xref: /linux/drivers/edac/sb_edac.c (revision e21f9e2e862e9eb3dd64eaddb6256b3e5098660f)
1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
2  *
3  * This driver supports the memory controllers found on the Intel
4  * processor family Sandy Bridge.
5  *
6  * This file may be distributed under the terms of the
7  * GNU General Public License version 2 only.
8  *
9  * Copyright (c) 2011 by:
10  *	 Mauro Carvalho Chehab
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <linux/mod_devicetable.h>
25 #include <asm/cpu_device_id.h>
26 #include <asm/intel-family.h>
27 #include <asm/processor.h>
28 #include <asm/mce.h>
29 
30 #include "edac_module.h"
31 
32 /* Static vars */
33 static LIST_HEAD(sbridge_edac_list);
34 
35 /*
36  * Alter this version for the module when modifications are made
37  */
38 #define SBRIDGE_REVISION    " Ver: 1.1.2 "
39 #define EDAC_MOD_STR	    "sb_edac"
40 
41 /*
42  * Debug macros
43  */
44 #define sbridge_printk(level, fmt, arg...)			\
45 	edac_printk(level, "sbridge", fmt, ##arg)
46 
47 #define sbridge_mc_printk(mci, level, fmt, arg...)		\
48 	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
49 
50 /*
51  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
52  */
53 #define GET_BITFIELD(v, lo, hi)	\
54 	(((v) & GENMASK_ULL(hi, lo)) >> (lo))
55 
56 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
57 static const u32 sbridge_dram_rule[] = {
58 	0x80, 0x88, 0x90, 0x98, 0xa0,
59 	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
60 };
61 
62 static const u32 ibridge_dram_rule[] = {
63 	0x60, 0x68, 0x70, 0x78, 0x80,
64 	0x88, 0x90, 0x98, 0xa0,	0xa8,
65 	0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
66 	0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
67 };
68 
69 static const u32 knl_dram_rule[] = {
70 	0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
71 	0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
72 	0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
73 	0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
74 	0x100, 0x108, 0x110, 0x118,   /* 20-23 */
75 };
76 
77 #define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)
78 #define A7MODE(reg)		GET_BITFIELD(reg, 26, 26)
79 
80 static char *show_dram_attr(u32 attr)
81 {
82 	switch (attr) {
83 		case 0:
84 			return "DRAM";
85 		case 1:
86 			return "MMCFG";
87 		case 2:
88 			return "NXM";
89 		default:
90 			return "unknown";
91 	}
92 }
93 
94 static const u32 sbridge_interleave_list[] = {
95 	0x84, 0x8c, 0x94, 0x9c, 0xa4,
96 	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
97 };
98 
99 static const u32 ibridge_interleave_list[] = {
100 	0x64, 0x6c, 0x74, 0x7c, 0x84,
101 	0x8c, 0x94, 0x9c, 0xa4, 0xac,
102 	0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
103 	0xdc, 0xe4, 0xec, 0xf4, 0xfc,
104 };
105 
106 static const u32 knl_interleave_list[] = {
107 	0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
108 	0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
109 	0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
110 	0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
111 	0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */
112 };
113 #define MAX_INTERLEAVE							\
114 	(max_t(unsigned int, ARRAY_SIZE(sbridge_interleave_list),	\
115 	       max_t(unsigned int, ARRAY_SIZE(ibridge_interleave_list),	\
116 		     ARRAY_SIZE(knl_interleave_list))))
117 
118 struct interleave_pkg {
119 	unsigned char start;
120 	unsigned char end;
121 };
122 
123 static const struct interleave_pkg sbridge_interleave_pkg[] = {
124 	{ 0, 2 },
125 	{ 3, 5 },
126 	{ 8, 10 },
127 	{ 11, 13 },
128 	{ 16, 18 },
129 	{ 19, 21 },
130 	{ 24, 26 },
131 	{ 27, 29 },
132 };
133 
134 static const struct interleave_pkg ibridge_interleave_pkg[] = {
135 	{ 0, 3 },
136 	{ 4, 7 },
137 	{ 8, 11 },
138 	{ 12, 15 },
139 	{ 16, 19 },
140 	{ 20, 23 },
141 	{ 24, 27 },
142 	{ 28, 31 },
143 };
144 
145 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
146 			  int interleave)
147 {
148 	return GET_BITFIELD(reg, table[interleave].start,
149 			    table[interleave].end);
150 }
151 
152 /* Devices 12 Function 7 */
153 
154 #define TOLM		0x80
155 #define TOHM		0x84
156 #define HASWELL_TOLM	0xd0
157 #define HASWELL_TOHM_0	0xd4
158 #define HASWELL_TOHM_1	0xd8
159 #define KNL_TOLM	0xd0
160 #define KNL_TOHM_0	0xd4
161 #define KNL_TOHM_1	0xd8
162 
163 #define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
164 #define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
165 
166 /* Device 13 Function 6 */
167 
168 #define SAD_TARGET	0xf0
169 
170 #define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)
171 
172 #define SOURCE_ID_KNL(reg)	GET_BITFIELD(reg, 12, 14)
173 
174 #define SAD_CONTROL	0xf4
175 
176 /* Device 14 function 0 */
177 
178 static const u32 tad_dram_rule[] = {
179 	0x40, 0x44, 0x48, 0x4c,
180 	0x50, 0x54, 0x58, 0x5c,
181 	0x60, 0x64, 0x68, 0x6c,
182 };
183 #define MAX_TAD	ARRAY_SIZE(tad_dram_rule)
184 
185 #define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
186 #define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
187 #define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
188 #define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
189 #define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
190 #define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
191 #define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)
192 
193 /* Device 15, function 0 */
194 
195 #define MCMTR			0x7c
196 #define KNL_MCMTR		0x624
197 
198 #define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
199 #define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
200 #define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)
201 
202 /* Device 15, function 1 */
203 
204 #define RASENABLES		0xac
205 #define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)
206 
207 /* Device 15, functions 2-5 */
208 
209 static const int mtr_regs[] = {
210 	0x80, 0x84, 0x88,
211 };
212 
213 static const int knl_mtr_reg = 0xb60;
214 
215 #define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
216 #define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
217 #define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
218 #define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
219 #define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)
220 
221 static const u32 tad_ch_nilv_offset[] = {
222 	0x90, 0x94, 0x98, 0x9c,
223 	0xa0, 0xa4, 0xa8, 0xac,
224 	0xb0, 0xb4, 0xb8, 0xbc,
225 };
226 #define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
227 #define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)
228 
229 static const u32 rir_way_limit[] = {
230 	0x108, 0x10c, 0x110, 0x114, 0x118,
231 };
232 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
233 
234 #define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
235 #define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)
236 
237 #define MAX_RIR_WAY	8
238 
239 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
240 	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
241 	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
242 	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
243 	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
244 	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
245 };
246 
247 #define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
248 	GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
249 
250 #define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
251 	GET_BITFIELD(reg,  2, 15) : GET_BITFIELD(reg,  2, 14))
252 
253 /* Device 16, functions 2-7 */
254 
255 /*
256  * FIXME: Implement the error count reads directly
257  */
258 
259 static const u32 correrrcnt[] = {
260 	0x104, 0x108, 0x10c, 0x110,
261 };
262 
263 #define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
264 #define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
265 #define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
266 #define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)
267 
268 static const u32 correrrthrsld[] = {
269 	0x11c, 0x120, 0x124, 0x128,
270 };
271 
272 #define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
273 #define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)
274 
275 
276 /* Device 17, function 0 */
277 
278 #define SB_RANK_CFG_A		0x0328
279 
280 #define IB_RANK_CFG_A		0x0320
281 
282 /*
283  * sbridge structs
284  */
285 
286 #define NUM_CHANNELS		6	/* Max channels per MC */
287 #define MAX_DIMMS		3	/* Max DIMMS per channel */
288 #define KNL_MAX_CHAS		38	/* KNL max num. of Cache Home Agents */
289 #define KNL_MAX_CHANNELS	6	/* KNL max num. of PCI channels */
290 #define KNL_MAX_EDCS		8	/* Embedded DRAM controllers */
291 #define CHANNEL_UNSPECIFIED	0xf	/* Intel IA32 SDM 15-14 */
292 
293 enum type {
294 	SANDY_BRIDGE,
295 	IVY_BRIDGE,
296 	HASWELL,
297 	BROADWELL,
298 	KNIGHTS_LANDING,
299 };
300 
301 enum domain {
302 	IMC0 = 0,
303 	IMC1,
304 	SOCK,
305 };
306 
307 enum mirroring_mode {
308 	NON_MIRRORING,
309 	ADDR_RANGE_MIRRORING,
310 	FULL_MIRRORING,
311 };
312 
313 struct sbridge_pvt;
314 struct sbridge_info {
315 	enum type	type;
316 	u32		mcmtr;
317 	u32		rankcfgr;
318 	u64		(*get_tolm)(struct sbridge_pvt *pvt);
319 	u64		(*get_tohm)(struct sbridge_pvt *pvt);
320 	u64		(*rir_limit)(u32 reg);
321 	u64		(*sad_limit)(u32 reg);
322 	u32		(*interleave_mode)(u32 reg);
323 	u32		(*dram_attr)(u32 reg);
324 	const u32	*dram_rule;
325 	const u32	*interleave_list;
326 	const struct interleave_pkg *interleave_pkg;
327 	u8		max_sad;
328 	u8		(*get_node_id)(struct sbridge_pvt *pvt);
329 	enum mem_type	(*get_memory_type)(struct sbridge_pvt *pvt);
330 	enum dev_type	(*get_width)(struct sbridge_pvt *pvt, u32 mtr);
331 	struct pci_dev	*pci_vtd;
332 };
333 
334 struct sbridge_channel {
335 	u32		ranks;
336 	u32		dimms;
337 };
338 
339 struct pci_id_descr {
340 	int			dev_id;
341 	int			optional;
342 	enum domain		dom;
343 };
344 
345 struct pci_id_table {
346 	const struct pci_id_descr	*descr;
347 	int				n_devs_per_imc;
348 	int				n_devs_per_sock;
349 	int				n_imcs_per_sock;
350 	enum type			type;
351 };
352 
353 struct sbridge_dev {
354 	struct list_head	list;
355 	u8			bus, mc;
356 	u8			node_id, source_id;
357 	struct pci_dev		**pdev;
358 	enum domain		dom;
359 	int			n_devs;
360 	int			i_devs;
361 	struct mem_ctl_info	*mci;
362 };
363 
364 struct knl_pvt {
365 	struct pci_dev          *pci_cha[KNL_MAX_CHAS];
366 	struct pci_dev          *pci_channel[KNL_MAX_CHANNELS];
367 	struct pci_dev          *pci_mc0;
368 	struct pci_dev          *pci_mc1;
369 	struct pci_dev          *pci_mc0_misc;
370 	struct pci_dev          *pci_mc1_misc;
371 	struct pci_dev          *pci_mc_info; /* tolm, tohm */
372 };
373 
374 struct sbridge_pvt {
375 	/* Devices per socket */
376 	struct pci_dev		*pci_ddrio;
377 	struct pci_dev		*pci_sad0, *pci_sad1;
378 	struct pci_dev		*pci_br0, *pci_br1;
379 	/* Devices per memory controller */
380 	struct pci_dev		*pci_ha, *pci_ta, *pci_ras;
381 	struct pci_dev		*pci_tad[NUM_CHANNELS];
382 
383 	struct sbridge_dev	*sbridge_dev;
384 
385 	struct sbridge_info	info;
386 	struct sbridge_channel	channel[NUM_CHANNELS];
387 
388 	/* Memory type detection */
389 	bool			is_cur_addr_mirrored, is_lockstep, is_close_pg;
390 	bool			is_chan_hash;
391 	enum mirroring_mode	mirror_mode;
392 
393 	/* Memory description */
394 	u64			tolm, tohm;
395 	struct knl_pvt knl;
396 };
397 
398 #define PCI_DESCR(device_id, opt, domain)	\
399 	.dev_id = (device_id),		\
400 	.optional = opt,	\
401 	.dom = domain
402 
403 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
404 		/* Processor Home Agent */
405 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0,   0, IMC0) },
406 
407 		/* Memory controller */
408 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA,    0, IMC0) },
409 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS,   0, IMC0) },
410 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0,  0, IMC0) },
411 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1,  0, IMC0) },
412 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2,  0, IMC0) },
413 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3,  0, IMC0) },
414 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1, SOCK) },
415 
416 		/* System Address Decoder */
417 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0,      0, SOCK) },
418 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1,      0, SOCK) },
419 
420 		/* Broadcast Registers */
421 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR,        0, SOCK) },
422 };
423 
424 #define PCI_ID_TABLE_ENTRY(A, N, M, T) {	\
425 	.descr = A,			\
426 	.n_devs_per_imc = N,	\
427 	.n_devs_per_sock = ARRAY_SIZE(A),	\
428 	.n_imcs_per_sock = M,	\
429 	.type = T			\
430 }
431 
432 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
433 	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, ARRAY_SIZE(pci_dev_descr_sbridge), 1, SANDY_BRIDGE),
434 	{0,}			/* 0 terminated list. */
435 };
436 
437 /* This changes depending if 1HA or 2HA:
438  * 1HA:
439  *	0x0eb8 (17.0) is DDRIO0
440  * 2HA:
441  *	0x0ebc (17.4) is DDRIO0
442  */
443 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0	0x0eb8
444 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0	0x0ebc
445 
446 /* pci ids */
447 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0		0x0ea0
448 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA		0x0ea8
449 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS		0x0e71
450 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0	0x0eaa
451 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1	0x0eab
452 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2	0x0eac
453 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3	0x0ead
454 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD			0x0ec8
455 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0			0x0ec9
456 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1			0x0eca
457 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1		0x0e60
458 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA		0x0e68
459 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS		0x0e79
460 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0	0x0e6a
461 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1	0x0e6b
462 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2	0x0e6c
463 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3	0x0e6d
464 
465 static const struct pci_id_descr pci_dev_descr_ibridge[] = {
466 		/* Processor Home Agent */
467 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0,        0, IMC0) },
468 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1,        1, IMC1) },
469 
470 		/* Memory controller */
471 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA,     0, IMC0) },
472 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS,    0, IMC0) },
473 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0,   0, IMC0) },
474 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1,   0, IMC0) },
475 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2,   0, IMC0) },
476 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3,   0, IMC0) },
477 
478 		/* Optional, mode 2HA */
479 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA,     1, IMC1) },
480 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS,    1, IMC1) },
481 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0,   1, IMC1) },
482 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1,   1, IMC1) },
483 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2,   1, IMC1) },
484 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3,   1, IMC1) },
485 
486 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1, SOCK) },
487 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1, SOCK) },
488 
489 		/* System Address Decoder */
490 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD,            0, SOCK) },
491 
492 		/* Broadcast Registers */
493 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0,            1, SOCK) },
494 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1,            0, SOCK) },
495 
496 };
497 
498 static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
499 	PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, 12, 2, IVY_BRIDGE),
500 	{0,}			/* 0 terminated list. */
501 };
502 
503 /* Haswell support */
504 /* EN processor:
505  *	- 1 IMC
506  *	- 3 DDR3 channels, 2 DPC per channel
507  * EP processor:
508  *	- 1 or 2 IMC
509  *	- 4 DDR4 channels, 3 DPC per channel
510  * EP 4S processor:
511  *	- 2 IMC
512  *	- 4 DDR4 channels, 3 DPC per channel
513  * EX processor:
514  *	- 2 IMC
515  *	- each IMC interfaces with a SMI 2 channel
516  *	- each SMI channel interfaces with a scalable memory buffer
517  *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
518  */
519 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
520 #define HASWELL_HASYSDEFEATURE2 0x84
521 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
522 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0	0x2fa0
523 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1	0x2f60
524 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA	0x2fa8
525 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM	0x2f71
526 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA	0x2f68
527 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM	0x2f79
528 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
529 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
530 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
531 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
532 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
533 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
534 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
535 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
536 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
537 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
538 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
539 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
540 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
541 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
542 static const struct pci_id_descr pci_dev_descr_haswell[] = {
543 	/* first item must be the HA */
544 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0,      0, IMC0) },
545 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1,      1, IMC1) },
546 
547 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA,   0, IMC0) },
548 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM,   0, IMC0) },
549 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0, IMC0) },
550 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0, IMC0) },
551 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1, IMC0) },
552 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1, IMC0) },
553 
554 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA,   1, IMC1) },
555 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM,   1, IMC1) },
556 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1, IMC1) },
557 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1, IMC1) },
558 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1, IMC1) },
559 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1, IMC1) },
560 
561 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0, SOCK) },
562 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0, SOCK) },
563 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0,   1, SOCK) },
564 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1,   1, SOCK) },
565 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2,   1, SOCK) },
566 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3,   1, SOCK) },
567 };
568 
569 static const struct pci_id_table pci_dev_descr_haswell_table[] = {
570 	PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, 13, 2, HASWELL),
571 	{0,}			/* 0 terminated list. */
572 };
573 
574 /* Knight's Landing Support */
575 /*
576  * KNL's memory channels are swizzled between memory controllers.
