xref: /linux/drivers/edac/sb_edac.c (revision 570172569238c66a482ec3eb5d766cc9cf255f69)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
3  *
4  * This driver supports the memory controllers found on the Intel
5  * processor family Sandy Bridge.
6  *
7  * Copyright (c) 2011 by:
8  *	 Mauro Carvalho Chehab
9  */
10 
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pci_ids.h>
15 #include <linux/slab.h>
16 #include <linux/delay.h>
17 #include <linux/edac.h>
18 #include <linux/mmzone.h>
19 #include <linux/smp.h>
20 #include <linux/bitmap.h>
21 #include <linux/math64.h>
22 #include <linux/mod_devicetable.h>
23 #include <asm/cpu_device_id.h>
24 #include <asm/intel-family.h>
25 #include <asm/processor.h>
26 #include <asm/mce.h>
27 
28 #include "edac_module.h"
29 
30 /* Static vars */
31 static LIST_HEAD(sbridge_edac_list);
32 static char sb_msg[256];
33 static char sb_msg_full[512];
34 
35 /*
36  * Alter this version for the module when modifications are made
37  */
38 #define SBRIDGE_REVISION    " Ver: 1.1.2 "
39 #define EDAC_MOD_STR	    "sb_edac"
40 
41 /*
42  * Debug macros
43  */
44 #define sbridge_printk(level, fmt, arg...)			\
45 	edac_printk(level, "sbridge", fmt, ##arg)
46 
47 #define sbridge_mc_printk(mci, level, fmt, arg...)		\
48 	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
49 
50 /*
51  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
52  */
53 #define GET_BITFIELD(v, lo, hi)	\
54 	(((v) & GENMASK_ULL(hi, lo)) >> (lo))
55 
56 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
57 static const u32 sbridge_dram_rule[] = {
58 	0x80, 0x88, 0x90, 0x98, 0xa0,
59 	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
60 };
61 
62 static const u32 ibridge_dram_rule[] = {
63 	0x60, 0x68, 0x70, 0x78, 0x80,
64 	0x88, 0x90, 0x98, 0xa0,	0xa8,
65 	0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
66 	0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
67 };
68 
69 static const u32 knl_dram_rule[] = {
70 	0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
71 	0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
72 	0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
73 	0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
74 	0x100, 0x108, 0x110, 0x118,   /* 20-23 */
75 };
76 
77 #define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)
78 #define A7MODE(reg)		GET_BITFIELD(reg, 26, 26)
79 
80 static char *show_dram_attr(u32 attr)
81 {
82 	switch (attr) {
83 		case 0:
84 			return "DRAM";
85 		case 1:
86 			return "MMCFG";
87 		case 2:
88 			return "NXM";
89 		default:
90 			return "unknown";
91 	}
92 }
93 
94 static const u32 sbridge_interleave_list[] = {
95 	0x84, 0x8c, 0x94, 0x9c, 0xa4,
96 	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
97 };
98 
99 static const u32 ibridge_interleave_list[] = {
100 	0x64, 0x6c, 0x74, 0x7c, 0x84,
101 	0x8c, 0x94, 0x9c, 0xa4, 0xac,
102 	0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
103 	0xdc, 0xe4, 0xec, 0xf4, 0xfc,
104 };
105 
106 static const u32 knl_interleave_list[] = {
107 	0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
108 	0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
109 	0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
110 	0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
111 	0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */
112 };
113 #define MAX_INTERLEAVE							\
114 	(MAX_T(unsigned int, ARRAY_SIZE(sbridge_interleave_list),	\
115 	       MAX_T(unsigned int, ARRAY_SIZE(ibridge_interleave_list),	\
116 		     ARRAY_SIZE(knl_interleave_list))))
117 
118 struct interleave_pkg {
119 	unsigned char start;
120 	unsigned char end;
121 };
122 
123 static const struct interleave_pkg sbridge_interleave_pkg[] = {
124 	{ 0, 2 },
125 	{ 3, 5 },
126 	{ 8, 10 },
127 	{ 11, 13 },
128 	{ 16, 18 },
129 	{ 19, 21 },
130 	{ 24, 26 },
131 	{ 27, 29 },
132 };
133 
134 static const struct interleave_pkg ibridge_interleave_pkg[] = {
135 	{ 0, 3 },
136 	{ 4, 7 },
137 	{ 8, 11 },
138 	{ 12, 15 },
139 	{ 16, 19 },
140 	{ 20, 23 },
141 	{ 24, 27 },
142 	{ 28, 31 },
143 };
144 
145 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
146 			  int interleave)
147 {
148 	return GET_BITFIELD(reg, table[interleave].start,
149 			    table[interleave].end);
150 }
151 
152 /* Devices 12 Function 7 */
153 
154 #define TOLM		0x80
155 #define TOHM		0x84
156 #define HASWELL_TOLM	0xd0
157 #define HASWELL_TOHM_0	0xd4
158 #define HASWELL_TOHM_1	0xd8
159 #define KNL_TOLM	0xd0
160 #define KNL_TOHM_0	0xd4
161 #define KNL_TOHM_1	0xd8
162 
163 #define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
164 #define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
165 
166 /* Device 13 Function 6 */
167 
168 #define SAD_TARGET	0xf0
169 
170 #define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)
171 
172 #define SOURCE_ID_KNL(reg)	GET_BITFIELD(reg, 12, 14)
173 
174 #define SAD_CONTROL	0xf4
175 
176 /* Device 14 function 0 */
177 
178 static const u32 tad_dram_rule[] = {
179 	0x40, 0x44, 0x48, 0x4c,
180 	0x50, 0x54, 0x58, 0x5c,
181 	0x60, 0x64, 0x68, 0x6c,
182 };
183 #define MAX_TAD	ARRAY_SIZE(tad_dram_rule)
184 
185 #define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
186 #define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
187 #define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
188 #define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
189 #define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
190 #define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
191 #define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)
192 
193 /* Device 15, function 0 */
194 
195 #define MCMTR			0x7c
196 #define KNL_MCMTR		0x624
197 
198 #define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
199 #define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
200 #define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)
201 
202 /* Device 15, function 1 */
203 
204 #define RASENABLES		0xac
205 #define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)
206 
207 /* Device 15, functions 2-5 */
208 
209 static const int mtr_regs[] = {
210 	0x80, 0x84, 0x88,
211 };
212 
213 static const int knl_mtr_reg = 0xb60;
214 
215 #define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
216 #define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
217 #define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
218 #define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
219 #define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)
220 
221 static const u32 tad_ch_nilv_offset[] = {
222 	0x90, 0x94, 0x98, 0x9c,
223 	0xa0, 0xa4, 0xa8, 0xac,
224 	0xb0, 0xb4, 0xb8, 0xbc,
225 };
226 #define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
227 #define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)
228 
229 static const u32 rir_way_limit[] = {
230 	0x108, 0x10c, 0x110, 0x114, 0x118,
231 };
232 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
233 
234 #define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
235 #define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)
236 
237 #define MAX_RIR_WAY	8
238 
239 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
240 	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
241 	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
242 	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
243 	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
244 	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
245 };
246 
247 #define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
248 	GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
249 
250 #define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
251 	GET_BITFIELD(reg,  2, 15) : GET_BITFIELD(reg,  2, 14))
252 
253 /* Device 16, functions 2-7 */
254 
255 /*
256  * FIXME: Implement the error count reads directly
257  */
258 
259 #define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
260 #define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
261 #define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
262 #define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)
263 
264 #if 0 /* Currently unused*/
265 static const u32 correrrcnt[] = {
266 	0x104, 0x108, 0x10c, 0x110,
267 };
268 
269 static const u32 correrrthrsld[] = {
270 	0x11c, 0x120, 0x124, 0x128,
271 };
272 #endif
273 
274 #define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
275 #define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)
276 
277 
278 /* Device 17, function 0 */
279 
280 #define SB_RANK_CFG_A		0x0328
281 
282 #define IB_RANK_CFG_A		0x0320
283 
284 /*
285  * sbridge structs
286  */
287 
288 #define NUM_CHANNELS		6	/* Max channels per MC */
289 #define MAX_DIMMS		3	/* Max DIMMS per channel */
290 #define KNL_MAX_CHAS		38	/* KNL max num. of Cache Home Agents */
291 #define KNL_MAX_CHANNELS	6	/* KNL max num. of PCI channels */
292 #define KNL_MAX_EDCS		8	/* Embedded DRAM controllers */
293 #define CHANNEL_UNSPECIFIED	0xf	/* Intel IA32 SDM 15-14 */
294 
295 enum type {
296 	SANDY_BRIDGE,
297 	IVY_BRIDGE,
298 	HASWELL,
299 	BROADWELL,
300 	KNIGHTS_LANDING,
301 };
302 
303 enum domain {
304 	IMC0 = 0,
305 	IMC1,
306 	SOCK,
307 };
308 
309 enum mirroring_mode {
310 	NON_MIRRORING,
311 	ADDR_RANGE_MIRRORING,
312 	FULL_MIRRORING,
313 };
314 
315 struct sbridge_pvt;
316 struct sbridge_info {
317 	enum type	type;
318 	u32		mcmtr;
319 	u32		rankcfgr;
320 	u64		(*get_tolm)(struct sbridge_pvt *pvt);
321 	u64		(*get_tohm)(struct sbridge_pvt *pvt);
322 	u64		(*rir_limit)(u32 reg);
323 	u64		(*sad_limit)(u32 reg);
324 	u32		(*interleave_mode)(u32 reg);
325 	u32		(*dram_attr)(u32 reg);
326 	const u32	*dram_rule;
327 	const u32	*interleave_list;
328 	const struct interleave_pkg *interleave_pkg;
329 	u8		max_sad;
330 	u8		(*get_node_id)(struct sbridge_pvt *pvt);
331 	u8		(*get_ha)(u8 bank);
332 	enum mem_type	(*get_memory_type)(struct sbridge_pvt *pvt);
333 	enum dev_type	(*get_width)(struct sbridge_pvt *pvt, u32 mtr);
334 	struct pci_dev	*pci_vtd;
335 };
336 
337 struct sbridge_channel {
338 	u32		ranks;
339 	u32		dimms;
340 	struct dimm {
341 		u32 rowbits;
342 		u32 colbits;
343 		u32 bank_xor_enable;
344 		u32 amap_fine;
345 	} dimm[MAX_DIMMS];
346 };
347 
348 struct pci_id_descr {
349 	int			dev_id;
350 	int			optional;
351 	enum domain		dom;
352 };
353 
354 struct pci_id_table {
355 	const struct pci_id_descr	*descr;
356 	int				n_devs_per_imc;
357 	int				n_devs_per_sock;
358 	int				n_imcs_per_sock;
359 	enum type			type;
360 };
361 
362 struct sbridge_dev {
363 	struct list_head	list;
364 	int			seg;
365 	u8			bus, mc;
366 	u8			node_id, source_id;
367 	struct pci_dev		**pdev;
368 	enum domain		dom;
369 	int			n_devs;
370 	int			i_devs;
371 	struct mem_ctl_info	*mci;
372 };
373 
374 struct knl_pvt {
375 	struct pci_dev          *pci_cha[KNL_MAX_CHAS];
376 	struct pci_dev          *pci_channel[KNL_MAX_CHANNELS];
377 	struct pci_dev          *pci_mc0;
378 	struct pci_dev          *pci_mc1;
379 	struct pci_dev          *pci_mc0_misc;
380 	struct pci_dev          *pci_mc1_misc;
381 	struct pci_dev          *pci_mc_info; /* tolm, tohm */
382 };
383 
384 struct sbridge_pvt {
385 	/* Devices per socket */
386 	struct pci_dev		*pci_ddrio;
387 	struct pci_dev		*pci_sad0, *pci_sad1;
388 	struct pci_dev		*pci_br0, *pci_br1;
389 	/* Devices per memory controller */
390 	struct pci_dev		*pci_ha, *pci_ta, *pci_ras;
391 	struct pci_dev		*pci_tad[NUM_CHANNELS];
392 
393 	struct sbridge_dev	*sbridge_dev;
394 
395 	struct sbridge_info	info;
396 	struct sbridge_channel	channel[NUM_CHANNELS];
397 
398 	/* Memory type detection */
399 	bool			is_cur_addr_mirrored, is_lockstep, is_close_pg;
400 	bool			is_chan_hash;
401 	enum mirroring_mode	mirror_mode;
402 
403 	/* Memory description */
404 	u64			tolm, tohm;
405 	struct knl_pvt knl;
406 };
407 
408 #define PCI_DESCR(device_id, opt, domain)	\
409 	.dev_id = (device_id),		\
410 	.optional = opt,	\
411 	.dom = domain
412 
413 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
414 		/* Processor Home Agent */
415 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0,   0, IMC0) },
416 
417 		/* Memory controller */
418 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA,    0, IMC0) },
419 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS,   0, IMC0) },
420 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0,  0, IMC0) },
421 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1,  0, IMC0) },
422 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2,  0, IMC0) },
423 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3,  0, IMC0) },
424 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1, SOCK) },
425 
426 		/* System Address Decoder */
427 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0,      0, SOCK) },
428 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1,      0, SOCK) },
429 
430 		/* Broadcast Registers */
431 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR,        0, SOCK) },
432 };
433 
434 #define PCI_ID_TABLE_ENTRY(A, N, M, T) {	\
435 	.descr = A,			\
436 	.n_devs_per_imc = N,	\
437 	.n_devs_per_sock = ARRAY_SIZE(A),	\
438 	.n_imcs_per_sock = M,	\
439 	.type = T			\
440 }
441 
442 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
443 	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, ARRAY_SIZE(pci_dev_descr_sbridge), 1, SANDY_BRIDGE),
444 	{ NULL, }
445 };
446 
447 /* This changes depending if 1HA or 2HA:
448  * 1HA:
449  *	0x0eb8 (17.0) is DDRIO0
450  * 2HA:
451  *	0x0ebc (17.4) is DDRIO0
452  */
453 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0	0x0eb8
454 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0	0x0ebc
455 
456 /* pci ids */
457 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0		0x0ea0
458 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA		0x0ea8
459 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS		0x0e71
460 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0	0x0eaa
461 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1	0x0eab
462 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2	0x0eac
463 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3	0x0ead
464 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD			0x0ec8
465 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0			0x0ec9
466 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1			0x0eca
467 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1		0x0e60
468 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA		0x0e68
469 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS		0x0e79
470 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0	0x0e6a
471 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1	0x0e6b
472 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2	0x0e6c
473 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3	0x0e6d
474 
475 static const struct pci_id_descr pci_dev_descr_ibridge[] = {
476 		/* Processor Home Agent */
477 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0,        0, IMC0) },
478 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1,        1, IMC1) },
479 
480 		/* Memory controller */
481 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA,     0, IMC0) },
482 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS,    0, IMC0) },
483 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0,   0, IMC0) },
484 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1,   0, IMC0) },
485 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2,   0, IMC0) },
486 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3,   0, IMC0) },
487 
488 		/* Optional, mode 2HA */
489 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA,     1, IMC1) },
490 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS,    1, IMC1) },
491 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0,   1, IMC1) },
492 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1,   1, IMC1) },
493 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2,   1, IMC1) },
494 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3,   1, IMC1) },
495 
496 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1, SOCK) },
497 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1, SOCK) },
498 
499 		/* System Address Decoder */
500 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD,            0, SOCK) },
501 
502 		/* Broadcast Registers */
503 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0,            1, SOCK) },
504 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1,            0, SOCK) },
505 
506 };
507 
508 static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
509 	PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, 12, 2, IVY_BRIDGE),
510 	{ NULL, }
511 };
512 
513 /* Haswell support */
514 /* EN processor:
515  *	- 1 IMC
516  *	- 3 DDR3 channels, 2 DPC per channel
517  * EP processor:
518  *	- 1 or 2 IMC
519  *	- 4 DDR4 channels, 3 DPC per channel
520  * EP 4S processor:
521  *	- 2 IMC
522  *	- 4 DDR4 channels, 3 DPC per channel
523  * EX processor:
524  *	- 2 IMC
525  *	- each IMC interfaces with a SMI 2 channel
526  *	- each SMI channel interfaces with a scalable memory buffer
527  *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
528  */
529 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
530 #define HASWELL_HASYSDEFEATURE2 0x84
531 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
532 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0	0x2fa0
533 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1	0x2f60
534 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA	0x2fa8
535 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM	0x2f71
536 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA	0x2f68
537 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM	0x2f79
538 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
539 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
540 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
541 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
542 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
543 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
544 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
545 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
546 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
547 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
548 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
549 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
550 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
551 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
552 static const struct pci_id_descr pci_dev_descr_haswell[] = {
553 	/* first item must be the HA */
554 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0,      0, IMC0) },
555 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1,      1, IMC1) },
556 
557 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA,   0, IMC0) },
558 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM,   0, IMC0) },
559 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0, IMC0) },
560 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0, IMC0) },
561 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1, IMC0) },
562 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1, IMC0) },
563 
564 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA,   1, IMC1) },
565 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM,   1, IMC1) },
566 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1, IMC1) },
567 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1, IMC1) },
568 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1, IMC1) },
569 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1, IMC1) },
570 
571 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0, SOCK) },
572 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0, SOCK) },
573 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0,   1, SOCK) },
574 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1,   1, SOCK) },
575 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2,   1, SOCK) },
576 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3,   1, SOCK) },
577 };
578 
579 static const struct pci_id_table pci_dev_descr_haswell_table[] = {
580 	PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, 13, 2, HASWELL),
581 	{ NULL, }
582 };
583 
584 /* Knight's Landing Support */
585 /*
586  * KNL's memory channels are swizzled between memory controllers.
