xref: /linux/drivers/edac/sb_edac.c (revision 4745dc8abb0a0a9851c07265eea01d844886d5c8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
3  *
4  * This driver supports the memory controllers found on the Intel
5  * processor family Sandy Bridge.
6  *
7  * Copyright (c) 2011 by:
8  *	 Mauro Carvalho Chehab
9  */
10 
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pci_ids.h>
15 #include <linux/slab.h>
16 #include <linux/delay.h>
17 #include <linux/edac.h>
18 #include <linux/mmzone.h>
19 #include <linux/smp.h>
20 #include <linux/bitmap.h>
21 #include <linux/math64.h>
22 #include <linux/mod_devicetable.h>
23 #include <asm/cpu_device_id.h>
24 #include <asm/intel-family.h>
25 #include <asm/processor.h>
26 #include <asm/mce.h>
27 
28 #include "edac_module.h"
29 
30 /* Static vars */
31 static LIST_HEAD(sbridge_edac_list);
32 
33 /*
34  * Alter this version for the module when modifications are made
35  */
36 #define SBRIDGE_REVISION    " Ver: 1.1.2 "
37 #define EDAC_MOD_STR	    "sb_edac"
38 
39 /*
40  * Debug macros
41  */
42 #define sbridge_printk(level, fmt, arg...)			\
43 	edac_printk(level, "sbridge", fmt, ##arg)
44 
45 #define sbridge_mc_printk(mci, level, fmt, arg...)		\
46 	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
47 
48 /*
49  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
50  */
51 #define GET_BITFIELD(v, lo, hi)	\
52 	(((v) & GENMASK_ULL(hi, lo)) >> (lo))
53 
54 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
55 static const u32 sbridge_dram_rule[] = {
56 	0x80, 0x88, 0x90, 0x98, 0xa0,
57 	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
58 };
59 
60 static const u32 ibridge_dram_rule[] = {
61 	0x60, 0x68, 0x70, 0x78, 0x80,
62 	0x88, 0x90, 0x98, 0xa0,	0xa8,
63 	0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
64 	0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
65 };
66 
67 static const u32 knl_dram_rule[] = {
68 	0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
69 	0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
70 	0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
71 	0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
72 	0x100, 0x108, 0x110, 0x118,   /* 20-23 */
73 };
74 
75 #define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)
76 #define A7MODE(reg)		GET_BITFIELD(reg, 26, 26)
77 
78 static char *show_dram_attr(u32 attr)
79 {
80 	switch (attr) {
81 		case 0:
82 			return "DRAM";
83 		case 1:
84 			return "MMCFG";
85 		case 2:
86 			return "NXM";
87 		default:
88 			return "unknown";
89 	}
90 }
91 
92 static const u32 sbridge_interleave_list[] = {
93 	0x84, 0x8c, 0x94, 0x9c, 0xa4,
94 	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
95 };
96 
97 static const u32 ibridge_interleave_list[] = {
98 	0x64, 0x6c, 0x74, 0x7c, 0x84,
99 	0x8c, 0x94, 0x9c, 0xa4, 0xac,
100 	0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
101 	0xdc, 0xe4, 0xec, 0xf4, 0xfc,
102 };
103 
104 static const u32 knl_interleave_list[] = {
105 	0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
106 	0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
107 	0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
108 	0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
109 	0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */
110 };
111 #define MAX_INTERLEAVE							\
112 	(max_t(unsigned int, ARRAY_SIZE(sbridge_interleave_list),	\
113 	       max_t(unsigned int, ARRAY_SIZE(ibridge_interleave_list),	\
114 		     ARRAY_SIZE(knl_interleave_list))))
115 
116 struct interleave_pkg {
117 	unsigned char start;
118 	unsigned char end;
119 };
120 
121 static const struct interleave_pkg sbridge_interleave_pkg[] = {
122 	{ 0, 2 },
123 	{ 3, 5 },
124 	{ 8, 10 },
125 	{ 11, 13 },
126 	{ 16, 18 },
127 	{ 19, 21 },
128 	{ 24, 26 },
129 	{ 27, 29 },
130 };
131 
132 static const struct interleave_pkg ibridge_interleave_pkg[] = {
133 	{ 0, 3 },
134 	{ 4, 7 },
135 	{ 8, 11 },
136 	{ 12, 15 },
137 	{ 16, 19 },
138 	{ 20, 23 },
139 	{ 24, 27 },
140 	{ 28, 31 },
141 };
142 
143 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
144 			  int interleave)
145 {
146 	return GET_BITFIELD(reg, table[interleave].start,
147 			    table[interleave].end);
148 }
149 
150 /* Devices 12 Function 7 */
151 
152 #define TOLM		0x80
153 #define TOHM		0x84
154 #define HASWELL_TOLM	0xd0
155 #define HASWELL_TOHM_0	0xd4
156 #define HASWELL_TOHM_1	0xd8
157 #define KNL_TOLM	0xd0
158 #define KNL_TOHM_0	0xd4
159 #define KNL_TOHM_1	0xd8
160 
161 #define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
162 #define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
163 
164 /* Device 13 Function 6 */
165 
166 #define SAD_TARGET	0xf0
167 
168 #define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)
169 
170 #define SOURCE_ID_KNL(reg)	GET_BITFIELD(reg, 12, 14)
171 
172 #define SAD_CONTROL	0xf4
173 
174 /* Device 14 function 0 */
175 
176 static const u32 tad_dram_rule[] = {
177 	0x40, 0x44, 0x48, 0x4c,
178 	0x50, 0x54, 0x58, 0x5c,
179 	0x60, 0x64, 0x68, 0x6c,
180 };
181 #define MAX_TAD	ARRAY_SIZE(tad_dram_rule)
182 
183 #define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
184 #define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
185 #define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
186 #define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
187 #define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
188 #define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
189 #define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)
190 
191 /* Device 15, function 0 */
192 
193 #define MCMTR			0x7c
194 #define KNL_MCMTR		0x624
195 
196 #define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
197 #define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
198 #define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)
199 
200 /* Device 15, function 1 */
201 
202 #define RASENABLES		0xac
203 #define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)
204 
205 /* Device 15, functions 2-5 */
206 
207 static const int mtr_regs[] = {
208 	0x80, 0x84, 0x88,
209 };
210 
211 static const int knl_mtr_reg = 0xb60;
212 
213 #define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
214 #define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
215 #define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
216 #define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
217 #define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)
218 
219 static const u32 tad_ch_nilv_offset[] = {
220 	0x90, 0x94, 0x98, 0x9c,
221 	0xa0, 0xa4, 0xa8, 0xac,
222 	0xb0, 0xb4, 0xb8, 0xbc,
223 };
224 #define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
225 #define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)
226 
227 static const u32 rir_way_limit[] = {
228 	0x108, 0x10c, 0x110, 0x114, 0x118,
229 };
230 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
231 
232 #define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
233 #define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)
234 
235 #define MAX_RIR_WAY	8
236 
237 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
238 	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
239 	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
240 	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
241 	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
242 	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
243 };
244 
245 #define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
246 	GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
247 
248 #define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
249 	GET_BITFIELD(reg,  2, 15) : GET_BITFIELD(reg,  2, 14))
250 
251 /* Device 16, functions 2-7 */
252 
253 /*
254  * FIXME: Implement the error count reads directly
255  */
256 
257 static const u32 correrrcnt[] = {
258 	0x104, 0x108, 0x10c, 0x110,
259 };
260 
261 #define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
262 #define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
263 #define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
264 #define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)
265 
266 static const u32 correrrthrsld[] = {
267 	0x11c, 0x120, 0x124, 0x128,
268 };
269 
270 #define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
271 #define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)
272 
273 
274 /* Device 17, function 0 */
275 
276 #define SB_RANK_CFG_A		0x0328
277 
278 #define IB_RANK_CFG_A		0x0320
279 
280 /*
281  * sbridge structs
282  */
283 
284 #define NUM_CHANNELS		6	/* Max channels per MC */
285 #define MAX_DIMMS		3	/* Max DIMMS per channel */
286 #define KNL_MAX_CHAS		38	/* KNL max num. of Cache Home Agents */
287 #define KNL_MAX_CHANNELS	6	/* KNL max num. of PCI channels */
288 #define KNL_MAX_EDCS		8	/* Embedded DRAM controllers */
289 #define CHANNEL_UNSPECIFIED	0xf	/* Intel IA32 SDM 15-14 */
290 
291 enum type {
292 	SANDY_BRIDGE,
293 	IVY_BRIDGE,
294 	HASWELL,
295 	BROADWELL,
296 	KNIGHTS_LANDING,
297 };
298 
299 enum domain {
300 	IMC0 = 0,
301 	IMC1,
302 	SOCK,
303 };
304 
305 enum mirroring_mode {
306 	NON_MIRRORING,
307 	ADDR_RANGE_MIRRORING,
308 	FULL_MIRRORING,
309 };
310 
311 struct sbridge_pvt;
312 struct sbridge_info {
313 	enum type	type;
314 	u32		mcmtr;
315 	u32		rankcfgr;
316 	u64		(*get_tolm)(struct sbridge_pvt *pvt);
317 	u64		(*get_tohm)(struct sbridge_pvt *pvt);
318 	u64		(*rir_limit)(u32 reg);
319 	u64		(*sad_limit)(u32 reg);
320 	u32		(*interleave_mode)(u32 reg);
321 	u32		(*dram_attr)(u32 reg);
322 	const u32	*dram_rule;
323 	const u32	*interleave_list;
324 	const struct interleave_pkg *interleave_pkg;
325 	u8		max_sad;
326 	u8		(*get_node_id)(struct sbridge_pvt *pvt);
327 	u8		(*get_ha)(u8 bank);
328 	enum mem_type	(*get_memory_type)(struct sbridge_pvt *pvt);
329 	enum dev_type	(*get_width)(struct sbridge_pvt *pvt, u32 mtr);
330 	struct pci_dev	*pci_vtd;
331 };
332 
333 struct sbridge_channel {
334 	u32		ranks;
335 	u32		dimms;
336 };
337 
338 struct pci_id_descr {
339 	int			dev_id;
340 	int			optional;
341 	enum domain		dom;
342 };
343 
344 struct pci_id_table {
345 	const struct pci_id_descr	*descr;
346 	int				n_devs_per_imc;
347 	int				n_devs_per_sock;
348 	int				n_imcs_per_sock;
349 	enum type			type;
350 };
351 
352 struct sbridge_dev {
353 	struct list_head	list;
354 	int			seg;
355 	u8			bus, mc;
356 	u8			node_id, source_id;
357 	struct pci_dev		**pdev;
358 	enum domain		dom;
359 	int			n_devs;
360 	int			i_devs;
361 	struct mem_ctl_info	*mci;
362 };
363 
364 struct knl_pvt {
365 	struct pci_dev          *pci_cha[KNL_MAX_CHAS];
366 	struct pci_dev          *pci_channel[KNL_MAX_CHANNELS];
367 	struct pci_dev          *pci_mc0;
368 	struct pci_dev          *pci_mc1;
369 	struct pci_dev          *pci_mc0_misc;
370 	struct pci_dev          *pci_mc1_misc;
371 	struct pci_dev          *pci_mc_info; /* tolm, tohm */
372 };
373 
374 struct sbridge_pvt {
375 	/* Devices per socket */
376 	struct pci_dev		*pci_ddrio;
377 	struct pci_dev		*pci_sad0, *pci_sad1;
378 	struct pci_dev		*pci_br0, *pci_br1;
379 	/* Devices per memory controller */
380 	struct pci_dev		*pci_ha, *pci_ta, *pci_ras;
381 	struct pci_dev		*pci_tad[NUM_CHANNELS];
382 
383 	struct sbridge_dev	*sbridge_dev;
384 
385 	struct sbridge_info	info;
386 	struct sbridge_channel	channel[NUM_CHANNELS];
387 
388 	/* Memory type detection */
389 	bool			is_cur_addr_mirrored, is_lockstep, is_close_pg;
390 	bool			is_chan_hash;
391 	enum mirroring_mode	mirror_mode;
392 
393 	/* Memory description */
394 	u64			tolm, tohm;
395 	struct knl_pvt knl;
396 };
397 
398 #define PCI_DESCR(device_id, opt, domain)	\
399 	.dev_id = (device_id),		\
400 	.optional = opt,	\
401 	.dom = domain
402 
403 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
404 		/* Processor Home Agent */
405 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0,   0, IMC0) },
406 
407 		/* Memory controller */
408 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA,    0, IMC0) },
409 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS,   0, IMC0) },
410 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0,  0, IMC0) },
411 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1,  0, IMC0) },
412 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2,  0, IMC0) },
413 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3,  0, IMC0) },
414 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1, SOCK) },
415 
416 		/* System Address Decoder */
417 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0,      0, SOCK) },
418 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1,      0, SOCK) },
419 
420 		/* Broadcast Registers */
421 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR,        0, SOCK) },
422 };
423 
424 #define PCI_ID_TABLE_ENTRY(A, N, M, T) {	\
425 	.descr = A,			\
426 	.n_devs_per_imc = N,	\
427 	.n_devs_per_sock = ARRAY_SIZE(A),	\
428 	.n_imcs_per_sock = M,	\
429 	.type = T			\
430 }
431 
432 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
433 	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, ARRAY_SIZE(pci_dev_descr_sbridge), 1, SANDY_BRIDGE),
434 	{0,}			/* 0 terminated list. */
435 };
436 
437 /* This changes depending if 1HA or 2HA:
438  * 1HA:
439  *	0x0eb8 (17.0) is DDRIO0
440  * 2HA:
441  *	0x0ebc (17.4) is DDRIO0
442  */
443 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0	0x0eb8
444 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0	0x0ebc
445 
446 /* pci ids */
447 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0		0x0ea0
448 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA		0x0ea8
449 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS		0x0e71
450 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0	0x0eaa
451 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1	0x0eab
452 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2	0x0eac
453 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3	0x0ead
454 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD			0x0ec8
455 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0			0x0ec9
456 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1			0x0eca
457 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1		0x0e60
458 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA		0x0e68
459 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS		0x0e79
460 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0	0x0e6a
461 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1	0x0e6b
462 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2	0x0e6c
463 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3	0x0e6d
464 
465 static const struct pci_id_descr pci_dev_descr_ibridge[] = {
466 		/* Processor Home Agent */
467 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0,        0, IMC0) },
468 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1,        1, IMC1) },
469 
470 		/* Memory controller */
471 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA,     0, IMC0) },
472 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS,    0, IMC0) },
473 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0,   0, IMC0) },
474 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1,   0, IMC0) },
475 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2,   0, IMC0) },
476 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3,   0, IMC0) },
477 
478 		/* Optional, mode 2HA */
479 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA,     1, IMC1) },
480 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS,    1, IMC1) },
481 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0,   1, IMC1) },
482 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1,   1, IMC1) },
483 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2,   1, IMC1) },
484 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3,   1, IMC1) },
485 
486 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1, SOCK) },
487 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1, SOCK) },
488 
489 		/* System Address Decoder */
490 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD,            0, SOCK) },
491 
492 		/* Broadcast Registers */
493 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0,            1, SOCK) },
494 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1,            0, SOCK) },
495 
496 };
497 
498 static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
499 	PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, 12, 2, IVY_BRIDGE),
500 	{0,}			/* 0 terminated list. */
501 };
502 
503 /* Haswell support */
504 /* EN processor:
505  *	- 1 IMC
506  *	- 3 DDR3 channels, 2 DPC per channel
507  * EP processor:
508  *	- 1 or 2 IMC
509  *	- 4 DDR4 channels, 3 DPC per channel
510  * EP 4S processor:
511  *	- 2 IMC
512  *	- 4 DDR4 channels, 3 DPC per channel
513  * EX processor:
514  *	- 2 IMC
515  *	- each IMC interfaces with a SMI 2 channel
516  *	- each SMI channel interfaces with a scalable memory buffer
517  *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
518  */
519 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
520 #define HASWELL_HASYSDEFEATURE2 0x84
521 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
522 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0	0x2fa0
523 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1	0x2f60
524 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA	0x2fa8
525 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM	0x2f71
526 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA	0x2f68
527 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM	0x2f79
528 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
529 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
530 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
531 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
532 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
533 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
534 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
535 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
536 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
537 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
538 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
539 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
540 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
541 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
542 static const struct pci_id_descr pci_dev_descr_haswell[] = {
543 	/* first item must be the HA */
544 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0,      0, IMC0) },
545 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1,      1, IMC1) },
546 
547 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA,   0, IMC0) },
548 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM,   0, IMC0) },
549 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0, IMC0) },
550 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0, IMC0) },
551 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1, IMC0) },
552 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1, IMC0) },
553 
554 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA,   1, IMC1) },
555 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM,   1, IMC1) },
556 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1, IMC1) },
557 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1, IMC1) },
558 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1, IMC1) },
559 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1, IMC1) },
560 
561 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0, SOCK) },
562 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0, SOCK) },
563 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0,   1, SOCK) },
564 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1,   1, SOCK) },
565 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2,   1, SOCK) },
566 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3,   1, SOCK) },
567 };
568 
569 static const struct pci_id_table pci_dev_descr_haswell_table[] = {
570 	PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, 13, 2, HASWELL),
571 	{0,}			/* 0 terminated list. */
572 };
573 
574 /* Knight's Landing Support */
575 /*
576  * KNL's memory channels are swizzled between memory controllers.