577  * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
578  */
579 #define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
580 
581 /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
582 #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840
583 /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
584 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN     0x7843
585 /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
586 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844
587 /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
588 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a
589 /* SAD target - 1-29-1 (1 of these) */
590 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b
591 /* Caching / Home Agent */
592 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c
593 /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
594 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810
595 
596 /*
597  * KNL differs from SB, IB, and Haswell in that it has multiple
598  * instances of the same device with the same device ID, so we handle that
599  * by creating as many copies in the table as we expect to find.
600  * (Like device ID must be grouped together.)
601  */
602 
603 static const struct pci_id_descr pci_dev_descr_knl[] = {
604 	[0 ... 1]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC,    0, IMC0)},
605 	[2 ... 7]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN,  0, IMC0) },
606 	[8]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA,    0, IMC0) },
607 	[9]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0, IMC0) },
608 	[10]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0,  0, SOCK) },
609 	[11]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1,  0, SOCK) },
610 	[12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA,   0, SOCK) },
611 };
612 
613 static const struct pci_id_table pci_dev_descr_knl_table[] = {
614 	PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, ARRAY_SIZE(pci_dev_descr_knl), 1, KNIGHTS_LANDING),
615 	{0,}
616 };
617 
618 /*
619  * Broadwell support
620  *
621  * DE processor:
622  *	- 1 IMC
623  *	- 2 DDR3 channels, 2 DPC per channel
624  * EP processor:
625  *	- 1 or 2 IMC
626  *	- 4 DDR4 channels, 3 DPC per channel
627  * EP 4S processor:
628  *	- 2 IMC
629  *	- 4 DDR4 channels, 3 DPC per channel
630  * EX processor:
631  *	- 2 IMC
632  *	- each IMC interfaces with a SMI 2 channel
633  *	- each SMI channel interfaces with a scalable memory buffer
634  *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
635  */
636 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
637 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0	0x6fa0
638 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1	0x6f60
639 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA	0x6fa8
640 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM	0x6f71
641 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA	0x6f68
642 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM	0x6f79
643 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
644 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
645 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
646 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
647 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
648 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
649 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
650 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
651 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
652 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
653 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
654 
655 static const struct pci_id_descr pci_dev_descr_broadwell[] = {
656 	/* first item must be the HA */
657 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0,      0, IMC0) },
658 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1,      1, IMC1) },
659 
660 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA,   0, IMC0) },
661 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM,   0, IMC0) },
662 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0, IMC0) },
663 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0, IMC0) },
664 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1, IMC0) },
665 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1, IMC0) },
666 
667 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA,   1, IMC1) },
668 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM,   1, IMC1) },
669 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1, IMC1) },
670 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1, IMC1) },
671 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1, IMC1) },
672 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1, IMC1) },
673 
674 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0, SOCK) },
675 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0, SOCK) },
676 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0,   1, SOCK) },
677 };
678 
679 static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
680 	PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, 10, 2, BROADWELL),
681 	{0,}			/* 0 terminated list. */
682 };
683 
684 
685 /****************************************************************************
686 			Ancillary status routines
687  ****************************************************************************/
688 
689 static inline int numrank(enum type type, u32 mtr)
690 {
691 	int ranks = (1 << RANK_CNT_BITS(mtr));
692 	int max = 4;
693 
694 	if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
695 		max = 8;
696 
697 	if (ranks > max) {
698 		edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
699 			 ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
700 		return -EINVAL;
701 	}
702 
703 	return ranks;
704 }
705 
706 static inline int numrow(u32 mtr)
707 {
708 	int rows = (RANK_WIDTH_BITS(mtr) + 12);
709 
710 	if (rows < 13 || rows > 18) {
711 		edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
712 			 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
713 		return -EINVAL;
714 	}
715 
716 	return 1 << rows;
717 }
718 
719 static inline int numcol(u32 mtr)
720 {
721 	int cols = (COL_WIDTH_BITS(mtr) + 10);
722 
723 	if (cols > 12) {
724 		edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
725 			 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
726 		return -EINVAL;
727 	}
728 
729 	return 1 << cols;
730 }
731 
732 static struct sbridge_dev *get_sbridge_dev(u8 bus, enum domain dom, int multi_bus,
733 					   struct sbridge_dev *prev)
734 {
735 	struct sbridge_dev *sbridge_dev;
736 
737 	/*
738 	 * If we have devices scattered across several busses that pertain
739 	 * to the same memory controller, we'll lump them all together.
740 	 */
741 	if (multi_bus) {
742 		return list_first_entry_or_null(&sbridge_edac_list,
743 				struct sbridge_dev, list);
744 	}
745 
746 	sbridge_dev = list_entry(prev ? prev->list.next
747 				      : sbridge_edac_list.next, struct sbridge_dev, list);
748 
749 	list_for_each_entry_from(sbridge_dev, &sbridge_edac_list, list) {
750 		if (sbridge_dev->bus == bus && (dom == SOCK || dom == sbridge_dev->dom))
751 			return sbridge_dev;
752 	}
753 
754 	return NULL;
755 }
756 
757 static struct sbridge_dev *alloc_sbridge_dev(u8 bus, enum domain dom,
758 					     const struct pci_id_table *table)
759 {
760 	struct sbridge_dev *sbridge_dev;
761 
762 	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
763 	if (!sbridge_dev)
764 		return NULL;
765 
766 	sbridge_dev->pdev = kcalloc(table->n_devs_per_imc,
767 				    sizeof(*sbridge_dev->pdev),
768 				    GFP_KERNEL);
769 	if (!sbridge_dev->pdev) {
770 		kfree(sbridge_dev);
771 		return NULL;
772 	}
773 
774 	sbridge_dev->bus = bus;
775 	sbridge_dev->dom = dom;
776 	sbridge_dev->n_devs = table->n_devs_per_imc;
777 	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
778 
779 	return sbridge_dev;
780 }
781 
782 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
783 {
784 	list_del(&sbridge_dev->list);
785 	kfree(sbridge_dev->pdev);
786 	kfree(sbridge_dev);
787 }
788 
789 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
790 {
791 	u32 reg;
792 
793 	/* Address range is 32:28 */
794 	pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
795 	return GET_TOLM(reg);
796 }
797 
798 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
799 {
800 	u32 reg;
801 
802 	pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
803 	return GET_TOHM(reg);
804 }
805 
806 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
807 {
808 	u32 reg;
809 
810 	pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
811 
812 	return GET_TOLM(reg);
813 }
814 
815 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
816 {
817 	u32 reg;
818 
819 	pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
820 
821 	return GET_TOHM(reg);
822 }
823 
824 static u64 rir_limit(u32 reg)
825 {
826 	return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
827 }
828 
829 static u64 sad_limit(u32 reg)
830 {
831 	return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
832 }
833 
834 static u32 interleave_mode(u32 reg)
835 {
836 	return GET_BITFIELD(reg, 1, 1);
837 }
838 
839 static u32 dram_attr(u32 reg)
840 {
841 	return GET_BITFIELD(reg, 2, 3);
842 }
843 
844 static u64 knl_sad_limit(u32 reg)
845 {
846 	return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
847 }
848 
849 static u32 knl_interleave_mode(u32 reg)
850 {
851 	return GET_BITFIELD(reg, 1, 2);
852 }
853 
854 static const char * const knl_intlv_mode[] = {
855 	"[8:6]", "[10:8]", "[14:12]", "[32:30]"
856 };
857 
858 static const char *get_intlv_mode_str(u32 reg, enum type t)
859 {
860 	if (t == KNIGHTS_LANDING)
861 		return knl_intlv_mode[knl_interleave_mode(reg)];
862 	else
863 		return interleave_mode(reg) ? "[8:6]" : "[8:6]XOR[18:16]";
864 }
865 
866 static u32 dram_attr_knl(u32 reg)
867 {
868 	return GET_BITFIELD(reg, 3, 4);
869 }
870 
871 
872 static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
873 {
874 	u32 reg;
875 	enum mem_type mtype;
876 
877 	if (pvt->pci_ddrio) {
878 		pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
879 				      &reg);
880 		if (GET_BITFIELD(reg, 11, 11))
881 			/* FIXME: Can also be LRDIMM */
882 			mtype = MEM_RDDR3;
883 		else
884 			mtype = MEM_DDR3;
885 	} else
886 		mtype = MEM_UNKNOWN;
887 
888 	return mtype;
889 }
890 
891 static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
892 {
893 	u32 reg;
894 	bool registered = false;
895 	enum mem_type mtype = MEM_UNKNOWN;
896 
897 	if (!pvt->pci_ddrio)
898 		goto out;
899 
900 	pci_read_config_dword(pvt->pci_ddrio,
901 			      HASWELL_DDRCRCLKCONTROLS, &reg);
902 	/* Is_Rdimm */
903 	if (GET_BITFIELD(reg, 16, 16))
904 		registered = true;
905 
906 	pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
907 	if (GET_BITFIELD(reg, 14, 14)) {
908 		if (registered)
909 			mtype = MEM_RDDR4;
910 		else
911 			mtype = MEM_DDR4;
912 	} else {
913 		if (registered)
914 			mtype = MEM_RDDR3;
915 		else
916 			mtype = MEM_DDR3;
917 	}
918 
919 out:
920 	return mtype;
921 }
922 
923 static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
924 {
925 	/* for KNL value is fixed */
926 	return DEV_X16;
927 }
928 
929 static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
930 {
931 	/* there's no way to figure out */
932 	return DEV_UNKNOWN;
933 }
934 
935 static enum dev_type __ibridge_get_width(u32 mtr)
936 {
937 	enum dev_type type;
938 
939 	switch (mtr) {
940 	case 3:
941 		type = DEV_UNKNOWN;
942 		break;
943 	case 2:
944 		type = DEV_X16;
945 		break;
946 	case 1:
947 		type = DEV_X8;
948 		break;
949 	case 0:
950 		type = DEV_X4;
951 		break;
952 	}
953 
954 	return type;
955 }
956 
957 static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
958 {
959 	/*
960 	 * ddr3_width on the documentation but also valid for DDR4 on
961 	 * Haswell
962 	 */
963 	return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
964 }
965 
966 static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
967 {
968 	/* ddr3_width on the documentation but also valid for DDR4 */
969 	return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
970 }
971 
972 static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
973 {
974 	/* DDR4 RDIMMS and LRDIMMS are supported */
975 	return MEM_RDDR4;
976 }
977 
978 static u8 get_node_id(struct sbridge_pvt *pvt)
979 {
980 	u32 reg;
981 	pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
982 	return GET_BITFIELD(reg, 0, 2);
983 }
984 
985 static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
986 {
987 	u32 reg;
988 
989 	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
990 	return GET_BITFIELD(reg, 0, 3);
991 }
992 
993 static u8 knl_get_node_id(struct sbridge_pvt *pvt)
994 {
995 	u32 reg;
996 
997 	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
998 	return GET_BITFIELD(reg, 0, 2);
999 }
1000 
1001 
1002 static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
1003 {
1004 	u32 reg;
1005 
1006 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
1007 	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1008 }
1009 
1010 static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
1011 {
1012 	u64 rc;
1013 	u32 reg;
1014 
1015 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
1016 	rc = GET_BITFIELD(reg, 26, 31);
1017 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
1018 	rc = ((reg << 6) | rc) << 26;
1019 
1020 	return rc | 0x1ffffff;
1021 }
1022 
1023 static u64 knl_get_tolm(struct sbridge_pvt *pvt)
1024 {
1025 	u32 reg;
1026 
1027 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
1028 	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1029 }
1030 
1031 static u64 knl_get_tohm(struct sbridge_pvt *pvt)
1032 {
1033 	u64 rc;
1034 	u32 reg_lo, reg_hi;
1035 
1036 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
1037 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
1038 	rc = ((u64)reg_hi << 32) | reg_lo;
1039 	return rc | 0x3ffffff;
1040 }
1041 
1042 
1043 static u64 haswell_rir_limit(u32 reg)
1044 {
1045 	return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
1046 }
1047 
1048 static inline u8 sad_pkg_socket(u8 pkg)
1049 {
1050 	/* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1051 	return ((pkg >> 3) << 2) | (pkg & 0x3);
1052 }
1053 
1054 static inline u8 sad_pkg_ha(u8 pkg)
1055 {
1056 	return (pkg >> 2) & 0x1;
1057 }
1058 
1059 static int haswell_chan_hash(int idx, u64 addr)
1060 {
1061 	int i;
1062 
1063 	/*
1064 	 * XOR even bits from 12:26 to bit0 of idx,
1065 	 *     odd bits from 13:27 to bit1
1066 	 */
1067 	for (i = 12; i < 28; i += 2)
1068 		idx ^= (addr >> i) & 3;
1069 
1070 	return idx;
1071 }
1072 
1073 /* Low bits of TAD limit, and some metadata. */
1074 static const u32 knl_tad_dram_limit_lo[] = {
1075 	0x400, 0x500, 0x600, 0x700,
1076 	0x800, 0x900, 0xa00, 0xb00,
1077 };
1078 
1079 /* Low bits of TAD offset. */
1080 static const u32 knl_tad_dram_offset_lo[] = {
1081 	0x404, 0x504, 0x604, 0x704,
1082 	0x804, 0x904, 0xa04, 0xb04,
1083 };
1084 
1085 /* High 16 bits of TAD limit and offset. */
1086 static const u32 knl_tad_dram_hi[] = {
1087 	0x408, 0x508, 0x608, 0x708,
1088 	0x808, 0x908, 0xa08, 0xb08,
1089 };
1090 
1091 /* Number of ways a tad entry is interleaved. */
1092 static const u32 knl_tad_ways[] = {
1093 	8, 6, 4, 3, 2, 1,
1094 };
1095 
1096 /*
1097  * Retrieve the n'th Target Address Decode table entry
1098  * from the memory controller's TAD table.
