SKX_GET_TADWAYNESS(d, mc, i, reg)		\
380 	pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), &(reg))
381 #define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg)	\
382 	pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), &(reg))
383 
384 #define	SKX_TAD_BASE(b)		((u64)GET_BITFIELD((b), 12, 31) << 26)
385 #define SKX_TAD_SKT_GRAN(b)	GET_BITFIELD((b), 4, 5)
386 #define SKX_TAD_CHN_GRAN(b)	GET_BITFIELD((b), 6, 7)
387 #define	SKX_TAD_LIMIT(b)	(((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26)
388 #define	SKX_TAD_OFFSET(b)	((u64)GET_BITFIELD((b), 4, 23) << 26)
389 #define	SKX_TAD_SKTWAYS(b)	(1 << GET_BITFIELD((b), 10, 11))
390 #define	SKX_TAD_CHNWAYS(b)	(GET_BITFIELD((b), 8, 9) + 1)
391 
392 /* which bit used for both socket and channel interleave */
393 static int skx_granularity[] = { 6, 8, 12, 30 };
394 
395 static u64 skx_do_interleave(u64 addr, int shift, int ways, u64 lowbits)
396 {
397 	addr >>= shift;
398 	addr /= ways;
399 	addr <<= shift;
400 
401 	return addr | (lowbits & ((1ull << shift) - 1));
402 }
403 
404 static bool skx_tad_decode(struct decoded_addr *res)
405 {
406 	int i;
407 	u32 base, wayness, chnilvoffset;
408 	int skt_interleave_bit, chn_interleave_bit;
409 	u64 channel_addr;
410 
411 	for (i = 0; i < SKX_MAX_TAD; i++) {
412 		SKX_GET_TADBASE(res->dev, res->imc, i, base);
413 		SKX_GET_TADWAYNESS(res->dev, res->imc, i, wayness);
414 		if (SKX_TAD_BASE(base) <= res->addr && res->addr <= SKX_TAD_LIMIT(wayness))
415 			goto tad_found;
416 	}
417 	edac_dbg(0, "No TAD entry for 0x%llx\n", res->addr);
418 	return false;
419 
420 tad_found:
421 	res->sktways = SKX_TAD_SKTWAYS(wayness);
422 	res->chanways = SKX_TAD_CHNWAYS(wayness);
423 	skt_interleave_bit = skx_granularity[SKX_TAD_SKT_GRAN(base)];
424 	chn_interleave_bit = skx_granularity[SKX_TAD_CHN_GRAN(base)];
425 
426 	SKX_GET_TADCHNILVOFFSET(res->dev, res->imc, res->channel, i, chnilvoffset);
427 	channel_addr = res->addr - SKX_TAD_OFFSET(chnilvoffset);
428 
429 	if (res->chanways == 3 && skt_interleave_bit > chn_interleave_bit) {
430 		/* Must handle channel first, then socket */
431 		channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
432 						 res->chanways, channel_addr);
433 		channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
434 						 res->sktways, channel_addr);
435 	} else {
436 		/* Handle socket then channel. Preserve low bits from original address */
437 		channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
438 						 res->sktways, res->addr);
439 		channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
440 						 res->chanways, res->addr);
441 	}
442 
443 	res->chan_addr = channel_addr;
444 
445 	edac_dbg(2, "0x%llx: chan_addr=0x%llx sktways=%d chanways=%d\n",
446 		 res->addr, res->chan_addr, res->sktways, res->chanways);
447 	return true;
448 }
449 
450 #define SKX_MAX_RIR 4
451 
452 #define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg)		\
453 	pci_read_config_dword((d)->imc[mc].chan[ch].cdev,	\
454 			      0x108 + 4 * (i), &(reg))
455 #define SKX_GET_RIRILV(d, mc, ch, idx, i, reg)		\
456 	pci_read_config_dword((d)->imc[mc].chan[ch].cdev,	\
457 			      0x120 + 16 * (idx) + 4 * (i), &(reg))
458 
459 #define	SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31)
460 #define	SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29)
461 #define	SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29))
462 #define	SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19)
463 #define	SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26))
464 
465 static bool skx_rir_decode(struct decoded_addr *res)
466 {
467 	int i, idx, chan_rank;
468 	int shift;
469 	u32 rirway, rirlv;
470 	u64 rank_addr, prev_limit = 0, limit;
471 
472 	if (res->dev->imc[res->imc].chan[res->channel].dimms[0].close_pg)
473 		shift = 6;
474 	else
475 		shift = 13;
476 
477 	for (i = 0; i < SKX_MAX_RIR; i++) {