577  * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
578  */
579 #define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
580 
581 /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
582 #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840
583 /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
584 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN     0x7843
585 /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
586 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844
587 /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
588 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a
589 /* SAD target - 1-29-1 (1 of these) */
590 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b
591 /* Caching / Home Agent */
592 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c
593 /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
594 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810
595 
596 /*
597  * KNL differs from SB, IB, and Haswell in that it has multiple
598  * instances of the same device with the same device ID, so we handle that
599  * by creating as many copies in the table as we expect to find.
600  * (Like device ID must be grouped together.)
601  */
602 
603 static const struct pci_id_descr pci_dev_descr_knl[] = {
604 	[0 ... 1]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC,    0, IMC0)},
605 	[2 ... 7]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN,  0, IMC0) },
606 	[8]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA,    0, IMC0) },
607 	[9]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0, IMC0) },
608 	[10]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0,  0, SOCK) },
609 	[11]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1,  0, SOCK) },
610 	[12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA,   0, SOCK) },
611 };
612 
613 static const struct pci_id_table pci_dev_descr_knl_table[] = {
614 	PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, ARRAY_SIZE(pci_dev_descr_knl), 1, KNIGHTS_LANDING),
615 	{0,}
616 };
617 
618 /*
619  * Broadwell support
620  *
621  * DE processor:
622  *	- 1 IMC
623  *	- 2 DDR3 channels, 2 DPC per channel
624  * EP processor:
625  *	- 1 or 2 IMC
626  *	- 4 DDR4 channels, 3 DPC per channel
627  * EP 4S processor:
628  *	- 2 IMC
629  *	- 4 DDR4 channels, 3 DPC per channel
630  * EX processor:
631  *	- 2 IMC
632  *	- each IMC interfaces with a SMI 2 channel
633  *	- each SMI channel interfaces with a scalable memory buffer
634  *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
635  */
636 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
637 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0	0x6fa0
638 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1	0x6f60
639 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA	0x6fa8
640 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM	0x6f71
641 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA	0x6f68
642 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM	0x6f79
643 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
644 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
645 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
646 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
647 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
648 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
649 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
650 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
651 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
652 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
653 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
654 
655 static const struct pci_id_descr pci_dev_descr_broadwell[] = {
656 	/* first item must be the HA */
657 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0,      0, IMC0) },
658 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1,      1, IMC1) },
659 
660 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA,   0, IMC0) },
661 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM,   0, IMC0) },
662 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0, IMC0) },
663 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0, IMC0) },
664 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1, IMC0) },
665 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1, IMC0) },
666 
667 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA,   1, IMC1) },
668 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM,   1, IMC1) },
669 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1, IMC1) },
670 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1, IMC1) },
671 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1, IMC1) },
672 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1, IMC1) },
673 
674 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0, SOCK) },
675 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0, SOCK) },
676 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0,   1, SOCK) },
677 };
678 
679 static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
680 	PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, 10, 2, BROADWELL),
681 	{0,}			/* 0 terminated list. */
682 };
683 
684 
685 /****************************************************************************
686 			Ancillary status routines
687  ****************************************************************************/
688 
689 static inline int numrank(enum type type, u32 mtr)
690 {
691 	int ranks = (1 << RANK_CNT_BITS(mtr));
692 	int max = 4;
693 
694 	if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
695 		max = 8;
696 
697 	if (ranks > max) {
698 		edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
699 			 ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
700 		return -EINVAL;
701 	}
702 
703 	return ranks;
704 }
705 
706 static inline int numrow(u32 mtr)
707 {
708 	int rows = (RANK_WIDTH_BITS(mtr) + 12);
709 
710 	if (rows < 13 || rows > 18) {
711 		edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
712 			 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
713 		return -EINVAL;
714 	}
715 
716 	return 1 << rows;
717 }
718 
719 static inline int numcol(u32 mtr)
720 {
721 	int cols = (COL_WIDTH_BITS(mtr) + 10);
722 
723 	if (cols > 12) {
724 		edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
725 			 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
726 		return -EINVAL;
727 	}
728 
729 	return 1 << cols;
730 }
731 
732 static struct sbridge_dev *get_sbridge_dev(int seg, u8 bus, enum domain dom,
733 					   int multi_bus,
734 					   struct sbridge_dev *prev)
735 {
736 	struct sbridge_dev *sbridge_dev;
737 
738 	/*
739 	 * If we have devices scattered across several busses that pertain
740 	 * to the same memory controller, we'll lump them all together.
741 	 */
742 	if (multi_bus) {
743 		return list_first_entry_or_null(&sbridge_edac_list,
744 				struct sbridge_dev, list);
745 	}
746 
747 	sbridge_dev = list_entry(prev ? prev->list.next
748 				      : sbridge_edac_list.next, struct sbridge_dev, list);
749 
750 	list_for_each_entry_from(sbridge_dev, &sbridge_edac_list, list) {
751 		if ((sbridge_dev->seg == seg) && (sbridge_dev->bus == bus) &&
752 				(dom == SOCK || dom == sbridge_dev->dom))
753 			return sbridge_dev;
754 	}
755 
756 	return NULL;
757 }
758 
759 static struct sbridge_dev *alloc_sbridge_dev(int seg, u8 bus, enum domain dom,
760 					     const struct pci_id_table *table)
761 {
762 	struct sbridge_dev *sbridge_dev;
763 
764 	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
765 	if (!sbridge_dev)
766 		return NULL;
767 
768 	sbridge_dev->pdev = kcalloc(table->n_devs_per_imc,
769 				    sizeof(*sbridge_dev->pdev),
770 				    GFP_KERNEL);
771 	if (!sbridge_dev->pdev) {
772 		kfree(sbridge_dev);
773 		return NULL;
774 	}
775 
776 	sbridge_dev->seg = seg;
777 	sbridge_dev->bus = bus;
778 	sbridge_dev->dom = dom;
779 	sbridge_dev->n_devs = table->n_devs_per_imc;
780 	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
781 
782 	return sbridge_dev;
783 }
784 
785 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
786 {
787 	list_del(&sbridge_dev->list);
788 	kfree(sbridge_dev->pdev);
789 	kfree(sbridge_dev);
790 }
791 
792 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
793 {
794 	u32 reg;
795 
796 	/* Address range is 32:28 */
797 	pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
798 	return GET_TOLM(reg);
799 }
800 
801 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
802 {
803 	u32 reg;
804 
805 	pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
806 	return GET_TOHM(reg);
807 }
808 
809 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
810 {
811 	u32 reg;
812 
813 	pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
814 
815 	return GET_TOLM(reg);
816 }
817 
818 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
819 {
820 	u32 reg;
821 
822 	pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
823 
824 	return GET_TOHM(reg);
825 }
826 
827 static u64 rir_limit(u32 reg)
828 {
829 	return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
830 }
831 
832 static u64 sad_limit(u32 reg)
833 {
834 	return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
835 }
836 
837 static u32 interleave_mode(u32 reg)
838 {
839 	return GET_BITFIELD(reg, 1, 1);
840 }
841 
842 static u32 dram_attr(u32 reg)
843 {
844 	return GET_BITFIELD(reg, 2, 3);
845 }
846 
847 static u64 knl_sad_limit(u32 reg)
848 {
849 	return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
850 }
851 
852 static u32 knl_interleave_mode(u32 reg)
853 {
854 	return GET_BITFIELD(reg, 1, 2);
855 }
856 
857 static const char * const knl_intlv_mode[] = {
858 	"[8:6]", "[10:8]", "[14:12]", "[32:30]"
859 };
860 
861 static const char *get_intlv_mode_str(u32 reg, enum type t)
862 {
863 	if (t == KNIGHTS_LANDING)
864 		return knl_intlv_mode[knl_interleave_mode(reg)];
865 	else
866 		return interleave_mode(reg) ? "[8:6]" : "[8:6]XOR[18:16]";
867 }
868 
869 static u32 dram_attr_knl(u32 reg)
870 {
871 	return GET_BITFIELD(reg, 3, 4);
872 }
873 
874 
875 static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
876 {
877 	u32 reg;
878 	enum mem_type mtype;
879 
880 	if (pvt->pci_ddrio) {
881 		pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
882 				      &reg);
883 		if (GET_BITFIELD(reg, 11, 11))
884 			/* FIXME: Can also be LRDIMM */
885 			mtype = MEM_RDDR3;
886 		else
887 			mtype = MEM_DDR3;
888 	} else
889 		mtype = MEM_UNKNOWN;
890 
891 	return mtype;
892 }
893 
894 static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
895 {
896 	u32 reg;
897 	bool registered = false;
898 	enum mem_type mtype = MEM_UNKNOWN;
899 
900 	if (!pvt->pci_ddrio)
901 		goto out;
902 
903 	pci_read_config_dword(pvt->pci_ddrio,
904 			      HASWELL_DDRCRCLKCONTROLS, &reg);
905 	/* Is_Rdimm */
906 	if (GET_BITFIELD(reg, 16, 16))
907 		registered = true;
908 
909 	pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
910 	if (GET_BITFIELD(reg, 14, 14)) {
911 		if (registered)
912 			mtype = MEM_RDDR4;
913 		else
914 			mtype = MEM_DDR4;
915 	} else {
916 		if (registered)
917 			mtype = MEM_RDDR3;
918 		else
919 			mtype = MEM_DDR3;
920 	}
921 
922 out:
923 	return mtype;
924 }
925 
926 static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
927 {
928 	/* for KNL value is fixed */
929 	return DEV_X16;
930 }
931 
932 static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
933 {
934 	/* there's no way to figure out */
935 	return DEV_UNKNOWN;
936 }
937 
938 static enum dev_type __ibridge_get_width(u32 mtr)
939 {
940 	enum dev_type type;
941 
942 	switch (mtr) {
943 	case 3:
944 		type = DEV_UNKNOWN;
945 		break;
946 	case 2:
947 		type = DEV_X16;
948 		break;
949 	case 1:
950 		type = DEV_X8;
951 		break;
952 	case 0:
953 		type = DEV_X4;
954 		break;
955 	}
956 
957 	return type;
958 }
959 
960 static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
961 {
962 	/*
963 	 * ddr3_width on the documentation but also valid for DDR4 on
964 	 * Haswell
965 	 */
966 	return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
967 }
968 
969 static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
970 {
971 	/* ddr3_width on the documentation but also valid for DDR4 */
972 	return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
973 }
974 
975 static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
976 {
977 	/* DDR4 RDIMMS and LRDIMMS are supported */
978 	return MEM_RDDR4;
979 }
980 
981 static u8 get_node_id(struct sbridge_pvt *pvt)
982 {
983 	u32 reg;
984 	pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
985 	return GET_BITFIELD(reg, 0, 2);
986 }
987 
988 static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
989 {
990 	u32 reg;
991 
992 	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
993 	return GET_BITFIELD(reg, 0, 3);
994 }
995 
996 static u8 knl_get_node_id(struct sbridge_pvt *pvt)
997 {
998 	u32 reg;
999 
1000 	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
1001 	return GET_BITFIELD(reg, 0, 2);
1002 }
1003 
1004 /*
1005  * Use the reporting bank number to determine which memory
1006  * controller (also known as "ha" for "home agent"). Sandy
1007  * Bridge only has one memory controller per socket, so the
1008  * answer is always zero.