1099  *
1100  * @pvt:	driver private data
1101  * @entry:	which entry you want to retrieve
1102  * @mc:		which memory controller (0 or 1)
1103  * @offset:	output tad range offset
1104  * @limit:	output address of first byte above tad range
1105  * @ways:	output number of interleave ways
1106  *
1107  * The offset value has curious semantics.  It's a sort of running total
1108  * of the sizes of all the memory regions that aren't mapped in this
1109  * tad table.
1110  */
1111 static int knl_get_tad(const struct sbridge_pvt *pvt,
1112 		const int entry,
1113 		const int mc,
1114 		u64 *offset,
1115 		u64 *limit,
1116 		int *ways)
1117 {
1118 	u32 reg_limit_lo, reg_offset_lo, reg_hi;
1119 	struct pci_dev *pci_mc;
1120 	int way_id;
1121 
1122 	switch (mc) {
1123 	case 0:
1124 		pci_mc = pvt->knl.pci_mc0;
1125 		break;
1126 	case 1:
1127 		pci_mc = pvt->knl.pci_mc1;
1128 		break;
1129 	default:
1130 		WARN_ON(1);
1131 		return -EINVAL;
1132 	}
1133 
1134 	pci_read_config_dword(pci_mc,
1135 			knl_tad_dram_limit_lo[entry], &reg_limit_lo);
1136 	pci_read_config_dword(pci_mc,
1137 			knl_tad_dram_offset_lo[entry], &reg_offset_lo);
1138 	pci_read_config_dword(pci_mc,
1139 			knl_tad_dram_hi[entry], &reg_hi);
1140 
1141 	/* Is this TAD entry enabled? */
1142 	if (!GET_BITFIELD(reg_limit_lo, 0, 0))
1143 		return -ENODEV;
1144 
1145 	way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
1146 
1147 	if (way_id < ARRAY_SIZE(knl_tad_ways)) {
1148 		*ways = knl_tad_ways[way_id];
1149 	} else {
1150 		*ways = 0;
1151 		sbridge_printk(KERN_ERR,
1152 				"Unexpected value %d in mc_tad_limit_lo wayness field\n",
1153 				way_id);
1154 		return -ENODEV;
1155 	}
1156 
1157 	/*
1158 	 * The least significant 6 bits of base and limit are truncated.
1159 	 * For limit, we fill the missing bits with 1s.
1160 	 */
1161 	*offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
1162 				((u64) GET_BITFIELD(reg_hi, 0,  15) << 32);
1163 	*limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 |
1164 				((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
1165 
1166 	return 0;
1167 }
1168 
1169 /* Determine which memory controller is responsible for a given channel. */
1170 static int knl_channel_mc(int channel)
1171 {
1172 	WARN_ON(channel < 0 || channel >= 6);
1173 
1174 	return channel < 3 ? 1 : 0;
1175 }
1176 
1177 /*
1178  * Get the Nth entry from EDC_ROUTE_TABLE register.
1179  * (This is the per-tile mapping of logical interleave targets to
1180  *  physical EDC modules.)
1181  *
1182  * entry 0: 0:2
1183  *       1: 3:5
1184  *       2: 6:8
1185  *       3: 9:11
1186  *       4: 12:14
1187  *       5: 15:17
1188  *       6: 18:20
1189  *       7: 21:23
1190  * reserved: 24:31
1191  */
1192 static u32 knl_get_edc_route(int entry, u32 reg)
1193 {
1194 	WARN_ON(entry >= KNL_MAX_EDCS);
1195 	return GET_BITFIELD(reg, entry*3, (entry*3)+2);
1196 }
1197 
1198 /*
1199  * Get the Nth entry from MC_ROUTE_TABLE register.
1200  * (This is the per-tile mapping of logical interleave targets to
1201  *  physical DRAM channels modules.)
1202  *
1203  * entry 0: mc 0:2   channel 18:19
1204  *       1: mc 3:5   channel 20:21
1205  *       2: mc 6:8   channel 22:23
1206  *       3: mc 9:11  channel 24:25
1207  *       4: mc 12:14 channel 26:27
1208  *       5: mc 15:17 channel 28:29
1209  * reserved: 30:31
1210  *
1211  * Though we have 3 bits to identify the MC, we should only see
1212  * the values 0 or 1.
1213  */
1214 
1215 static u32 knl_get_mc_route(int entry, u32 reg)
1216 {
1217 	int mc, chan;
1218 
1219 	WARN_ON(entry >= KNL_MAX_CHANNELS);
1220 
1221 	mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
1222 	chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
1223 
1224 	return knl_channel_remap(mc, chan);
1225 }
1226 
1227 /*
1228  * Render the EDC_ROUTE register in human-readable form.
1229  * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1230  */
1231 static void knl_show_edc_route(u32 reg, char *s)
1232 {
1233 	int i;
1234 
1235 	for (i = 0; i < KNL_MAX_EDCS; i++) {
1236 		s[i*2] = knl_get_edc_route(i, reg) + '0';
1237 		s[i*2+1] = '-';
1238 	}
1239 
1240 	s[KNL_MAX_EDCS*2 - 1] = '\0';
1241 }
1242 
1243 /*
1244  * Render the MC_ROUTE register in human-readable form.
1245  * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1246  */
1247 static void knl_show_mc_route(u32 reg, char *s)
1248 {
1249 	int i;
1250 
1251 	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
1252 		s[i*2] = knl_get_mc_route(i, reg) + '0';
1253 		s[i*2+1] = '-';
1254 	}
1255 
1256 	s[KNL_MAX_CHANNELS*2 - 1] = '\0';
1257 }
1258 
1259 #define KNL_EDC_ROUTE 0xb8
1260 #define KNL_MC_ROUTE 0xb4
1261 
1262 /* Is this dram rule backed by regular DRAM in flat mode? */
1263 #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1264 
1265 /* Is this dram rule cached? */
1266 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1267 
1268 /* Is this rule backed by edc ? */
1269 #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1270 
1271 /* Is this rule backed by DRAM, cacheable in EDRAM? */
1272 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1273 
1274 /* Is this rule mod3? */
1275 #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1276 
1277 /*
1278  * Figure out how big our RAM modules are.
1279  *
1280  * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1281  * have to figure this out from the SAD rules, interleave lists, route tables,
1282  * and TAD rules.
1283  *
1284  * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1285  * inspect the TAD rules to figure out how large the SAD regions really are.
1286  *
1287  * When we know the real size of a SAD region and how many ways it's
1288  * interleaved, we know the individual contribution of each channel to
1289  * TAD is size/ways.
1290  *
1291  * Finally, we have to check whether each channel participates in each SAD
1292  * region.
1293  *
1294  * Fortunately, KNL only supports one DIMM per channel, so once we know how
1295  * much memory the channel uses, we know the DIMM is at least that large.
1296  * (The BIOS might possibly choose not to map all available memory, in which
1297  * case we will underreport the size of the DIMM.)
1298  *
1299  * In theory, we could try to determine the EDC sizes as well, but that would
1300  * only work in flat mode, not in cache mode.
1301  *
1302  * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1303  *            elements)
1304  */
1305 static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
1306 {
1307 	u64 sad_base, sad_size, sad_limit = 0;
1308 	u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
1309 	int sad_rule = 0;
1310 	int tad_rule = 0;
1311 	int intrlv_ways, tad_ways;
1312 	u32 first_pkg, pkg;
1313 	int i;
1314 	u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
1315 	u32 dram_rule, interleave_reg;
1316 	u32 mc_route_reg[KNL_MAX_CHAS];
1317 	u32 edc_route_reg[KNL_MAX_CHAS];
1318 	int edram_only;
1319 	char edc_route_string[KNL_MAX_EDCS*2];
1320 	char mc_route_string[KNL_MAX_CHANNELS*2];
1321 	int cur_reg_start;
1322 	int mc;
1323 	int channel;
1324 	int participants[KNL_MAX_CHANNELS];
1325 
1326 	for (i = 0; i < KNL_MAX_CHANNELS; i++)
1327 		mc_sizes[i] = 0;
1328 
1329 	/* Read the EDC route table in each CHA. */
1330 	cur_reg_start = 0;
1331 	for (i = 0; i < KNL_MAX_CHAS; i++) {
1332 		pci_read_config_dword(pvt->knl.pci_cha[i],
1333 				KNL_EDC_ROUTE, &edc_route_reg[i]);
1334 
1335 		if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
1336 			knl_show_edc_route(edc_route_reg[i-1],
1337 					edc_route_string);
1338 			if (cur_reg_start == i-1)
1339 				edac_dbg(0, "edc route table for CHA %d: %s\n",
1340 					cur_reg_start, edc_route_string);
1341 			else
1342 				edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1343 					cur_reg_start, i-1, edc_route_string);
1344 			cur_reg_start = i;
1345 		}
1346 	}
1347 	knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
1348 	if (cur_reg_start == i-1)
1349 		edac_dbg(0, "edc route table for CHA %d: %s\n",
1350 			cur_reg_start, edc_route_string);
1351 	else
1352 		edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1353 			cur_reg_start, i-1, edc_route_string);
1354 
1355 	/* Read the MC route table in each CHA. */
1356 	cur_reg_start = 0;
1357 	for (i = 0; i < KNL_MAX_CHAS; i++) {
1358 		pci_read_config_dword(pvt->knl.pci_cha[i],
1359 			KNL_MC_ROUTE, &mc_route_reg[i]);
1360 
1361 		if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
1362 			knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1363 			if (cur_reg_start == i-1)
1364 				edac_dbg(0, "mc route table for CHA %d: %s\n",
1365 					cur_reg_start, mc_route_string);
1366 			else
1367 				edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1368 					cur_reg_start, i-1, mc_route_string);
1369 			cur_reg_start = i;
1370 		}
1371 	}
1372 	knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1373 	if (cur_reg_start == i-1)
1374 		edac_dbg(0, "mc route table for CHA %d: %s\n",
1375 			cur_reg_start, mc_route_string);
1376 	else
1377 		edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1378 			cur_reg_start, i-1, mc_route_string);
1379 
1380 	/* Process DRAM rules */
1381 	for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
1382 		/* previous limit becomes the new base */
1383 		sad_base = sad_limit;
1384 
1385 		pci_read_config_dword(pvt->pci_sad0,
1386 			pvt->info.dram_rule[sad_rule], &dram_rule);
1387 
1388 		if (!DRAM_RULE_ENABLE(dram_rule))
1389 			break;
1390 
1391 		edram_only = KNL_EDRAM_ONLY(dram_rule);
1392 
1393 		sad_limit = pvt->info.sad_limit(dram_rule)+1;
1394 		sad_size = sad_limit - sad_base;
1395 
1396 		pci_read_config_dword(pvt->pci_sad0,
1397 			pvt->info.interleave_list[sad_rule], &interleave_reg);
1398 
1399 		/*
1400 		 * Find out how many ways this dram rule is interleaved.