587  * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
588  */
589 #define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
590 
591 /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
592 #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840
593 /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
594 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN     0x7843
595 /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
596 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844
597 /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
598 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a
599 /* SAD target - 1-29-1 (1 of these) */
600 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b
601 /* Caching / Home Agent */
602 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c
603 /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
604 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810
605 
606 /*
607  * KNL differs from SB, IB, and Haswell in that it has multiple
608  * instances of the same device with the same device ID, so we handle that
609  * by creating as many copies in the table as we expect to find.
610  * (Like device ID must be grouped together.)
611  */
612 
613 static const struct pci_id_descr pci_dev_descr_knl[] = {
614 	[0 ... 1]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC,    0, IMC0)},
615 	[2 ... 7]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN,  0, IMC0) },
616 	[8]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA,    0, IMC0) },
617 	[9]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0, IMC0) },
618 	[10]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0,  0, SOCK) },
619 	[11]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1,  0, SOCK) },
620 	[12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA,   0, SOCK) },
621 };
622 
623 static const struct pci_id_table pci_dev_descr_knl_table[] = {
624 	PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, ARRAY_SIZE(pci_dev_descr_knl), 1, KNIGHTS_LANDING),
625 	{ NULL, }
626 };
627 
628 /*
629  * Broadwell support
630  *
631  * DE processor:
632  *	- 1 IMC
633  *	- 2 DDR3 channels, 2 DPC per channel
634  * EP processor:
635  *	- 1 or 2 IMC
636  *	- 4 DDR4 channels, 3 DPC per channel
637  * EP 4S processor:
638  *	- 2 IMC
639  *	- 4 DDR4 channels, 3 DPC per channel
640  * EX processor:
641  *	- 2 IMC
642  *	- each IMC interfaces with a SMI 2 channel
643  *	- each SMI channel interfaces with a scalable memory buffer
644  *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
645  */
646 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
647 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0	0x6fa0
648 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1	0x6f60
649 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA	0x6fa8
650 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM	0x6f71
651 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA	0x6f68
652 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM	0x6f79
653 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
654 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
655 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
656 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
657 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
658 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
659 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
660 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
661 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
662 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
663 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
664 
665 static const struct pci_id_descr pci_dev_descr_broadwell[] = {
666 	/* first item must be the HA */
667 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0,      0, IMC0) },
668 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1,      1, IMC1) },
669 
670 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA,   0, IMC0) },
671 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM,   0, IMC0) },
672 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0, IMC0) },
673 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0, IMC0) },
674 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1, IMC0) },
675 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1, IMC0) },
676 
677 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA,   1, IMC1) },
678 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM,   1, IMC1) },
679 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1, IMC1) },
680 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1, IMC1) },
681 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1, IMC1) },
682 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1, IMC1) },
683 
684 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0, SOCK) },
685 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0, SOCK) },
686 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0,   1, SOCK) },
687 };
688 
689 static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
690 	PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, 10, 2, BROADWELL),
691 	{ NULL, }
692 };
693 
694 
695 /****************************************************************************
696 			Ancillary status routines
697  ****************************************************************************/
698 
699 static inline int numrank(enum type type, u32 mtr)
700 {
701 	int ranks = (1 << RANK_CNT_BITS(mtr));
702 	int max = 4;
703 
704 	if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
705 		max = 8;
706 
707 	if (ranks > max) {
708 		edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
709 			 ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
710 		return -EINVAL;
711 	}
712 
713 	return ranks;
714 }
715 
716 static inline int numrow(u32 mtr)
717 {
718 	int rows = (RANK_WIDTH_BITS(mtr) + 12);
719 
720 	if (rows < 13 || rows > 18) {
721 		edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
722 			 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
723 		return -EINVAL;
724 	}
725 
726 	return 1 << rows;
727 }
728 
729 static inline int numcol(u32 mtr)
730 {
731 	int cols = (COL_WIDTH_BITS(mtr) + 10);
732 
733 	if (cols > 12) {
734 		edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
735 			 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
736 		return -EINVAL;
737 	}
738 
739 	return 1 << cols;
740 }
741 
742 static struct sbridge_dev *get_sbridge_dev(int seg, u8 bus, enum domain dom,
743 					   int multi_bus,
744 					   struct sbridge_dev *prev)
745 {
746 	struct sbridge_dev *sbridge_dev;
747 
748 	/*
749 	 * If we have devices scattered across several busses that pertain
750 	 * to the same memory controller, we'll lump them all together.
751 	 */
752 	if (multi_bus) {
753 		return list_first_entry_or_null(&sbridge_edac_list,
754 				struct sbridge_dev, list);
755 	}
756 
757 	sbridge_dev = list_entry(prev ? prev->list.next
758 				      : sbridge_edac_list.next, struct sbridge_dev, list);
759 
760 	list_for_each_entry_from(sbridge_dev, &sbridge_edac_list, list) {
761 		if ((sbridge_dev->seg == seg) && (sbridge_dev->bus == bus) &&
762 				(dom == SOCK || dom == sbridge_dev->dom))
763 			return sbridge_dev;
764 	}
765 
766 	return NULL;
767 }
768 
769 static struct sbridge_dev *alloc_sbridge_dev(int seg, u8 bus, enum domain dom,
770 					     const struct pci_id_table *table)
771 {
772 	struct sbridge_dev *sbridge_dev;
773 
774 	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
775 	if (!sbridge_dev)
776 		return NULL;
777 
778 	sbridge_dev->pdev = kcalloc(table->n_devs_per_imc,
779 				    sizeof(*sbridge_dev->pdev),
780 				    GFP_KERNEL);
781 	if (!sbridge_dev->pdev) {
782 		kfree(sbridge_dev);
783 		return NULL;
784 	}
785 
786 	sbridge_dev->seg = seg;
787 	sbridge_dev->bus = bus;
788 	sbridge_dev->dom = dom;
789 	sbridge_dev->n_devs = table->n_devs_per_imc;
790 	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
791 
792 	return sbridge_dev;
793 }
794 
795 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
796 {
797 	list_del(&sbridge_dev->list);
798 	kfree(sbridge_dev->pdev);
799 	kfree(sbridge_dev);
800 }
801 
802 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
803 {
804 	u32 reg;
805 
806 	/* Address range is 32:28 */
807 	pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
808 	return GET_TOLM(reg);
809 }
810 
811 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
812 {
813 	u32 reg;
814 
815 	pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
816 	return GET_TOHM(reg);
817 }
818 
819 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
820 {
821 	u32 reg;
822 
823 	pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
824 
825 	return GET_TOLM(reg);
826 }
827 
828 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
829 {
830 	u32 reg;
831 
832 	pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
833 
834 	return GET_TOHM(reg);
835 }
836 
837 static u64 rir_limit(u32 reg)
838 {
839 	return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
840 }
841 
842 static u64 sad_limit(u32 reg)
843 {
844 	return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
845 }
846 
847 static u32 interleave_mode(u32 reg)
848 {
849 	return GET_BITFIELD(reg, 1, 1);
850 }
851 
852 static u32 dram_attr(u32 reg)
853 {
854 	return GET_BITFIELD(reg, 2, 3);
855 }
856 
857 static u64 knl_sad_limit(u32 reg)
858 {
859 	return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
860 }
861 
862 static u32 knl_interleave_mode(u32 reg)
863 {
864 	return GET_BITFIELD(reg, 1, 2);
865 }
866 
867 static const char * const knl_intlv_mode[] = {
868 	"[8:6]", "[10:8]", "[14:12]", "[32:30]"
869 };
870 
871 static const char *get_intlv_mode_str(u32 reg, enum type t)
872 {
873 	if (t == KNIGHTS_LANDING)
874 		return knl_intlv_mode[knl_interleave_mode(reg)];
875 	else
876 		return interleave_mode(reg) ? "[8:6]" : "[8:6]XOR[18:16]";
877 }
878 
879 static u32 dram_attr_knl(u32 reg)
880 {
881 	return GET_BITFIELD(reg, 3, 4);
882 }
883 
884 
885 static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
886 {
887 	u32 reg;
888 	enum mem_type mtype;
889 
890 	if (pvt->pci_ddrio) {
891 		pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
892 				      &reg);
893 		if (GET_BITFIELD(reg, 11, 11))
894 			/* FIXME: Can also be LRDIMM */
895 			mtype = MEM_RDDR3;
896 		else
897 			mtype = MEM_DDR3;
898 	} else
899 		mtype = MEM_UNKNOWN;
900 
901 	return mtype;
902 }
903 
904 static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
905 {
906 	u32 reg;
907 	bool registered = false;
908 	enum mem_type mtype = MEM_UNKNOWN;
909 
910 	if (!pvt->pci_ddrio)
911 		goto out;
912 
913 	pci_read_config_dword(pvt->pci_ddrio,
914 			      HASWELL_DDRCRCLKCONTROLS, &reg);
915 	/* Is_Rdimm */
916 	if (GET_BITFIELD(reg, 16, 16))
917 		registered = true;
918 
919 	pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
920 	if (GET_BITFIELD(reg, 14, 14)) {
921 		if (registered)
922 			mtype = MEM_RDDR4;
923 		else
924 			mtype = MEM_DDR4;
925 	} else {
926 		if (registered)
927 			mtype = MEM_RDDR3;
928 		else
929 			mtype = MEM_DDR3;
930 	}
931 
932 out:
933 	return mtype;
934 }
935 
936 static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
937 {
938 	/* for KNL value is fixed */
939 	return DEV_X16;
940 }
941 
942 static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
943 {
944 	/* there's no way to figure out */
945 	return DEV_UNKNOWN;
946 }
947 
948 static enum dev_type __ibridge_get_width(u32 mtr)
949 {
950 	enum dev_type type = DEV_UNKNOWN;
951 
952 	switch (mtr) {
953 	case 2:
954 		type = DEV_X16;
955 		break;
956 	case 1:
957 		type = DEV_X8;
958 		break;
959 	case 0:
960 		type = DEV_X4;
961 		break;
962 	}
963 
964 	return type;
965 }
966 
967 static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
968 {
969 	/*
970 	 * ddr3_width on the documentation but also valid for DDR4 on
971 	 * Haswell
972 	 */
973 	return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
974 }
975 
976 static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
977 {
978 	/* ddr3_width on the documentation but also valid for DDR4 */
979 	return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
980 }
981 
982 static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
983 {
984 	/* DDR4 RDIMMS and LRDIMMS are supported */
985 	return MEM_RDDR4;
986 }
987 
988 static u8 get_node_id(struct sbridge_pvt *pvt)
989 {
990 	u32 reg;
991 	pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
992 	return GET_BITFIELD(reg, 0, 2);
993 }
994 
995 static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
996 {
997 	u32 reg;
998 
999 	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
1000 	return GET_BITFIELD(reg, 0, 3);
1001 }
1002 
1003 static u8 knl_get_node_id(struct sbridge_pvt *pvt)
1004 {
1005 	u32 reg;
1006 
1007 	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
1008 	return GET_BITFIELD(reg, 0, 2);
1009 }
1010 
1011 /*
1012  * Use the reporting bank number to determine which memory
1013  * controller (also known as "ha" for "home agent"). Sandy
1014  * Bridge only has one memory controller per socket, so the
1015  * answer is always zero.
1016  */
1017 static u8 sbridge_get_ha(u8 bank)
1018 {
1019 	return 0;
1020 }
1021 
1022 /*
1023  * On Ivy Bridge, Haswell and Broadwell the error may be in a
1024  * home agent bank (7, 8), or one of the per-channel memory
1025  * controller banks (9 .. 16).