1009  */
1010 static u8 sbridge_get_ha(u8 bank)
1011 {
1012 	return 0;
1013 }
1014 
1015 /*
1016  * On Ivy Bridge, Haswell and Broadwell the error may be in a
1017  * home agent bank (7, 8), or one of the per-channel memory
1018  * controller banks (9 .. 16).
1019  */
1020 static u8 ibridge_get_ha(u8 bank)
1021 {
1022 	switch (bank) {
1023 	case 7 ... 8:
1024 		return bank - 7;
1025 	case 9 ... 16:
1026 		return (bank - 9) / 4;
1027 	default:
1028 		return 0xff;
1029 	}
1030 }
1031 
1032 /* Not used, but included for safety/symmetry */
1033 static u8 knl_get_ha(u8 bank)
1034 {
1035 	return 0xff;
1036 }
1037 
1038 static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
1039 {
1040 	u32 reg;
1041 
1042 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
1043 	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1044 }
1045 
1046 static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
1047 {
1048 	u64 rc;
1049 	u32 reg;
1050 
1051 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
1052 	rc = GET_BITFIELD(reg, 26, 31);
1053 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
1054 	rc = ((reg << 6) | rc) << 26;
1055 
1056 	return rc | 0x1ffffff;
1057 }
1058 
1059 static u64 knl_get_tolm(struct sbridge_pvt *pvt)
1060 {
1061 	u32 reg;
1062 
1063 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
1064 	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1065 }
1066 
1067 static u64 knl_get_tohm(struct sbridge_pvt *pvt)
1068 {
1069 	u64 rc;
1070 	u32 reg_lo, reg_hi;
1071 
1072 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
1073 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
1074 	rc = ((u64)reg_hi << 32) | reg_lo;
1075 	return rc | 0x3ffffff;
1076 }
1077 
1078 
1079 static u64 haswell_rir_limit(u32 reg)
1080 {
1081 	return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
1082 }
1083 
1084 static inline u8 sad_pkg_socket(u8 pkg)
1085 {
1086 	/* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1087 	return ((pkg >> 3) << 2) | (pkg & 0x3);
1088 }
1089 
1090 static inline u8 sad_pkg_ha(u8 pkg)
1091 {
1092 	return (pkg >> 2) & 0x1;
1093 }
1094 
1095 static int haswell_chan_hash(int idx, u64 addr)
1096 {
1097 	int i;
1098 
1099 	/*
1100 	 * XOR even bits from 12:26 to bit0 of idx,
1101 	 *     odd bits from 13:27 to bit1
1102 	 */
1103 	for (i = 12; i < 28; i += 2)
1104 		idx ^= (addr >> i) & 3;
1105 
1106 	return idx;
1107 }
1108 
1109 /* Low bits of TAD limit, and some metadata. */
1110 static const u32 knl_tad_dram_limit_lo[] = {
1111 	0x400, 0x500, 0x600, 0x700,
1112 	0x800, 0x900, 0xa00, 0xb00,
1113 };
1114 
1115 /* Low bits of TAD offset. */
1116 static const u32 knl_tad_dram_offset_lo[] = {
1117 	0x404, 0x504, 0x604, 0x704,
1118 	0x804, 0x904, 0xa04, 0xb04,
1119 };
1120 
1121 /* High 16 bits of TAD limit and offset. */
1122 static const u32 knl_tad_dram_hi[] = {
1123 	0x408, 0x508, 0x608, 0x708,
1124 	0x808, 0x908, 0xa08, 0xb08,
1125 };
1126 
1127 /* Number of ways a tad entry is interleaved. */
1128 static const u32 knl_tad_ways[] = {
1129 	8, 6, 4, 3, 2, 1,
1130 };
1131 
1132 /*
1133  * Retrieve the n'th Target Address Decode table entry
1134  * from the memory controller's TAD table.
1135  *
1136  * @pvt:	driver private data
1137  * @entry:	which entry you want to retrieve
1138  * @mc:		which memory controller (0 or 1)
1139  * @offset:	output tad range offset
1140  * @limit:	output address of first byte above tad range
1141  * @ways:	output number of interleave ways
1142  *
1143  * The offset value has curious semantics.  It's a sort of running total
1144  * of the sizes of all the memory regions that aren't mapped in this
1145  * tad table.
1146  */
1147 static int knl_get_tad(const struct sbridge_pvt *pvt,
1148 		const int entry,
1149 		const int mc,
1150 		u64 *offset,
1151 		u64 *limit,
1152 		int *ways)
1153 {
1154 	u32 reg_limit_lo, reg_offset_lo, reg_hi;
1155 	struct pci_dev *pci_mc;
1156 	int way_id;
1157 
1158 	switch (mc) {
1159 	case 0:
1160 		pci_mc = pvt->knl.pci_mc0;
1161 		break;
1162 	case 1:
1163 		pci_mc = pvt->knl.pci_mc1;
1164 		break;
1165 	default:
1166 		WARN_ON(1);
1167 		return -EINVAL;
1168 	}
1169 
1170 	pci_read_config_dword(pci_mc,
1171 			knl_tad_dram_limit_lo[entry], &reg_limit_lo);
1172 	pci_read_config_dword(pci_mc,
1173 			knl_tad_dram_offset_lo[entry], &reg_offset_lo);
1174 	pci_read_config_dword(pci_mc,
1175 			knl_tad_dram_hi[entry], &reg_hi);
1176 
1177 	/* Is this TAD entry enabled? */
1178 	if (!GET_BITFIELD(reg_limit_lo, 0, 0))
1179 		return -ENODEV;
1180 
1181 	way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
1182 
1183 	if (way_id < ARRAY_SIZE(knl_tad_ways)) {
1184 		*ways = knl_tad_ways[way_id];
1185 	} else {
1186 		*ways = 0;
1187 		sbridge_printk(KERN_ERR,
1188 				"Unexpected value %d in mc_tad_limit_lo wayness field\n",
1189 				way_id);
1190 		return -ENODEV;
1191 	}
1192 
1193 	/*
1194 	 * The least significant 6 bits of base and limit are truncated.
1195 	 * For limit, we fill the missing bits with 1s.
1196 	 */
1197 	*offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
1198 				((u64) GET_BITFIELD(reg_hi, 0,  15) << 32);
1199 	*limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 |
1200 				((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
1201 
1202 	return 0;
1203 }
1204 
1205 /* Determine which memory controller is responsible for a given channel. */
1206 static int knl_channel_mc(int channel)
1207 {
1208 	WARN_ON(channel < 0 || channel >= 6);
1209 
1210 	return channel < 3 ? 1 : 0;
1211 }
1212 
1213 /*
1214  * Get the Nth entry from EDC_ROUTE_TABLE register.
1215  * (This is the per-tile mapping of logical interleave targets to
1216  *  physical EDC modules.)
1217  *
1218  * entry 0: 0:2
1219  *       1: 3:5
1220  *       2: 6:8
1221  *       3: 9:11
1222  *       4: 12:14
1223  *       5: 15:17
1224  *       6: 18:20
1225  *       7: 21:23
1226  * reserved: 24:31
1227  */
1228 static u32 knl_get_edc_route(int entry, u32 reg)
1229 {
1230 	WARN_ON(entry >= KNL_MAX_EDCS);
1231 	return GET_BITFIELD(reg, entry*3, (entry*3)+2);
1232 }
1233 
1234 /*
1235  * Get the Nth entry from MC_ROUTE_TABLE register.
1236  * (This is the per-tile mapping of logical interleave targets to
1237  *  physical DRAM channels modules.)
1238  *
1239  * entry 0: mc 0:2   channel 18:19
1240  *       1: mc 3:5   channel 20:21
1241  *       2: mc 6:8   channel 22:23
1242  *       3: mc 9:11  channel 24:25
1243  *       4: mc 12:14 channel 26:27
1244  *       5: mc 15:17 channel 28:29
1245  * reserved: 30:31
1246  *
1247  * Though we have 3 bits to identify the MC, we should only see
1248  * the values 0 or 1.
1249  */
1250 
1251 static u32 knl_get_mc_route(int entry, u32 reg)
1252 {
1253 	int mc, chan;
1254 
1255 	WARN_ON(entry >= KNL_MAX_CHANNELS);
1256 
1257 	mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
1258 	chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
1259 
1260 	return knl_channel_remap(mc, chan);
1261 }
1262 
1263 /*
1264  * Render the EDC_ROUTE register in human-readable form.
1265  * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1266  */
1267 static void knl_show_edc_route(u32 reg, char *s)
1268 {
1269 	int i;
1270 
1271 	for (i = 0; i < KNL_MAX_EDCS; i++) {
1272 		s[i*2] = knl_get_edc_route(i, reg) + '0';
1273 		s[i*2+1] = '-';
1274 	}
1275 
1276 	s[KNL_MAX_EDCS*2 - 1] = '\0';
1277 }
1278 
1279 /*
1280  * Render the MC_ROUTE register in human-readable form.
1281  * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1282  */
1283 static void knl_show_mc_route(u32 reg, char *s)
1284 {
1285 	int i;
1286 
1287 	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
1288 		s[i*2] = knl_get_mc_route(i, reg) + '0';
1289 		s[i*2+1] = '-';
1290 	}
1291 
1292 	s[KNL_MAX_CHANNELS*2 - 1] = '\0';
1293 }
1294 
1295 #define KNL_EDC_ROUTE 0xb8
1296 #define KNL_MC_ROUTE 0xb4
1297 
1298 /* Is this dram rule backed by regular DRAM in flat mode? */
1299 #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1300 
1301 /* Is this dram rule cached? */
1302 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1303 
1304 /* Is this rule backed by edc ? */
1305 #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1306 
1307 /* Is this rule backed by DRAM, cacheable in EDRAM? */
1308 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1309 
1310 /* Is this rule mod3? */
1311 #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1312 
1313 /*
1314  * Figure out how big our RAM modules are.
1315  *
1316  * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1317  * have to figure this out from the SAD rules, interleave lists, route tables,
1318  * and TAD rules.
1319  *
1320  * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1321  * inspect the TAD rules to figure out how large the SAD regions really are.
1322  *
1323  * When we know the real size of a SAD region and how many ways it's
1324  * interleaved, we know the individual contribution of each channel to
1325  * TAD is size/ways.
1326  *
1327  * Finally, we have to check whether each channel participates in each SAD
1328  * region.
1329  *
1330  * Fortunately, KNL only supports one DIMM per channel, so once we know how
1331  * much memory the channel uses, we know the DIMM is at least that large.
1332  * (The BIOS might possibly choose not to map all available memory, in which
1333  * case we will underreport the size of the DIMM.)
1334  *
1335  * In theory, we could try to determine the EDC sizes as well, but that would
1336  * only work in flat mode, not in cache mode.
1337  *
1338  * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1339  *            elements)
1340  */
1341 static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
1342 {
1343 	u64 sad_base, sad_size, sad_limit = 0;
1344 	u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
1345 	int sad_rule = 0;
1346 	int tad_rule = 0;
1347 	int intrlv_ways, tad_ways;
1348 	u32 first_pkg, pkg;
1349 	int i;
1350 	u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
1351 	u32 dram_rule, interleave_reg;
1352 	u32 mc_route_reg[KNL_MAX_CHAS];
1353 	u32 edc_route_reg[KNL_MAX_CHAS];
1354 	int edram_only;
1355 	char edc_route_string[KNL_MAX_EDCS*2];
1356 	char mc_route_string[KNL_MAX_CHANNELS*2];
1357 	int cur_reg_start;
1358 	int mc;
1359 	int channel;
1360 	int participants[KNL_MAX_CHANNELS];
1361 
1362 	for (i = 0; i < KNL_MAX_CHANNELS; i++)
1363 		mc_sizes[i] = 0;
1364 
1365 	/* Read the EDC route table in each CHA. */
1366 	cur_reg_start = 0;
1367 	for (i = 0; i < KNL_MAX_CHAS; i++) {
1368 		pci_read_config_dword(pvt->knl.pci_cha[i],
1369 				KNL_EDC_ROUTE, &edc_route_reg[i]);
1370 
1371 		if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
1372 			knl_show_edc_route(edc_route_reg[i-1],
1373 					edc_route_string);
1374 			if (cur_reg_start == i-1)
1375 				edac_dbg(0, "edc route table for CHA %d: %s\n",
1376 					cur_reg_start, edc_route_string);
1377 			else
1378 				edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1379 					cur_reg_start, i-1, edc_route_string);
1380 			cur_reg_start = i;
1381 		}
1382 	}
1383 	knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
1384 	if (cur_reg_start == i-1)
1385 		edac_dbg(0, "edc route table for CHA %d: %s\n",
1386 			cur_reg_start, edc_route_string);
1387 	else
1388 		edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1389 			cur_reg_start, i-1, edc_route_string);
1390 
1391 	/* Read the MC route table in each CHA. */
1392 	cur_reg_start = 0;
1393 	for (i = 0; i < KNL_MAX_CHAS; i++) {
1394 		pci_read_config_dword(pvt->knl.pci_cha[i],
1395 			KNL_MC_ROUTE, &mc_route_reg[i]);
1396 
1397 		if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
1398 			knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1399 			if (cur_reg_start == i-1)
1400 				edac_dbg(0, "mc route table for CHA %d: %s\n",
1401 					cur_reg_start, mc_route_string);
1402 			else
1403 				edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1404 					cur_reg_start, i-1, mc_route_string);
1405 			cur_reg_start = i;
1406 		}
1407 	}
1408 	knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1409 	if (cur_reg_start == i-1)
1410 		edac_dbg(0, "mc route table for CHA %d: %s\n",
1411 			cur_reg_start, mc_route_string);
1412 	else
1413 		edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1414 			cur_reg_start, i-1, mc_route_string);
1415 
1416 	/* Process DRAM rules */
1417 	for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
1418 		/* previous limit becomes the new base */
1419 		sad_base = sad_limit;
1420 
1421 		pci_read_config_dword(pvt->pci_sad0,
1422 			pvt->info.dram_rule[sad_rule], &dram_rule);
1423 
1424 		if (!DRAM_RULE_ENABLE(dram_rule))
1425 			break;
1426 
1427 		edram_only = KNL_EDRAM_ONLY(dram_rule);
1428 
1429 		sad_limit = pvt->info.sad_limit(dram_rule)+1;
1430 		sad_size = sad_limit - sad_base;
1431 
1432 		pci_read_config_dword(pvt->pci_sad0,
1433 			pvt->info.interleave_list[sad_rule], &interleave_reg);
1434 
1435 		/*
1436 		 * Find out how many ways this dram rule is interleaved.