1401 		 * We stop when we see the first channel again.
1402 		 */
1403 		first_pkg = sad_pkg(pvt->info.interleave_pkg,
1404 						interleave_reg, 0);
1405 		for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
1406 			pkg = sad_pkg(pvt->info.interleave_pkg,
1407 						interleave_reg, intrlv_ways);
1408 
1409 			if ((pkg & 0x8) == 0) {
1410 				/*
1411 				 * 0 bit means memory is non-local,
1412 				 * which KNL doesn't support
1413 				 */
1414 				edac_dbg(0, "Unexpected interleave target %d\n",
1415 					pkg);
1416 				return -1;
1417 			}
1418 
1419 			if (pkg == first_pkg)
1420 				break;
1421 		}
1422 		if (KNL_MOD3(dram_rule))
1423 			intrlv_ways *= 3;
1424 
1425 		edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1426 			sad_rule,
1427 			sad_base,
1428 			sad_limit,
1429 			intrlv_ways,
1430 			edram_only ? ", EDRAM" : "");
1431 
1432 		/*
1433 		 * Find out how big the SAD region really is by iterating
1434 		 * over TAD tables (SAD regions may contain holes).
1435 		 * Each memory controller might have a different TAD table, so
1436 		 * we have to look at both.
1437 		 *
1438 		 * Livespace is the memory that's mapped in this TAD table,
1439 		 * deadspace is the holes (this could be the MMIO hole, or it
1440 		 * could be memory that's mapped by the other TAD table but
1441 		 * not this one).
1442 		 */
1443 		for (mc = 0; mc < 2; mc++) {
1444 			sad_actual_size[mc] = 0;
1445 			tad_livespace = 0;
1446 			for (tad_rule = 0;
1447 					tad_rule < ARRAY_SIZE(
1448 						knl_tad_dram_limit_lo);
1449 					tad_rule++) {
1450 				if (knl_get_tad(pvt,
1451 						tad_rule,
1452 						mc,
1453 						&tad_deadspace,
1454 						&tad_limit,
1455 						&tad_ways))
1456 					break;
1457 
1458 				tad_size = (tad_limit+1) -
1459 					(tad_livespace + tad_deadspace);
1460 				tad_livespace += tad_size;
1461 				tad_base = (tad_limit+1) - tad_size;
1462 
1463 				if (tad_base < sad_base) {
1464 					if (tad_limit > sad_base)
1465 						edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1466 				} else if (tad_base < sad_limit) {
1467 					if (tad_limit+1 > sad_limit) {
1468 						edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1469 					} else {
1470 						/* TAD region is completely inside SAD region */
1471 						edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1472 							tad_rule, tad_base,
1473 							tad_limit, tad_size,
1474 							mc);
1475 						sad_actual_size[mc] += tad_size;
1476 					}
1477 				}
1478 				tad_base = tad_limit+1;
1479 			}
1480 		}
1481 
1482 		for (mc = 0; mc < 2; mc++) {
1483 			edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1484 				mc, sad_actual_size[mc], sad_actual_size[mc]);
1485 		}
1486 
1487 		/* Ignore EDRAM rule */
1488 		if (edram_only)
1489 			continue;
1490 
1491 		/* Figure out which channels participate in interleave. */
1492 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
1493 			participants[channel] = 0;
1494 
1495 		/* For each channel, does at least one CHA have
1496 		 * this channel mapped to the given target?
1497 		 */
1498 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1499 			int target;
1500 			int cha;
1501 
1502 			for (target = 0; target < KNL_MAX_CHANNELS; target++) {
1503 				for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
1504 					if (knl_get_mc_route(target,
1505 						mc_route_reg[cha]) == channel
1506 						&& !participants[channel]) {
1507 						participants[channel] = 1;
1508 						break;
1509 					}
1510 				}
1511 			}
1512 		}
1513 
1514 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1515 			mc = knl_channel_mc(channel);
1516 			if (participants[channel]) {
1517 				edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1518 					channel,
1519 					sad_actual_size[mc]/intrlv_ways,
1520 					sad_rule);
1521 				mc_sizes[channel] +=
1522 					sad_actual_size[mc]/intrlv_ways;
1523 			}
1524 		}
1525 	}
1526 
1527 	return 0;
1528 }
1529 
1530 static void get_source_id(struct mem_ctl_info *mci)
1531 {
1532 	struct sbridge_pvt *pvt = mci->pvt_info;
1533 	u32 reg;
1534 
1535 	if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
1536 	    pvt->info.type == KNIGHTS_LANDING)
1537 		pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
1538 	else
1539 		pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
1540 
1541 	if (pvt->info.type == KNIGHTS_LANDING)
1542 		pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
1543 	else
1544 		pvt->sbridge_dev->source_id = SOURCE_ID(reg);
1545 }
1546 
1547 static int __populate_dimms(struct mem_ctl_info *mci,
1548 			    u64 knl_mc_sizes[KNL_MAX_CHANNELS],
1549 			    enum edac_type mode)
1550 {
1551 	struct sbridge_pvt *pvt = mci->pvt_info;
1552 	int channels = pvt->info.type == KNIGHTS_LANDING ? KNL_MAX_CHANNELS
1553 							 : NUM_CHANNELS;
1554 	unsigned int i, j, banks, ranks, rows, cols, npages;
1555 	struct dimm_info *dimm;
1556 	enum mem_type mtype;
1557 	u64 size;
1558 
1559 	mtype = pvt->info.get_memory_type(pvt);
1560 	if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
1561 		edac_dbg(0, "Memory is registered\n");
1562 	else if (mtype == MEM_UNKNOWN)
1563 		edac_dbg(0, "Cannot determine memory type\n");
1564 	else
1565 		edac_dbg(0, "Memory is unregistered\n");
1566 
1567 	if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
1568 		banks = 16;
1569 	else
1570 		banks = 8;
1571 
1572 	for (i = 0; i < channels; i++) {
1573 		u32 mtr;
1574 
1575 		int max_dimms_per_channel;
1576 
1577 		if (pvt->info.type == KNIGHTS_LANDING) {
1578 			max_dimms_per_channel = 1;
1579 			if (!pvt->knl.pci_channel[i])
1580 				continue;
1581 		} else {
1582 			max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
1583 			if (!pvt->pci_tad[i])
1584 				continue;
1585 		}
1586 
1587 		for (j = 0; j < max_dimms_per_channel; j++) {
1588 			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, j, 0);
1589 			if (pvt->info.type == KNIGHTS_LANDING) {
1590 				pci_read_config_dword(pvt->knl.pci_channel[i],
1591 					knl_mtr_reg, &mtr);
1592 			} else {
1593 				pci_read_config_dword(pvt->pci_tad[i],
1594 					mtr_regs[j], &mtr);
1595 			}
1596 			edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
1597 			if (IS_DIMM_PRESENT(mtr)) {
1598 				if (!IS_ECC_ENABLED(pvt->info.mcmtr)) {
1599 					sbridge_printk(KERN_ERR, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
1600 						       pvt->sbridge_dev->source_id,
1601 						       pvt->sbridge_dev->dom, i);
1602 					return -ENODEV;
1603 				}
1604 				pvt->channel[i].dimms++;
1605 
1606 				ranks = numrank(pvt->info.type, mtr);
1607 
1608 				if (pvt->info.type == KNIGHTS_LANDING) {
1609 					/* For DDR4, this is fixed. */
1610 					cols = 1 << 10;
1611 					rows = knl_mc_sizes[i] /
1612 						((u64) cols * ranks * banks * 8);
1613 				} else {
1614 					rows = numrow(mtr);
1615 					cols = numcol(mtr);
1616 				}
1617 
1618 				size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1619 				npages = MiB_TO_PAGES(size);
1620 
1621 				edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1622 					 pvt->sbridge_dev->mc, pvt->sbridge_dev->dom, i, j,
1623 					 size, npages,
1624 					 banks, ranks, rows, cols);
1625 
1626 				dimm->nr_pages = npages;
1627 				dimm->grain = 32;
1628 				dimm->dtype = pvt->info.get_width(pvt, mtr);
1629 				dimm->mtype = mtype;
1630 				dimm->edac_mode = mode;
1631 				snprintf(dimm->label, sizeof(dimm->label),
1632 						 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1633 						 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom, i, j);
1634 			}
1635 		}
1636 	}
1637 
1638 	return 0;
1639 }
1640 
1641 static int get_dimm_config(struct mem_ctl_info *mci)
1642 {
1643 	struct sbridge_pvt *pvt = mci->pvt_info;
1644 	u64 knl_mc_sizes[KNL_MAX_CHANNELS];
1645 	enum edac_type mode;
1646 	u32 reg;
1647 
1648 	pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
1649 	edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1650 		 pvt->sbridge_dev->mc,
1651 		 pvt->sbridge_dev->node_id,
1652 		 pvt->sbridge_dev->source_id);
1653 
1654 	/* KNL doesn't support mirroring or lockstep,
1655 	 * and is always closed page
1656 	 */
1657 	if (pvt->info.type == KNIGHTS_LANDING) {
1658 		mode = EDAC_S4ECD4ED;
1659 		pvt->mirror_mode = NON_MIRRORING;
1660 		pvt->is_cur_addr_mirrored = false;
1661 
1662 		if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
1663 			return -1;
1664 		if (pci_read_config_dword(pvt->pci_ta, KNL_MCMTR, &pvt->info.mcmtr)) {
1665 			edac_dbg(0, "Failed to read KNL_MCMTR register\n");
1666 			return -ENODEV;
1667 		}
1668 	} else {
1669 		if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1670 			if (pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg)) {
1671 				edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n");
1672 				return -ENODEV;
1673 			}
1674 			pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
1675 			if (GET_BITFIELD(reg, 28, 28)) {
1676 				pvt->mirror_mode = ADDR_RANGE_MIRRORING;
1677 				edac_dbg(0, "Address range partial memory mirroring is enabled\n");
1678 				goto next;
1679 			}
1680 		}
1681 		if (pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg)) {
1682 			edac_dbg(0, "Failed to read RASENABLES register\n");
1683 			return -ENODEV;
1684 		}
1685 		if (IS_MIRROR_ENABLED(reg)) {
1686 			pvt->mirror_mode = FULL_MIRRORING;
1687 			edac_dbg(0, "Full memory mirroring is enabled\n");
1688 		} else {
1689 			pvt->mirror_mode = NON_MIRRORING;
1690 			edac_dbg(0, "Memory mirroring is disabled\n");
1691 		}
1692 
1693 next:
1694 		if (pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr)) {
1695 			edac_dbg(0, "Failed to read MCMTR register\n");
1696 			return -ENODEV;
1697 		}
1698 		if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
1699 			edac_dbg(0, "Lockstep is enabled\n");
1700 			mode = EDAC_S8ECD8ED;
1701 			pvt->is_lockstep = true;
1702 		} else {
1703 			edac_dbg(0, "Lockstep is disabled\n");
1704 			mode = EDAC_S4ECD4ED;
1705 			pvt->is_lockstep = false;
1706 		}
1707 		if (IS_CLOSE_PG(pvt->info.mcmtr)) {
1708 			edac_dbg(0, "address map is on closed page mode\n");
1709 			pvt->is_close_pg = true;
1710 		} else {
1711 			edac_dbg(0, "address map is on open page mode\n");
1712 			pvt->is_close_pg = false;
1713 		}
1714 	}
1715 
1716 	return __populate_dimms(mci, knl_mc_sizes, mode);
1717 }
1718 
1719 static void get_memory_layout(const struct mem_ctl_info *mci)
1720 {
1721 	struct sbridge_pvt *pvt = mci->pvt_info;
1722 	int i, j, k, n_sads, n_tads, sad_interl;
1723 	u32 reg;
1724 	u64 limit, prv = 0;
1725 	u64 tmp_mb;
1726 	u32 gb, mb;
1727 	u32 rir_way;
1728 
1729 	/*
1730 	 * Step 1) Get TOLM/TOHM ranges
1731 	 */
1732 
1733 	pvt->tolm = pvt->info.get_tolm(pvt);
1734 	tmp_mb = (1 + pvt->tolm) >> 20;
1735 
1736 	gb = div_u64_rem(tmp_mb, 1024, &mb);
1737 	edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1738 		gb, (mb*1000)/1024, (u64)pvt->tolm);
1739 
1740 	/* Address range is already 45:25 */
1741 	pvt->tohm = pvt->info.get_tohm(pvt);
1742 	tmp_mb = (1 + pvt->tohm) >> 20;
1743 
1744 	gb = div_u64_rem(tmp_mb, 1024, &mb);
1745 	edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1746 		gb, (mb*1000)/1024, (u64)pvt->tohm);
1747 
1748 	/*
1749 	 * Step 2) Get SAD range and SAD Interleave list
1750 	 * TAD registers contain the interleave wayness. However, it
1751 	 * seems simpler to just discover it indirectly, with the
1752 	 * algorithm bellow.