1026  */
1027 static u8 ibridge_get_ha(u8 bank)
1028 {
1029 	switch (bank) {
1030 	case 7 ... 8:
1031 		return bank - 7;
1032 	case 9 ... 16:
1033 		return (bank - 9) / 4;
1034 	default:
1035 		return 0xff;
1036 	}
1037 }
1038 
1039 /* Not used, but included for safety/symmetry */
1040 static u8 knl_get_ha(u8 bank)
1041 {
1042 	return 0xff;
1043 }
1044 
1045 static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
1046 {
1047 	u32 reg;
1048 
1049 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
1050 	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1051 }
1052 
1053 static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
1054 {
1055 	u64 rc;
1056 	u32 reg;
1057 
1058 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
1059 	rc = GET_BITFIELD(reg, 26, 31);
1060 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
1061 	rc = ((reg << 6) | rc) << 26;
1062 
1063 	return rc | 0x3ffffff;
1064 }
1065 
1066 static u64 knl_get_tolm(struct sbridge_pvt *pvt)
1067 {
1068 	u32 reg;
1069 
1070 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
1071 	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1072 }
1073 
1074 static u64 knl_get_tohm(struct sbridge_pvt *pvt)
1075 {
1076 	u64 rc;
1077 	u32 reg_lo, reg_hi;
1078 
1079 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
1080 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
1081 	rc = ((u64)reg_hi << 32) | reg_lo;
1082 	return rc | 0x3ffffff;
1083 }
1084 
1085 
1086 static u64 haswell_rir_limit(u32 reg)
1087 {
1088 	return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
1089 }
1090 
1091 static inline u8 sad_pkg_socket(u8 pkg)
1092 {
1093 	/* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1094 	return ((pkg >> 3) << 2) | (pkg & 0x3);
1095 }
1096 
1097 static inline u8 sad_pkg_ha(u8 pkg)
1098 {
1099 	return (pkg >> 2) & 0x1;
1100 }
1101 
1102 static int haswell_chan_hash(int idx, u64 addr)
1103 {
1104 	int i;
1105 
1106 	/*
1107 	 * XOR even bits from 12:26 to bit0 of idx,
1108 	 *     odd bits from 13:27 to bit1
1109 	 */
1110 	for (i = 12; i < 28; i += 2)
1111 		idx ^= (addr >> i) & 3;
1112 
1113 	return idx;
1114 }
1115 
1116 /* Low bits of TAD limit, and some metadata. */
1117 static const u32 knl_tad_dram_limit_lo[] = {
1118 	0x400, 0x500, 0x600, 0x700,
1119 	0x800, 0x900, 0xa00, 0xb00,
1120 };
1121 
1122 /* Low bits of TAD offset. */
1123 static const u32 knl_tad_dram_offset_lo[] = {
1124 	0x404, 0x504, 0x604, 0x704,
1125 	0x804, 0x904, 0xa04, 0xb04,
1126 };
1127 
1128 /* High 16 bits of TAD limit and offset. */
1129 static const u32 knl_tad_dram_hi[] = {
1130 	0x408, 0x508, 0x608, 0x708,
1131 	0x808, 0x908, 0xa08, 0xb08,
1132 };
1133 
1134 /* Number of ways a tad entry is interleaved. */
1135 static const u32 knl_tad_ways[] = {
1136 	8, 6, 4, 3, 2, 1,
1137 };
1138 
1139 /*
1140  * Retrieve the n'th Target Address Decode table entry
1141  * from the memory controller's TAD table.
1142  *
1143  * @pvt:	driver private data
1144  * @entry:	which entry you want to retrieve
1145  * @mc:		which memory controller (0 or 1)
1146  * @offset:	output tad range offset
1147  * @limit:	output address of first byte above tad range
1148  * @ways:	output number of interleave ways
1149  *
1150  * The offset value has curious semantics.  It's a sort of running total
1151  * of the sizes of all the memory regions that aren't mapped in this
1152  * tad table.
1153  */
1154 static int knl_get_tad(const struct sbridge_pvt *pvt,
1155 		const int entry,
1156 		const int mc,
1157 		u64 *offset,
1158 		u64 *limit,
1159 		int *ways)
1160 {
1161 	u32 reg_limit_lo, reg_offset_lo, reg_hi;
1162 	struct pci_dev *pci_mc;
1163 	int way_id;
1164 
1165 	switch (mc) {
1166 	case 0:
1167 		pci_mc = pvt->knl.pci_mc0;
1168 		break;
1169 	case 1:
1170 		pci_mc = pvt->knl.pci_mc1;
1171 		break;
1172 	default:
1173 		WARN_ON(1);
1174 		return -EINVAL;
1175 	}
1176 
1177 	pci_read_config_dword(pci_mc,
1178 			knl_tad_dram_limit_lo[entry], &reg_limit_lo);
1179 	pci_read_config_dword(pci_mc,
1180 			knl_tad_dram_offset_lo[entry], &reg_offset_lo);
1181 	pci_read_config_dword(pci_mc,
1182 			knl_tad_dram_hi[entry], &reg_hi);
1183 
1184 	/* Is this TAD entry enabled? */
1185 	if (!GET_BITFIELD(reg_limit_lo, 0, 0))
1186 		return -ENODEV;
1187 
1188 	way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
1189 
1190 	if (way_id < ARRAY_SIZE(knl_tad_ways)) {
1191 		*ways = knl_tad_ways[way_id];
1192 	} else {
1193 		*ways = 0;
1194 		sbridge_printk(KERN_ERR,
1195 				"Unexpected value %d in mc_tad_limit_lo wayness field\n",
1196 				way_id);
1197 		return -ENODEV;
1198 	}
1199 
1200 	/*
1201 	 * The least significant 6 bits of base and limit are truncated.
1202 	 * For limit, we fill the missing bits with 1s.
1203 	 */
1204 	*offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
1205 				((u64) GET_BITFIELD(reg_hi, 0,  15) << 32);
1206 	*limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 |
1207 				((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
1208 
1209 	return 0;
1210 }
1211 
1212 /* Determine which memory controller is responsible for a given channel. */
1213 static int knl_channel_mc(int channel)
1214 {
1215 	WARN_ON(channel < 0 || channel >= 6);
1216 
1217 	return channel < 3 ? 1 : 0;
1218 }
1219 
1220 /*
1221  * Get the Nth entry from EDC_ROUTE_TABLE register.
1222  * (This is the per-tile mapping of logical interleave targets to
1223  *  physical EDC modules.)
1224  *
1225  * entry 0: 0:2
1226  *       1: 3:5
1227  *       2: 6:8
1228  *       3: 9:11
1229  *       4: 12:14
1230  *       5: 15:17
1231  *       6: 18:20
1232  *       7: 21:23
1233  * reserved: 24:31
1234  */
1235 static u32 knl_get_edc_route(int entry, u32 reg)
1236 {
1237 	WARN_ON(entry >= KNL_MAX_EDCS);
1238 	return GET_BITFIELD(reg, entry*3, (entry*3)+2);
1239 }
1240 
1241 /*
1242  * Get the Nth entry from MC_ROUTE_TABLE register.
1243  * (This is the per-tile mapping of logical interleave targets to
1244  *  physical DRAM channels modules.)
1245  *
1246  * entry 0: mc 0:2   channel 18:19
1247  *       1: mc 3:5   channel 20:21
1248  *       2: mc 6:8   channel 22:23
1249  *       3: mc 9:11  channel 24:25
1250  *       4: mc 12:14 channel 26:27
1251  *       5: mc 15:17 channel 28:29
1252  * reserved: 30:31
1253  *
1254  * Though we have 3 bits to identify the MC, we should only see
1255  * the values 0 or 1.
1256  */
1257 
1258 static u32 knl_get_mc_route(int entry, u32 reg)
1259 {
1260 	int mc, chan;
1261 
1262 	WARN_ON(entry >= KNL_MAX_CHANNELS);
1263 
1264 	mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
1265 	chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
1266 
1267 	return knl_channel_remap(mc, chan);
1268 }
1269 
1270 /*
1271  * Render the EDC_ROUTE register in human-readable form.
1272  * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1273  */
1274 static void knl_show_edc_route(u32 reg, char *s)
1275 {
1276 	int i;
1277 
1278 	for (i = 0; i < KNL_MAX_EDCS; i++) {
1279 		s[i*2] = knl_get_edc_route(i, reg) + '0';
1280 		s[i*2+1] = '-';
1281 	}
1282 
1283 	s[KNL_MAX_EDCS*2 - 1] = '\0';
1284 }
1285 
1286 /*
1287  * Render the MC_ROUTE register in human-readable form.
1288  * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1289  */
1290 static void knl_show_mc_route(u32 reg, char *s)
1291 {
1292 	int i;
1293 
1294 	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
1295 		s[i*2] = knl_get_mc_route(i, reg) + '0';
1296 		s[i*2+1] = '-';
1297 	}
1298 
1299 	s[KNL_MAX_CHANNELS*2 - 1] = '\0';
1300 }
1301 
1302 #define KNL_EDC_ROUTE 0xb8
1303 #define KNL_MC_ROUTE 0xb4
1304 
1305 /* Is this dram rule backed by regular DRAM in flat mode? */
1306 #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1307 
1308 /* Is this dram rule cached? */
1309 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1310 
1311 /* Is this rule backed by edc ? */
1312 #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1313 
1314 /* Is this rule backed by DRAM, cacheable in EDRAM? */
1315 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1316 
1317 /* Is this rule mod3? */
1318 #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1319 
1320 /*
1321  * Figure out how big our RAM modules are.
1322  *
1323  * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1324  * have to figure this out from the SAD rules, interleave lists, route tables,
1325  * and TAD rules.
1326  *
1327  * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1328  * inspect the TAD rules to figure out how large the SAD regions really are.
1329  *
1330  * When we know the real size of a SAD region and how many ways it's
1331  * interleaved, we know the individual contribution of each channel to
1332  * TAD is size/ways.
1333  *
1334  * Finally, we have to check whether each channel participates in each SAD
1335  * region.
1336  *
1337  * Fortunately, KNL only supports one DIMM per channel, so once we know how
1338  * much memory the channel uses, we know the DIMM is at least that large.
1339  * (The BIOS might possibly choose not to map all available memory, in which
1340  * case we will underreport the size of the DIMM.)
1341  *
1342  * In theory, we could try to determine the EDC sizes as well, but that would
1343  * only work in flat mode, not in cache mode.
1344  *
1345  * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1346  *            elements)
1347  */
1348 static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
1349 {
1350 	u64 sad_base, sad_limit = 0;
1351 	u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
1352 	int sad_rule = 0;
1353 	int tad_rule = 0;
1354 	int intrlv_ways, tad_ways;
1355 	u32 first_pkg, pkg;
1356 	int i;
1357 	u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
1358 	u32 dram_rule, interleave_reg;
1359 	u32 mc_route_reg[KNL_MAX_CHAS];
1360 	u32 edc_route_reg[KNL_MAX_CHAS];
1361 	int edram_only;
1362 	char edc_route_string[KNL_MAX_EDCS*2];
1363 	char mc_route_string[KNL_MAX_CHANNELS*2];
1364 	int cur_reg_start;
1365 	int mc;
1366 	int channel;
1367 	int participants[KNL_MAX_CHANNELS];
1368 
1369 	for (i = 0; i < KNL_MAX_CHANNELS; i++)
1370 		mc_sizes[i] = 0;
1371 
1372 	/* Read the EDC route table in each CHA. */
1373 	cur_reg_start = 0;
1374 	for (i = 0; i < KNL_MAX_CHAS; i++) {
1375 		pci_read_config_dword(pvt->knl.pci_cha[i],
1376 				KNL_EDC_ROUTE, &edc_route_reg[i]);
1377 
1378 		if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
1379 			knl_show_edc_route(edc_route_reg[i-1],
1380 					edc_route_string);
1381 			if (cur_reg_start == i-1)
1382 				edac_dbg(0, "edc route table for CHA %d: %s\n",
1383 					cur_reg_start, edc_route_string);
1384 			else
1385 				edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1386 					cur_reg_start, i-1, edc_route_string);
1387 			cur_reg_start = i;
1388 		}
1389 	}
1390 	knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
1391 	if (cur_reg_start == i-1)
1392 		edac_dbg(0, "edc route table for CHA %d: %s\n",
1393 			cur_reg_start, edc_route_string);
1394 	else
1395 		edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1396 			cur_reg_start, i-1, edc_route_string);
1397 
1398 	/* Read the MC route table in each CHA. */
1399 	cur_reg_start = 0;
1400 	for (i = 0; i < KNL_MAX_CHAS; i++) {
1401 		pci_read_config_dword(pvt->knl.pci_cha[i],
1402 			KNL_MC_ROUTE, &mc_route_reg[i]);
1403 
1404 		if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
1405 			knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1406 			if (cur_reg_start == i-1)
1407 				edac_dbg(0, "mc route table for CHA %d: %s\n",
1408 					cur_reg_start, mc_route_string);
1409 			else
1410 				edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1411 					cur_reg_start, i-1, mc_route_string);
1412 			cur_reg_start = i;
1413 		}
1414 	}
1415 	knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1416 	if (cur_reg_start == i-1)
1417 		edac_dbg(0, "mc route table for CHA %d: %s\n",
1418 			cur_reg_start, mc_route_string);
1419 	else
1420 		edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1421 			cur_reg_start, i-1, mc_route_string);
1422 
1423 	/* Process DRAM rules */
1424 	for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
1425 		/* previous limit becomes the new base */
1426 		sad_base = sad_limit;
1427 
1428 		pci_read_config_dword(pvt->pci_sad0,
1429 			pvt->info.dram_rule[sad_rule], &dram_rule);
1430 
1431 		if (!DRAM_RULE_ENABLE(dram_rule))
1432 			break;
1433 
1434 		edram_only = KNL_EDRAM_ONLY(dram_rule);
1435 
1436 		sad_limit = pvt->info.sad_limit(dram_rule)+1;
1437 
1438 		pci_read_config_dword(pvt->pci_sad0,
1439 			pvt->info.interleave_list[sad_rule], &interleave_reg);
1440 
1441 		/*
1442 		 * Find out how many ways this dram rule is interleaved.
1443 		 * We stop when we see the first channel again.
1444 		 */
1445 		first_pkg = sad_pkg(pvt->info.interleave_pkg,
1446 						interleave_reg, 0);
1447 		for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
1448 			pkg = sad_pkg(pvt->info.interleave_pkg,
1449 						interleave_reg, intrlv_ways);
1450 
1451 			if ((pkg & 0x8) == 0) {
1452 				/*
1453 				 * 0 bit means memory is non-local,
1454 				 * which KNL doesn't support
1455 				 */
1456 				edac_dbg(0, "Unexpected interleave target %d\n",
1457 					pkg);
1458 				return -1;
1459 			}
1460 
1461 			if (pkg == first_pkg)
1462 				break;
1463 		}
1464 		if (KNL_MOD3(dram_rule))
1465 			intrlv_ways *= 3;
1466 
1467 		edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1468 			sad_rule,
1469 			sad_base,
1470 			sad_limit,
1471 			intrlv_ways,
1472 			edram_only ? ", EDRAM" : "");
1473 
1474 		/*
1475 		 * Find out how big the SAD region really is by iterating
1476 		 * over TAD tables (SAD regions may contain holes).
1477 		 * Each memory controller might have a different TAD table, so
1478 		 * we have to look at both.
1479 		 *
1480 		 * Livespace is the memory that's mapped in this TAD table,
1481 		 * deadspace is the holes (this could be the MMIO hole, or it
1482 		 * could be memory that's mapped by the other TAD table but
1483 		 * not this one).