1437 		 * We stop when we see the first channel again.
1438 		 */
1439 		first_pkg = sad_pkg(pvt->info.interleave_pkg,
1440 						interleave_reg, 0);
1441 		for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
1442 			pkg = sad_pkg(pvt->info.interleave_pkg,
1443 						interleave_reg, intrlv_ways);
1444 
1445 			if ((pkg & 0x8) == 0) {
1446 				/*
1447 				 * 0 bit means memory is non-local,
1448 				 * which KNL doesn't support
1449 				 */
1450 				edac_dbg(0, "Unexpected interleave target %d\n",
1451 					pkg);
1452 				return -1;
1453 			}
1454 
1455 			if (pkg == first_pkg)
1456 				break;
1457 		}
1458 		if (KNL_MOD3(dram_rule))
1459 			intrlv_ways *= 3;
1460 
1461 		edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1462 			sad_rule,
1463 			sad_base,
1464 			sad_limit,
1465 			intrlv_ways,
1466 			edram_only ? ", EDRAM" : "");
1467 
1468 		/*
1469 		 * Find out how big the SAD region really is by iterating
1470 		 * over TAD tables (SAD regions may contain holes).
1471 		 * Each memory controller might have a different TAD table, so
1472 		 * we have to look at both.
1473 		 *
1474 		 * Livespace is the memory that's mapped in this TAD table,
1475 		 * deadspace is the holes (this could be the MMIO hole, or it
1476 		 * could be memory that's mapped by the other TAD table but
1477 		 * not this one).
1478 		 */
1479 		for (mc = 0; mc < 2; mc++) {
1480 			sad_actual_size[mc] = 0;
1481 			tad_livespace = 0;
1482 			for (tad_rule = 0;
1483 					tad_rule < ARRAY_SIZE(
1484 						knl_tad_dram_limit_lo);
1485 					tad_rule++) {
1486 				if (knl_get_tad(pvt,
1487 						tad_rule,
1488 						mc,
1489 						&tad_deadspace,
1490 						&tad_limit,
1491 						&tad_ways))
1492 					break;
1493 
1494 				tad_size = (tad_limit+1) -
1495 					(tad_livespace + tad_deadspace);
1496 				tad_livespace += tad_size;
1497 				tad_base = (tad_limit+1) - tad_size;
1498 
1499 				if (tad_base < sad_base) {
1500 					if (tad_limit > sad_base)
1501 						edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1502 				} else if (tad_base < sad_limit) {
1503 					if (tad_limit+1 > sad_limit) {
1504 						edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1505 					} else {
1506 						/* TAD region is completely inside SAD region */
1507 						edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1508 							tad_rule, tad_base,
1509 							tad_limit, tad_size,
1510 							mc);
1511 						sad_actual_size[mc] += tad_size;
1512 					}
1513 				}
1514 			}
1515 		}
1516 
1517 		for (mc = 0; mc < 2; mc++) {
1518 			edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1519 				mc, sad_actual_size[mc], sad_actual_size[mc]);
1520 		}
1521 
1522 		/* Ignore EDRAM rule */
1523 		if (edram_only)
1524 			continue;
1525 
1526 		/* Figure out which channels participate in interleave. */
1527 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
1528 			participants[channel] = 0;
1529 
1530 		/* For each channel, does at least one CHA have
1531 		 * this channel mapped to the given target?
1532 		 */
1533 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1534 			int target;
1535 			int cha;
1536 
1537 			for (target = 0; target < KNL_MAX_CHANNELS; target++) {
1538 				for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
1539 					if (knl_get_mc_route(target,
1540 						mc_route_reg[cha]) == channel
1541 						&& !participants[channel]) {
1542 						participants[channel] = 1;
1543 						break;
1544 					}
1545 				}
1546 			}
1547 		}
1548 
1549 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1550 			mc = knl_channel_mc(channel);
1551 			if (participants[channel]) {
1552 				edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1553 					channel,
1554 					sad_actual_size[mc]/intrlv_ways,
1555 					sad_rule);
1556 				mc_sizes[channel] +=
1557 					sad_actual_size[mc]/intrlv_ways;
1558 			}
1559 		}
1560 	}
1561 
1562 	return 0;
1563 }
1564 
1565 static void get_source_id(struct mem_ctl_info *mci)
1566 {
1567 	struct sbridge_pvt *pvt = mci->pvt_info;
1568 	u32 reg;
1569 
1570 	if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
1571 	    pvt->info.type == KNIGHTS_LANDING)
1572 		pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
1573 	else
1574 		pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
1575 
1576 	if (pvt->info.type == KNIGHTS_LANDING)
1577 		pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
1578 	else
1579 		pvt->sbridge_dev->source_id = SOURCE_ID(reg);
1580 }
1581 
1582 static int __populate_dimms(struct mem_ctl_info *mci,
1583 			    u64 knl_mc_sizes[KNL_MAX_CHANNELS],
1584 			    enum edac_type mode)
1585 {
1586 	struct sbridge_pvt *pvt = mci->pvt_info;
1587 	int channels = pvt->info.type == KNIGHTS_LANDING ? KNL_MAX_CHANNELS
1588 							 : NUM_CHANNELS;
1589 	unsigned int i, j, banks, ranks, rows, cols, npages;
1590 	struct dimm_info *dimm;
1591 	enum mem_type mtype;
1592 	u64 size;
1593 
1594 	mtype = pvt->info.get_memory_type(pvt);
1595 	if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
1596 		edac_dbg(0, "Memory is registered\n");
1597 	else if (mtype == MEM_UNKNOWN)
1598 		edac_dbg(0, "Cannot determine memory type\n");
1599 	else
1600 		edac_dbg(0, "Memory is unregistered\n");
1601 
1602 	if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
1603 		banks = 16;
1604 	else
1605 		banks = 8;
1606 
1607 	for (i = 0; i < channels; i++) {
1608 		u32 mtr;
1609 
1610 		int max_dimms_per_channel;
1611 
1612 		if (pvt->info.type == KNIGHTS_LANDING) {
1613 			max_dimms_per_channel = 1;
1614 			if (!pvt->knl.pci_channel[i])
1615 				continue;
1616 		} else {
1617 			max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
1618 			if (!pvt->pci_tad[i])
1619 				continue;
1620 		}
1621 
1622 		for (j = 0; j < max_dimms_per_channel; j++) {
1623 			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, j, 0);
1624 			if (pvt->info.type == KNIGHTS_LANDING) {
1625 				pci_read_config_dword(pvt->knl.pci_channel[i],
1626 					knl_mtr_reg, &mtr);
1627 			} else {
1628 				pci_read_config_dword(pvt->pci_tad[i],
1629 					mtr_regs[j], &mtr);
1630 			}
1631 			edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
1632 			if (IS_DIMM_PRESENT(mtr)) {
1633 				if (!IS_ECC_ENABLED(pvt->info.mcmtr)) {
1634 					sbridge_printk(KERN_ERR, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
1635 						       pvt->sbridge_dev->source_id,
1636 						       pvt->sbridge_dev->dom, i);
1637 					return -ENODEV;
1638 				}
1639 				pvt->channel[i].dimms++;
1640 
1641 				ranks = numrank(pvt->info.type, mtr);
1642 
1643 				if (pvt->info.type == KNIGHTS_LANDING) {
1644 					/* For DDR4, this is fixed. */
1645 					cols = 1 << 10;
1646 					rows = knl_mc_sizes[i] /
1647 						((u64) cols * ranks * banks * 8);
1648 				} else {
1649 					rows = numrow(mtr);
1650 					cols = numcol(mtr);
1651 				}
1652 
1653 				size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1654 				npages = MiB_TO_PAGES(size);
1655 
1656 				edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1657 					 pvt->sbridge_dev->mc, pvt->sbridge_dev->dom, i, j,
1658 					 size, npages,
1659 					 banks, ranks, rows, cols);
1660 
1661 				dimm->nr_pages = npages;
1662 				dimm->grain = 32;
1663 				dimm->dtype = pvt->info.get_width(pvt, mtr);
1664 				dimm->mtype = mtype;
1665 				dimm->edac_mode = mode;
1666 				snprintf(dimm->label, sizeof(dimm->label),
1667 						 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1668 						 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom, i, j);
1669 			}
1670 		}
1671 	}
1672 
1673 	return 0;
1674 }
1675 
1676 static int get_dimm_config(struct mem_ctl_info *mci)
1677 {
1678 	struct sbridge_pvt *pvt = mci->pvt_info;
1679 	u64 knl_mc_sizes[KNL_MAX_CHANNELS];
1680 	enum edac_type mode;
1681 	u32 reg;
1682 
1683 	pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
1684 	edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1685 		 pvt->sbridge_dev->mc,
1686 		 pvt->sbridge_dev->node_id,
1687 		 pvt->sbridge_dev->source_id);
1688 
1689 	/* KNL doesn't support mirroring or lockstep,
1690 	 * and is always closed page
1691 	 */
1692 	if (pvt->info.type == KNIGHTS_LANDING) {
1693 		mode = EDAC_S4ECD4ED;
1694 		pvt->mirror_mode = NON_MIRRORING;
1695 		pvt->is_cur_addr_mirrored = false;
1696 
1697 		if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
1698 			return -1;
1699 		if (pci_read_config_dword(pvt->pci_ta, KNL_MCMTR, &pvt->info.mcmtr)) {
1700 			edac_dbg(0, "Failed to read KNL_MCMTR register\n");
1701 			return -ENODEV;
1702 		}
1703 	} else {
1704 		if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1705 			if (pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg)) {
1706 				edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n");
1707 				return -ENODEV;
1708 			}
1709 			pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
1710 			if (GET_BITFIELD(reg, 28, 28)) {
1711 				pvt->mirror_mode = ADDR_RANGE_MIRRORING;
1712 				edac_dbg(0, "Address range partial memory mirroring is enabled\n");
1713 				goto next;
1714 			}
1715 		}
1716 		if (pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg)) {
1717 			edac_dbg(0, "Failed to read RASENABLES register\n");
1718 			return -ENODEV;
1719 		}
1720 		if (IS_MIRROR_ENABLED(reg)) {
1721 			pvt->mirror_mode = FULL_MIRRORING;
1722 			edac_dbg(0, "Full memory mirroring is enabled\n");
1723 		} else {
1724 			pvt->mirror_mode = NON_MIRRORING;
1725 			edac_dbg(0, "Memory mirroring is disabled\n");
1726 		}
1727 
1728 next:
1729 		if (pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr)) {
1730 			edac_dbg(0, "Failed to read MCMTR register\n");
1731 			return -ENODEV;
1732 		}
1733 		if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
1734 			edac_dbg(0, "Lockstep is enabled\n");
1735 			mode = EDAC_S8ECD8ED;
1736 			pvt->is_lockstep = true;
1737 		} else {
1738 			edac_dbg(0, "Lockstep is disabled\n");
1739 			mode = EDAC_S4ECD4ED;
1740 			pvt->is_lockstep = false;
1741 		}
1742 		if (IS_CLOSE_PG(pvt->info.mcmtr)) {
1743 			edac_dbg(0, "address map is on closed page mode\n");
1744 			pvt->is_close_pg = true;
1745 		} else {
1746 			edac_dbg(0, "address map is on open page mode\n");
1747 			pvt->is_close_pg = false;
1748 		}
1749 	}
1750 
1751 	return __populate_dimms(mci, knl_mc_sizes, mode);
1752 }
1753 
1754 static void get_memory_layout(const struct mem_ctl_info *mci)
1755 {
1756 	struct sbridge_pvt *pvt = mci->pvt_info;
1757 	int i, j, k, n_sads, n_tads, sad_interl;
1758 	u32 reg;
1759 	u64 limit, prv = 0;
1760 	u64 tmp_mb;
1761 	u32 gb, mb;
1762 	u32 rir_way;
1763 
1764 	/*
1765 	 * Step 1) Get TOLM/TOHM ranges
1766 	 */
1767 
1768 	pvt->tolm = pvt->info.get_tolm(pvt);
1769 	tmp_mb = (1 + pvt->tolm) >> 20;
1770 
1771 	gb = div_u64_rem(tmp_mb, 1024, &mb);
1772 	edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1773 		gb, (mb*1000)/1024, (u64)pvt->tolm);
1774 
1775 	/* Address range is already 45:25 */
1776 	pvt->tohm = pvt->info.get_tohm(pvt);
1777 	tmp_mb = (1 + pvt->tohm) >> 20;
1778 
1779 	gb = div_u64_rem(tmp_mb, 1024, &mb);
1780 	edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1781 		gb, (mb*1000)/1024, (u64)pvt->tohm);
1782 
1783 	/*
1784 	 * Step 2) Get SAD range and SAD Interleave list
1785 	 * TAD registers contain the interleave wayness. However, it
1786 	 * seems simpler to just discover it indirectly, with the
1787 	 * algorithm bellow.