1753 	 */
1754 	prv = 0;
1755 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1756 		/* SAD_LIMIT Address range is 45:26 */
1757 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1758 				      &reg);
1759 		limit = pvt->info.sad_limit(reg);
1760 
1761 		if (!DRAM_RULE_ENABLE(reg))
1762 			continue;
1763 
1764 		if (limit <= prv)
1765 			break;
1766 
1767 		tmp_mb = (limit + 1) >> 20;
1768 		gb = div_u64_rem(tmp_mb, 1024, &mb);
1769 		edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1770 			 n_sads,
1771 			 show_dram_attr(pvt->info.dram_attr(reg)),
1772 			 gb, (mb*1000)/1024,
1773 			 ((u64)tmp_mb) << 20L,
1774 			 get_intlv_mode_str(reg, pvt->info.type),
1775 			 reg);
1776 		prv = limit;
1777 
1778 		pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1779 				      &reg);
1780 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1781 		for (j = 0; j < 8; j++) {
1782 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1783 			if (j > 0 && sad_interl == pkg)
1784 				break;
1785 
1786 			edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1787 				 n_sads, j, pkg);
1788 		}
1789 	}
1790 
1791 	if (pvt->info.type == KNIGHTS_LANDING)
1792 		return;
1793 
1794 	/*
1795 	 * Step 3) Get TAD range
1796 	 */
1797 	prv = 0;
1798 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1799 		pci_read_config_dword(pvt->pci_ha, tad_dram_rule[n_tads], &reg);
1800 		limit = TAD_LIMIT(reg);
1801 		if (limit <= prv)
1802 			break;
1803 		tmp_mb = (limit + 1) >> 20;
1804 
1805 		gb = div_u64_rem(tmp_mb, 1024, &mb);
1806 		edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1807 			 n_tads, gb, (mb*1000)/1024,
1808 			 ((u64)tmp_mb) << 20L,
1809 			 (u32)(1 << TAD_SOCK(reg)),
1810 			 (u32)TAD_CH(reg) + 1,
1811 			 (u32)TAD_TGT0(reg),
1812 			 (u32)TAD_TGT1(reg),
1813 			 (u32)TAD_TGT2(reg),
1814 			 (u32)TAD_TGT3(reg),
1815 			 reg);
1816 		prv = limit;
1817 	}
1818 
1819 	/*
1820 	 * Step 4) Get TAD offsets, per each channel
1821 	 */
1822 	for (i = 0; i < NUM_CHANNELS; i++) {
1823 		if (!pvt->channel[i].dimms)
1824 			continue;
1825 		for (j = 0; j < n_tads; j++) {
1826 			pci_read_config_dword(pvt->pci_tad[i],
1827 					      tad_ch_nilv_offset[j],
1828 					      &reg);
1829 			tmp_mb = TAD_OFFSET(reg) >> 20;
1830 			gb = div_u64_rem(tmp_mb, 1024, &mb);
1831 			edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1832 				 i, j,
1833 				 gb, (mb*1000)/1024,
1834 				 ((u64)tmp_mb) << 20L,
1835 				 reg);
1836 		}
1837 	}
1838 
1839 	/*
1840 	 * Step 6) Get RIR Wayness/Limit, per each channel
1841 	 */
1842 	for (i = 0; i < NUM_CHANNELS; i++) {
1843 		if (!pvt->channel[i].dimms)
1844 			continue;
1845 		for (j = 0; j < MAX_RIR_RANGES; j++) {
1846 			pci_read_config_dword(pvt->pci_tad[i],
1847 					      rir_way_limit[j],
1848 					      &reg);
1849 
1850 			if (!IS_RIR_VALID(reg))
1851 				continue;
1852 
1853 			tmp_mb = pvt->info.rir_limit(reg) >> 20;
1854 			rir_way = 1 << RIR_WAY(reg);
1855 			gb = div_u64_rem(tmp_mb, 1024, &mb);
1856 			edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1857 				 i, j,
1858 				 gb, (mb*1000)/1024,
1859 				 ((u64)tmp_mb) << 20L,
1860 				 rir_way,
1861 				 reg);
1862 
1863 			for (k = 0; k < rir_way; k++) {
1864 				pci_read_config_dword(pvt->pci_tad[i],
1865 						      rir_offset[j][k],
1866 						      &reg);
1867 				tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;
1868 
1869 				gb = div_u64_rem(tmp_mb, 1024, &mb);
1870 				edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1871 					 i, j, k,
1872 					 gb, (mb*1000)/1024,
1873 					 ((u64)tmp_mb) << 20L,
1874 					 (u32)RIR_RNK_TGT(pvt->info.type, reg),
1875 					 reg);
1876 			}
1877 		}
1878 	}
1879 }
1880 
1881 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id, u8 ha)
1882 {
1883 	struct sbridge_dev *sbridge_dev;
1884 
1885 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1886 		if (sbridge_dev->node_id == node_id && sbridge_dev->dom == ha)
1887 			return sbridge_dev->mci;
1888 	}
1889 	return NULL;
1890 }
1891 
1892 static int get_memory_error_data(struct mem_ctl_info *mci,
1893 				 u64 addr,
1894 				 u8 *socket, u8 *ha,
1895 				 long *channel_mask,
1896 				 u8 *rank,
1897 				 char **area_type, char *msg)
1898 {
1899 	struct mem_ctl_info	*new_mci;
1900 	struct sbridge_pvt *pvt = mci->pvt_info;
1901 	struct pci_dev		*pci_ha;
1902 	int			n_rir, n_sads, n_tads, sad_way, sck_xch;
1903 	int			sad_interl, idx, base_ch;
1904 	int			interleave_mode, shiftup = 0;
1905 	unsigned int		sad_interleave[MAX_INTERLEAVE];
1906 	u32			reg, dram_rule;
1907 	u8			ch_way, sck_way, pkg, sad_ha = 0;
1908 	u32			tad_offset;
1909 	u32			rir_way;
1910 	u32			mb, gb;
1911 	u64			ch_addr, offset, limit = 0, prv = 0;
1912 
1913 
1914 	/*
1915 	 * Step 0) Check if the address is at special memory ranges
1916 	 * The check bellow is probably enough to fill all cases where
1917 	 * the error is not inside a memory, except for the legacy
1918 	 * range (e. g. VGA addresses). It is unlikely, however, that the
1919 	 * memory controller would generate an error on that range.
1920 	 */
1921 	if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1922 		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
1923 		return -EINVAL;
1924 	}
1925 	if (addr >= (u64)pvt->tohm) {
1926 		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
1927 		return -EINVAL;
1928 	}
1929 
1930 	/*
1931 	 * Step 1) Get socket
1932 	 */
1933 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1934 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1935 				      &reg);
1936 
1937 		if (!DRAM_RULE_ENABLE(reg))
1938 			continue;
1939 
1940 		limit = pvt->info.sad_limit(reg);
1941 		if (limit <= prv) {
1942 			sprintf(msg, "Can't discover the memory socket");
1943 			return -EINVAL;
1944 		}
1945 		if  (addr <= limit)
1946 			break;
1947 		prv = limit;
1948 	}
1949 	if (n_sads == pvt->info.max_sad) {
1950 		sprintf(msg, "Can't discover the memory socket");
1951 		return -EINVAL;
1952 	}
1953 	dram_rule = reg;
1954 	*area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
1955 	interleave_mode = pvt->info.interleave_mode(dram_rule);
1956 
1957 	pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1958 			      &reg);
1959 
1960 	if (pvt->info.type == SANDY_BRIDGE) {
1961 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1962 		for (sad_way = 0; sad_way < 8; sad_way++) {
1963 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
1964 			if (sad_way > 0 && sad_interl == pkg)
1965 				break;
1966 			sad_interleave[sad_way] = pkg;
1967 			edac_dbg(0, "SAD interleave #%d: %d\n",
1968 				 sad_way, sad_interleave[sad_way]);
1969 		}
1970 		edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
1971 			 pvt->sbridge_dev->mc,
1972 			 n_sads,
1973 			 addr,
1974 			 limit,
1975 			 sad_way + 7,
1976 			 !interleave_mode ? "" : "XOR[18:16]");
1977 		if (interleave_mode)
1978 			idx = ((addr >> 6) ^ (addr >> 16)) & 7;
1979 		else
1980 			idx = (addr >> 6) & 7;
1981 		switch (sad_way) {
1982 		case 1:
1983 			idx = 0;
1984 			break;
1985 		case 2:
1986 			idx = idx & 1;
1987 			break;
1988 		case 4:
1989 			idx = idx & 3;
1990 			break;
1991 		case 8:
1992 			break;
1993 		default:
1994 			sprintf(msg, "Can't discover socket interleave");
1995 			return -EINVAL;
1996 		}
1997 		*socket = sad_interleave[idx];
1998 		edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
1999 			 idx, sad_way, *socket);
2000 	} else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
2001 		int bits, a7mode = A7MODE(dram_rule);
2002 
2003 		if (a7mode) {
2004 			/* A7 mode swaps P9 with P6 */
2005 			bits = GET_BITFIELD(addr, 7, 8) << 1;
2006 			bits |= GET_BITFIELD(addr, 9, 9);
2007 		} else
2008 			bits = GET_BITFIELD(addr, 6, 8);
2009 
2010 		if (interleave_mode == 0) {
2011 			/* interleave mode will XOR {8,7,6} with {18,17,16} */
2012 			idx = GET_BITFIELD(addr, 16, 18);
2013 			idx ^= bits;
2014 		} else
2015 			idx = bits;
2016 
2017 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2018 		*socket = sad_pkg_socket(pkg);
2019 		sad_ha = sad_pkg_ha(pkg);
2020 
2021 		if (a7mode) {
2022 			/* MCChanShiftUpEnable */
2023 			pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg);
2024 			shiftup = GET_BITFIELD(reg, 22, 22);
2025 		}
2026 
2027 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2028 			 idx, *socket, sad_ha, shiftup);
2029 	} else {
2030 		/* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2031 		idx = (addr >> 6) & 7;
2032 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2033 		*socket = sad_pkg_socket(pkg);
2034 		sad_ha = sad_pkg_ha(pkg);
2035 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2036 			 idx, *socket, sad_ha);
2037 	}
2038 
2039 	*ha = sad_ha;
2040 
2041 	/*
2042 	 * Move to the proper node structure, in order to access the
2043 	 * right PCI registers
2044 	 */
2045 	new_mci = get_mci_for_node_id(*socket, sad_ha);
2046 	if (!new_mci) {
2047 		sprintf(msg, "Struct for socket #%u wasn't initialized",
2048 			*socket);
2049 		return -EINVAL;
2050 	}
2051 	mci = new_mci;
2052 	pvt = mci->pvt_info;
2053 
2054 	/*
2055 	 * Step 2) Get memory channel
2056 	 */
2057 	prv = 0;
2058 	pci_ha = pvt->pci_ha;
2059 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
2060 		pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
2061 		limit = TAD_LIMIT(reg);
2062 		if (limit <= prv) {
2063 			sprintf(msg, "Can't discover the memory channel");
2064 			return -EINVAL;
2065 		}
2066 		if  (addr <= limit)
2067 			break;
2068 		prv = limit;
2069 	}
2070 	if (n_tads == MAX_TAD) {
2071 		sprintf(msg, "Can't discover the memory channel");
2072 		return -EINVAL;
2073 	}
2074 
2075 	ch_way = TAD_CH(reg) + 1;
2076 	sck_way = TAD_SOCK(reg);
2077 
2078 	if (ch_way == 3)
2079 		idx = addr >> 6;
2080 	else {
2081 		idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
2082 		if (pvt->is_chan_hash)
2083 			idx = haswell_chan_hash(idx, addr);
2084 	}
2085 	idx = idx % ch_way;
2086 
2087 	/*
2088 	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2089 	 */
2090 	switch (idx) {
2091 	case 0:
2092 		base_ch = TAD_TGT0(reg);
2093 		break;
2094 	case 1:
2095 		base_ch = TAD_TGT1(reg);
2096 		break;
2097 	case 2:
2098 		base_ch = TAD_TGT2(reg);
2099 		break;
2100 	case 3:
2101 		base_ch = TAD_TGT3(reg);
2102 		break;
2103 	default:
2104 		sprintf(msg, "Can't discover the TAD target");
2105 		return -EINVAL;
2106 	}
2107 	*channel_mask = 1 << base_ch;
2108 
2109 	pci_read_config_dword(pvt->pci_tad[base_ch], tad_ch_nilv_offset[n_tads], &tad_offset);
2110 
2111 	if (pvt->mirror_mode == FULL_MIRRORING ||
2112 	    (pvt->mirror_mode == ADDR_RANGE_MIRRORING && n_tads == 0)) {
2113 		*channel_mask |= 1 << ((base_ch + 2) % 4);
2114 		switch(ch_way) {
2115 		case 2:
2116 		case 4:
2117 			sck_xch = (1 << sck_way) * (ch_way >> 1);
2118 			break;
2119 		default:
2120 			sprintf(msg, "Invalid mirror set. Can't decode addr");
2121 			return -EINVAL;
2122 		}
2123 
2124 		pvt->is_cur_addr_mirrored = true;
2125 	} else {
2126 		sck_xch = (1 << sck_way) * ch_way;
2127 		pvt->is_cur_addr_mirrored = false;
2128 	}
2129 
2130 	if (pvt->is_lockstep)
2131 		*channel_mask |= 1 << ((base_ch + 1) % 4);
2132 
2133 	offset = TAD_OFFSET(tad_offset);
2134 
2135 	edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2136 		 n_tads,
2137 		 addr,
2138 		 limit,
2139 		 sck_way,
2140 		 ch_way,
2141 		 offset,
2142 		 idx,
2143 		 base_ch,
2144 		 *channel_mask);
2145 
2146 	/* Calculate channel address */
2147 	/* Remove the TAD offset */
2148 
2149 	if (offset > addr) {
2150 		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2151 			offset, addr);
2152 		return -EINVAL;
2153 	}
2154 
2155 	ch_addr = addr - offset;
2156 	ch_addr >>= (6 + shiftup);
2157 	ch_addr /= sck_xch;
2158 	ch_addr <<= (6 + shiftup);
2159 	ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
2160 
2161 	/*
2162 	 * Step 3) Decode rank
2163 	 */
2164 	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
2165 		pci_read_config_dword(pvt->pci_tad[base_ch], rir_way_limit[n_rir], &reg);
2166 
2167 		if (!IS_RIR_VALID(reg))
2168 			continue;
2169 
2170 		limit = pvt->info.rir_limit(reg);
2171 		gb = div_u64_rem(limit >> 20, 1024, &mb);
2172 		edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2173 			 n_rir,
2174 			 gb, (mb*1000)/1024,
2175 			 limit,
2176 			 1 << RIR_WAY(reg));
2177 		if  (ch_addr <= limit)
2178 			break;
2179 	}
2180 	if (n_rir == MAX_RIR_RANGES) {
2181 		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
2182 			ch_addr);
2183 		return -EINVAL;
2184 	}
2185 	rir_way = RIR_WAY(reg);
2186 
2187 	if (pvt->is_close_pg)
2188 		idx = (ch_addr >> 6);
2189 	else
2190 		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
2191 	idx %= 1 << rir_way;
2192 
2193 	pci_read_config_dword(pvt->pci_tad[base_ch], rir_offset[n_rir][idx], &reg);
2194 	*rank = RIR_RNK_TGT(pvt->info.type, reg);
2195 
2196 	edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2197 		 n_rir,
2198 		 ch_addr,
2199 		 limit,
2200 		 rir_way,
2201 		 idx);
2202 
2203 	return 0;
2204 }
2205 
2206 /****************************************************************************
2207 	Device initialization routines: put/get, init/exit
2208  ****************************************************************************/
2209 
2210 /*
2211  *	sbridge_put_all_devices	'put' all the devices that we have
2212  *				reserved via 'get'
2213  */
2214 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
2215 {
2216 	int i;
2217 
2218 	edac_dbg(0, "\n");
2219 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2220 		struct pci_dev *pdev = sbridge_dev->pdev[i];
2221 		if (!pdev)
2222 			continue;
2223 		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2224 			 pdev->bus->number,
2225 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2226 		pci_dev_put(pdev);
2227 	}
2228 }
2229 
2230 static void sbridge_put_all_devices(void)
2231 {
2232 	struct sbridge_dev *sbridge_dev, *tmp;
2233 
2234 	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
2235 		sbridge_put_devices(sbridge_dev);
2236 		free_sbridge_dev(sbridge_dev);
2237 	}
2238 }
2239 
2240 static int sbridge_get_onedevice(struct pci_dev **prev,
2241 				 u8 *num_mc,
2242 				 const struct pci_id_table *table,
2243 				 const unsigned devno,
2244 				 const int multi_bus)
2245 {
2246 	struct sbridge_dev *sbridge_dev = NULL;
2247 	const struct pci_id_descr *dev_descr = &table->descr[devno];
2248 	struct pci_dev *pdev = NULL;
2249 	u8 bus = 0;
2250 	int i = 0;
2251 
2252 	sbridge_printk(KERN_DEBUG,
2253 		"Seeking for: PCI ID %04x:%04x\n",
2254 		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2255 
2256 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
2257 			      dev_descr->dev_id, *prev);
2258 
2259 	if (!pdev) {
2260 		if (*prev) {
2261 			*prev = pdev;
2262 			return 0;
2263 		}
2264 
2265 		if (dev_descr->optional)
2266 			return 0;
2267 
2268 		/* if the HA wasn't found */
2269 		if (devno == 0)
2270 			return -ENODEV;
2271 
2272 		sbridge_printk(KERN_INFO,
2273 			"Device not found: %04x:%04x\n",
2274 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2275 
2276 		/* End of list, leave */
2277 		return -ENODEV;
2278 	}
2279 	bus = pdev->bus->number;
2280 
2281 next_imc:
2282 	sbridge_dev = get_sbridge_dev(bus, dev_descr->dom, multi_bus, sbridge_dev);
2283 	if (!sbridge_dev) {
2284 		/* If the HA1 wasn't found, don't create EDAC second memory controller */