478 		SKX_GET_RIRWAYNESS(res->dev, res->imc, res->channel, i, rirway);
479 		limit = SKX_RIR_LIMIT(rirway);
480 		if (SKX_RIR_VALID(rirway)) {
481 			if (prev_limit <= res->chan_addr &&
482 			    res->chan_addr <= limit)
483 				goto rir_found;
484 		}
485 		prev_limit = limit;
486 	}
487 	edac_dbg(0, "No RIR entry for 0x%llx\n", res->addr);
488 	return false;
489 
490 rir_found:
491 	rank_addr = res->chan_addr >> shift;
492 	rank_addr /= SKX_RIR_WAYS(rirway);
493 	rank_addr <<= shift;
494 	rank_addr |= res->chan_addr & GENMASK_ULL(shift - 1, 0);
495 
496 	res->rank_address = rank_addr;
497 	idx = (res->chan_addr >> shift) % SKX_RIR_WAYS(rirway);
498 
499 	SKX_GET_RIRILV(res->dev, res->imc, res->channel, idx, i, rirlv);
500 	res->rank_address = rank_addr - SKX_RIR_OFFSET(rirlv);
501 	chan_rank = SKX_RIR_CHAN_RANK(rirlv);
502 	res->channel_rank = chan_rank;
503 	res->dimm = chan_rank / 4;
504 	res->rank = chan_rank % 4;
505 
506 	edac_dbg(2, "0x%llx: dimm=%d rank=%d chan_rank=%d rank_addr=0x%llx\n",
507 		 res->addr, res->dimm, res->rank,
508 		 res->channel_rank, res->rank_address);
509 	return true;
510 }
511 
512 static u8 skx_close_row[] = {
513 	15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33, 34
514 };
515 
516 static u8 skx_close_column[] = {
517 	3, 4, 5, 14, 19, 23, 24, 25, 26, 27
518 };
519 
520 static u8 skx_open_row[] = {
521 	14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34
522 };
523 
524 static u8 skx_open_column[] = {
525 	3, 4, 5, 6, 7, 8, 9, 10, 11, 12
526 };
527 
528 static u8 skx_open_fine_column[] = {
529 	3, 4, 5, 7, 8, 9, 10, 11, 12, 13
530 };
531 
532 static int skx_bits(u64 addr, int nbits, u8 *bits)
533 {
534 	int i, res = 0;
535 
536 	for (i = 0; i < nbits; i++)
537 		res |= ((addr >> bits[i]) & 1) << i;
538 	return res;
539 }
540 
541 static int skx_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1)
542 {
543 	int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1);
544 
545 	if (do_xor)
546 		ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1);
547 
548 	return ret;
549 }
550 
551 static bool skx_mad_decode(struct decoded_addr *r)
552 {
553 	struct skx_dimm *dimm = &r->dev->imc[r->imc].chan[r->channel].dimms[r->dimm];
554 	int bg0 = dimm->fine_grain_bank ? 6 : 13;
555 
556 	if (dimm->close_pg) {
557 		r->row = skx_bits(r->rank_address, dimm->rowbits, skx_close_row);
558 		r->column = skx_bits(r->rank_address, dimm->colbits, skx_close_column);
559 		r->column |= 0x400; /* C10 is autoprecharge, always set */
560 		r->bank_address = skx_bank_bits(r->rank_address, 8, 9, dimm->bank_xor_enable, 22, 28);
561 		r->bank_group = skx_bank_bits(r->rank_address, 6, 7, dimm->bank_xor_enable, 20, 21);
562 	} else {
563 		r->row = skx_bits(r->rank_address, dimm->rowbits, skx_open_row);
564 		if (dimm->fine_grain_bank)
565 			r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_fine_column);
566 		else
567 			r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_column);
568 		r->bank_address = skx_bank_bits(r->rank_address, 18, 19, dimm->bank_xor_enable, 22, 23);
569 		r->bank_group = skx_bank_bits(r->rank_address, bg0, 17, dimm->bank_xor_enable, 20, 21);
570 	}
571 	r->row &= (1u << dimm->rowbits) - 1;
572 
573 	edac_dbg(2, "0x%llx: row=0x%x col=0x%x bank_addr=%d bank_group=%d\n",
574 		 r->addr, r->row, r->column, r->bank_address,
575 		 r->bank_group);
576 	return true;
577 }
578 
579 static bool skx_decode(struct decoded_addr *res)
580 {
581 	return skx_sad_decode(res) && skx_tad_decode(res) &&
582 		skx_rir_decode(res) && skx_mad_decode(res);
583 }
584 
585 static struct notifier_block skx_mce_dec = {
586 	.notifier_call	= skx_mce_check_error,
587 	.priority	= MCE_PRIO_EDAC,
588 };
589 
590 /*
591  * skx_init:
592  *	make sure we are running on the correct cpu model
593  *	search for all the devices we need
594  *	check which DIMMs are present.