1484 		 */
1485 		for (mc = 0; mc < 2; mc++) {
1486 			sad_actual_size[mc] = 0;
1487 			tad_livespace = 0;
1488 			for (tad_rule = 0;
1489 					tad_rule < ARRAY_SIZE(
1490 						knl_tad_dram_limit_lo);
1491 					tad_rule++) {
1492 				if (knl_get_tad(pvt,
1493 						tad_rule,
1494 						mc,
1495 						&tad_deadspace,
1496 						&tad_limit,
1497 						&tad_ways))
1498 					break;
1499 
1500 				tad_size = (tad_limit+1) -
1501 					(tad_livespace + tad_deadspace);
1502 				tad_livespace += tad_size;
1503 				tad_base = (tad_limit+1) - tad_size;
1504 
1505 				if (tad_base < sad_base) {
1506 					if (tad_limit > sad_base)
1507 						edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1508 				} else if (tad_base < sad_limit) {
1509 					if (tad_limit+1 > sad_limit) {
1510 						edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1511 					} else {
1512 						/* TAD region is completely inside SAD region */
1513 						edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1514 							tad_rule, tad_base,
1515 							tad_limit, tad_size,
1516 							mc);
1517 						sad_actual_size[mc] += tad_size;
1518 					}
1519 				}
1520 			}
1521 		}
1522 
1523 		for (mc = 0; mc < 2; mc++) {
1524 			edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1525 				mc, sad_actual_size[mc], sad_actual_size[mc]);
1526 		}
1527 
1528 		/* Ignore EDRAM rule */
1529 		if (edram_only)
1530 			continue;
1531 
1532 		/* Figure out which channels participate in interleave. */
1533 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
1534 			participants[channel] = 0;
1535 
1536 		/* For each channel, does at least one CHA have
1537 		 * this channel mapped to the given target?
1538 		 */
1539 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1540 			int target;
1541 			int cha;
1542 
1543 			for (target = 0; target < KNL_MAX_CHANNELS; target++) {
1544 				for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
1545 					if (knl_get_mc_route(target,
1546 						mc_route_reg[cha]) == channel
1547 						&& !participants[channel]) {
1548 						participants[channel] = 1;
1549 						break;
1550 					}
1551 				}
1552 			}
1553 		}
1554 
1555 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1556 			mc = knl_channel_mc(channel);
1557 			if (participants[channel]) {
1558 				edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1559 					channel,
1560 					sad_actual_size[mc]/intrlv_ways,
1561 					sad_rule);
1562 				mc_sizes[channel] +=
1563 					sad_actual_size[mc]/intrlv_ways;
1564 			}
1565 		}
1566 	}
1567 
1568 	return 0;
1569 }
1570 
1571 static void get_source_id(struct mem_ctl_info *mci)
1572 {
1573 	struct sbridge_pvt *pvt = mci->pvt_info;
1574 	u32 reg;
1575 
1576 	if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
1577 	    pvt->info.type == KNIGHTS_LANDING)
1578 		pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
1579 	else
1580 		pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
1581 
1582 	if (pvt->info.type == KNIGHTS_LANDING)
1583 		pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
1584 	else
1585 		pvt->sbridge_dev->source_id = SOURCE_ID(reg);
1586 }
1587 
1588 static int __populate_dimms(struct mem_ctl_info *mci,
1589 			    u64 knl_mc_sizes[KNL_MAX_CHANNELS],
1590 			    enum edac_type mode)
1591 {
1592 	struct sbridge_pvt *pvt = mci->pvt_info;
1593 	int channels = pvt->info.type == KNIGHTS_LANDING ? KNL_MAX_CHANNELS
1594 							 : NUM_CHANNELS;
1595 	unsigned int i, j, banks, ranks, rows, cols, npages;
1596 	struct dimm_info *dimm;
1597 	enum mem_type mtype;
1598 	u64 size;
1599 
1600 	mtype = pvt->info.get_memory_type(pvt);
1601 	if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
1602 		edac_dbg(0, "Memory is registered\n");
1603 	else if (mtype == MEM_UNKNOWN)
1604 		edac_dbg(0, "Cannot determine memory type\n");
1605 	else
1606 		edac_dbg(0, "Memory is unregistered\n");
1607 
1608 	if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
1609 		banks = 16;
1610 	else
1611 		banks = 8;
1612 
1613 	for (i = 0; i < channels; i++) {
1614 		u32 mtr, amap = 0;
1615 
1616 		int max_dimms_per_channel;
1617 
1618 		if (pvt->info.type == KNIGHTS_LANDING) {
1619 			max_dimms_per_channel = 1;
1620 			if (!pvt->knl.pci_channel[i])
1621 				continue;
1622 		} else {
1623 			max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
1624 			if (!pvt->pci_tad[i])
1625 				continue;
1626 			pci_read_config_dword(pvt->pci_tad[i], 0x8c, &amap);
1627 		}
1628 
1629 		for (j = 0; j < max_dimms_per_channel; j++) {
1630 			dimm = edac_get_dimm(mci, i, j, 0);
1631 			if (pvt->info.type == KNIGHTS_LANDING) {
1632 				pci_read_config_dword(pvt->knl.pci_channel[i],
1633 					knl_mtr_reg, &mtr);
1634 			} else {
1635 				pci_read_config_dword(pvt->pci_tad[i],
1636 					mtr_regs[j], &mtr);
1637 			}
1638 			edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
1639 
1640 			if (IS_DIMM_PRESENT(mtr)) {
1641 				if (!IS_ECC_ENABLED(pvt->info.mcmtr)) {
1642 					sbridge_printk(KERN_ERR, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
1643 						       pvt->sbridge_dev->source_id,
1644 						       pvt->sbridge_dev->dom, i);
1645 					return -ENODEV;
1646 				}
1647 				pvt->channel[i].dimms++;
1648 
1649 				ranks = numrank(pvt->info.type, mtr);
1650 
1651 				if (pvt->info.type == KNIGHTS_LANDING) {
1652 					/* For DDR4, this is fixed. */
1653 					cols = 1 << 10;
1654 					rows = knl_mc_sizes[i] /
1655 						((u64) cols * ranks * banks * 8);
1656 				} else {
1657 					rows = numrow(mtr);
1658 					cols = numcol(mtr);
1659 				}
1660 
1661 				size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1662 				npages = MiB_TO_PAGES(size);
1663 
1664 				edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1665 					 pvt->sbridge_dev->mc, pvt->sbridge_dev->dom, i, j,
1666 					 size, npages,
1667 					 banks, ranks, rows, cols);
1668 
1669 				dimm->nr_pages = npages;
1670 				dimm->grain = 32;
1671 				dimm->dtype = pvt->info.get_width(pvt, mtr);
1672 				dimm->mtype = mtype;
1673 				dimm->edac_mode = mode;
1674 				pvt->channel[i].dimm[j].rowbits = order_base_2(rows);
1675 				pvt->channel[i].dimm[j].colbits = order_base_2(cols);
1676 				pvt->channel[i].dimm[j].bank_xor_enable =
1677 						GET_BITFIELD(pvt->info.mcmtr, 9, 9);
1678 				pvt->channel[i].dimm[j].amap_fine = GET_BITFIELD(amap, 0, 0);
1679 				snprintf(dimm->label, sizeof(dimm->label),
1680 						 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1681 						 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom, i, j);
1682 			}
1683 		}
1684 	}
1685 
1686 	return 0;
1687 }
1688 
1689 static int get_dimm_config(struct mem_ctl_info *mci)
1690 {
1691 	struct sbridge_pvt *pvt = mci->pvt_info;
1692 	u64 knl_mc_sizes[KNL_MAX_CHANNELS];
1693 	enum edac_type mode;
1694 	u32 reg;
1695 
1696 	pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
1697 	edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1698 		 pvt->sbridge_dev->mc,
1699 		 pvt->sbridge_dev->node_id,
1700 		 pvt->sbridge_dev->source_id);
1701 
1702 	/* KNL doesn't support mirroring or lockstep,
1703 	 * and is always closed page
1704 	 */
1705 	if (pvt->info.type == KNIGHTS_LANDING) {
1706 		mode = EDAC_S4ECD4ED;
1707 		pvt->mirror_mode = NON_MIRRORING;
1708 		pvt->is_cur_addr_mirrored = false;
1709 
1710 		if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
1711 			return -1;
1712 		if (pci_read_config_dword(pvt->pci_ta, KNL_MCMTR, &pvt->info.mcmtr)) {
1713 			edac_dbg(0, "Failed to read KNL_MCMTR register\n");
1714 			return -ENODEV;
1715 		}
1716 	} else {
1717 		if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1718 			if (pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg)) {
1719 				edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n");
1720 				return -ENODEV;
1721 			}
1722 			pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
1723 			if (GET_BITFIELD(reg, 28, 28)) {
1724 				pvt->mirror_mode = ADDR_RANGE_MIRRORING;
1725 				edac_dbg(0, "Address range partial memory mirroring is enabled\n");
1726 				goto next;
1727 			}
1728 		}
1729 		if (pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg)) {
1730 			edac_dbg(0, "Failed to read RASENABLES register\n");
1731 			return -ENODEV;
1732 		}
1733 		if (IS_MIRROR_ENABLED(reg)) {
1734 			pvt->mirror_mode = FULL_MIRRORING;
1735 			edac_dbg(0, "Full memory mirroring is enabled\n");
1736 		} else {
1737 			pvt->mirror_mode = NON_MIRRORING;
1738 			edac_dbg(0, "Memory mirroring is disabled\n");
1739 		}
1740 
1741 next:
1742 		if (pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr)) {
1743 			edac_dbg(0, "Failed to read MCMTR register\n");
1744 			return -ENODEV;
1745 		}
1746 		if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
1747 			edac_dbg(0, "Lockstep is enabled\n");
1748 			mode = EDAC_S8ECD8ED;
1749 			pvt->is_lockstep = true;
1750 		} else {
1751 			edac_dbg(0, "Lockstep is disabled\n");
1752 			mode = EDAC_S4ECD4ED;
1753 			pvt->is_lockstep = false;
1754 		}
1755 		if (IS_CLOSE_PG(pvt->info.mcmtr)) {
1756 			edac_dbg(0, "address map is on closed page mode\n");
1757 			pvt->is_close_pg = true;
1758 		} else {
1759 			edac_dbg(0, "address map is on open page mode\n");
1760 			pvt->is_close_pg = false;
1761 		}
1762 	}
1763 
1764 	return __populate_dimms(mci, knl_mc_sizes, mode);
1765 }
1766 
1767 static void get_memory_layout(const struct mem_ctl_info *mci)
1768 {
1769 	struct sbridge_pvt *pvt = mci->pvt_info;
1770 	int i, j, k, n_sads, n_tads, sad_interl;
1771 	u32 reg;
1772 	u64 limit, prv = 0;
1773 	u64 tmp_mb;
1774 	u32 gb, mb;
1775 	u32 rir_way;
1776 
1777 	/*
1778 	 * Step 1) Get TOLM/TOHM ranges
1779 	 */
1780 
1781 	pvt->tolm = pvt->info.get_tolm(pvt);
1782 	tmp_mb = (1 + pvt->tolm) >> 20;
1783 
1784 	gb = div_u64_rem(tmp_mb, 1024, &mb);
1785 	edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1786 		gb, (mb*1000)/1024, (u64)pvt->tolm);
1787 
1788 	/* Address range is already 45:25 */
1789 	pvt->tohm = pvt->info.get_tohm(pvt);
1790 	tmp_mb = (1 + pvt->tohm) >> 20;
1791 
1792 	gb = div_u64_rem(tmp_mb, 1024, &mb);
1793 	edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1794 		gb, (mb*1000)/1024, (u64)pvt->tohm);
1795 
1796 	/*
1797 	 * Step 2) Get SAD range and SAD Interleave list
1798 	 * TAD registers contain the interleave wayness. However, it
1799 	 * seems simpler to just discover it indirectly, with the
1800 	 * algorithm bellow.