2285 		if (dev_descr->dom == IMC1 && devno != 1) {
2286 			edac_dbg(0, "Skip IMC1: %04x:%04x (since HA1 was absent)\n",
2287 				 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2288 			pci_dev_put(pdev);
2289 			return 0;
2290 		}
2291 
2292 		if (dev_descr->dom == SOCK)
2293 			goto out_imc;
2294 
2295 		sbridge_dev = alloc_sbridge_dev(bus, dev_descr->dom, table);
2296 		if (!sbridge_dev) {
2297 			pci_dev_put(pdev);
2298 			return -ENOMEM;
2299 		}
2300 		(*num_mc)++;
2301 	}
2302 
2303 	if (sbridge_dev->pdev[sbridge_dev->i_devs]) {
2304 		sbridge_printk(KERN_ERR,
2305 			"Duplicated device for %04x:%04x\n",
2306 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2307 		pci_dev_put(pdev);
2308 		return -ENODEV;
2309 	}
2310 
2311 	sbridge_dev->pdev[sbridge_dev->i_devs++] = pdev;
2312 
2313 	/* pdev belongs to more than one IMC, do extra gets */
2314 	if (++i > 1)
2315 		pci_dev_get(pdev);
2316 
2317 	if (dev_descr->dom == SOCK && i < table->n_imcs_per_sock)
2318 		goto next_imc;
2319 
2320 out_imc:
2321 	/* Be sure that the device is enabled */
2322 	if (unlikely(pci_enable_device(pdev) < 0)) {
2323 		sbridge_printk(KERN_ERR,
2324 			"Couldn't enable %04x:%04x\n",
2325 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2326 		return -ENODEV;
2327 	}
2328 
2329 	edac_dbg(0, "Detected %04x:%04x\n",
2330 		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2331 
2332 	/*
2333 	 * As stated on drivers/pci/search.c, the reference count for
2334 	 * @from is always decremented if it is not %NULL. So, as we need
2335 	 * to get all devices up to null, we need to do a get for the device
2336 	 */
2337 	pci_dev_get(pdev);
2338 
2339 	*prev = pdev;
2340 
2341 	return 0;
2342 }
2343 
2344 /*
2345  * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2346  *			     devices we want to reference for this driver.
2347  * @num_mc: pointer to the memory controllers count, to be incremented in case
2348  *	    of success.
2349  * @table: model specific table
2350  *
2351  * returns 0 in case of success or error code
2352  */
2353 static int sbridge_get_all_devices(u8 *num_mc,
2354 					const struct pci_id_table *table)
2355 {
2356 	int i, rc;
2357 	struct pci_dev *pdev = NULL;
2358 	int allow_dups = 0;
2359 	int multi_bus = 0;
2360 
2361 	if (table->type == KNIGHTS_LANDING)
2362 		allow_dups = multi_bus = 1;
2363 	while (table && table->descr) {
2364 		for (i = 0; i < table->n_devs_per_sock; i++) {
2365 			if (!allow_dups || i == 0 ||
2366 					table->descr[i].dev_id !=
2367 						table->descr[i-1].dev_id) {
2368 				pdev = NULL;
2369 			}
2370 			do {
2371 				rc = sbridge_get_onedevice(&pdev, num_mc,
2372 							   table, i, multi_bus);
2373 				if (rc < 0) {
2374 					if (i == 0) {
2375 						i = table->n_devs_per_sock;
2376 						break;
2377 					}
2378 					sbridge_put_all_devices();
2379 					return -ENODEV;
2380 				}
2381 			} while (pdev && !allow_dups);
2382 		}
2383 		table++;
2384 	}
2385 
2386 	return 0;
2387 }
2388 
2389 /*
2390  * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
2391  * the format: XXXa. So we can convert from a device to the corresponding
2392  * channel like this
2393  */
2394 #define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)
2395 
2396 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
2397 				 struct sbridge_dev *sbridge_dev)
2398 {
2399 	struct sbridge_pvt *pvt = mci->pvt_info;
2400 	struct pci_dev *pdev;
2401 	u8 saw_chan_mask = 0;
2402 	int i;
2403 
2404 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2405 		pdev = sbridge_dev->pdev[i];
2406 		if (!pdev)
2407 			continue;
2408 
2409 		switch (pdev->device) {
2410 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
2411 			pvt->pci_sad0 = pdev;
2412 			break;
2413 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
2414 			pvt->pci_sad1 = pdev;
2415 			break;
2416 		case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
2417 			pvt->pci_br0 = pdev;
2418 			break;
2419 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2420 			pvt->pci_ha = pdev;
2421 			break;
2422 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
2423 			pvt->pci_ta = pdev;
2424 			break;
2425 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
2426 			pvt->pci_ras = pdev;
2427 			break;
2428 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
2429 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
2430 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
2431 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
2432 		{
2433 			int id = TAD_DEV_TO_CHAN(pdev->device);
2434 			pvt->pci_tad[id] = pdev;
2435 			saw_chan_mask |= 1 << id;
2436 		}
2437 			break;
2438 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
2439 			pvt->pci_ddrio = pdev;
2440 			break;
2441 		default:
2442 			goto error;
2443 		}
2444 
2445 		edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2446 			 pdev->vendor, pdev->device,
2447 			 sbridge_dev->bus,
2448 			 pdev);
2449 	}
2450 
2451 	/* Check if everything were registered */
2452 	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha ||
2453 	    !pvt->pci_ras || !pvt->pci_ta)
2454 		goto enodev;
2455 
2456 	if (saw_chan_mask != 0x0f)
2457 		goto enodev;
2458 	return 0;
2459 
2460 enodev:
2461 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2462 	return -ENODEV;
2463 
2464 error:
2465 	sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
2466 		       PCI_VENDOR_ID_INTEL, pdev->device);
2467 	return -EINVAL;
2468 }
2469 
2470 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
2471 				 struct sbridge_dev *sbridge_dev)
2472 {
2473 	struct sbridge_pvt *pvt = mci->pvt_info;
2474 	struct pci_dev *pdev;
2475 	u8 saw_chan_mask = 0;
2476 	int i;
2477 
2478 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2479 		pdev = sbridge_dev->pdev[i];
2480 		if (!pdev)
2481 			continue;
2482 
2483 		switch (pdev->device) {
2484 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
2485 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
2486 			pvt->pci_ha = pdev;
2487 			break;
2488 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2489 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA:
2490 			pvt->pci_ta = pdev;
2491 			break;
2492 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
2493 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS:
2494 			pvt->pci_ras = pdev;
2495 			break;
2496 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
2497 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
2498 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
2499 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
2500 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
2501 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
2502 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
2503 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
2504 		{
2505 			int id = TAD_DEV_TO_CHAN(pdev->device);
2506 			pvt->pci_tad[id] = pdev;
2507 			saw_chan_mask |= 1 << id;
2508 		}
2509 			break;
2510 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
2511 			pvt->pci_ddrio = pdev;
2512 			break;
2513 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
2514 			pvt->pci_ddrio = pdev;
2515 			break;
2516 		case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
2517 			pvt->pci_sad0 = pdev;
2518 			break;
2519 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
2520 			pvt->pci_br0 = pdev;
2521 			break;
2522 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
2523 			pvt->pci_br1 = pdev;
2524 			break;
2525 		default:
2526 			goto error;
2527 		}
2528 
2529 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2530 			 sbridge_dev->bus,
2531 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2532 			 pdev);
2533 	}
2534 
2535 	/* Check if everything were registered */
2536 	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_br0 ||
2537 	    !pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta)
2538 		goto enodev;
2539 
2540 	if (saw_chan_mask != 0x0f && /* -EN/-EX */
2541 	    saw_chan_mask != 0x03)   /* -EP */
2542 		goto enodev;
2543 	return 0;
2544 
2545 enodev:
2546 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2547 	return -ENODEV;
2548 
2549 error:
2550 	sbridge_printk(KERN_ERR,
2551 		       "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
2552 			pdev->device);
2553 	return -EINVAL;
2554 }
2555 
2556 static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
2557 				 struct sbridge_dev *sbridge_dev)
2558 {
2559 	struct sbridge_pvt *pvt = mci->pvt_info;
2560 	struct pci_dev *pdev;
2561 	u8 saw_chan_mask = 0;
2562 	int i;
2563 
2564 	/* there's only one device per system; not tied to any bus */
2565 	if (pvt->info.pci_vtd == NULL)
2566 		/* result will be checked later */
2567 		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2568 						   PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
2569 						   NULL);
2570 
2571 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2572 		pdev = sbridge_dev->pdev[i];
2573 		if (!pdev)
2574 			continue;
2575 
2576 		switch (pdev->device) {
2577 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
2578 			pvt->pci_sad0 = pdev;
2579 			break;
2580 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
2581 			pvt->pci_sad1 = pdev;
2582 			break;
2583 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2584 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
2585 			pvt->pci_ha = pdev;
2586 			break;
2587 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
2588 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
2589 			pvt->pci_ta = pdev;
2590 			break;
2591 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM:
2592 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM:
2593 			pvt->pci_ras = pdev;
2594 			break;
2595 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
2596 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
2597 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
2598 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
2599 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
2600 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
2601 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
2602 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
2603 		{
2604 			int id = TAD_DEV_TO_CHAN(pdev->device);
2605 			pvt->pci_tad[id] = pdev;
2606 			saw_chan_mask |= 1 << id;
2607 		}
2608 			break;
2609 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
2610 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
2611 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
2612 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
2613 			if (!pvt->pci_ddrio)
2614 				pvt->pci_ddrio = pdev;
2615 			break;
2616 		default:
2617 			break;
2618 		}
2619 
2620 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2621 			 sbridge_dev->bus,
2622 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2623 			 pdev);
2624 	}
2625 
2626 	/* Check if everything were registered */
2627 	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2628 	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2629 		goto enodev;
2630 
2631 	if (saw_chan_mask != 0x0f && /* -EN/-EX */
2632 	    saw_chan_mask != 0x03)   /* -EP */
2633 		goto enodev;
2634 	return 0;
2635 
2636 enodev:
2637 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2638 	return -ENODEV;
2639 }
2640 
2641 static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
2642 				 struct sbridge_dev *sbridge_dev)
2643 {
2644 	struct sbridge_pvt *pvt = mci->pvt_info;
2645 	struct pci_dev *pdev;
2646 	u8 saw_chan_mask = 0;
2647 	int i;
2648 
2649 	/* there's only one device per system; not tied to any bus */
2650 	if (pvt->info.pci_vtd == NULL)
2651 		/* result will be checked later */
2652 		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2653 						   PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
2654 						   NULL);
2655 
2656 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2657 		pdev = sbridge_dev->pdev[i];
2658 		if (!pdev)
2659 			continue;
2660 
2661 		switch (pdev->device) {
2662 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
2663 			pvt->pci_sad0 = pdev;
2664 			break;
2665 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
2666 			pvt->pci_sad1 = pdev;
2667 			break;
2668 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2669 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2670 			pvt->pci_ha = pdev;
2671 			break;
2672 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
2673 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2674 			pvt->pci_ta = pdev;
2675 			break;
2676 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM:
2677 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM:
2678 			pvt->pci_ras = pdev;
2679 			break;
2680 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
2681 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
2682 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
2683 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
2684 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
2685 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
2686 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
2687 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
2688 		{
2689 			int id = TAD_DEV_TO_CHAN(pdev->device);
2690 			pvt->pci_tad[id] = pdev;
2691 			saw_chan_mask |= 1 << id;
2692 		}
2693 			break;
2694 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
2695 			pvt->pci_ddrio = pdev;
2696 			break;
2697 		default:
2698 			break;
2699 		}
2700 
2701 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2702 			 sbridge_dev->bus,
2703 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2704 			 pdev);
2705 	}
2706 
2707 	/* Check if everything were registered */
2708 	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2709 	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2710 		goto enodev;
2711 
2712 	if (saw_chan_mask != 0x0f && /* -EN/-EX */
2713 	    saw_chan_mask != 0x03)   /* -EP */
2714 		goto enodev;
2715 	return 0;
2716 
2717 enodev:
2718 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2719 	return -ENODEV;
2720 }
2721 
2722 static int knl_mci_bind_devs(struct mem_ctl_info *mci,
2723 			struct sbridge_dev *sbridge_dev)
2724 {
2725 	struct sbridge_pvt *pvt = mci->pvt_info;
2726 	struct pci_dev *pdev;
2727 	int dev, func;
2728 
2729 	int i;
2730 	int devidx;
2731 
2732 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2733 		pdev = sbridge_dev->pdev[i];
2734 		if (!pdev)
2735 			continue;
2736 
2737 		/* Extract PCI device and function. */
2738 		dev = (pdev->devfn >> 3) & 0x1f;
2739 		func = pdev->devfn & 0x7;
2740 
2741 		switch (pdev->device) {
2742 		case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
2743 			if (dev == 8)
2744 				pvt->knl.pci_mc0 = pdev;
2745 			else if (dev == 9)
2746 				pvt->knl.pci_mc1 = pdev;
2747 			else {
2748 				sbridge_printk(KERN_ERR,
2749 					"Memory controller in unexpected place! (dev %d, fn %d)\n",
2750 					dev, func);
2751 				continue;
2752 			}
2753 			break;
2754 
2755 		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
2756 			pvt->pci_sad0 = pdev;
2757 			break;
2758 
2759 		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
2760 			pvt->pci_sad1 = pdev;
2761 			break;
2762 
2763 		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
2764 			/* There are one of these per tile, and range from
2765 			 * 1.14.0 to 1.18.5.