595  */
596 static int __init skx_init(void)
597 {
598 	const struct x86_cpu_id *id;
599 	struct res_config *cfg;
600 	const struct munit *m;
601 	const char *owner;
602 	int rc = 0, i, off[3] = {0xd0, 0xd4, 0xd8};
603 	u8 mc = 0, src_id, node_id;
604 	struct skx_dev *d;
605 
606 	edac_dbg(2, "\n");
607 
608 	if (ghes_get_devices())
609 		return -EBUSY;
610 
611 	owner = edac_get_owner();
612 	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
613 		return -EBUSY;
614 
615 	if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR))
616 		return -ENODEV;
617 
618 	id = x86_match_cpu(skx_cpuids);
619 	if (!id)
620 		return -ENODEV;
621 
622 	cfg = (struct res_config *)id->driver_data;
623 
624 	rc = skx_get_hi_lo(0x2034, off, &skx_tolm, &skx_tohm);
625 	if (rc)
626 		return rc;
627 
628 	rc = skx_get_all_bus_mappings(cfg, &skx_edac_list);
629 	if (rc < 0)
630 		goto fail;
631 	if (rc == 0) {
632 		edac_dbg(2, "No memory controllers found\n");
633 		return -ENODEV;
634 	}
635 	skx_num_sockets = rc;
636 
637 	for (m = skx_all_munits; m->did; m++) {
638 		rc = get_all_munits(m);
639 		if (rc < 0)
640 			goto fail;
641 		if (rc != m->per_socket * skx_num_sockets) {
642 			edac_dbg(2, "Expected %d, got %d of 0x%x\n",
643 				 m->per_socket * skx_num_sockets, rc, m->did);
644 			rc = -ENODEV;
645 			goto fail;
646 		}
647 	}
648 
649 	list_for_each_entry(d, skx_edac_list, list) {
650 		rc = skx_get_src_id(d, 0xf0, &src_id);
651 		if (rc < 0)
652 			goto fail;
653 		rc = skx_get_node_id(d, &node_id);
654 		if (rc < 0)
655 			goto fail;
656 		edac_dbg(2, "src_id=%d node_id=%d\n", src_id, node_id);
657 		for (i = 0; i < SKX_NUM_IMC; i++) {
658 			d->imc[i].mc = mc++;
659 			d->imc[i].lmc = i;
660 			d->imc[i].src_id = src_id;
661 			d->imc[i].node_id = node_id;
662 			rc = skx_register_mci(&d->imc[i], d->imc[i].chan[0].cdev,
663 					      "Skylake Socket", EDAC_MOD_STR,
664 					      skx_get_dimm_config, cfg);
665 			if (rc < 0)
666 				goto fail;
667 		}
668 	}
669 
670 	skx_set_decode(skx_decode, skx_show_retry_rd_err_log);
671 
672 	if (nvdimm_count && skx_adxl_get() != -ENODEV) {
673 		skx_set_decode(NULL, skx_show_retry_rd_err_log);
674 	} else {
675 		if (nvdimm_count)
676 			skx_printk(KERN_NOTICE, "Only decoding DDR4 address!\n");
677 		skx_set_decode(skx_decode, skx_show_retry_rd_err_log);
678 	}
679 
680 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
681 	opstate_init();
682 
683 	skx_setup_debug("skx_test");
684 
685 	mce_register_decode_chain(&skx_mce_dec);
686 
687 	return 0;
688 fail:
689 	skx_remove();
690 	return rc;
691 }
692 
693 static void __exit skx_exit(void)
694 {
695 	edac_dbg(2, "\n");
696 	mce_unregister_decode_chain(&skx_mce_dec);
697 	skx_teardown_debug();
698 	if (nvdimm_count)
699 		skx_adxl_put();
700 	skx_remove();
701 }
702 
703 module_init(skx_init);
704 module_exit(skx_exit);
705 
706 module_param(edac_op_state, int, 0444);
707 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
708 
709 MODULE_LICENSE("GPL v2");
710 MODULE_AUTHOR("Tony Luck");
711 MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors");
712