1801 	 */
1802 	prv = 0;
1803 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1804 		/* SAD_LIMIT Address range is 45:26 */
1805 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1806 				      &reg);
1807 		limit = pvt->info.sad_limit(reg);
1808 
1809 		if (!DRAM_RULE_ENABLE(reg))
1810 			continue;
1811 
1812 		if (limit <= prv)
1813 			break;
1814 
1815 		tmp_mb = (limit + 1) >> 20;
1816 		gb = div_u64_rem(tmp_mb, 1024, &mb);
1817 		edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1818 			 n_sads,
1819 			 show_dram_attr(pvt->info.dram_attr(reg)),
1820 			 gb, (mb*1000)/1024,
1821 			 ((u64)tmp_mb) << 20L,
1822 			 get_intlv_mode_str(reg, pvt->info.type),
1823 			 reg);
1824 		prv = limit;
1825 
1826 		pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1827 				      &reg);
1828 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1829 		for (j = 0; j < 8; j++) {
1830 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1831 			if (j > 0 && sad_interl == pkg)
1832 				break;
1833 
1834 			edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1835 				 n_sads, j, pkg);
1836 		}
1837 	}
1838 
1839 	if (pvt->info.type == KNIGHTS_LANDING)
1840 		return;
1841 
1842 	/*
1843 	 * Step 3) Get TAD range
1844 	 */
1845 	prv = 0;
1846 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1847 		pci_read_config_dword(pvt->pci_ha, tad_dram_rule[n_tads], &reg);
1848 		limit = TAD_LIMIT(reg);
1849 		if (limit <= prv)
1850 			break;
1851 		tmp_mb = (limit + 1) >> 20;
1852 
1853 		gb = div_u64_rem(tmp_mb, 1024, &mb);
1854 		edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1855 			 n_tads, gb, (mb*1000)/1024,
1856 			 ((u64)tmp_mb) << 20L,
1857 			 (u32)(1 << TAD_SOCK(reg)),
1858 			 (u32)TAD_CH(reg) + 1,
1859 			 (u32)TAD_TGT0(reg),
1860 			 (u32)TAD_TGT1(reg),
1861 			 (u32)TAD_TGT2(reg),
1862 			 (u32)TAD_TGT3(reg),
1863 			 reg);
1864 		prv = limit;
1865 	}
1866 
1867 	/*
1868 	 * Step 4) Get TAD offsets, per each channel
1869 	 */
1870 	for (i = 0; i < NUM_CHANNELS; i++) {
1871 		if (!pvt->channel[i].dimms)
1872 			continue;
1873 		for (j = 0; j < n_tads; j++) {
1874 			pci_read_config_dword(pvt->pci_tad[i],
1875 					      tad_ch_nilv_offset[j],
1876 					      &reg);
1877 			tmp_mb = TAD_OFFSET(reg) >> 20;
1878 			gb = div_u64_rem(tmp_mb, 1024, &mb);
1879 			edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1880 				 i, j,
1881 				 gb, (mb*1000)/1024,
1882 				 ((u64)tmp_mb) << 20L,
1883 				 reg);
1884 		}
1885 	}
1886 
1887 	/*
1888 	 * Step 6) Get RIR Wayness/Limit, per each channel
1889 	 */
1890 	for (i = 0; i < NUM_CHANNELS; i++) {
1891 		if (!pvt->channel[i].dimms)
1892 			continue;
1893 		for (j = 0; j < MAX_RIR_RANGES; j++) {
1894 			pci_read_config_dword(pvt->pci_tad[i],
1895 					      rir_way_limit[j],
1896 					      &reg);
1897 
1898 			if (!IS_RIR_VALID(reg))
1899 				continue;
1900 
1901 			tmp_mb = pvt->info.rir_limit(reg) >> 20;
1902 			rir_way = 1 << RIR_WAY(reg);
1903 			gb = div_u64_rem(tmp_mb, 1024, &mb);
1904 			edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1905 				 i, j,
1906 				 gb, (mb*1000)/1024,
1907 				 ((u64)tmp_mb) << 20L,
1908 				 rir_way,
1909 				 reg);
1910 
1911 			for (k = 0; k < rir_way; k++) {
1912 				pci_read_config_dword(pvt->pci_tad[i],
1913 						      rir_offset[j][k],
1914 						      &reg);
1915 				tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;
1916 
1917 				gb = div_u64_rem(tmp_mb, 1024, &mb);
1918 				edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1919 					 i, j, k,
1920 					 gb, (mb*1000)/1024,
1921 					 ((u64)tmp_mb) << 20L,
1922 					 (u32)RIR_RNK_TGT(pvt->info.type, reg),
1923 					 reg);
1924 			}
1925 		}
1926 	}
1927 }
1928 
1929 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id, u8 ha)
1930 {
1931 	struct sbridge_dev *sbridge_dev;
1932 
1933 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1934 		if (sbridge_dev->node_id == node_id && sbridge_dev->dom == ha)
1935 			return sbridge_dev->mci;
1936 	}
1937 	return NULL;
1938 }
1939 
1940 static u8 sb_close_row[] = {
1941 	15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33
1942 };
1943 
1944 static u8 sb_close_column[] = {
1945 	3, 4, 5, 14, 19, 23, 24, 25, 26, 27
1946 };
1947 
1948 static u8 sb_open_row[] = {
1949 	14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33
1950 };
1951 
1952 static u8 sb_open_column[] = {
1953 	3, 4, 5, 6, 7, 8, 9, 10, 11, 12
1954 };
1955 
1956 static u8 sb_open_fine_column[] = {
1957 	3, 4, 5, 7, 8, 9, 10, 11, 12, 13
1958 };
1959 
1960 static int sb_bits(u64 addr, int nbits, u8 *bits)
1961 {
1962 	int i, res = 0;
1963 
1964 	for (i = 0; i < nbits; i++)
1965 		res |= ((addr >> bits[i]) & 1) << i;
1966 	return res;
1967 }
1968 
1969 static int sb_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1)
1970 {
1971 	int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1);
1972 
1973 	if (do_xor)
1974 		ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1);
1975 
1976 	return ret;
1977 }
1978 
1979 static bool sb_decode_ddr4(struct mem_ctl_info *mci, int ch, u8 rank,
1980 			   u64 rank_addr, char *msg)
1981 {
1982 	int dimmno = 0;
1983 	int row, col, bank_address, bank_group;
1984 	struct sbridge_pvt *pvt;
1985 	u32 bg0 = 0, rowbits = 0, colbits = 0;
1986 	u32 amap_fine = 0, bank_xor_enable = 0;
1987 
1988 	dimmno = (rank < 12) ? rank / 4 : 2;
1989 	pvt = mci->pvt_info;
1990 	amap_fine =  pvt->channel[ch].dimm[dimmno].amap_fine;
1991 	bg0 = amap_fine ? 6 : 13;
1992 	rowbits = pvt->channel[ch].dimm[dimmno].rowbits;
1993 	colbits = pvt->channel[ch].dimm[dimmno].colbits;
1994 	bank_xor_enable = pvt->channel[ch].dimm[dimmno].bank_xor_enable;
1995 
1996 	if (pvt->is_lockstep) {
1997 		pr_warn_once("LockStep row/column decode is not supported yet!\n");
1998 		msg[0] = '\0';
1999 		return false;
2000 	}
2001 
2002 	if (pvt->is_close_pg) {
2003 		row = sb_bits(rank_addr, rowbits, sb_close_row);
2004 		col = sb_bits(rank_addr, colbits, sb_close_column);
2005 		col |= 0x400; /* C10 is autoprecharge, always set */
2006 		bank_address = sb_bank_bits(rank_addr, 8, 9, bank_xor_enable, 22, 28);
2007 		bank_group = sb_bank_bits(rank_addr, 6, 7, bank_xor_enable, 20, 21);
2008 	} else {
2009 		row = sb_bits(rank_addr, rowbits, sb_open_row);
2010 		if (amap_fine)
2011 			col = sb_bits(rank_addr, colbits, sb_open_fine_column);
2012 		else
2013 			col = sb_bits(rank_addr, colbits, sb_open_column);
2014 		bank_address = sb_bank_bits(rank_addr, 18, 19, bank_xor_enable, 22, 23);
2015 		bank_group = sb_bank_bits(rank_addr, bg0, 17, bank_xor_enable, 20, 21);
2016 	}
2017 
2018 	row &= (1u << rowbits) - 1;
2019 
2020 	sprintf(msg, "row:0x%x col:0x%x bank_addr:%d bank_group:%d",
2021 		row, col, bank_address, bank_group);
2022 	return true;
2023 }
2024 
2025 static bool sb_decode_ddr3(struct mem_ctl_info *mci, int ch, u8 rank,
2026 			   u64 rank_addr, char *msg)
2027 {
2028 	pr_warn_once("DDR3 row/column decode not support yet!\n");
2029 	msg[0] = '\0';
2030 	return false;
2031 }
2032 
2033 static int get_memory_error_data(struct mem_ctl_info *mci,
2034 				 u64 addr,
2035 				 u8 *socket, u8 *ha,
2036 				 long *channel_mask,
2037 				 u8 *rank,
2038 				 char **area_type, char *msg)
2039 {
2040 	struct mem_ctl_info	*new_mci;
2041 	struct sbridge_pvt *pvt = mci->pvt_info;
2042 	struct pci_dev		*pci_ha;
2043 	int			n_rir, n_sads, n_tads, sad_way, sck_xch;
2044 	int			sad_interl, idx, base_ch;
2045 	int			interleave_mode, shiftup = 0;
2046 	unsigned int		sad_interleave[MAX_INTERLEAVE];
2047 	u32			reg, dram_rule;
2048 	u8			ch_way, sck_way, pkg, sad_ha = 0, rankid = 0;
2049 	u32			tad_offset;
2050 	u32			rir_way;
2051 	u32			mb, gb;
2052 	u64			ch_addr, offset, limit = 0, prv = 0;
2053 	u64			rank_addr;
2054 	enum mem_type		mtype;
2055 
2056 	/*
2057 	 * Step 0) Check if the address is at special memory ranges
2058 	 * The check bellow is probably enough to fill all cases where
2059 	 * the error is not inside a memory, except for the legacy
2060 	 * range (e. g. VGA addresses). It is unlikely, however, that the
2061 	 * memory controller would generate an error on that range.
2062 	 */
2063 	if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
2064 		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
2065 		return -EINVAL;
2066 	}
2067 	if (addr >= (u64)pvt->tohm) {
2068 		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
2069 		return -EINVAL;
2070 	}
2071 
2072 	/*
2073 	 * Step 1) Get socket
2074 	 */
2075 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
2076 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
2077 				      &reg);
2078 
2079 		if (!DRAM_RULE_ENABLE(reg))
2080 			continue;
2081 
2082 		limit = pvt->info.sad_limit(reg);
2083 		if (limit <= prv) {
2084 			sprintf(msg, "Can't discover the memory socket");
2085 			return -EINVAL;
2086 		}
2087 		if  (addr <= limit)
2088 			break;
2089 		prv = limit;
2090 	}
2091 	if (n_sads == pvt->info.max_sad) {
2092 		sprintf(msg, "Can't discover the memory socket");
2093 		return -EINVAL;
2094 	}
2095 	dram_rule = reg;
2096 	*area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
2097 	interleave_mode = pvt->info.interleave_mode(dram_rule);
2098 
2099 	pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
2100 			      &reg);
2101 
2102 	if (pvt->info.type == SANDY_BRIDGE) {
2103 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
2104 		for (sad_way = 0; sad_way < 8; sad_way++) {
2105 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
2106 			if (sad_way > 0 && sad_interl == pkg)
2107 				break;
2108 			sad_interleave[sad_way] = pkg;
2109 			edac_dbg(0, "SAD interleave #%d: %d\n",
2110 				 sad_way, sad_interleave[sad_way]);
2111 		}
2112 		edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
2113 			 pvt->sbridge_dev->mc,
2114 			 n_sads,
2115 			 addr,
2116 			 limit,
2117 			 sad_way + 7,
2118 			 !interleave_mode ? "" : "XOR[18:16]");
2119 		if (interleave_mode)
2120 			idx = ((addr >> 6) ^ (addr >> 16)) & 7;
2121 		else
2122 			idx = (addr >> 6) & 7;
2123 		switch (sad_way) {
2124 		case 1:
2125 			idx = 0;
2126 			break;
2127 		case 2:
2128 			idx = idx & 1;
2129 			break;
2130 		case 4:
2131 			idx = idx & 3;
2132 			break;
2133 		case 8:
2134 			break;
2135 		default:
2136 			sprintf(msg, "Can't discover socket interleave");
2137 			return -EINVAL;
2138 		}
2139 		*socket = sad_interleave[idx];
2140 		edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
2141 			 idx, sad_way, *socket);
2142 	} else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
2143 		int bits, a7mode = A7MODE(dram_rule);
2144 
2145 		if (a7mode) {
2146 			/* A7 mode swaps P9 with P6 */
2147 			bits = GET_BITFIELD(addr, 7, 8) << 1;
2148 			bits |= GET_BITFIELD(addr, 9, 9);
2149 		} else
2150 			bits = GET_BITFIELD(addr, 6, 8);
2151 
2152 		if (interleave_mode == 0) {
2153 			/* interleave mode will XOR {8,7,6} with {18,17,16} */
2154 			idx = GET_BITFIELD(addr, 16, 18);
2155 			idx ^= bits;
2156 		} else
2157 			idx = bits;
2158 
2159 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2160 		*socket = sad_pkg_socket(pkg);
2161 		sad_ha = sad_pkg_ha(pkg);
2162 
2163 		if (a7mode) {
2164 			/* MCChanShiftUpEnable */
2165 			pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg);
2166 			shiftup = GET_BITFIELD(reg, 22, 22);
2167 		}
2168 
2169 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2170 			 idx, *socket, sad_ha, shiftup);
2171 	} else {
2172 		/* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2173 		idx = (addr >> 6) & 7;
2174 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2175 		*socket = sad_pkg_socket(pkg);
2176 		sad_ha = sad_pkg_ha(pkg);
2177 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2178 			 idx, *socket, sad_ha);
2179 	}
2180 
2181 	*ha = sad_ha;
2182 
2183 	/*
2184 	 * Move to the proper node structure, in order to access the
2185 	 * right PCI registers
2186 	 */
2187 	new_mci = get_mci_for_node_id(*socket, sad_ha);
2188 	if (!new_mci) {
2189 		sprintf(msg, "Struct for socket #%u wasn't initialized",
2190 			*socket);
2191 		return -EINVAL;
2192 	}
2193 	mci = new_mci;
2194 	pvt = mci->pvt_info;
2195 
2196 	/*
2197 	 * Step 2) Get memory channel
2198 	 */
2199 	prv = 0;
2200 	pci_ha = pvt->pci_ha;
2201 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
2202 		pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
2203 		limit = TAD_LIMIT(reg);
2204 		if (limit <= prv) {
2205 			sprintf(msg, "Can't discover the memory channel");
2206 			return -EINVAL;
2207 		}
2208 		if  (addr <= limit)
2209 			break;
2210 		prv = limit;
2211 	}
2212 	if (n_tads == MAX_TAD) {
2213 		sprintf(msg, "Can't discover the memory channel");
2214 		return -EINVAL;
2215 	}
2216 
2217 	ch_way = TAD_CH(reg) + 1;
2218 	sck_way = TAD_SOCK(reg);
2219 
2220 	if (ch_way == 3)
2221 		idx = addr >> 6;
2222 	else {
2223 		idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
2224 		if (pvt->is_chan_hash)
2225 			idx = haswell_chan_hash(idx, addr);
2226 	}
2227 	idx = idx % ch_way;
2228 
2229 	/*
2230 	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2231 	 */
2232 	switch (idx) {
2233 	case 0:
2234 		base_ch = TAD_TGT0(reg);
2235 		break;
2236 	case 1:
2237 		base_ch = TAD_TGT1(reg);
2238 		break;
2239 	case 2:
2240 		base_ch = TAD_TGT2(reg);
2241 		break;
2242 	case 3:
2243 		base_ch = TAD_TGT3(reg);
2244 		break;
2245 	default:
2246 		sprintf(msg, "Can't discover the TAD target");
2247 		return -EINVAL;
2248 	}
2249 	*channel_mask = 1 << base_ch;
2250 
2251 	pci_read_config_dword(pvt->pci_tad[base_ch], tad_ch_nilv_offset[n_tads], &tad_offset);
2252 
2253 	if (pvt->mirror_mode == FULL_MIRRORING ||
2254 	    (pvt->mirror_mode == ADDR_RANGE_MIRRORING && n_tads == 0)) {
2255 		*channel_mask |= 1 << ((base_ch + 2) % 4);
2256 		switch(ch_way) {
2257 		case 2:
2258 		case 4:
2259 			sck_xch = (1 << sck_way) * (ch_way >> 1);
2260 			break;
2261 		default:
2262 			sprintf(msg, "Invalid mirror set. Can't decode addr");
2263 			return -EINVAL;
2264 		}
2265 
2266 		pvt->is_cur_addr_mirrored = true;
2267 	} else {
2268 		sck_xch = (1 << sck_way) * ch_way;
2269 		pvt->is_cur_addr_mirrored = false;
2270 	}
2271 
2272 	if (pvt->is_lockstep)
2273 		*channel_mask |= 1 << ((base_ch + 1) % 4);
2274 
2275 	offset = TAD_OFFSET(tad_offset);
2276 
2277 	edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2278 		 n_tads,
2279 		 addr,
2280 		 limit,
2281 		 sck_way,
2282 		 ch_way,
2283 		 offset,
2284 		 idx,
2285 		 base_ch,
2286 		 *channel_mask);
2287 
2288 	/* Calculate channel address */
2289 	/* Remove the TAD offset */
2290 
2291 	if (offset > addr) {
2292 		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2293 			offset, addr);
2294 		return -EINVAL;
2295 	}
2296 
2297 	ch_addr = addr - offset;
2298 	ch_addr >>= (6 + shiftup);
2299 	ch_addr /= sck_xch;
2300 	ch_addr <<= (6 + shiftup);
2301 	ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
2302 
2303 	/*
2304 	 * Step 3) Decode rank
2305 	 */
2306 	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