2766 			 */
2767 			devidx = ((dev-14)*8)+func;
2768 
2769 			if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
2770 				sbridge_printk(KERN_ERR,
2771 					"Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2772 					dev, func);
2773 				continue;
2774 			}
2775 
2776 			WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
2777 
2778 			pvt->knl.pci_cha[devidx] = pdev;
2779 			break;
2780 
2781 		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN:
2782 			devidx = -1;
2783 
2784 			/*
2785 			 *  MC0 channels 0-2 are device 9 function 2-4,
2786 			 *  MC1 channels 3-5 are device 8 function 2-4.
2787 			 */
2788 
2789 			if (dev == 9)
2790 				devidx = func-2;
2791 			else if (dev == 8)
2792 				devidx = 3 + (func-2);
2793 
2794 			if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
2795 				sbridge_printk(KERN_ERR,
2796 					"DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
2797 					dev, func);
2798 				continue;
2799 			}
2800 
2801 			WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
2802 			pvt->knl.pci_channel[devidx] = pdev;
2803 			break;
2804 
2805 		case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
2806 			pvt->knl.pci_mc_info = pdev;
2807 			break;
2808 
2809 		case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
2810 			pvt->pci_ta = pdev;
2811 			break;
2812 
2813 		default:
2814 			sbridge_printk(KERN_ERR, "Unexpected device %d\n",
2815 				pdev->device);
2816 			break;
2817 		}
2818 	}
2819 
2820 	if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 ||
2821 	    !pvt->pci_sad0     || !pvt->pci_sad1    ||
2822 	    !pvt->pci_ta) {
2823 		goto enodev;
2824 	}
2825 
2826 	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
2827 		if (!pvt->knl.pci_channel[i]) {
2828 			sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
2829 			goto enodev;
2830 		}
2831 	}
2832 
2833 	for (i = 0; i < KNL_MAX_CHAS; i++) {
2834 		if (!pvt->knl.pci_cha[i]) {
2835 			sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
2836 			goto enodev;
2837 		}
2838 	}
2839 
2840 	return 0;
2841 
2842 enodev:
2843 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2844 	return -ENODEV;
2845 }
2846 
2847 /****************************************************************************
2848 			Error check routines
2849  ****************************************************************************/
2850 
2851 /*
2852  * While Sandy Bridge has error count registers, SMI BIOS read values from
2853  * and resets the counters. So, they are not reliable for the OS to read
2854  * from them. So, we have no option but to just trust on whatever MCE is
2855  * telling us about the errors.
2856  */
2857 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
2858 				    const struct mce *m)
2859 {
2860 	struct mem_ctl_info *new_mci;
2861 	struct sbridge_pvt *pvt = mci->pvt_info;
2862 	enum hw_event_mc_err_type tp_event;
2863 	char *type, *optype, msg[256];
2864 	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
2865 	bool overflow = GET_BITFIELD(m->status, 62, 62);
2866 	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
2867 	bool recoverable;
2868 	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
2869 	u32 mscod = GET_BITFIELD(m->status, 16, 31);
2870 	u32 errcode = GET_BITFIELD(m->status, 0, 15);
2871 	u32 channel = GET_BITFIELD(m->status, 0, 3);
2872 	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
2873 	long channel_mask, first_channel;
2874 	u8  rank, socket, ha;
2875 	int rc, dimm;
2876 	char *area_type = NULL;
2877 
2878 	if (pvt->info.type != SANDY_BRIDGE)
2879 		recoverable = true;
2880 	else
2881 		recoverable = GET_BITFIELD(m->status, 56, 56);
2882 
2883 	if (uncorrected_error) {
2884 		if (ripv) {
2885 			type = "FATAL";
2886 			tp_event = HW_EVENT_ERR_FATAL;
2887 		} else {
2888 			type = "NON_FATAL";
2889 			tp_event = HW_EVENT_ERR_UNCORRECTED;
2890 		}
2891 	} else {
2892 		type = "CORRECTED";
2893 		tp_event = HW_EVENT_ERR_CORRECTED;
2894 	}
2895 
2896 	/*
2897 	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
2898 	 * memory errors should fit in this mask:
2899 	 *	000f 0000 1mmm cccc (binary)
2900 	 * where:
2901 	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
2902 	 *	    won't be shown
2903 	 *	mmm = error type
2904 	 *	cccc = channel
2905 	 * If the mask doesn't match, report an error to the parsing logic
2906 	 */
2907 	if (! ((errcode & 0xef80) == 0x80)) {
2908 		optype = "Can't parse: it is not a mem";
2909 	} else {
2910 		switch (optypenum) {
2911 		case 0:
2912 			optype = "generic undef request error";
2913 			break;
2914 		case 1:
2915 			optype = "memory read error";
2916 			break;
2917 		case 2:
2918 			optype = "memory write error";
2919 			break;
2920 		case 3:
2921 			optype = "addr/cmd error";
2922 			break;
2923 		case 4:
2924 			optype = "memory scrubbing error";
2925 			break;
2926 		default:
2927 			optype = "reserved";
2928 			break;
2929 		}
2930 	}
2931 
2932 	/* Only decode errors with an valid address (ADDRV) */
2933 	if (!GET_BITFIELD(m->status, 58, 58))
2934 		return;
2935 
2936 	if (pvt->info.type == KNIGHTS_LANDING) {
2937 		if (channel == 14) {
2938 			edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
2939 				overflow ? " OVERFLOW" : "",
2940 				(uncorrected_error && recoverable)
2941 				? " recoverable" : "",
2942 				mscod, errcode,
2943 				m->bank);
2944 		} else {
2945 			char A = *("A");
2946 
2947 			/*
2948 			 * Reported channel is in range 0-2, so we can't map it
2949 			 * back to mc. To figure out mc we check machine check
2950 			 * bank register that reported this error.
2951 			 * bank15 means mc0 and bank16 means mc1.
2952 			 */
2953 			channel = knl_channel_remap(m->bank == 16, channel);
2954 			channel_mask = 1 << channel;
2955 
2956 			snprintf(msg, sizeof(msg),
2957 				"%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
2958 				overflow ? " OVERFLOW" : "",
2959 				(uncorrected_error && recoverable)
2960 				? " recoverable" : " ",
2961 				mscod, errcode, channel, A + channel);
2962 			edac_mc_handle_error(tp_event, mci, core_err_cnt,
2963 				m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
2964 				channel, 0, -1,
2965 				optype, msg);
2966 		}
2967 		return;
2968 	} else {
2969 		rc = get_memory_error_data(mci, m->addr, &socket, &ha,
2970 				&channel_mask, &rank, &area_type, msg);
2971 	}
2972 
2973 	if (rc < 0)
2974 		goto err_parsing;
2975 	new_mci = get_mci_for_node_id(socket, ha);
2976 	if (!new_mci) {
2977 		strcpy(msg, "Error: socket got corrupted!");
2978 		goto err_parsing;
2979 	}
2980 	mci = new_mci;
2981 	pvt = mci->pvt_info;
2982 
2983 	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
2984 
2985 	if (rank < 4)
2986 		dimm = 0;
2987 	else if (rank < 8)
2988 		dimm = 1;
2989 	else
2990 		dimm = 2;
2991 
2992 
2993 	/*
2994 	 * FIXME: On some memory configurations (mirror, lockstep), the
2995 	 * Memory Controller can't point the error to a single DIMM. The
2996 	 * EDAC core should be handling the channel mask, in order to point
2997 	 * to the group of dimm's where the error may be happening.
2998 	 */
2999 	if (!pvt->is_lockstep && !pvt->is_cur_addr_mirrored && !pvt->is_close_pg)
3000 		channel = first_channel;
3001 
3002 	snprintf(msg, sizeof(msg),
3003 		 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
3004 		 overflow ? " OVERFLOW" : "",
3005 		 (uncorrected_error && recoverable) ? " recoverable" : "",
3006 		 area_type,
3007 		 mscod, errcode,
3008 		 socket, ha,
3009 		 channel_mask,
3010 		 rank);
3011 
3012 	edac_dbg(0, "%s\n", msg);
3013 
3014 	/* FIXME: need support for channel mask */
3015 
3016 	if (channel == CHANNEL_UNSPECIFIED)
3017 		channel = -1;
3018 
3019 	/* Call the helper to output message */
3020 	edac_mc_handle_error(tp_event, mci, core_err_cnt,
3021 			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3022 			     channel, dimm, -1,
3023 			     optype, msg);
3024 	return;
3025 err_parsing:
3026 	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
3027 			     -1, -1, -1,
3028 			     msg, "");
3029 
3030 }
3031 
3032 /*
3033  * Check that logging is enabled and that this is the right type
3034  * of error for us to handle.
3035  */
3036 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
3037 				   void *data)
3038 {
3039 	struct mce *mce = (struct mce *)data;
3040 	struct mem_ctl_info *mci;
3041 	struct sbridge_pvt *pvt;
3042 	char *type;
3043 
3044 	if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
3045 		return NOTIFY_DONE;
3046 
3047 	mci = get_mci_for_node_id(mce->socketid, IMC0);
3048 	if (!mci)
3049 		return NOTIFY_DONE;
3050 	pvt = mci->pvt_info;
3051 
3052 	/*
3053 	 * Just let mcelog handle it if the error is
3054 	 * outside the memory controller. A memory error
3055 	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3056 	 * bit 12 has an special meaning.