1788 	 */
1789 	prv = 0;
1790 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1791 		/* SAD_LIMIT Address range is 45:26 */
1792 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1793 				      &reg);
1794 		limit = pvt->info.sad_limit(reg);
1795 
1796 		if (!DRAM_RULE_ENABLE(reg))
1797 			continue;
1798 
1799 		if (limit <= prv)
1800 			break;
1801 
1802 		tmp_mb = (limit + 1) >> 20;
1803 		gb = div_u64_rem(tmp_mb, 1024, &mb);
1804 		edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1805 			 n_sads,
1806 			 show_dram_attr(pvt->info.dram_attr(reg)),
1807 			 gb, (mb*1000)/1024,
1808 			 ((u64)tmp_mb) << 20L,
1809 			 get_intlv_mode_str(reg, pvt->info.type),
1810 			 reg);
1811 		prv = limit;
1812 
1813 		pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1814 				      &reg);
1815 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1816 		for (j = 0; j < 8; j++) {
1817 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1818 			if (j > 0 && sad_interl == pkg)
1819 				break;
1820 
1821 			edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1822 				 n_sads, j, pkg);
1823 		}
1824 	}
1825 
1826 	if (pvt->info.type == KNIGHTS_LANDING)
1827 		return;
1828 
1829 	/*
1830 	 * Step 3) Get TAD range
1831 	 */
1832 	prv = 0;
1833 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1834 		pci_read_config_dword(pvt->pci_ha, tad_dram_rule[n_tads], &reg);
1835 		limit = TAD_LIMIT(reg);
1836 		if (limit <= prv)
1837 			break;
1838 		tmp_mb = (limit + 1) >> 20;
1839 
1840 		gb = div_u64_rem(tmp_mb, 1024, &mb);
1841 		edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1842 			 n_tads, gb, (mb*1000)/1024,
1843 			 ((u64)tmp_mb) << 20L,
1844 			 (u32)(1 << TAD_SOCK(reg)),
1845 			 (u32)TAD_CH(reg) + 1,
1846 			 (u32)TAD_TGT0(reg),
1847 			 (u32)TAD_TGT1(reg),
1848 			 (u32)TAD_TGT2(reg),
1849 			 (u32)TAD_TGT3(reg),
1850 			 reg);
1851 		prv = limit;
1852 	}
1853 
1854 	/*
1855 	 * Step 4) Get TAD offsets, per each channel
1856 	 */
1857 	for (i = 0; i < NUM_CHANNELS; i++) {
1858 		if (!pvt->channel[i].dimms)
1859 			continue;
1860 		for (j = 0; j < n_tads; j++) {
1861 			pci_read_config_dword(pvt->pci_tad[i],
1862 					      tad_ch_nilv_offset[j],
1863 					      &reg);
1864 			tmp_mb = TAD_OFFSET(reg) >> 20;
1865 			gb = div_u64_rem(tmp_mb, 1024, &mb);
1866 			edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1867 				 i, j,
1868 				 gb, (mb*1000)/1024,
1869 				 ((u64)tmp_mb) << 20L,
1870 				 reg);
1871 		}
1872 	}
1873 
1874 	/*
1875 	 * Step 6) Get RIR Wayness/Limit, per each channel
1876 	 */
1877 	for (i = 0; i < NUM_CHANNELS; i++) {
1878 		if (!pvt->channel[i].dimms)
1879 			continue;
1880 		for (j = 0; j < MAX_RIR_RANGES; j++) {
1881 			pci_read_config_dword(pvt->pci_tad[i],
1882 					      rir_way_limit[j],
1883 					      &reg);
1884 
1885 			if (!IS_RIR_VALID(reg))
1886 				continue;
1887 
1888 			tmp_mb = pvt->info.rir_limit(reg) >> 20;
1889 			rir_way = 1 << RIR_WAY(reg);
1890 			gb = div_u64_rem(tmp_mb, 1024, &mb);
1891 			edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1892 				 i, j,
1893 				 gb, (mb*1000)/1024,
1894 				 ((u64)tmp_mb) << 20L,
1895 				 rir_way,
1896 				 reg);
1897 
1898 			for (k = 0; k < rir_way; k++) {
1899 				pci_read_config_dword(pvt->pci_tad[i],
1900 						      rir_offset[j][k],
1901 						      &reg);
1902 				tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;
1903 
1904 				gb = div_u64_rem(tmp_mb, 1024, &mb);
1905 				edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1906 					 i, j, k,
1907 					 gb, (mb*1000)/1024,
1908 					 ((u64)tmp_mb) << 20L,
1909 					 (u32)RIR_RNK_TGT(pvt->info.type, reg),
1910 					 reg);
1911 			}
1912 		}
1913 	}
1914 }
1915 
1916 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id, u8 ha)
1917 {
1918 	struct sbridge_dev *sbridge_dev;
1919 
1920 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1921 		if (sbridge_dev->node_id == node_id && sbridge_dev->dom == ha)
1922 			return sbridge_dev->mci;
1923 	}
1924 	return NULL;
1925 }
1926 
1927 static int get_memory_error_data(struct mem_ctl_info *mci,
1928 				 u64 addr,
1929 				 u8 *socket, u8 *ha,
1930 				 long *channel_mask,
1931 				 u8 *rank,
1932 				 char **area_type, char *msg)
1933 {
1934 	struct mem_ctl_info	*new_mci;
1935 	struct sbridge_pvt *pvt = mci->pvt_info;
1936 	struct pci_dev		*pci_ha;
1937 	int			n_rir, n_sads, n_tads, sad_way, sck_xch;
1938 	int			sad_interl, idx, base_ch;
1939 	int			interleave_mode, shiftup = 0;
1940 	unsigned int		sad_interleave[MAX_INTERLEAVE];
1941 	u32			reg, dram_rule;
1942 	u8			ch_way, sck_way, pkg, sad_ha = 0;
1943 	u32			tad_offset;
1944 	u32			rir_way;
1945 	u32			mb, gb;
1946 	u64			ch_addr, offset, limit = 0, prv = 0;
1947 
1948 
1949 	/*
1950 	 * Step 0) Check if the address is at special memory ranges
1951 	 * The check bellow is probably enough to fill all cases where
1952 	 * the error is not inside a memory, except for the legacy
1953 	 * range (e. g. VGA addresses). It is unlikely, however, that the
1954 	 * memory controller would generate an error on that range.
1955 	 */
1956 	if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1957 		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
1958 		return -EINVAL;
1959 	}
1960 	if (addr >= (u64)pvt->tohm) {
1961 		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
1962 		return -EINVAL;
1963 	}
1964 
1965 	/*
1966 	 * Step 1) Get socket
1967 	 */
1968 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1969 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1970 				      &reg);
1971 
1972 		if (!DRAM_RULE_ENABLE(reg))
1973 			continue;
1974 
1975 		limit = pvt->info.sad_limit(reg);
1976 		if (limit <= prv) {
1977 			sprintf(msg, "Can't discover the memory socket");
1978 			return -EINVAL;
1979 		}
1980 		if  (addr <= limit)
1981 			break;
1982 		prv = limit;
1983 	}
1984 	if (n_sads == pvt->info.max_sad) {
1985 		sprintf(msg, "Can't discover the memory socket");
1986 		return -EINVAL;
1987 	}
1988 	dram_rule = reg;
1989 	*area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
1990 	interleave_mode = pvt->info.interleave_mode(dram_rule);
1991 
1992 	pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1993 			      &reg);
1994 
1995 	if (pvt->info.type == SANDY_BRIDGE) {
1996 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1997 		for (sad_way = 0; sad_way < 8; sad_way++) {
1998 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
1999 			if (sad_way > 0 && sad_interl == pkg)
2000 				break;
2001 			sad_interleave[sad_way] = pkg;
2002 			edac_dbg(0, "SAD interleave #%d: %d\n",
2003 				 sad_way, sad_interleave[sad_way]);
2004 		}
2005 		edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
2006 			 pvt->sbridge_dev->mc,
2007 			 n_sads,
2008 			 addr,
2009 			 limit,
2010 			 sad_way + 7,
2011 			 !interleave_mode ? "" : "XOR[18:16]");
2012 		if (interleave_mode)
2013 			idx = ((addr >> 6) ^ (addr >> 16)) & 7;
2014 		else
2015 			idx = (addr >> 6) & 7;
2016 		switch (sad_way) {
2017 		case 1:
2018 			idx = 0;
2019 			break;
2020 		case 2:
2021 			idx = idx & 1;
2022 			break;
2023 		case 4:
2024 			idx = idx & 3;
2025 			break;
2026 		case 8:
2027 			break;
2028 		default:
2029 			sprintf(msg, "Can't discover socket interleave");
2030 			return -EINVAL;
2031 		}
2032 		*socket = sad_interleave[idx];
2033 		edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
2034 			 idx, sad_way, *socket);
2035 	} else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
2036 		int bits, a7mode = A7MODE(dram_rule);
2037 
2038 		if (a7mode) {
2039 			/* A7 mode swaps P9 with P6 */
2040 			bits = GET_BITFIELD(addr, 7, 8) << 1;
2041 			bits |= GET_BITFIELD(addr, 9, 9);
2042 		} else
2043 			bits = GET_BITFIELD(addr, 6, 8);
2044 
2045 		if (interleave_mode == 0) {
2046 			/* interleave mode will XOR {8,7,6} with {18,17,16} */
2047 			idx = GET_BITFIELD(addr, 16, 18);
2048 			idx ^= bits;
2049 		} else
2050 			idx = bits;
2051 
2052 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2053 		*socket = sad_pkg_socket(pkg);
2054 		sad_ha = sad_pkg_ha(pkg);
2055 
2056 		if (a7mode) {
2057 			/* MCChanShiftUpEnable */
2058 			pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg);
2059 			shiftup = GET_BITFIELD(reg, 22, 22);
2060 		}
2061 
2062 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2063 			 idx, *socket, sad_ha, shiftup);
2064 	} else {
2065 		/* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2066 		idx = (addr >> 6) & 7;
2067 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2068 		*socket = sad_pkg_socket(pkg);
2069 		sad_ha = sad_pkg_ha(pkg);
2070 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2071 			 idx, *socket, sad_ha);
2072 	}
2073 
2074 	*ha = sad_ha;
2075 
2076 	/*
2077 	 * Move to the proper node structure, in order to access the
2078 	 * right PCI registers
2079 	 */
2080 	new_mci = get_mci_for_node_id(*socket, sad_ha);
2081 	if (!new_mci) {
2082 		sprintf(msg, "Struct for socket #%u wasn't initialized",
2083 			*socket);
2084 		return -EINVAL;
2085 	}
2086 	mci = new_mci;
2087 	pvt = mci->pvt_info;
2088 
2089 	/*
2090 	 * Step 2) Get memory channel
2091 	 */
2092 	prv = 0;
2093 	pci_ha = pvt->pci_ha;
2094 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
2095 		pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
2096 		limit = TAD_LIMIT(reg);
2097 		if (limit <= prv) {
2098 			sprintf(msg, "Can't discover the memory channel");
2099 			return -EINVAL;
2100 		}
2101 		if  (addr <= limit)
2102 			break;
2103 		prv = limit;
2104 	}
2105 	if (n_tads == MAX_TAD) {
2106 		sprintf(msg, "Can't discover the memory channel");
2107 		return -EINVAL;
2108 	}
2109 
2110 	ch_way = TAD_CH(reg) + 1;
2111 	sck_way = TAD_SOCK(reg);
2112 
2113 	if (ch_way == 3)
2114 		idx = addr >> 6;
2115 	else {
2116 		idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
2117 		if (pvt->is_chan_hash)
2118 			idx = haswell_chan_hash(idx, addr);
2119 	}
2120 	idx = idx % ch_way;
2121 
2122 	/*
2123 	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2124 	 */
2125 	switch (idx) {
2126 	case 0:
2127 		base_ch = TAD_TGT0(reg);
2128 		break;
2129 	case 1:
2130 		base_ch = TAD_TGT1(reg);
2131 		break;
2132 	case 2:
2133 		base_ch = TAD_TGT2(reg);
2134 		break;
2135 	case 3:
2136 		base_ch = TAD_TGT3(reg);
2137 		break;
2138 	default:
2139 		sprintf(msg, "Can't discover the TAD target");
2140 		return -EINVAL;
2141 	}
2142 	*channel_mask = 1 << base_ch;
2143 
2144 	pci_read_config_dword(pvt->pci_tad[base_ch], tad_ch_nilv_offset[n_tads], &tad_offset);
2145 
2146 	if (pvt->mirror_mode == FULL_MIRRORING ||
2147 	    (pvt->mirror_mode == ADDR_RANGE_MIRRORING && n_tads == 0)) {
2148 		*channel_mask |= 1 << ((base_ch + 2) % 4);
2149 		switch(ch_way) {
2150 		case 2:
2151 		case 4:
2152 			sck_xch = (1 << sck_way) * (ch_way >> 1);
2153 			break;
2154 		default:
2155 			sprintf(msg, "Invalid mirror set. Can't decode addr");
2156 			return -EINVAL;
2157 		}
2158 
2159 		pvt->is_cur_addr_mirrored = true;
2160 	} else {
2161 		sck_xch = (1 << sck_way) * ch_way;
2162 		pvt->is_cur_addr_mirrored = false;
2163 	}
2164 
2165 	if (pvt->is_lockstep)
2166 		*channel_mask |= 1 << ((base_ch + 1) % 4);
2167 
2168 	offset = TAD_OFFSET(tad_offset);
2169 
2170 	edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2171 		 n_tads,
2172 		 addr,
2173 		 limit,
2174 		 sck_way,
2175 		 ch_way,
2176 		 offset,
2177 		 idx,
2178 		 base_ch,
2179 		 *channel_mask);
2180 
2181 	/* Calculate channel address */
2182 	/* Remove the TAD offset */
2183 
2184 	if (offset > addr) {
2185 		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2186 			offset, addr);
2187 		return -EINVAL;
2188 	}
2189 
2190 	ch_addr = addr - offset;
2191 	ch_addr >>= (6 + shiftup);
2192 	ch_addr /= sck_xch;
2193 	ch_addr <<= (6 + shiftup);
2194 	ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
2195 
2196 	/*
2197 	 * Step 3) Decode rank
2198 	 */
2199 	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
2200 		pci_read_config_dword(pvt->pci_tad[base_ch], rir_way_limit[n_rir], &reg);
2201 
2202 		if (!IS_RIR_VALID(reg))
2203 			continue;
2204 
2205 		limit = pvt->info.rir_limit(reg);
2206 		gb = div_u64_rem(limit >> 20, 1024, &mb);
2207 		edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2208 			 n_rir,
2209 			 gb, (mb*1000)/1024,
2210 			 limit,
2211 			 1 << RIR_WAY(reg));
2212 		if  (ch_addr <= limit)
2213 			break;
2214 	}
2215 	if (n_rir == MAX_RIR_RANGES) {
2216 		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
2217 			ch_addr);
2218 		return -EINVAL;
2219 	}
2220 	rir_way = RIR_WAY(reg);
2221 
2222 	if (pvt->is_close_pg)
2223 		idx = (ch_addr >> 6);
2224 	else
2225 		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
2226 	idx %= 1 << rir_way;
2227 
2228 	pci_read_config_dword(pvt->pci_tad[base_ch], rir_offset[n_rir][idx], &reg);
2229 	*rank = RIR_RNK_TGT(pvt->info.type, reg);
2230 
2231 	edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2232 		 n_rir,
2233 		 ch_addr,
2234 		 limit,
2235 		 rir_way,
2236 		 idx);
2237 
2238 	return 0;
2239 }
2240 
2241 static int get_memory_error_data_from_mce(struct mem_ctl_info *mci,
2242 					  const struct mce *m, u8 *socket,
2243 					  u8 *ha, long *channel_mask,
2244 					  char *msg)
2245 {
2246 	u32 reg, channel = GET_BITFIELD(m->status, 0, 3);
2247 	struct mem_ctl_info *new_mci;
2248 	struct sbridge_pvt *pvt;
2249 	struct pci_dev *pci_ha;
2250 	bool tad0;
2251 
2252 	if (channel >= NUM_CHANNELS) {
2253 		sprintf(msg, "Invalid channel 0x%x", channel);
2254 		return -EINVAL;
2255 	}
2256 
2257 	pvt = mci->pvt_info;
2258 	if (!pvt->info.get_ha) {
2259 		sprintf(msg, "No get_ha()");
2260 		return -EINVAL;
2261 	}
2262 	*ha = pvt->info.get_ha(m->bank);
2263 	if (*ha != 0 && *ha != 1) {
2264 		sprintf(msg, "Impossible bank %d", m->bank);
2265 		return -EINVAL;
2266 	}
2267 
2268 	*socket = m->socketid;
2269 	new_mci = get_mci_for_node_id(*socket, *ha);
2270 	if (!new_mci) {
2271 		strcpy(msg, "mci socket got corrupted!");
2272 		return -EINVAL;
2273 	}
2274 
2275 	pvt = new_mci->pvt_info;
2276 	pci_ha = pvt->pci_ha;
2277 	pci_read_config_dword(pci_ha, tad_dram_rule[0], &reg);
2278 	tad0 = m->addr <= TAD_LIMIT(reg);
2279 
2280 	*channel_mask = 1 << channel;
2281 	if (pvt->mirror_mode == FULL_MIRRORING ||
2282 	    (pvt->mirror_mode == ADDR_RANGE_MIRRORING && tad0)) {
2283 		*channel_mask |= 1 << ((channel + 2) % 4);
2284 		pvt->is_cur_addr_mirrored = true;
2285 	} else {
2286 		pvt->is_cur_addr_mirrored = false;
2287 	}
2288 
2289 	if (pvt->is_lockstep)
2290 		*channel_mask |= 1 << ((channel + 1) % 4);
2291 
2292 	return 0;
2293 }
2294 
2295 /****************************************************************************
2296 	Device initialization routines: put/get, init/exit
2297  ****************************************************************************/
2298 
2299 /*
2300  *	sbridge_put_all_devices	'put' all the devices that we have
2301  *				reserved via 'get'
2302  */
2303 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
2304 {
2305 	int i;
2306 
2307 	edac_dbg(0, "\n");
2308 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2309 		struct pci_dev *pdev = sbridge_dev->pdev[i];
2310 		if (!pdev)
2311 			continue;
2312 		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2313 			 pdev->bus->number,
2314 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2315 		pci_dev_put(pdev);
2316 	}
2317 }
2318 
2319 static void sbridge_put_all_devices(void)
2320 {
2321 	struct sbridge_dev *sbridge_dev, *tmp;
2322 
2323 	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
2324 		sbridge_put_devices(sbridge_dev);
2325 		free_sbridge_dev(sbridge_dev);
2326 	}
2327 }
2328 
2329 static int sbridge_get_onedevice(struct pci_dev **prev,
2330 				 u8 *num_mc,
2331 				 const struct pci_id_table *table,
2332 				 const unsigned devno,
2333 				 const int multi_bus)
2334 {
2335 	struct sbridge_dev *sbridge_dev = NULL;
2336 	const struct pci_id_descr *dev_descr = &table->descr[devno];
2337 	struct pci_dev *pdev = NULL;
2338 	int seg = 0;
2339 	u8 bus = 0;
2340 	int i = 0;
2341 
2342 	sbridge_printk(KERN_DEBUG,
2343 		"Seeking for: PCI ID %04x:%04x\n",
2344 		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2345 