2307 		pci_read_config_dword(pvt->pci_tad[base_ch], rir_way_limit[n_rir], &reg);
2308 
2309 		if (!IS_RIR_VALID(reg))
2310 			continue;
2311 
2312 		limit = pvt->info.rir_limit(reg);
2313 		gb = div_u64_rem(limit >> 20, 1024, &mb);
2314 		edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2315 			 n_rir,
2316 			 gb, (mb*1000)/1024,
2317 			 limit,
2318 			 1 << RIR_WAY(reg));
2319 		if  (ch_addr <= limit)
2320 			break;
2321 	}
2322 	if (n_rir == MAX_RIR_RANGES) {
2323 		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
2324 			ch_addr);
2325 		return -EINVAL;
2326 	}
2327 	rir_way = RIR_WAY(reg);
2328 
2329 	if (pvt->is_close_pg)
2330 		idx = (ch_addr >> 6);
2331 	else
2332 		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
2333 	idx %= 1 << rir_way;
2334 
2335 	pci_read_config_dword(pvt->pci_tad[base_ch], rir_offset[n_rir][idx], &reg);
2336 	*rank = RIR_RNK_TGT(pvt->info.type, reg);
2337 
2338 	if (pvt->info.type == BROADWELL) {
2339 		if (pvt->is_close_pg)
2340 			shiftup = 6;
2341 		else
2342 			shiftup = 13;
2343 
2344 		rank_addr = ch_addr >> shiftup;
2345 		rank_addr /= (1 << rir_way);
2346 		rank_addr <<= shiftup;
2347 		rank_addr |= ch_addr & GENMASK_ULL(shiftup - 1, 0);
2348 		rank_addr -= RIR_OFFSET(pvt->info.type, reg);
2349 
2350 		mtype = pvt->info.get_memory_type(pvt);
2351 		rankid = *rank;
2352 		if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
2353 			sb_decode_ddr4(mci, base_ch, rankid, rank_addr, msg);
2354 		else
2355 			sb_decode_ddr3(mci, base_ch, rankid, rank_addr, msg);
2356 	} else {
2357 		msg[0] = '\0';
2358 	}
2359 
2360 	edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2361 		 n_rir,
2362 		 ch_addr,
2363 		 limit,
2364 		 rir_way,
2365 		 idx);
2366 
2367 	return 0;
2368 }
2369 
2370 static int get_memory_error_data_from_mce(struct mem_ctl_info *mci,
2371 					  const struct mce *m, u8 *socket,
2372 					  u8 *ha, long *channel_mask,
2373 					  char *msg)
2374 {
2375 	u32 reg, channel = GET_BITFIELD(m->status, 0, 3);
2376 	struct mem_ctl_info *new_mci;
2377 	struct sbridge_pvt *pvt;
2378 	struct pci_dev *pci_ha;
2379 	bool tad0;
2380 
2381 	if (channel >= NUM_CHANNELS) {
2382 		sprintf(msg, "Invalid channel 0x%x", channel);
2383 		return -EINVAL;
2384 	}
2385 
2386 	pvt = mci->pvt_info;
2387 	if (!pvt->info.get_ha) {
2388 		sprintf(msg, "No get_ha()");
2389 		return -EINVAL;
2390 	}
2391 	*ha = pvt->info.get_ha(m->bank);
2392 	if (*ha != 0 && *ha != 1) {
2393 		sprintf(msg, "Impossible bank %d", m->bank);
2394 		return -EINVAL;
2395 	}
2396 
2397 	*socket = m->socketid;
2398 	new_mci = get_mci_for_node_id(*socket, *ha);
2399 	if (!new_mci) {
2400 		strcpy(msg, "mci socket got corrupted!");
2401 		return -EINVAL;
2402 	}
2403 
2404 	pvt = new_mci->pvt_info;
2405 	pci_ha = pvt->pci_ha;
2406 	pci_read_config_dword(pci_ha, tad_dram_rule[0], &reg);
2407 	tad0 = m->addr <= TAD_LIMIT(reg);
2408 
2409 	*channel_mask = 1 << channel;
2410 	if (pvt->mirror_mode == FULL_MIRRORING ||
2411 	    (pvt->mirror_mode == ADDR_RANGE_MIRRORING && tad0)) {
2412 		*channel_mask |= 1 << ((channel + 2) % 4);
2413 		pvt->is_cur_addr_mirrored = true;
2414 	} else {
2415 		pvt->is_cur_addr_mirrored = false;
2416 	}
2417 
2418 	if (pvt->is_lockstep)
2419 		*channel_mask |= 1 << ((channel + 1) % 4);
2420 
2421 	return 0;
2422 }
2423 
2424 /****************************************************************************
2425 	Device initialization routines: put/get, init/exit
2426  ****************************************************************************/
2427 
2428 /*
2429  *	sbridge_put_all_devices	'put' all the devices that we have
2430  *				reserved via 'get'
2431  */
2432 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
2433 {
2434 	int i;
2435 
2436 	edac_dbg(0, "\n");
2437 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2438 		struct pci_dev *pdev = sbridge_dev->pdev[i];
2439 		if (!pdev)
2440 			continue;
2441 		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2442 			 pdev->bus->number,
2443 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2444 		pci_dev_put(pdev);
2445 	}
2446 }
2447 
2448 static void sbridge_put_all_devices(void)
2449 {
2450 	struct sbridge_dev *sbridge_dev, *tmp;
2451 
2452 	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
2453 		sbridge_put_devices(sbridge_dev);
2454 		free_sbridge_dev(sbridge_dev);
2455 	}
2456 }
2457 
2458 static int sbridge_get_onedevice(struct pci_dev **prev,
2459 				 u8 *num_mc,
2460 				 const struct pci_id_table *table,
2461 				 const unsigned devno,
2462 				 const int multi_bus)
2463 {
2464 	struct sbridge_dev *sbridge_dev = NULL;
2465 	const struct pci_id_descr *dev_descr = &table->descr[devno];
2466 	struct pci_dev *pdev = NULL;
2467 	int seg = 0;
2468 	u8 bus = 0;
2469 	int i = 0;
2470 
2471 	sbridge_printk(KERN_DEBUG,
2472 		"Seeking for: PCI ID %04x:%04x\n",
2473 		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2474 
2475 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
2476 			      dev_descr->dev_id, *prev);
2477 
2478 	if (!pdev) {
2479 		if (*prev) {
2480 			*prev = pdev;
2481 			return 0;
2482 		}
2483 
2484 		if (dev_descr->optional)
2485 			return 0;
2486 
2487 		/* if the HA wasn't found */
2488 		if (devno == 0)
2489 			return -ENODEV;
2490 
2491 		sbridge_printk(KERN_INFO,
2492 			"Device not found: %04x:%04x\n",
2493 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2494 
2495 		/* End of list, leave */
2496 		return -ENODEV;
2497 	}
2498 	seg = pci_domain_nr(pdev->bus);
2499 	bus = pdev->bus->number;
2500 
2501 next_imc:
2502 	sbridge_dev = get_sbridge_dev(seg, bus, dev_descr->dom,
2503 				      multi_bus, sbridge_dev);
2504 	if (!sbridge_dev) {
2505 		/* If the HA1 wasn't found, don't create EDAC second memory controller */
2506 		if (dev_descr->dom == IMC1 && devno != 1) {
2507 			edac_dbg(0, "Skip IMC1: %04x:%04x (since HA1 was absent)\n",
2508 				 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2509 			pci_dev_put(pdev);
2510 			return 0;
2511 		}
2512 
2513 		if (dev_descr->dom == SOCK)
2514 			goto out_imc;
2515 
2516 		sbridge_dev = alloc_sbridge_dev(seg, bus, dev_descr->dom, table);
2517 		if (!sbridge_dev) {
2518 			pci_dev_put(pdev);
2519 			return -ENOMEM;
2520 		}
2521 		(*num_mc)++;
2522 	}
2523 
2524 	if (sbridge_dev->pdev[sbridge_dev->i_devs]) {
2525 		sbridge_printk(KERN_ERR,
2526 			"Duplicated device for %04x:%04x\n",
2527 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2528 		pci_dev_put(pdev);
2529 		return -ENODEV;
2530 	}
2531 
2532 	sbridge_dev->pdev[sbridge_dev->i_devs++] = pdev;
2533 
2534 	/* pdev belongs to more than one IMC, do extra gets */
2535 	if (++i > 1)
2536 		pci_dev_get(pdev);
2537 
2538 	if (dev_descr->dom == SOCK && i < table->n_imcs_per_sock)
2539 		goto next_imc;
2540 
2541 out_imc:
2542 	/* Be sure that the device is enabled */
2543 	if (unlikely(pci_enable_device(pdev) < 0)) {
2544 		sbridge_printk(KERN_ERR,
2545 			"Couldn't enable %04x:%04x\n",
2546 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2547 		return -ENODEV;
2548 	}
2549 
2550 	edac_dbg(0, "Detected %04x:%04x\n",
2551 		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2552 
2553 	/*
2554 	 * As stated on drivers/pci/search.c, the reference count for
2555 	 * @from is always decremented if it is not %NULL. So, as we need
2556 	 * to get all devices up to null, we need to do a get for the device
2557 	 */
2558 	pci_dev_get(pdev);
2559 
2560 	*prev = pdev;
2561 
2562 	return 0;
2563 }
2564 
2565 /*
2566  * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2567  *			     devices we want to reference for this driver.
2568  * @num_mc: pointer to the memory controllers count, to be incremented in case
2569  *	    of success.
2570  * @table: model specific table
2571  *
2572  * returns 0 in case of success or error code
2573  */
2574 static int sbridge_get_all_devices(u8 *num_mc,
2575 					const struct pci_id_table *table)
2576 {
2577 	int i, rc;
2578 	struct pci_dev *pdev = NULL;
2579 	int allow_dups = 0;
2580 	int multi_bus = 0;
2581 
2582 	if (table->type == KNIGHTS_LANDING)
2583 		allow_dups = multi_bus = 1;
2584 	while (table && table->descr) {
2585 		for (i = 0; i < table->n_devs_per_sock; i++) {
2586 			if (!allow_dups || i == 0 ||
2587 					table->descr[i].dev_id !=
2588 						table->descr[i-1].dev_id) {
2589 				pdev = NULL;
2590 			}
2591 			do {
2592 				rc = sbridge_get_onedevice(&pdev, num_mc,
2593 							   table, i, multi_bus);
2594 				if (rc < 0) {
2595 					if (i == 0) {
2596 						i = table->n_devs_per_sock;
2597 						break;
2598 					}
2599 					sbridge_put_all_devices();
2600 					return -ENODEV;
2601 				}
2602 			} while (pdev && !allow_dups);
2603 		}
2604 		table++;
2605 	}
2606 
2607 	return 0;
2608 }
2609 
2610 /*
2611  * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
2612  * the format: XXXa. So we can convert from a device to the corresponding
2613  * channel like this
2614  */
2615 #define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)
2616 
2617 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
2618 				 struct sbridge_dev *sbridge_dev)
2619 {
2620 	struct sbridge_pvt *pvt = mci->pvt_info;
2621 	struct pci_dev *pdev;
2622 	u8 saw_chan_mask = 0;
2623 	int i;
2624 
2625 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2626 		pdev = sbridge_dev->pdev[i];
2627 		if (!pdev)
2628 			continue;
2629 
2630 		switch (pdev->device) {
2631 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
2632 			pvt->pci_sad0 = pdev;
2633 			break;
2634 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
2635 			pvt->pci_sad1 = pdev;
2636 			break;
2637 		case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
2638 			pvt->pci_br0 = pdev;
2639 			break;
2640 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2641 			pvt->pci_ha = pdev;
2642 			break;
2643 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
2644 			pvt->pci_ta = pdev;
2645 			break;
2646 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
2647 			pvt->pci_ras = pdev;
2648 			break;
2649 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
2650 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
2651 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
2652 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
2653 		{
2654 			int id = TAD_DEV_TO_CHAN(pdev->device);
2655 			pvt->pci_tad[id] = pdev;
2656 			saw_chan_mask |= 1 << id;
2657 		}
2658 			break;
2659 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
2660 			pvt->pci_ddrio = pdev;
2661 			break;
2662 		default:
2663 			goto error;
2664 		}
2665 
2666 		edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2667 			 pdev->vendor, pdev->device,
2668 			 sbridge_dev->bus,
2669 			 pdev);
2670 	}
2671 
2672 	/* Check if everything were registered */
2673 	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha ||
2674 	    !pvt->pci_ras || !pvt->pci_ta)
2675 		goto enodev;
2676 
2677 	if (saw_chan_mask != 0x0f)
2678 		goto enodev;
2679 	return 0;
2680 
2681 enodev:
2682 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2683 	return -ENODEV;
2684 
2685 error:
2686 	sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
2687 		       PCI_VENDOR_ID_INTEL, pdev->device);
2688 	return -EINVAL;
2689 }
2690 
2691 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
2692 				 struct sbridge_dev *sbridge_dev)
2693 {
2694 	struct sbridge_pvt *pvt = mci->pvt_info;
2695 	struct pci_dev *pdev;
2696 	u8 saw_chan_mask = 0;
2697 	int i;
2698 
2699 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2700 		pdev = sbridge_dev->pdev[i];
2701 		if (!pdev)
2702 			continue;
2703 
2704 		switch (pdev->device) {
2705 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
2706 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
2707 			pvt->pci_ha = pdev;
2708 			break;
2709 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2710 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA:
2711 			pvt->pci_ta = pdev;
2712 			break;
2713 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
2714 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS:
2715 			pvt->pci_ras = pdev;
2716 			break;
2717 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
2718 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
2719 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
2720 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
2721 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
2722 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
2723 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
2724 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
2725 		{
2726 			int id = TAD_DEV_TO_CHAN(pdev->device);
2727 			pvt->pci_tad[id] = pdev;
2728 			saw_chan_mask |= 1 << id;
2729 		}
2730 			break;
2731 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
2732 			pvt->pci_ddrio = pdev;
2733 			break;
2734 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
2735 			pvt->pci_ddrio = pdev;
2736 			break;
2737 		case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
2738 			pvt->pci_sad0 = pdev;
2739 			break;
2740 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
2741 			pvt->pci_br0 = pdev;
2742 			break;
2743 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
2744 			pvt->pci_br1 = pdev;
2745 			break;
2746 		default:
2747 			goto error;
2748 		}
2749 
2750 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2751 			 sbridge_dev->bus,
2752 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2753 			 pdev);
2754 	}
2755 
2756 	/* Check if everything were registered */
2757 	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_br0 ||
2758 	    !pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta)
2759 		goto enodev;
2760 
2761 	if (saw_chan_mask != 0x0f && /* -EN/-EX */
2762 	    saw_chan_mask != 0x03)   /* -EP */
2763 		goto enodev;
2764 	return 0;
2765 
2766 enodev:
2767 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2768 	return -ENODEV;
2769 
2770 error:
2771 	sbridge_printk(KERN_ERR,
2772 		       "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
2773 			pdev->device);
2774 	return -EINVAL;
2775 }
2776 
2777 static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
2778 				 struct sbridge_dev *sbridge_dev)
2779 {
2780 	struct sbridge_pvt *pvt = mci->pvt_info;
2781 	struct pci_dev *pdev;
2782 	u8 saw_chan_mask = 0;
2783 	int i;
2784 
2785 	/* there's only one device per system; not tied to any bus */
2786 	if (pvt->info.pci_vtd == NULL)
2787 		/* result will be checked later */
2788 		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2789 						   PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
2790 						   NULL);
2791 
2792 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2793 		pdev = sbridge_dev->pdev[i];
2794 		if (!pdev)
2795 			continue;
2796 
2797 		switch (pdev->device) {
2798 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
2799 			pvt->pci_sad0 = pdev;
2800 			break;
2801 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
2802 			pvt->pci_sad1 = pdev;