3057 	 */
3058 	if ((mce->status & 0xefff) >> 7 != 1)
3059 		return NOTIFY_DONE;
3060 
3061 	if (mce->mcgstatus & MCG_STATUS_MCIP)
3062 		type = "Exception";
3063 	else
3064 		type = "Event";
3065 
3066 	sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
3067 
3068 	sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
3069 			  "Bank %d: %016Lx\n", mce->extcpu, type,
3070 			  mce->mcgstatus, mce->bank, mce->status);
3071 	sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
3072 	sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
3073 	sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
3074 
3075 	sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
3076 			  "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
3077 			  mce->time, mce->socketid, mce->apicid);
3078 
3079 	sbridge_mce_output_error(mci, mce);
3080 
3081 	/* Advice mcelog that the error were handled */
3082 	return NOTIFY_STOP;
3083 }
3084 
3085 static struct notifier_block sbridge_mce_dec = {
3086 	.notifier_call	= sbridge_mce_check_error,
3087 	.priority	= MCE_PRIO_EDAC,
3088 };
3089 
3090 /****************************************************************************
3091 			EDAC register/unregister logic
3092  ****************************************************************************/
3093 
3094 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
3095 {
3096 	struct mem_ctl_info *mci = sbridge_dev->mci;
3097 	struct sbridge_pvt *pvt;
3098 
3099 	if (unlikely(!mci || !mci->pvt_info)) {
3100 		edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
3101 
3102 		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
3103 		return;
3104 	}
3105 
3106 	pvt = mci->pvt_info;
3107 
3108 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
3109 		 mci, &sbridge_dev->pdev[0]->dev);
3110 
3111 	/* Remove MC sysfs nodes */
3112 	edac_mc_del_mc(mci->pdev);
3113 
3114 	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
3115 	kfree(mci->ctl_name);
3116 	edac_mc_free(mci);
3117 	sbridge_dev->mci = NULL;
3118 }
3119 
3120 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
3121 {
3122 	struct mem_ctl_info *mci;
3123 	struct edac_mc_layer layers[2];
3124 	struct sbridge_pvt *pvt;
3125 	struct pci_dev *pdev = sbridge_dev->pdev[0];
3126 	int rc;
3127 
3128 	/* allocate a new MC control structure */
3129 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
3130 	layers[0].size = type == KNIGHTS_LANDING ?
3131 		KNL_MAX_CHANNELS : NUM_CHANNELS;
3132 	layers[0].is_virt_csrow = false;
3133 	layers[1].type = EDAC_MC_LAYER_SLOT;
3134 	layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
3135 	layers[1].is_virt_csrow = true;
3136 	mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
3137 			    sizeof(*pvt));
3138 
3139 	if (unlikely(!mci))
3140 		return -ENOMEM;
3141 
3142 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
3143 		 mci, &pdev->dev);
3144 
3145 	pvt = mci->pvt_info;
3146 	memset(pvt, 0, sizeof(*pvt));
3147 
3148 	/* Associate sbridge_dev and mci for future usage */
3149 	pvt->sbridge_dev = sbridge_dev;
3150 	sbridge_dev->mci = mci;
3151 
3152 	mci->mtype_cap = type == KNIGHTS_LANDING ?
3153 		MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
3154 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
3155 	mci->edac_cap = EDAC_FLAG_NONE;
3156 	mci->mod_name = EDAC_MOD_STR;
3157 	mci->dev_name = pci_name(pdev);
3158 	mci->ctl_page_to_phys = NULL;
3159 
3160 	pvt->info.type = type;
3161 	switch (type) {
3162 	case IVY_BRIDGE:
3163 		pvt->info.rankcfgr = IB_RANK_CFG_A;
3164 		pvt->info.get_tolm = ibridge_get_tolm;
3165 		pvt->info.get_tohm = ibridge_get_tohm;
3166 		pvt->info.dram_rule = ibridge_dram_rule;
3167 		pvt->info.get_memory_type = get_memory_type;
3168 		pvt->info.get_node_id = get_node_id;
3169 		pvt->info.rir_limit = rir_limit;
3170 		pvt->info.sad_limit = sad_limit;
3171 		pvt->info.interleave_mode = interleave_mode;
3172 		pvt->info.dram_attr = dram_attr;
3173 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3174 		pvt->info.interleave_list = ibridge_interleave_list;
3175 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3176 		pvt->info.get_width = ibridge_get_width;
3177 
3178 		/* Store pci devices at mci for faster access */
3179 		rc = ibridge_mci_bind_devs(mci, sbridge_dev);
3180 		if (unlikely(rc < 0))
3181 			goto fail0;
3182 		get_source_id(mci);
3183 		mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge SrcID#%d_Ha#%d",
3184 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3185 		break;
3186 	case SANDY_BRIDGE:
3187 		pvt->info.rankcfgr = SB_RANK_CFG_A;
3188 		pvt->info.get_tolm = sbridge_get_tolm;
3189 		pvt->info.get_tohm = sbridge_get_tohm;
3190 		pvt->info.dram_rule = sbridge_dram_rule;
3191 		pvt->info.get_memory_type = get_memory_type;
3192 		pvt->info.get_node_id = get_node_id;
3193 		pvt->info.rir_limit = rir_limit;
3194 		pvt->info.sad_limit = sad_limit;
3195 		pvt->info.interleave_mode = interleave_mode;
3196 		pvt->info.dram_attr = dram_attr;
3197 		pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
3198 		pvt->info.interleave_list = sbridge_interleave_list;
3199 		pvt->info.interleave_pkg = sbridge_interleave_pkg;
3200 		pvt->info.get_width = sbridge_get_width;
3201 
3202 		/* Store pci devices at mci for faster access */
3203 		rc = sbridge_mci_bind_devs(mci, sbridge_dev);
3204 		if (unlikely(rc < 0))
3205 			goto fail0;
3206 		get_source_id(mci);
3207 		mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge SrcID#%d_Ha#%d",
3208 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3209 		break;
3210 	case HASWELL:
3211 		/* rankcfgr isn't used */
3212 		pvt->info.get_tolm = haswell_get_tolm;
3213 		pvt->info.get_tohm = haswell_get_tohm;
3214 		pvt->info.dram_rule = ibridge_dram_rule;
3215 		pvt->info.get_memory_type = haswell_get_memory_type;
3216 		pvt->info.get_node_id = haswell_get_node_id;
3217 		pvt->info.rir_limit = haswell_rir_limit;
3218 		pvt->info.sad_limit = sad_limit;
3219 		pvt->info.interleave_mode = interleave_mode;
3220 		pvt->info.dram_attr = dram_attr;
3221 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3222 		pvt->info.interleave_list = ibridge_interleave_list;
3223 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3224 		pvt->info.get_width = ibridge_get_width;
3225 
3226 		/* Store pci devices at mci for faster access */
3227 		rc = haswell_mci_bind_devs(mci, sbridge_dev);
3228 		if (unlikely(rc < 0))
3229 			goto fail0;
3230 		get_source_id(mci);
3231 		mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell SrcID#%d_Ha#%d",
3232 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3233 		break;
3234 	case BROADWELL:
3235 		/* rankcfgr isn't used */
3236 		pvt->info.get_tolm = haswell_get_tolm;
3237 		pvt->info.get_tohm = haswell_get_tohm;
3238 		pvt->info.dram_rule = ibridge_dram_rule;
3239 		pvt->info.get_memory_type = haswell_get_memory_type;
3240 		pvt->info.get_node_id = haswell_get_node_id;
3241 		pvt->info.rir_limit = haswell_rir_limit;
3242 		pvt->info.sad_limit = sad_limit;
3243 		pvt->info.interleave_mode = interleave_mode;
3244 		pvt->info.dram_attr = dram_attr;
3245 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3246 		pvt->info.interleave_list = ibridge_interleave_list;
3247 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3248 		pvt->info.get_width = broadwell_get_width;
3249 
3250 		/* Store pci devices at mci for faster access */
3251 		rc = broadwell_mci_bind_devs(mci, sbridge_dev);
3252 		if (unlikely(rc < 0))
3253 			goto fail0;
3254 		get_source_id(mci);
3255 		mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell SrcID#%d_Ha#%d",
3256 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3257 		break;
3258 	case KNIGHTS_LANDING:
3259 		/* pvt->info.rankcfgr == ??? */
3260 		pvt->info.get_tolm = knl_get_tolm;
3261 		pvt->info.get_tohm = knl_get_tohm;
3262 		pvt->info.dram_rule = knl_dram_rule;
3263 		pvt->info.get_memory_type = knl_get_memory_type;
3264 		pvt->info.get_node_id = knl_get_node_id;
3265 		pvt->info.rir_limit = NULL;
3266 		pvt->info.sad_limit = knl_sad_limit;
3267 		pvt->info.interleave_mode = knl_interleave_mode;
3268 		pvt->info.dram_attr = dram_attr_knl;
3269 		pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
3270 		pvt->info.interleave_list = knl_interleave_list;
3271 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3272 		pvt->info.get_width = knl_get_width;
3273 
3274 		rc = knl_mci_bind_devs(mci, sbridge_dev);
3275 		if (unlikely(rc < 0))
3276 			goto fail0;
3277 		get_source_id(mci);
3278 		mci->ctl_name = kasprintf(GFP_KERNEL, "Knights Landing SrcID#%d_Ha#%d",
3279 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3280 		break;
3281 	}
3282 
3283 	if (!mci->ctl_name) {
3284 		rc = -ENOMEM;
3285 		goto fail0;
3286 	}
3287 
3288 	/* Get dimm basic config and the memory layout */
3289 	rc = get_dimm_config(mci);
3290 	if (rc < 0) {
3291 		edac_dbg(0, "MC: failed to get_dimm_config()\n");
3292 		goto fail;
3293 	}
3294 	get_memory_layout(mci);
3295 
3296 	/* record ptr to the generic device */
3297 	mci->pdev = &pdev->dev;
3298 
3299 	/* add this new MC control structure to EDAC's list of MCs */
3300 	if (unlikely(edac_mc_add_mc(mci))) {
3301 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3302 		rc = -EINVAL;
3303 		goto fail;
3304 	}
3305 
3306 	return 0;
3307 
3308 fail:
3309 	kfree(mci->ctl_name);
3310 fail0:
3311 	edac_mc_free(mci);
3312 	sbridge_dev->mci = NULL;
3313 	return rc;
3314 }
3315 
3316 #define ICPU(model, table) \
3317 	{ X86_VENDOR_INTEL, 6, model, 0, (unsigned long)&table }
3318 
3319 static const struct x86_cpu_id sbridge_cpuids[] = {
3320 	ICPU(INTEL_FAM6_SANDYBRIDGE_X,	  pci_dev_descr_sbridge_table),
3321 	ICPU(INTEL_FAM6_IVYBRIDGE_X,	  pci_dev_descr_ibridge_table),
3322 	ICPU(INTEL_FAM6_HASWELL_X,	  pci_dev_descr_haswell_table),
3323 	ICPU(INTEL_FAM6_BROADWELL_X,	  pci_dev_descr_broadwell_table),
3324 	ICPU(INTEL_FAM6_BROADWELL_XEON_D, pci_dev_descr_broadwell_table),
3325 	ICPU(INTEL_FAM6_XEON_PHI_KNL,	  pci_dev_descr_knl_table),
3326 	ICPU(INTEL_FAM6_XEON_PHI_KNM,	  pci_dev_descr_knl_table),
3327 	{ }
3328 };
3329 MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);
3330 
3331 /*
3332  *	sbridge_probe	Get all devices and register memory controllers
3333  *			present.
3334  *	return:
3335  *		0 for FOUND a device
3336  *		< 0 for error code
3337  */
3338 
3339 static int sbridge_probe(const struct x86_cpu_id *id)
3340 {
3341 	int rc = -ENODEV;
3342 	u8 mc, num_mc = 0;
3343 	struct sbridge_dev *sbridge_dev;
3344 	struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;
3345 
3346 	/* get the pci devices we want to reserve for our use */
3347 	rc = sbridge_get_all_devices(&num_mc, ptable);
3348 
3349 	if (unlikely(rc < 0)) {
3350 		edac_dbg(0, "couldn't get all devices\n");
3351 		goto fail0;
3352 	}
3353 
3354 	mc = 0;
3355 
3356 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
3357 		edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3358 			 mc, mc + 1, num_mc);
3359 
3360 		sbridge_dev->mc = mc++;
3361 		rc = sbridge_register_mci(sbridge_dev, ptable->type);
3362 		if (unlikely(rc < 0))
3363 			goto fail1;
3364 	}
3365 
3366 	sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
3367 
3368 	return 0;
3369 
3370 fail1:
3371 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3372 		sbridge_unregister_mci(sbridge_dev);
3373 
3374 	sbridge_put_all_devices();
3375 fail0:
3376 	return rc;
3377 }
3378 
3379 /*
3380  *	sbridge_remove	cleanup
3381  *
3382  */
3383 static void sbridge_remove(void)
3384 {
3385 	struct sbridge_dev *sbridge_dev;
3386 
3387 	edac_dbg(0, "\n");
3388 
3389 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3390 		sbridge_unregister_mci(sbridge_dev);
3391 
3392 	/* Release PCI resources */
3393 	sbridge_put_all_devices();
3394 }
3395 
3396 /*
3397  *	sbridge_init		Module entry function
3398  *			Try to initialize this module for its devices
3399  */
3400 static int __init sbridge_init(void)
3401 {
3402 	const struct x86_cpu_id *id;
3403 	const char *owner;
3404 	int rc;
3405 
3406 	edac_dbg(2, "\n");
3407 
3408 	owner = edac_get_owner();
3409 	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
3410 		return -EBUSY;
3411 
3412 	id = x86_match_cpu(sbridge_cpuids);
3413 	if (!id)
3414 		return -ENODEV;
3415 
3416 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
3417 	opstate_init();
3418 
3419 	rc = sbridge_probe(id);
3420 
3421 	if (rc >= 0) {
3422 		mce_register_decode_chain(&sbridge_mce_dec);
3423 		if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
3424 			sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
3425 		return 0;
3426 	}
3427 
3428 	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
3429 		      rc);
3430 
3431 	return rc;
3432 }
3433 
3434 /*
3435  *	sbridge_exit()	Module exit function
3436  *			Unregister the driver
3437  */
3438 static void __exit sbridge_exit(void)
3439 {
3440 	edac_dbg(2, "\n");
3441 	sbridge_remove();
3442 	mce_unregister_decode_chain(&sbridge_mce_dec);
3443 }
3444 
3445 module_init(sbridge_init);
3446 module_exit(sbridge_exit);
3447 
3448 module_param(edac_op_state, int, 0444);
3449 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3450 
3451 MODULE_LICENSE("GPL");
3452 MODULE_AUTHOR("Mauro Carvalho Chehab");
3453 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
3454 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
3455 		   SBRIDGE_REVISION);
3456