2346 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
2347 			      dev_descr->dev_id, *prev);
2348 
2349 	if (!pdev) {
2350 		if (*prev) {
2351 			*prev = pdev;
2352 			return 0;
2353 		}
2354 
2355 		if (dev_descr->optional)
2356 			return 0;
2357 
2358 		/* if the HA wasn't found */
2359 		if (devno == 0)
2360 			return -ENODEV;
2361 
2362 		sbridge_printk(KERN_INFO,
2363 			"Device not found: %04x:%04x\n",
2364 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2365 
2366 		/* End of list, leave */
2367 		return -ENODEV;
2368 	}
2369 	seg = pci_domain_nr(pdev->bus);
2370 	bus = pdev->bus->number;
2371 
2372 next_imc:
2373 	sbridge_dev = get_sbridge_dev(seg, bus, dev_descr->dom,
2374 				      multi_bus, sbridge_dev);
2375 	if (!sbridge_dev) {
2376 		/* If the HA1 wasn't found, don't create EDAC second memory controller */
2377 		if (dev_descr->dom == IMC1 && devno != 1) {
2378 			edac_dbg(0, "Skip IMC1: %04x:%04x (since HA1 was absent)\n",
2379 				 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2380 			pci_dev_put(pdev);
2381 			return 0;
2382 		}
2383 
2384 		if (dev_descr->dom == SOCK)
2385 			goto out_imc;
2386 
2387 		sbridge_dev = alloc_sbridge_dev(seg, bus, dev_descr->dom, table);
2388 		if (!sbridge_dev) {
2389 			pci_dev_put(pdev);
2390 			return -ENOMEM;
2391 		}
2392 		(*num_mc)++;
2393 	}
2394 
2395 	if (sbridge_dev->pdev[sbridge_dev->i_devs]) {
2396 		sbridge_printk(KERN_ERR,
2397 			"Duplicated device for %04x:%04x\n",
2398 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2399 		pci_dev_put(pdev);
2400 		return -ENODEV;
2401 	}
2402 
2403 	sbridge_dev->pdev[sbridge_dev->i_devs++] = pdev;
2404 
2405 	/* pdev belongs to more than one IMC, do extra gets */
2406 	if (++i > 1)
2407 		pci_dev_get(pdev);
2408 
2409 	if (dev_descr->dom == SOCK && i < table->n_imcs_per_sock)
2410 		goto next_imc;
2411 
2412 out_imc:
2413 	/* Be sure that the device is enabled */
2414 	if (unlikely(pci_enable_device(pdev) < 0)) {
2415 		sbridge_printk(KERN_ERR,
2416 			"Couldn't enable %04x:%04x\n",
2417 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2418 		return -ENODEV;
2419 	}
2420 
2421 	edac_dbg(0, "Detected %04x:%04x\n",
2422 		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2423 
2424 	/*
2425 	 * As stated on drivers/pci/search.c, the reference count for
2426 	 * @from is always decremented if it is not %NULL. So, as we need
2427 	 * to get all devices up to null, we need to do a get for the device
2428 	 */
2429 	pci_dev_get(pdev);
2430 
2431 	*prev = pdev;
2432 
2433 	return 0;
2434 }
2435 
2436 /*
2437  * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2438  *			     devices we want to reference for this driver.
2439  * @num_mc: pointer to the memory controllers count, to be incremented in case
2440  *	    of success.
2441  * @table: model specific table
2442  *
2443  * returns 0 in case of success or error code
2444  */
2445 static int sbridge_get_all_devices(u8 *num_mc,
2446 					const struct pci_id_table *table)
2447 {
2448 	int i, rc;
2449 	struct pci_dev *pdev = NULL;
2450 	int allow_dups = 0;
2451 	int multi_bus = 0;
2452 
2453 	if (table->type == KNIGHTS_LANDING)
2454 		allow_dups = multi_bus = 1;
2455 	while (table && table->descr) {
2456 		for (i = 0; i < table->n_devs_per_sock; i++) {
2457 			if (!allow_dups || i == 0 ||
2458 					table->descr[i].dev_id !=
2459 						table->descr[i-1].dev_id) {
2460 				pdev = NULL;
2461 			}
2462 			do {
2463 				rc = sbridge_get_onedevice(&pdev, num_mc,
2464 							   table, i, multi_bus);
2465 				if (rc < 0) {
2466 					if (i == 0) {
2467 						i = table->n_devs_per_sock;
2468 						break;
2469 					}
2470 					sbridge_put_all_devices();
2471 					return -ENODEV;
2472 				}
2473 			} while (pdev && !allow_dups);
2474 		}
2475 		table++;
2476 	}
2477 
2478 	return 0;
2479 }
2480 
2481 /*
2482  * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
2483  * the format: XXXa. So we can convert from a device to the corresponding
2484  * channel like this
2485  */
2486 #define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)
2487 
2488 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
2489 				 struct sbridge_dev *sbridge_dev)
2490 {
2491 	struct sbridge_pvt *pvt = mci->pvt_info;
2492 	struct pci_dev *pdev;
2493 	u8 saw_chan_mask = 0;
2494 	int i;
2495 
2496 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2497 		pdev = sbridge_dev->pdev[i];
2498 		if (!pdev)
2499 			continue;
2500 
2501 		switch (pdev->device) {
2502 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
2503 			pvt->pci_sad0 = pdev;
2504 			break;
2505 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
2506 			pvt->pci_sad1 = pdev;
2507 			break;
2508 		case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
2509 			pvt->pci_br0 = pdev;
2510 			break;
2511 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2512 			pvt->pci_ha = pdev;
2513 			break;
2514 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
2515 			pvt->pci_ta = pdev;
2516 			break;
2517 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
2518 			pvt->pci_ras = pdev;
2519 			break;
2520 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
2521 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
2522 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
2523 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
2524 		{
2525 			int id = TAD_DEV_TO_CHAN(pdev->device);
2526 			pvt->pci_tad[id] = pdev;
2527 			saw_chan_mask |= 1 << id;
2528 		}
2529 			break;
2530 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
2531 			pvt->pci_ddrio = pdev;
2532 			break;
2533 		default:
2534 			goto error;
2535 		}
2536 
2537 		edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2538 			 pdev->vendor, pdev->device,
2539 			 sbridge_dev->bus,
2540 			 pdev);
2541 	}
2542 
2543 	/* Check if everything were registered */
2544 	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha ||
2545 	    !pvt->pci_ras || !pvt->pci_ta)
2546 		goto enodev;
2547 
2548 	if (saw_chan_mask != 0x0f)
2549 		goto enodev;
2550 	return 0;
2551 
2552 enodev:
2553 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2554 	return -ENODEV;
2555 
2556 error:
2557 	sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
2558 		       PCI_VENDOR_ID_INTEL, pdev->device);
2559 	return -EINVAL;
2560 }
2561 
2562 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
2563 				 struct sbridge_dev *sbridge_dev)
2564 {
2565 	struct sbridge_pvt *pvt = mci->pvt_info;
2566 	struct pci_dev *pdev;
2567 	u8 saw_chan_mask = 0;
2568 	int i;
2569 
2570 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2571 		pdev = sbridge_dev->pdev[i];
2572 		if (!pdev)
2573 			continue;
2574 
2575 		switch (pdev->device) {
2576 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
2577 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
2578 			pvt->pci_ha = pdev;
2579 			break;
2580 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2581 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA:
2582 			pvt->pci_ta = pdev;
2583 			break;
2584 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
2585 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS:
2586 			pvt->pci_ras = pdev;
2587 			break;
2588 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
2589 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
2590 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
2591 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
2592 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
2593 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
2594 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
2595 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
2596 		{
2597 			int id = TAD_DEV_TO_CHAN(pdev->device);
2598 			pvt->pci_tad[id] = pdev;
2599 			saw_chan_mask |= 1 << id;
2600 		}
2601 			break;
2602 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
2603 			pvt->pci_ddrio = pdev;
2604 			break;
2605 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
2606 			pvt->pci_ddrio = pdev;
2607 			break;
2608 		case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
2609 			pvt->pci_sad0 = pdev;
2610 			break;
2611 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
2612 			pvt->pci_br0 = pdev;
2613 			break;
2614 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
2615 			pvt->pci_br1 = pdev;
2616 			break;
2617 		default:
2618 			goto error;
2619 		}
2620 
2621 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2622 			 sbridge_dev->bus,
2623 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2624 			 pdev);
2625 	}
2626 
2627 	/* Check if everything were registered */
2628 	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_br0 ||
2629 	    !pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta)
2630 		goto enodev;
2631 
2632 	if (saw_chan_mask != 0x0f && /* -EN/-EX */
2633 	    saw_chan_mask != 0x03)   /* -EP */
2634 		goto enodev;
2635 	return 0;
2636 
2637 enodev:
2638 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2639 	return -ENODEV;
2640 
2641 error:
2642 	sbridge_printk(KERN_ERR,
2643 		       "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
2644 			pdev->device);
2645 	return -EINVAL;
2646 }
2647 
2648 static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
2649 				 struct sbridge_dev *sbridge_dev)
2650 {
2651 	struct sbridge_pvt *pvt = mci->pvt_info;
2652 	struct pci_dev *pdev;
2653 	u8 saw_chan_mask = 0;
2654 	int i;
2655 
2656 	/* there's only one device per system; not tied to any bus */
2657 	if (pvt->info.pci_vtd == NULL)
2658 		/* result will be checked later */
2659 		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2660 						   PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
2661 						   NULL);
2662 
2663 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2664 		pdev = sbridge_dev->pdev[i];
2665 		if (!pdev)
2666 			continue;
2667 
2668 		switch (pdev->device) {
2669 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
2670 			pvt->pci_sad0 = pdev;
2671 			break;
2672 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
2673 			pvt->pci_sad1 = pdev;
2674 			break;
2675 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2676 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
2677 			pvt->pci_ha = pdev;
2678 			break;
2679 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
2680 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
2681 			pvt->pci_ta = pdev;
2682 			break;
2683 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM:
2684 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM:
2685 			pvt->pci_ras = pdev;
2686 			break;
2687 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
2688 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
2689 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
2690 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
2691 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
2692 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
2693 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
2694 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
2695 		{
2696 			int id = TAD_DEV_TO_CHAN(pdev->device);
2697 			pvt->pci_tad[id] = pdev;
2698 			saw_chan_mask |= 1 << id;
2699 		}
2700 			break;
2701 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
2702 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
2703 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
2704 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
2705 			if (!pvt->pci_ddrio)
2706 				pvt->pci_ddrio = pdev;
2707 			break;
2708 		default:
2709 			break;
2710 		}
2711 
2712 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2713 			 sbridge_dev->bus,
2714 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2715 			 pdev);
2716 	}
2717 
2718 	/* Check if everything were registered */
2719 	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2720 	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2721 		goto enodev;
2722 
2723 	if (saw_chan_mask != 0x0f && /* -EN/-EX */
2724 	    saw_chan_mask != 0x03)   /* -EP */
2725 		goto enodev;
2726 	return 0;
2727 
2728 enodev:
2729 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2730 	return -ENODEV;
2731 }
2732 
2733 static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
2734 				 struct sbridge_dev *sbridge_dev)
2735 {
2736 	struct sbridge_pvt *pvt = mci->pvt_info;
2737 	struct pci_dev *pdev;
2738 	u8 saw_chan_mask = 0;
2739 	int i;
2740 
2741 	/* there's only one device per system; not tied to any bus */
2742 	if (pvt->info.pci_vtd == NULL)
2743 		/* result will be checked later */
2744 		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2745 						   PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
2746 						   NULL);
2747 
2748 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2749 		pdev = sbridge_dev->pdev[i];
2750 		if (!pdev)
2751 			continue;
2752 
2753 		switch (pdev->device) {
2754 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
2755 			pvt->pci_sad0 = pdev;
2756 			break;
2757 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
2758 			pvt->pci_sad1 = pdev;
2759 			break;
2760 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2761 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2762 			pvt->pci_ha = pdev;
2763 			break;
2764 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
2765 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2766 			pvt->pci_ta = pdev;
2767 			break;
2768 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM:
2769 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM:
2770 			pvt->pci_ras = pdev;
2771 			break;
2772 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
2773 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
2774 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
2775 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
2776 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
2777 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
2778 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
2779 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
2780 		{
2781 			int id = TAD_DEV_TO_CHAN(pdev->device);
2782 			pvt->pci_tad[id] = pdev;
2783 			saw_chan_mask |= 1 << id;
2784 		}
2785 			break;
2786 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
2787 			pvt->pci_ddrio = pdev;
2788 			break;
2789 		default:
2790 			break;
2791 		}
2792 
2793 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2794 			 sbridge_dev->bus,
2795 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2796 			 pdev);
2797 	}
2798 
2799 	/* Check if everything were registered */
2800 	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2801 	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2802 		goto enodev;
2803 
2804 	if (saw_chan_mask != 0x0f && /* -EN/-EX */
2805 	    saw_chan_mask != 0x03)   /* -EP */
2806 		goto enodev;
2807 	return 0;
2808 
2809 enodev:
2810 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2811 	return -ENODEV;
2812 }
2813 
2814 static int knl_mci_bind_devs(struct mem_ctl_info *mci,
2815 			struct sbridge_dev *sbridge_dev)
2816 {
2817 	struct sbridge_pvt *pvt = mci->pvt_info;
2818 	struct pci_dev *pdev;
2819 	int dev, func;
2820 
2821 	int i;
2822 	int devidx;
2823 
2824 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2825 		pdev = sbridge_dev->pdev[i];
2826 		if (!pdev)
2827 			continue;
2828 
2829 		/* Extract PCI device and function. */
2830 		dev = (pdev->devfn >> 3) & 0x1f;
2831 		func = pdev->devfn & 0x7;
2832 
2833 		switch (pdev->device) {
2834 		case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
2835 			if (dev == 8)
2836 				pvt->knl.pci_mc0 = pdev;
2837 			else if (dev == 9)
2838 				pvt->knl.pci_mc1 = pdev;
2839 			else {
2840 				sbridge_printk(KERN_ERR,
2841 					"Memory controller in unexpected place! (dev %d, fn %d)\n",
2842 					dev, func);
2843 				continue;
2844 			}
2845 			break;
2846 
2847 		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
2848 			pvt->pci_sad0 = pdev;
2849 			break;
2850 
2851 		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
2852 			pvt->pci_sad1 = pdev;
2853 			break;
2854 
2855 		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
2856 			/* There are one of these per tile, and range from
2857 			 * 1.14.0 to 1.18.5.