2803 			break;
2804 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2805 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
2806 			pvt->pci_ha = pdev;
2807 			break;
2808 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
2809 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
2810 			pvt->pci_ta = pdev;
2811 			break;
2812 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM:
2813 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM:
2814 			pvt->pci_ras = pdev;
2815 			break;
2816 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
2817 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
2818 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
2819 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
2820 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
2821 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
2822 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
2823 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
2824 		{
2825 			int id = TAD_DEV_TO_CHAN(pdev->device);
2826 			pvt->pci_tad[id] = pdev;
2827 			saw_chan_mask |= 1 << id;
2828 		}
2829 			break;
2830 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
2831 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
2832 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
2833 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
2834 			if (!pvt->pci_ddrio)
2835 				pvt->pci_ddrio = pdev;
2836 			break;
2837 		default:
2838 			break;
2839 		}
2840 
2841 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2842 			 sbridge_dev->bus,
2843 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2844 			 pdev);
2845 	}
2846 
2847 	/* Check if everything were registered */
2848 	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2849 	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2850 		goto enodev;
2851 
2852 	if (saw_chan_mask != 0x0f && /* -EN/-EX */
2853 	    saw_chan_mask != 0x03)   /* -EP */
2854 		goto enodev;
2855 	return 0;
2856 
2857 enodev:
2858 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2859 	return -ENODEV;
2860 }
2861 
2862 static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
2863 				 struct sbridge_dev *sbridge_dev)
2864 {
2865 	struct sbridge_pvt *pvt = mci->pvt_info;
2866 	struct pci_dev *pdev;
2867 	u8 saw_chan_mask = 0;
2868 	int i;
2869 
2870 	/* there's only one device per system; not tied to any bus */
2871 	if (pvt->info.pci_vtd == NULL)
2872 		/* result will be checked later */
2873 		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2874 						   PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
2875 						   NULL);
2876 
2877 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2878 		pdev = sbridge_dev->pdev[i];
2879 		if (!pdev)
2880 			continue;
2881 
2882 		switch (pdev->device) {
2883 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
2884 			pvt->pci_sad0 = pdev;
2885 			break;
2886 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
2887 			pvt->pci_sad1 = pdev;
2888 			break;
2889 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2890 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2891 			pvt->pci_ha = pdev;
2892 			break;
2893 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
2894 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2895 			pvt->pci_ta = pdev;
2896 			break;
2897 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM:
2898 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM:
2899 			pvt->pci_ras = pdev;
2900 			break;
2901 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
2902 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
2903 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
2904 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
2905 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
2906 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
2907 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
2908 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
2909 		{
2910 			int id = TAD_DEV_TO_CHAN(pdev->device);
2911 			pvt->pci_tad[id] = pdev;
2912 			saw_chan_mask |= 1 << id;
2913 		}
2914 			break;
2915 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
2916 			pvt->pci_ddrio = pdev;
2917 			break;
2918 		default:
2919 			break;
2920 		}
2921 
2922 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2923 			 sbridge_dev->bus,
2924 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2925 			 pdev);
2926 	}
2927 
2928 	/* Check if everything were registered */
2929 	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2930 	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2931 		goto enodev;
2932 
2933 	if (saw_chan_mask != 0x0f && /* -EN/-EX */
2934 	    saw_chan_mask != 0x03)   /* -EP */
2935 		goto enodev;
2936 	return 0;
2937 
2938 enodev:
2939 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2940 	return -ENODEV;
2941 }
2942 
2943 static int knl_mci_bind_devs(struct mem_ctl_info *mci,
2944 			struct sbridge_dev *sbridge_dev)
2945 {
2946 	struct sbridge_pvt *pvt = mci->pvt_info;
2947 	struct pci_dev *pdev;
2948 	int dev, func;
2949 
2950 	int i;
2951 	int devidx;
2952 
2953 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2954 		pdev = sbridge_dev->pdev[i];
2955 		if (!pdev)
2956 			continue;
2957 
2958 		/* Extract PCI device and function. */
2959 		dev = (pdev->devfn >> 3) & 0x1f;
2960 		func = pdev->devfn & 0x7;
2961 
2962 		switch (pdev->device) {
2963 		case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
2964 			if (dev == 8)
2965 				pvt->knl.pci_mc0 = pdev;
2966 			else if (dev == 9)
2967 				pvt->knl.pci_mc1 = pdev;
2968 			else {
2969 				sbridge_printk(KERN_ERR,
2970 					"Memory controller in unexpected place! (dev %d, fn %d)\n",
2971 					dev, func);
2972 				continue;
2973 			}
2974 			break;
2975 
2976 		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
2977 			pvt->pci_sad0 = pdev;
2978 			break;
2979 
2980 		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
2981 			pvt->pci_sad1 = pdev;
2982 			break;
2983 
2984 		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
2985 			/* There are one of these per tile, and range from
2986 			 * 1.14.0 to 1.18.5.
2987 			 */
2988 			devidx = ((dev-14)*8)+func;
2989 
2990 			if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
2991 				sbridge_printk(KERN_ERR,
2992 					"Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2993 					dev, func);
2994 				continue;
2995 			}
2996 
2997 			WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
2998 
2999 			pvt->knl.pci_cha[devidx] = pdev;
3000 			break;
3001 
3002 		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN:
3003 			devidx = -1;
3004 
3005 			/*
3006 			 *  MC0 channels 0-2 are device 9 function 2-4,
3007 			 *  MC1 channels 3-5 are device 8 function 2-4.
3008 			 */
3009 
3010 			if (dev == 9)
3011 				devidx = func-2;
3012 			else if (dev == 8)
3013 				devidx = 3 + (func-2);
3014 
3015 			if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
3016 				sbridge_printk(KERN_ERR,
3017 					"DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
3018 					dev, func);
3019 				continue;
3020 			}
3021 
3022 			WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
3023 			pvt->knl.pci_channel[devidx] = pdev;
3024 			break;
3025 
3026 		case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
3027 			pvt->knl.pci_mc_info = pdev;
3028 			break;
3029 
3030 		case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
3031 			pvt->pci_ta = pdev;
3032 			break;
3033 
3034 		default:
3035 			sbridge_printk(KERN_ERR, "Unexpected device %d\n",
3036 				pdev->device);
3037 			break;
3038 		}
3039 	}
3040 
3041 	if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 ||
3042 	    !pvt->pci_sad0     || !pvt->pci_sad1    ||
3043 	    !pvt->pci_ta) {
3044 		goto enodev;
3045 	}
3046 
3047 	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
3048 		if (!pvt->knl.pci_channel[i]) {
3049 			sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
3050 			goto enodev;
3051 		}
3052 	}
3053 
3054 	for (i = 0; i < KNL_MAX_CHAS; i++) {
3055 		if (!pvt->knl.pci_cha[i]) {
3056 			sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
3057 			goto enodev;
3058 		}
3059 	}
3060 
3061 	return 0;
3062 
3063 enodev:
3064 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
3065 	return -ENODEV;
3066 }
3067 
3068 /****************************************************************************
3069 			Error check routines
3070  ****************************************************************************/
3071 
3072 /*
3073  * While Sandy Bridge has error count registers, SMI BIOS read values from
3074  * and resets the counters. So, they are not reliable for the OS to read
3075  * from them. So, we have no option but to just trust on whatever MCE is
3076  * telling us about the errors.
3077  */
3078 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
3079 				    const struct mce *m)
3080 {
3081 	struct mem_ctl_info *new_mci;
3082 	struct sbridge_pvt *pvt = mci->pvt_info;
3083 	enum hw_event_mc_err_type tp_event;
3084 	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
3085 	bool overflow = GET_BITFIELD(m->status, 62, 62);
3086 	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
3087 	bool recoverable;
3088 	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
3089 	u32 mscod = GET_BITFIELD(m->status, 16, 31);
3090 	u32 errcode = GET_BITFIELD(m->status, 0, 15);
3091 	u32 channel = GET_BITFIELD(m->status, 0, 3);
3092 	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
3093 	/*
3094 	 * Bits 5-0 of MCi_MISC give the least significant bit that is valid.
3095 	 * A value 6 is for cache line aligned address, a value 12 is for page
3096 	 * aligned address reported by patrol scrubber.
3097 	 */
3098 	u32 lsb = GET_BITFIELD(m->misc, 0, 5);
3099 	char *optype, *area_type = "DRAM";
3100 	long channel_mask, first_channel;
3101 	u8  rank = 0xff, socket, ha;
3102 	int rc, dimm;
3103 
3104 	if (pvt->info.type != SANDY_BRIDGE)
3105 		recoverable = true;
3106 	else
3107 		recoverable = GET_BITFIELD(m->status, 56, 56);
3108 
3109 	if (uncorrected_error) {
3110 		core_err_cnt = 1;
3111 		if (ripv) {
3112 			tp_event = HW_EVENT_ERR_UNCORRECTED;
3113 		} else {
3114 			tp_event = HW_EVENT_ERR_FATAL;
3115 		}
3116 	} else {
3117 		tp_event = HW_EVENT_ERR_CORRECTED;
3118 	}
3119 
3120 	/*
3121 	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
3122 	 * memory errors should fit in this mask:
3123 	 *	000f 0000 1mmm cccc (binary)
3124 	 * where:
3125 	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
3126 	 *	    won't be shown
3127 	 *	mmm = error type
3128 	 *	cccc = channel
3129 	 * If the mask doesn't match, report an error to the parsing logic
3130 	 */
3131 	switch (optypenum) {
3132 	case 0:
3133 		optype = "generic undef request error";
3134 		break;
3135 	case 1:
3136 		optype = "memory read error";
3137 		break;
3138 	case 2:
3139 		optype = "memory write error";
3140 		break;
3141 	case 3:
3142 		optype = "addr/cmd error";
3143 		break;
3144 	case 4:
3145 		optype = "memory scrubbing error";
3146 		break;
3147 	default:
3148 		optype = "reserved";
3149 		break;
3150 	}
3151 
3152 	if (pvt->info.type == KNIGHTS_LANDING) {
3153 		if (channel == 14) {
3154 			edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
3155 				overflow ? " OVERFLOW" : "",
3156 				(uncorrected_error && recoverable)
3157 				? " recoverable" : "",
3158 				mscod, errcode,
3159 				m->bank);
3160 		} else {
3161 			char A = *("A");
3162 
3163 			/*
3164 			 * Reported channel is in range 0-2, so we can't map it
3165 			 * back to mc. To figure out mc we check machine check
3166 			 * bank register that reported this error.
3167 			 * bank15 means mc0 and bank16 means mc1.
3168 			 */
3169 			channel = knl_channel_remap(m->bank == 16, channel);
3170 			channel_mask = 1 << channel;
3171 
3172 			snprintf(sb_msg, sizeof(sb_msg),
3173 				 "%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
3174 				 overflow ? " OVERFLOW" : "",
3175 				 (uncorrected_error && recoverable)
3176 				 ? " recoverable" : " ",
3177 				 mscod, errcode, channel, A + channel);
3178 			edac_mc_handle_error(tp_event, mci, core_err_cnt,
3179 				m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3180 				channel, 0, -1,
3181 				optype, sb_msg);
3182 		}
3183 		return;
3184 	} else if (lsb < 12) {
3185 		rc = get_memory_error_data(mci, m->addr, &socket, &ha,
3186 					   &channel_mask, &rank,
3187 					   &area_type, sb_msg);
3188 	} else {
3189 		rc = get_memory_error_data_from_mce(mci, m, &socket, &ha,
3190 						    &channel_mask, sb_msg);
3191 	}
3192 
3193 	if (rc < 0)
3194 		goto err_parsing;
3195 	new_mci = get_mci_for_node_id(socket, ha);
3196 	if (!new_mci) {
3197 		strscpy(sb_msg, "Error: socket got corrupted!");
3198 		goto err_parsing;
3199 	}
3200 	mci = new_mci;
3201 	pvt = mci->pvt_info;
3202 
3203 	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
3204 
3205 	if (rank == 0xff)
3206 		dimm = -1;
3207 	else if (rank < 4)
3208 		dimm = 0;
3209 	else if (rank < 8)
3210 		dimm = 1;
3211 	else
3212 		dimm = 2;
3213 
3214 	/*
3215 	 * FIXME: On some memory configurations (mirror, lockstep), the
3216 	 * Memory Controller can't point the error to a single DIMM. The
3217 	 * EDAC core should be handling the channel mask, in order to point
3218 	 * to the group of dimm's where the error may be happening.
3219 	 */
3220 	if (!pvt->is_lockstep && !pvt->is_cur_addr_mirrored && !pvt->is_close_pg)
3221 		channel = first_channel;
3222 	snprintf(sb_msg_full, sizeof(sb_msg_full),
3223 		 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d %s",
3224 		 overflow ? " OVERFLOW" : "",
3225 		 (uncorrected_error && recoverable) ? " recoverable" : "",
3226 		 area_type,
3227 		 mscod, errcode,
3228 		 socket, ha,
3229 		 channel_mask,
3230 		 rank, sb_msg);
3231 
3232 	edac_dbg(0, "%s\n", sb_msg_full);
3233 
3234 	/* FIXME: need support for channel mask */
3235 
3236 	if (channel == CHANNEL_UNSPECIFIED)
3237 		channel = -1;
3238 
3239 	/* Call the helper to output message */
3240 	edac_mc_handle_error(tp_event, mci, core_err_cnt,
3241 			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3242 			     channel, dimm, -1,
3243 			     optype, sb_msg_full);
3244 	return;
3245 err_parsing:
3246 	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
3247 			     -1, -1, -1,
3248 			     sb_msg, "");
3249 
3250 }
3251 
3252 /*
3253  * Check that logging is enabled and that this is the right type
3254  * of error for us to handle.
3255  */
3256 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
3257 				   void *data)
3258 {
3259 	struct mce *mce = (struct mce *)data;
3260 	struct mem_ctl_info *mci;
3261 	char *type;
3262 
3263 	if (mce->kflags & MCE_HANDLED_CEC)
3264 		return NOTIFY_DONE;
3265 
3266 	/*
3267 	 * Just let mcelog handle it if the error is
3268 	 * outside the memory controller. A memory error
3269 	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3270 	 * bit 12 has an special meaning.
3271 	 */
3272 	if ((mce->status & 0xefff) >> 7 != 1)
3273 		return NOTIFY_DONE;
3274 
3275 	/* Check ADDRV bit in STATUS */
3276 	if (!GET_BITFIELD(mce->status, 58, 58))
3277 		return NOTIFY_DONE;
3278 
3279 	/* Check MISCV bit in STATUS */
3280 	if (!GET_BITFIELD(mce->status, 59, 59))
3281 		return NOTIFY_DONE;
3282 
3283 	/* Check address type in MISC (physical address only) */
3284 	if (GET_BITFIELD(mce->misc, 6, 8) != 2)
3285 		return NOTIFY_DONE;
3286 
3287 	mci = get_mci_for_node_id(mce->socketid, IMC0);
3288 	if (!mci)
3289 		return NOTIFY_DONE;
3290 
3291 	if (mce->mcgstatus & MCG_STATUS_MCIP)
3292 		type = "Exception";
3293 	else
3294 		type = "Event";
3295 
3296 	sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
3297 
3298 	sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
3299 			  "Bank %d: %016Lx\n", mce->extcpu, type,
3300 			  mce->mcgstatus, mce->bank, mce->status);
3301 	sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
3302 	sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
3303 	sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
3304 
3305 	sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
3306 			  "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
3307 			  mce->time, mce->socketid, mce->apicid);
3308 
3309 	sbridge_mce_output_error(mci, mce);
3310 
3311 	/* Advice mcelog that the error were handled */
3312 	mce->kflags |= MCE_HANDLED_EDAC;
3313 	return NOTIFY_OK;
3314 }
3315 
3316 static struct notifier_block sbridge_mce_dec = {
3317 	.notifier_call	= sbridge_mce_check_error,
3318 	.priority	= MCE_PRIO_EDAC,
3319 };
3320 
3321 /****************************************************************************
3322 			EDAC register/unregister logic
3323  ****************************************************************************/
3324 
3325 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
3326 {
3327 	struct mem_ctl_info *mci = sbridge_dev->mci;
3328 
3329 	if (unlikely(!mci || !mci->pvt_info)) {
3330 		edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
3331 
3332 		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
3333 		return;
3334 	}
3335 
3336 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
3337 		 mci, &sbridge_dev->pdev[0]->dev);
3338 
3339 	/* Remove MC sysfs nodes */
3340 	edac_mc_del_mc(mci->pdev);
3341 
3342 	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
3343 	kfree(mci->ctl_name);
3344 	edac_mc_free(mci);
3345 	sbridge_dev->mci = NULL;
3346 }
3347 
3348 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
3349 {
3350 	struct mem_ctl_info *mci;
3351 	struct edac_mc_layer layers[2];
3352 	struct sbridge_pvt *pvt;
3353 	struct pci_dev *pdev = sbridge_dev->pdev[0];
3354 	int rc;
3355 
3356 	/* allocate a new MC control structure */
3357 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
3358 	layers[0].size = type == KNIGHTS_LANDING ?
3359 		KNL_MAX_CHANNELS : NUM_CHANNELS;
3360 	layers[0].is_virt_csrow = false;
3361 	layers[1].type = EDAC_MC_LAYER_SLOT;
3362 	layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
3363 	layers[1].is_virt_csrow = true;
3364 	mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
3365 			    sizeof(*pvt));
3366 
3367 	if (unlikely(!mci))
3368 		return -ENOMEM;
3369 
3370 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
3371 		 mci, &pdev->dev);
3372 
3373 	pvt = mci->pvt_info;
3374 	memset(pvt, 0, sizeof(*pvt));
3375 
3376 	/* Associate sbridge_dev and mci for future usage */
3377 	pvt->sbridge_dev = sbridge_dev;
3378 	sbridge_dev->mci = mci;
3379 
3380 	mci->mtype_cap = type == KNIGHTS_LANDING ?
3381 		MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
3382 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
3383 	mci->edac_cap = EDAC_FLAG_NONE;
3384 	mci->mod_name = EDAC_MOD_STR;
3385 	mci->dev_name = pci_name(pdev);
3386 	mci->ctl_page_to_phys = NULL;
3387 
3388 	pvt->info.type = type;
3389 	switch (type) {
3390 	case IVY_BRIDGE:
3391 		pvt->info.rankcfgr = IB_RANK_CFG_A;
3392 		pvt->info.get_tolm = ibridge_get_tolm;
3393 		pvt->info.get_tohm = ibridge_get_tohm;
3394 		pvt->info.dram_rule = ibridge_dram_rule;
3395 		pvt->info.get_memory_type = get_memory_type;
3396 		pvt->info.get_node_id = get_node_id;
3397 		pvt->info.get_ha = ibridge_get_ha;
3398 		pvt->info.rir_limit = rir_limit;
3399 		pvt->info.sad_limit = sad_limit;
3400 		pvt->info.interleave_mode = interleave_mode;
3401 		pvt->info.dram_attr = dram_attr;
3402 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3403 		pvt->info.interleave_list = ibridge_interleave_list;
3404 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3405 		pvt->info.get_width = ibridge_get_width;
3406 
3407 		/* Store pci devices at mci for faster access */
3408 		rc = ibridge_mci_bind_devs(mci, sbridge_dev);
3409 		if (unlikely(rc < 0))
3410 			goto fail0;
3411 		get_source_id(mci);
3412 		mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge SrcID#%d_Ha#%d",
3413 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3414 		break;
3415 	case SANDY_BRIDGE:
3416 		pvt->info.rankcfgr = SB_RANK_CFG_A;
3417 		pvt->info.get_tolm = sbridge_get_tolm;
3418 		pvt->info.get_tohm = sbridge_get_tohm;
3419 		pvt->info.dram_rule = sbridge_dram_rule;
3420 		pvt->info.get_memory_type = get_memory_type;
3421 		pvt->info.get_node_id = get_node_id;
3422 		pvt->info.get_ha = sbridge_get_ha;
3423 		pvt->info.rir_limit = rir_limit;
3424 		pvt->info.sad_limit = sad_limit;
3425 		pvt->info.interleave_mode = interleave_mode;
3426 		pvt->info.dram_attr = dram_attr;
3427 		pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
3428 		pvt->info.interleave_list = sbridge_interleave_list;
3429 		pvt->info.interleave_pkg = sbridge_interleave_pkg;
3430 		pvt->info.get_width = sbridge_get_width;
3431 
3432 		/* Store pci devices at mci for faster access */
3433 		rc = sbridge_mci_bind_devs(mci, sbridge_dev);
3434 		if (unlikely(rc < 0))
3435 			goto fail0;
3436 		get_source_id(mci);
3437 		mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge SrcID#%d_Ha#%d",
3438 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3439 		break;
3440 	case HASWELL:
3441 		/* rankcfgr isn't used */
3442 		pvt->info.get_tolm = haswell_get_tolm;
3443 		pvt->info.get_tohm = haswell_get_tohm;
3444 		pvt->info.dram_rule = ibridge_dram_rule;
3445 		pvt->info.get_memory_type = haswell_get_memory_type;
3446 		pvt->info.get_node_id = haswell_get_node_id;
3447 		pvt->info.get_ha = ibridge_get_ha;
3448 		pvt->info.rir_limit = haswell_rir_limit;
3449 		pvt->info.sad_limit = sad_limit;
3450 		pvt->info.interleave_mode = interleave_mode;
3451 		pvt->info.dram_attr = dram_attr;
3452 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3453 		pvt->info.interleave_list = ibridge_interleave_list;
3454 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3455 		pvt->info.get_width = ibridge_get_width;
3456 
3457 		/* Store pci devices at mci for faster access */
3458 		rc = haswell_mci_bind_devs(mci, sbridge_dev);
3459 		if (unlikely(rc < 0))
3460 			goto fail0;
3461 		get_source_id(mci);
3462 		mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell SrcID#%d_Ha#%d",
3463 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3464 		break;
3465 	case BROADWELL:
3466 		/* rankcfgr isn't used */
3467 		pvt->info.get_tolm = haswell_get_tolm;
3468 		pvt->info.get_tohm = haswell_get_tohm;
3469 		pvt->info.dram_rule = ibridge_dram_rule;
3470 		pvt->info.get_memory_type = haswell_get_memory_type;
3471 		pvt->info.get_node_id = haswell_get_node_id;
3472 		pvt->info.get_ha = ibridge_get_ha;
3473 		pvt->info.rir_limit = haswell_rir_limit;
3474 		pvt->info.sad_limit = sad_limit;
3475 		pvt->info.interleave_mode = interleave_mode;
3476 		pvt->info.dram_attr = dram_attr;
3477 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3478 		pvt->info.interleave_list = ibridge_interleave_list;
3479 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3480 		pvt->info.get_width = broadwell_get_width;
3481 
3482 		/* Store pci devices at mci for faster access */
3483 		rc = broadwell_mci_bind_devs(mci, sbridge_dev);
3484 		if (unlikely(rc < 0))
3485 			goto fail0;
3486 		get_source_id(mci);
3487 		mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell SrcID#%d_Ha#%d",
3488 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3489 		break;
3490 	case KNIGHTS_LANDING:
3491 		/* pvt->info.rankcfgr == ??? */
3492 		pvt->info.get_tolm = knl_get_tolm;
3493 		pvt->info.get_tohm = knl_get_tohm;
3494 		pvt->info.dram_rule = knl_dram_rule;
3495 		pvt->info.get_memory_type = knl_get_memory_type;
3496 		pvt->info.get_node_id = knl_get_node_id;
3497 		pvt->info.get_ha = knl_get_ha;
3498 		pvt->info.rir_limit = NULL;
3499 		pvt->info.sad_limit = knl_sad_limit;
3500 		pvt->info.interleave_mode = knl_interleave_mode;
3501 		pvt->info.dram_attr = dram_attr_knl;
3502 		pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
3503 		pvt->info.interleave_list = knl_interleave_list;
3504 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3505 		pvt->info.get_width = knl_get_width;
3506 
3507 		rc = knl_mci_bind_devs(mci, sbridge_dev);
3508 		if (unlikely(rc < 0))
3509 			goto fail0;
3510 		get_source_id(mci);
3511 		mci->ctl_name = kasprintf(GFP_KERNEL, "Knights Landing SrcID#%d_Ha#%d",
3512 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3513 		break;
3514 	}
3515 
3516 	if (!mci->ctl_name) {
3517 		rc = -ENOMEM;
3518 		goto fail0;
3519 	}
3520 
3521 	/* Get dimm basic config and the memory layout */
3522 	rc = get_dimm_config(mci);
3523 	if (rc < 0) {
3524 		edac_dbg(0, "MC: failed to get_dimm_config()\n");
3525 		goto fail;
3526 	}
3527 	get_memory_layout(mci);
3528 
3529 	/* record ptr to the generic device */
3530 	mci->pdev = &pdev->dev;
3531 
3532 	/* add this new MC control structure to EDAC's list of MCs */
3533 	if (unlikely(edac_mc_add_mc(mci))) {
3534 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3535 		rc = -EINVAL;
3536 		goto fail;
3537 	}
3538 
3539 	return 0;
3540 
3541 fail:
3542 	kfree(mci->ctl_name);
3543 fail0:
3544 	edac_mc_free(mci);
3545 	sbridge_dev->mci = NULL;
3546 	return rc;
3547 }
3548 
3549 static const struct x86_cpu_id sbridge_cpuids[] = {
3550 	X86_MATCH_VFM(INTEL_SANDYBRIDGE_X,	&pci_dev_descr_sbridge_table),
3551 	X86_MATCH_VFM(INTEL_IVYBRIDGE_X,	&pci_dev_descr_ibridge_table),
3552 	X86_MATCH_VFM(INTEL_HASWELL_X,		&pci_dev_descr_haswell_table),
3553 	X86_MATCH_VFM(INTEL_BROADWELL_X,	&pci_dev_descr_broadwell_table),
3554 	X86_MATCH_VFM(INTEL_BROADWELL_D,	&pci_dev_descr_broadwell_table),
3555 	X86_MATCH_VFM(INTEL_XEON_PHI_KNL,	&pci_dev_descr_knl_table),
3556 	X86_MATCH_VFM(INTEL_XEON_PHI_KNM,	&pci_dev_descr_knl_table),
3557 	{ }
3558 };
3559 MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);
3560 
3561 /*
3562  *	sbridge_probe	Get all devices and register memory controllers
3563  *			present.
3564  *	return:
3565  *		0 for FOUND a device
3566  *		< 0 for error code
3567  */
3568 
3569 static int sbridge_probe(const struct x86_cpu_id *id)
3570 {
3571 	int rc;
3572 	u8 mc, num_mc = 0;
3573 	struct sbridge_dev *sbridge_dev;
3574 	struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;
3575 
3576 	/* get the pci devices we want to reserve for our use */
3577 	rc = sbridge_get_all_devices(&num_mc, ptable);
3578 
3579 	if (unlikely(rc < 0)) {
3580 		edac_dbg(0, "couldn't get all devices\n");
3581 		goto fail0;
3582 	}
3583 
3584 	mc = 0;
3585 
3586 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
3587 		edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3588 			 mc, mc + 1, num_mc);
3589 
3590 		sbridge_dev->mc = mc++;
3591 		rc = sbridge_register_mci(sbridge_dev, ptable->type);
3592 		if (unlikely(rc < 0))
3593 			goto fail1;
3594 	}
3595 
3596 	sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
3597 
3598 	return 0;
3599 
3600 fail1:
3601 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3602 		sbridge_unregister_mci(sbridge_dev);
3603 
3604 	sbridge_put_all_devices();
3605 fail0:
3606 	return rc;
3607 }
3608 
3609 /*
3610  *	sbridge_remove	cleanup
3611  *
3612  */
3613 static void sbridge_remove(void)
3614 {
3615 	struct sbridge_dev *sbridge_dev;
3616 
3617 	edac_dbg(0, "\n");
3618 
3619 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3620 		sbridge_unregister_mci(sbridge_dev);
3621 
3622 	/* Release PCI resources */
3623 	sbridge_put_all_devices();
3624 }
3625 
3626 /*
3627  *	sbridge_init		Module entry function
3628  *			Try to initialize this module for its devices
3629  */
3630 static int __init sbridge_init(void)
3631 {
3632 	const struct x86_cpu_id *id;
3633 	const char *owner;
3634 	int rc;
3635 
3636 	edac_dbg(2, "\n");
3637 
3638 	if (ghes_get_devices())
3639 		return -EBUSY;
3640 
3641 	owner = edac_get_owner();
3642 	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
3643 		return -EBUSY;
3644 
3645 	if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR))
3646 		return -ENODEV;
3647 
3648 	id = x86_match_cpu(sbridge_cpuids);
3649 	if (!id)
3650 		return -ENODEV;
3651 
3652 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
3653 	opstate_init();
3654 
3655 	rc = sbridge_probe(id);
3656 
3657 	if (rc >= 0) {
3658 		mce_register_decode_chain(&sbridge_mce_dec);
3659 		return 0;
3660 	}
3661 
3662 	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
3663 		      rc);
3664 
3665 	return rc;
3666 }
3667 
3668 /*
3669  *	sbridge_exit()	Module exit function
3670  *			Unregister the driver
3671  */
3672 static void __exit sbridge_exit(void)
3673 {
3674 	edac_dbg(2, "\n");
3675 	sbridge_remove();
3676 	mce_unregister_decode_chain(&sbridge_mce_dec);
3677 }
3678 
3679 module_init(sbridge_init);
3680 module_exit(sbridge_exit);
3681 
3682 module_param(edac_op_state, int, 0444);
3683 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3684 
3685 MODULE_LICENSE("GPL");
3686 MODULE_AUTHOR("Mauro Carvalho Chehab");
3687 MODULE_AUTHOR("Red Hat Inc. (https://www.redhat.com)");
3688 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
3689 		   SBRIDGE_REVISION);
3690