2858 			 */
2859 			devidx = ((dev-14)*8)+func;
2860 
2861 			if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
2862 				sbridge_printk(KERN_ERR,
2863 					"Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2864 					dev, func);
2865 				continue;
2866 			}
2867 
2868 			WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
2869 
2870 			pvt->knl.pci_cha[devidx] = pdev;
2871 			break;
2872 
2873 		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN:
2874 			devidx = -1;
2875 
2876 			/*
2877 			 *  MC0 channels 0-2 are device 9 function 2-4,
2878 			 *  MC1 channels 3-5 are device 8 function 2-4.
2879 			 */
2880 
2881 			if (dev == 9)
2882 				devidx = func-2;
2883 			else if (dev == 8)
2884 				devidx = 3 + (func-2);
2885 
2886 			if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
2887 				sbridge_printk(KERN_ERR,
2888 					"DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
2889 					dev, func);
2890 				continue;
2891 			}
2892 
2893 			WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
2894 			pvt->knl.pci_channel[devidx] = pdev;
2895 			break;
2896 
2897 		case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
2898 			pvt->knl.pci_mc_info = pdev;
2899 			break;
2900 
2901 		case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
2902 			pvt->pci_ta = pdev;
2903 			break;
2904 
2905 		default:
2906 			sbridge_printk(KERN_ERR, "Unexpected device %d\n",
2907 				pdev->device);
2908 			break;
2909 		}
2910 	}
2911 
2912 	if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 ||
2913 	    !pvt->pci_sad0     || !pvt->pci_sad1    ||
2914 	    !pvt->pci_ta) {
2915 		goto enodev;
2916 	}
2917 
2918 	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
2919 		if (!pvt->knl.pci_channel[i]) {
2920 			sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
2921 			goto enodev;
2922 		}
2923 	}
2924 
2925 	for (i = 0; i < KNL_MAX_CHAS; i++) {
2926 		if (!pvt->knl.pci_cha[i]) {
2927 			sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
2928 			goto enodev;
2929 		}
2930 	}
2931 
2932 	return 0;
2933 
2934 enodev:
2935 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2936 	return -ENODEV;
2937 }
2938 
2939 /****************************************************************************
2940 			Error check routines
2941  ****************************************************************************/
2942 
2943 /*
2944  * While Sandy Bridge has error count registers, SMI BIOS read values from
2945  * and resets the counters. So, they are not reliable for the OS to read
2946  * from them. So, we have no option but to just trust on whatever MCE is
2947  * telling us about the errors.
2948  */
2949 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
2950 				    const struct mce *m)
2951 {
2952 	struct mem_ctl_info *new_mci;
2953 	struct sbridge_pvt *pvt = mci->pvt_info;
2954 	enum hw_event_mc_err_type tp_event;
2955 	char *type, *optype, msg[256];
2956 	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
2957 	bool overflow = GET_BITFIELD(m->status, 62, 62);
2958 	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
2959 	bool recoverable;
2960 	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
2961 	u32 mscod = GET_BITFIELD(m->status, 16, 31);
2962 	u32 errcode = GET_BITFIELD(m->status, 0, 15);
2963 	u32 channel = GET_BITFIELD(m->status, 0, 3);
2964 	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
2965 	/*
2966 	 * Bits 5-0 of MCi_MISC give the least significant bit that is valid.
2967 	 * A value 6 is for cache line aligned address, a value 12 is for page
2968 	 * aligned address reported by patrol scrubber.
2969 	 */
2970 	u32 lsb = GET_BITFIELD(m->misc, 0, 5);
2971 	long channel_mask, first_channel;
2972 	u8  rank = 0xff, socket, ha;
2973 	int rc, dimm;
2974 	char *area_type = "DRAM";
2975 
2976 	if (pvt->info.type != SANDY_BRIDGE)
2977 		recoverable = true;
2978 	else
2979 		recoverable = GET_BITFIELD(m->status, 56, 56);
2980 
2981 	if (uncorrected_error) {
2982 		core_err_cnt = 1;
2983 		if (ripv) {
2984 			type = "FATAL";
2985 			tp_event = HW_EVENT_ERR_FATAL;
2986 		} else {
2987 			type = "NON_FATAL";
2988 			tp_event = HW_EVENT_ERR_UNCORRECTED;
2989 		}
2990 	} else {
2991 		type = "CORRECTED";
2992 		tp_event = HW_EVENT_ERR_CORRECTED;
2993 	}
2994 
2995 	/*
2996 	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
2997 	 * memory errors should fit in this mask:
2998 	 *	000f 0000 1mmm cccc (binary)
2999 	 * where:
3000 	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
3001 	 *	    won't be shown
3002 	 *	mmm = error type
3003 	 *	cccc = channel
3004 	 * If the mask doesn't match, report an error to the parsing logic
3005 	 */
3006 	switch (optypenum) {
3007 	case 0:
3008 		optype = "generic undef request error";
3009 		break;
3010 	case 1:
3011 		optype = "memory read error";
3012 		break;
3013 	case 2:
3014 		optype = "memory write error";
3015 		break;
3016 	case 3:
3017 		optype = "addr/cmd error";
3018 		break;
3019 	case 4:
3020 		optype = "memory scrubbing error";
3021 		break;
3022 	default:
3023 		optype = "reserved";
3024 		break;
3025 	}
3026 
3027 	if (pvt->info.type == KNIGHTS_LANDING) {
3028 		if (channel == 14) {
3029 			edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
3030 				overflow ? " OVERFLOW" : "",
3031 				(uncorrected_error && recoverable)
3032 				? " recoverable" : "",
3033 				mscod, errcode,
3034 				m->bank);
3035 		} else {
3036 			char A = *("A");
3037 
3038 			/*
3039 			 * Reported channel is in range 0-2, so we can't map it
3040 			 * back to mc. To figure out mc we check machine check
3041 			 * bank register that reported this error.
3042 			 * bank15 means mc0 and bank16 means mc1.
3043 			 */
3044 			channel = knl_channel_remap(m->bank == 16, channel);
3045 			channel_mask = 1 << channel;
3046 
3047 			snprintf(msg, sizeof(msg),
3048 				"%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
3049 				overflow ? " OVERFLOW" : "",
3050 				(uncorrected_error && recoverable)
3051 				? " recoverable" : " ",
3052 				mscod, errcode, channel, A + channel);
3053 			edac_mc_handle_error(tp_event, mci, core_err_cnt,
3054 				m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3055 				channel, 0, -1,
3056 				optype, msg);
3057 		}
3058 		return;
3059 	} else if (lsb < 12) {
3060 		rc = get_memory_error_data(mci, m->addr, &socket, &ha,
3061 					   &channel_mask, &rank,
3062 					   &area_type, msg);
3063 	} else {
3064 		rc = get_memory_error_data_from_mce(mci, m, &socket, &ha,
3065 						    &channel_mask, msg);
3066 	}
3067 
3068 	if (rc < 0)
3069 		goto err_parsing;
3070 	new_mci = get_mci_for_node_id(socket, ha);
3071 	if (!new_mci) {
3072 		strcpy(msg, "Error: socket got corrupted!");
3073 		goto err_parsing;
3074 	}
3075 	mci = new_mci;
3076 	pvt = mci->pvt_info;
3077 
3078 	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
3079 
3080 	if (rank == 0xff)
3081 		dimm = -1;
3082 	else if (rank < 4)
3083 		dimm = 0;
3084 	else if (rank < 8)
3085 		dimm = 1;
3086 	else
3087 		dimm = 2;
3088 
3089 	/*
3090 	 * FIXME: On some memory configurations (mirror, lockstep), the
3091 	 * Memory Controller can't point the error to a single DIMM. The
3092 	 * EDAC core should be handling the channel mask, in order to point
3093 	 * to the group of dimm's where the error may be happening.
3094 	 */
3095 	if (!pvt->is_lockstep && !pvt->is_cur_addr_mirrored && !pvt->is_close_pg)
3096 		channel = first_channel;
3097 
3098 	snprintf(msg, sizeof(msg),
3099 		 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
3100 		 overflow ? " OVERFLOW" : "",
3101 		 (uncorrected_error && recoverable) ? " recoverable" : "",
3102 		 area_type,
3103 		 mscod, errcode,
3104 		 socket, ha,
3105 		 channel_mask,
3106 		 rank);
3107 
3108 	edac_dbg(0, "%s\n", msg);
3109 
3110 	/* FIXME: need support for channel mask */
3111 
3112 	if (channel == CHANNEL_UNSPECIFIED)
3113 		channel = -1;
3114 
3115 	/* Call the helper to output message */
3116 	edac_mc_handle_error(tp_event, mci, core_err_cnt,
3117 			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3118 			     channel, dimm, -1,
3119 			     optype, msg);
3120 	return;
3121 err_parsing:
3122 	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
3123 			     -1, -1, -1,
3124 			     msg, "");
3125 
3126 }
3127 
3128 /*
3129  * Check that logging is enabled and that this is the right type
3130  * of error for us to handle.
3131  */
3132 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
3133 				   void *data)
3134 {
3135 	struct mce *mce = (struct mce *)data;
3136 	struct mem_ctl_info *mci;
3137 	char *type;
3138 
3139 	if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
3140 		return NOTIFY_DONE;
3141 
3142 	/*
3143 	 * Just let mcelog handle it if the error is
3144 	 * outside the memory controller. A memory error
3145 	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3146 	 * bit 12 has an special meaning.
3147 	 */
3148 	if ((mce->status & 0xefff) >> 7 != 1)
3149 		return NOTIFY_DONE;
3150 
3151 	/* Check ADDRV bit in STATUS */
3152 	if (!GET_BITFIELD(mce->status, 58, 58))
3153 		return NOTIFY_DONE;
3154 
3155 	/* Check MISCV bit in STATUS */
3156 	if (!GET_BITFIELD(mce->status, 59, 59))
3157 		return NOTIFY_DONE;
3158 
3159 	/* Check address type in MISC (physical address only) */
3160 	if (GET_BITFIELD(mce->misc, 6, 8) != 2)
3161 		return NOTIFY_DONE;
3162 
3163 	mci = get_mci_for_node_id(mce->socketid, IMC0);
3164 	if (!mci)
3165 		return NOTIFY_DONE;
3166 
3167 	if (mce->mcgstatus & MCG_STATUS_MCIP)
3168 		type = "Exception";
3169 	else
3170 		type = "Event";
3171 
3172 	sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
3173 
3174 	sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
3175 			  "Bank %d: %016Lx\n", mce->extcpu, type,
3176 			  mce->mcgstatus, mce->bank, mce->status);
3177 	sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
3178 	sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
3179 	sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
3180 
3181 	sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
3182 			  "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
3183 			  mce->time, mce->socketid, mce->apicid);
3184 
3185 	sbridge_mce_output_error(mci, mce);
3186 
3187 	/* Advice mcelog that the error were handled */
3188 	return NOTIFY_STOP;
3189 }
3190 
3191 static struct notifier_block sbridge_mce_dec = {
3192 	.notifier_call	= sbridge_mce_check_error,
3193 	.priority	= MCE_PRIO_EDAC,
3194 };
3195 
3196 /****************************************************************************
3197 			EDAC register/unregister logic
3198  ****************************************************************************/
3199 
3200 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
3201 {
3202 	struct mem_ctl_info *mci = sbridge_dev->mci;
3203 	struct sbridge_pvt *pvt;
3204 
3205 	if (unlikely(!mci || !mci->pvt_info)) {
3206 		edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
3207 
3208 		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
3209 		return;
3210 	}
3211 
3212 	pvt = mci->pvt_info;
3213 
3214 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
3215 		 mci, &sbridge_dev->pdev[0]->dev);
3216 
3217 	/* Remove MC sysfs nodes */
3218 	edac_mc_del_mc(mci->pdev);
3219 
3220 	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
3221 	kfree(mci->ctl_name);
3222 	edac_mc_free(mci);
3223 	sbridge_dev->mci = NULL;
3224 }
3225 
3226 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
3227 {
3228 	struct mem_ctl_info *mci;
3229 	struct edac_mc_layer layers[2];
3230 	struct sbridge_pvt *pvt;
3231 	struct pci_dev *pdev = sbridge_dev->pdev[0];
3232 	int rc;
3233 
3234 	/* allocate a new MC control structure */
3235 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
3236 	layers[0].size = type == KNIGHTS_LANDING ?
3237 		KNL_MAX_CHANNELS : NUM_CHANNELS;
3238 	layers[0].is_virt_csrow = false;
3239 	layers[1].type = EDAC_MC_LAYER_SLOT;
3240 	layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
3241 	layers[1].is_virt_csrow = true;
3242 	mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
3243 			    sizeof(*pvt));
3244 
3245 	if (unlikely(!mci))
3246 		return -ENOMEM;
3247 
3248 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
3249 		 mci, &pdev->dev);
3250 
3251 	pvt = mci->pvt_info;
3252 	memset(pvt, 0, sizeof(*pvt));
3253 
3254 	/* Associate sbridge_dev and mci for future usage */
3255 	pvt->sbridge_dev = sbridge_dev;
3256 	sbridge_dev->mci = mci;
3257 
3258 	mci->mtype_cap = type == KNIGHTS_LANDING ?
3259 		MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
3260 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
3261 	mci->edac_cap = EDAC_FLAG_NONE;
3262 	mci->mod_name = EDAC_MOD_STR;
3263 	mci->dev_name = pci_name(pdev);
3264 	mci->ctl_page_to_phys = NULL;
3265 
3266 	pvt->info.type = type;
3267 	switch (type) {
3268 	case IVY_BRIDGE:
3269 		pvt->info.rankcfgr = IB_RANK_CFG_A;
3270 		pvt->info.get_tolm = ibridge_get_tolm;
3271 		pvt->info.get_tohm = ibridge_get_tohm;
3272 		pvt->info.dram_rule = ibridge_dram_rule;
3273 		pvt->info.get_memory_type = get_memory_type;
3274 		pvt->info.get_node_id = get_node_id;
3275 		pvt->info.get_ha = ibridge_get_ha;
3276 		pvt->info.rir_limit = rir_limit;
3277 		pvt->info.sad_limit = sad_limit;
3278 		pvt->info.interleave_mode = interleave_mode;
3279 		pvt->info.dram_attr = dram_attr;
3280 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3281 		pvt->info.interleave_list = ibridge_interleave_list;
3282 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3283 		pvt->info.get_width = ibridge_get_width;
3284 
3285 		/* Store pci devices at mci for faster access */
3286 		rc = ibridge_mci_bind_devs(mci, sbridge_dev);
3287 		if (unlikely(rc < 0))
3288 			goto fail0;
3289 		get_source_id(mci);
3290 		mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge SrcID#%d_Ha#%d",
3291 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3292 		break;
3293 	case SANDY_BRIDGE:
3294 		pvt->info.rankcfgr = SB_RANK_CFG_A;
3295 		pvt->info.get_tolm = sbridge_get_tolm;
3296 		pvt->info.get_tohm = sbridge_get_tohm;
3297 		pvt->info.dram_rule = sbridge_dram_rule;
3298 		pvt->info.get_memory_type = get_memory_type;
3299 		pvt->info.get_node_id = get_node_id;
3300 		pvt->info.get_ha = sbridge_get_ha;
3301 		pvt->info.rir_limit = rir_limit;
3302 		pvt->info.sad_limit = sad_limit;
3303 		pvt->info.interleave_mode = interleave_mode;
3304 		pvt->info.dram_attr = dram_attr;
3305 		pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
3306 		pvt->info.interleave_list = sbridge_interleave_list;
3307 		pvt->info.interleave_pkg = sbridge_interleave_pkg;
3308 		pvt->info.get_width = sbridge_get_width;
3309 
3310 		/* Store pci devices at mci for faster access */
3311 		rc = sbridge_mci_bind_devs(mci, sbridge_dev);
3312 		if (unlikely(rc < 0))
3313 			goto fail0;
3314 		get_source_id(mci);
3315 		mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge SrcID#%d_Ha#%d",
3316 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3317 		break;
3318 	case HASWELL:
3319 		/* rankcfgr isn't used */
3320 		pvt->info.get_tolm = haswell_get_tolm;
3321 		pvt->info.get_tohm = haswell_get_tohm;
3322 		pvt->info.dram_rule = ibridge_dram_rule;
3323 		pvt->info.get_memory_type = haswell_get_memory_type;
3324 		pvt->info.get_node_id = haswell_get_node_id;
3325 		pvt->info.get_ha = ibridge_get_ha;
3326 		pvt->info.rir_limit = haswell_rir_limit;
3327 		pvt->info.sad_limit = sad_limit;
3328 		pvt->info.interleave_mode = interleave_mode;
3329 		pvt->info.dram_attr = dram_attr;
3330 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3331 		pvt->info.interleave_list = ibridge_interleave_list;
3332 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3333 		pvt->info.get_width = ibridge_get_width;
3334 
3335 		/* Store pci devices at mci for faster access */
3336 		rc = haswell_mci_bind_devs(mci, sbridge_dev);
3337 		if (unlikely(rc < 0))
3338 			goto fail0;
3339 		get_source_id(mci);
3340 		mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell SrcID#%d_Ha#%d",
3341 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3342 		break;
3343 	case BROADWELL:
3344 		/* rankcfgr isn't used */
3345 		pvt->info.get_tolm = haswell_get_tolm;
3346 		pvt->info.get_tohm = haswell_get_tohm;
3347 		pvt->info.dram_rule = ibridge_dram_rule;
3348 		pvt->info.get_memory_type = haswell_get_memory_type;
3349 		pvt->info.get_node_id = haswell_get_node_id;
3350 		pvt->info.get_ha = ibridge_get_ha;
3351 		pvt->info.rir_limit = haswell_rir_limit;
3352 		pvt->info.sad_limit = sad_limit;
3353 		pvt->info.interleave_mode = interleave_mode;
3354 		pvt->info.dram_attr = dram_attr;
3355 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3356 		pvt->info.interleave_list = ibridge_interleave_list;
3357 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3358 		pvt->info.get_width = broadwell_get_width;
3359 
3360 		/* Store pci devices at mci for faster access */
3361 		rc = broadwell_mci_bind_devs(mci, sbridge_dev);
3362 		if (unlikely(rc < 0))
3363 			goto fail0;
3364 		get_source_id(mci);
3365 		mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell SrcID#%d_Ha#%d",
3366 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3367 		break;
3368 	case KNIGHTS_LANDING:
3369 		/* pvt->info.rankcfgr == ??? */
3370 		pvt->info.get_tolm = knl_get_tolm;
3371 		pvt->info.get_tohm = knl_get_tohm;
3372 		pvt->info.dram_rule = knl_dram_rule;
3373 		pvt->info.get_memory_type = knl_get_memory_type;
3374 		pvt->info.get_node_id = knl_get_node_id;
3375 		pvt->info.get_ha = knl_get_ha;
3376 		pvt->info.rir_limit = NULL;
3377 		pvt->info.sad_limit = knl_sad_limit;
3378 		pvt->info.interleave_mode = knl_interleave_mode;
3379 		pvt->info.dram_attr = dram_attr_knl;
3380 		pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
3381 		pvt->info.interleave_list = knl_interleave_list;
3382 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3383 		pvt->info.get_width = knl_get_width;
3384 
3385 		rc = knl_mci_bind_devs(mci, sbridge_dev);
3386 		if (unlikely(rc < 0))
3387 			goto fail0;
3388 		get_source_id(mci);
3389 		mci->ctl_name = kasprintf(GFP_KERNEL, "Knights Landing SrcID#%d_Ha#%d",
3390 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3391 		break;
3392 	}
3393 
3394 	if (!mci->ctl_name) {
3395 		rc = -ENOMEM;
3396 		goto fail0;
3397 	}
3398 
3399 	/* Get dimm basic config and the memory layout */
3400 	rc = get_dimm_config(mci);
3401 	if (rc < 0) {
3402 		edac_dbg(0, "MC: failed to get_dimm_config()\n");
3403 		goto fail;
3404 	}
3405 	get_memory_layout(mci);
3406 
3407 	/* record ptr to the generic device */
3408 	mci->pdev = &pdev->dev;
3409 
3410 	/* add this new MC control structure to EDAC's list of MCs */
3411 	if (unlikely(edac_mc_add_mc(mci))) {
3412 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3413 		rc = -EINVAL;
3414 		goto fail;
3415 	}
3416 
3417 	return 0;
3418 
3419 fail:
3420 	kfree(mci->ctl_name);
3421 fail0:
3422 	edac_mc_free(mci);
3423 	sbridge_dev->mci = NULL;
3424 	return rc;
3425 }
3426 
3427 static const struct x86_cpu_id sbridge_cpuids[] = {
3428 	INTEL_CPU_FAM6(SANDYBRIDGE_X,	  pci_dev_descr_sbridge_table),
3429 	INTEL_CPU_FAM6(IVYBRIDGE_X,	  pci_dev_descr_ibridge_table),
3430 	INTEL_CPU_FAM6(HASWELL_X,	  pci_dev_descr_haswell_table),
3431 	INTEL_CPU_FAM6(BROADWELL_X,	  pci_dev_descr_broadwell_table),
3432 	INTEL_CPU_FAM6(BROADWELL_XEON_D,  pci_dev_descr_broadwell_table),
3433 	INTEL_CPU_FAM6(XEON_PHI_KNL,	  pci_dev_descr_knl_table),
3434 	INTEL_CPU_FAM6(XEON_PHI_KNM,	  pci_dev_descr_knl_table),
3435 	{ }
3436 };
3437 MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);
3438 
3439 /*
3440  *	sbridge_probe	Get all devices and register memory controllers
3441  *			present.
3442  *	return:
3443  *		0 for FOUND a device
3444  *		< 0 for error code
3445  */
3446 
3447 static int sbridge_probe(const struct x86_cpu_id *id)
3448 {
3449 	int rc = -ENODEV;
3450 	u8 mc, num_mc = 0;
3451 	struct sbridge_dev *sbridge_dev;
3452 	struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;
3453 
3454 	/* get the pci devices we want to reserve for our use */
3455 	rc = sbridge_get_all_devices(&num_mc, ptable);
3456 
3457 	if (unlikely(rc < 0)) {
3458 		edac_dbg(0, "couldn't get all devices\n");
3459 		goto fail0;
3460 	}
3461 
3462 	mc = 0;
3463 
3464 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
3465 		edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3466 			 mc, mc + 1, num_mc);
3467 
3468 		sbridge_dev->mc = mc++;
3469 		rc = sbridge_register_mci(sbridge_dev, ptable->type);
3470 		if (unlikely(rc < 0))
3471 			goto fail1;
3472 	}
3473 
3474 	sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
3475 
3476 	return 0;
3477 
3478 fail1:
3479 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3480 		sbridge_unregister_mci(sbridge_dev);
3481 
3482 	sbridge_put_all_devices();
3483 fail0:
3484 	return rc;
3485 }
3486 
3487 /*
3488  *	sbridge_remove	cleanup
3489  *
3490  */
3491 static void sbridge_remove(void)
3492 {
3493 	struct sbridge_dev *sbridge_dev;
3494 
3495 	edac_dbg(0, "\n");
3496 
3497 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3498 		sbridge_unregister_mci(sbridge_dev);
3499 
3500 	/* Release PCI resources */
3501 	sbridge_put_all_devices();
3502 }
3503 
3504 /*
3505  *	sbridge_init		Module entry function
3506  *			Try to initialize this module for its devices
3507  */
3508 static int __init sbridge_init(void)
3509 {
3510 	const struct x86_cpu_id *id;
3511 	const char *owner;
3512 	int rc;
3513 
3514 	edac_dbg(2, "\n");
3515 
3516 	owner = edac_get_owner();
3517 	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
3518 		return -EBUSY;
3519 
3520 	id = x86_match_cpu(sbridge_cpuids);
3521 	if (!id)
3522 		return -ENODEV;
3523 
3524 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
3525 	opstate_init();
3526 
3527 	rc = sbridge_probe(id);
3528 
3529 	if (rc >= 0) {
3530 		mce_register_decode_chain(&sbridge_mce_dec);
3531 		if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
3532 			sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
3533 		return 0;
3534 	}
3535 
3536 	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
3537 		      rc);
3538 
3539 	return rc;
3540 }
3541 
3542 /*
3543  *	sbridge_exit()	Module exit function
3544  *			Unregister the driver
3545  */
3546 static void __exit sbridge_exit(void)
3547 {
3548 	edac_dbg(2, "\n");
3549 	sbridge_remove();
3550 	mce_unregister_decode_chain(&sbridge_mce_dec);
3551 }
3552 
3553 module_init(sbridge_init);
3554 module_exit(sbridge_exit);
3555 
3556 module_param(edac_op_state, int, 0444);
3557 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3558 
3559 MODULE_LICENSE("GPL");
3560 MODULE_AUTHOR("Mauro Carvalho Chehab");
3561 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
3562 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
3563 		   SBRIDGE_REVISION);
3564