xref: /linux/drivers/edac/sb_edac.c (revision 37f0e658eeeac720f3d558cf5aaf9edf0705ff23)
1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
2  *
3  * This driver supports the memory controllers found on the Intel
4  * processor family Sandy Bridge.
5  *
6  * This file may be distributed under the terms of the
7  * GNU General Public License version 2 only.
8  *
9  * Copyright (c) 2011 by:
10  *	 Mauro Carvalho Chehab
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <asm/processor.h>
25 #include <asm/mce.h>
26 
27 #include "edac_core.h"
28 
29 /* Static vars */
30 static LIST_HEAD(sbridge_edac_list);
31 static DEFINE_MUTEX(sbridge_edac_lock);
32 static int probed;
33 
34 /*
35  * Alter this version for the module when modifications are made
36  */
37 #define SBRIDGE_REVISION    " Ver: 1.1.1 "
38 #define EDAC_MOD_STR      "sbridge_edac"
39 
40 /*
41  * Debug macros
42  */
43 #define sbridge_printk(level, fmt, arg...)			\
44 	edac_printk(level, "sbridge", fmt, ##arg)
45 
46 #define sbridge_mc_printk(mci, level, fmt, arg...)		\
47 	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
48 
49 /*
50  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
51  */
52 #define GET_BITFIELD(v, lo, hi)	\
53 	(((v) & GENMASK_ULL(hi, lo)) >> (lo))
54 
55 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
56 static const u32 sbridge_dram_rule[] = {
57 	0x80, 0x88, 0x90, 0x98, 0xa0,
58 	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
59 };
60 
61 static const u32 ibridge_dram_rule[] = {
62 	0x60, 0x68, 0x70, 0x78, 0x80,
63 	0x88, 0x90, 0x98, 0xa0,	0xa8,
64 	0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
65 	0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
66 };
67 
68 static const u32 knl_dram_rule[] = {
69 	0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
70 	0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
71 	0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
72 	0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
73 	0x100, 0x108, 0x110, 0x118,   /* 20-23 */
74 };
75 
76 #define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)
77 #define A7MODE(reg)		GET_BITFIELD(reg, 26, 26)
78 
79 static char *show_dram_attr(u32 attr)
80 {
81 	switch (attr) {
82 		case 0:
83 			return "DRAM";
84 		case 1:
85 			return "MMCFG";
86 		case 2:
87 			return "NXM";
88 		default:
89 			return "unknown";
90 	}
91 }
92 
93 static const u32 sbridge_interleave_list[] = {
94 	0x84, 0x8c, 0x94, 0x9c, 0xa4,
95 	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
96 };
97 
98 static const u32 ibridge_interleave_list[] = {
99 	0x64, 0x6c, 0x74, 0x7c, 0x84,
100 	0x8c, 0x94, 0x9c, 0xa4, 0xac,
101 	0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
102 	0xdc, 0xe4, 0xec, 0xf4, 0xfc,
103 };
104 
105 static const u32 knl_interleave_list[] = {
106 	0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
107 	0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
108 	0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
109 	0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
110 	0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */
111 };
112 
113 struct interleave_pkg {
114 	unsigned char start;
115 	unsigned char end;
116 };
117 
118 static const struct interleave_pkg sbridge_interleave_pkg[] = {
119 	{ 0, 2 },
120 	{ 3, 5 },
121 	{ 8, 10 },
122 	{ 11, 13 },
123 	{ 16, 18 },
124 	{ 19, 21 },
125 	{ 24, 26 },
126 	{ 27, 29 },
127 };
128 
129 static const struct interleave_pkg ibridge_interleave_pkg[] = {
130 	{ 0, 3 },
131 	{ 4, 7 },
132 	{ 8, 11 },
133 	{ 12, 15 },
134 	{ 16, 19 },
135 	{ 20, 23 },
136 	{ 24, 27 },
137 	{ 28, 31 },
138 };
139 
140 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
141 			  int interleave)
142 {
143 	return GET_BITFIELD(reg, table[interleave].start,
144 			    table[interleave].end);
145 }
146 
147 /* Devices 12 Function 7 */
148 
149 #define TOLM		0x80
150 #define TOHM		0x84
151 #define HASWELL_TOLM	0xd0
152 #define HASWELL_TOHM_0	0xd4
153 #define HASWELL_TOHM_1	0xd8
154 #define KNL_TOLM	0xd0
155 #define KNL_TOHM_0	0xd4
156 #define KNL_TOHM_1	0xd8
157 
158 #define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
159 #define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
160 
161 /* Device 13 Function 6 */
162 
163 #define SAD_TARGET	0xf0
164 
165 #define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)
166 
167 #define SOURCE_ID_KNL(reg)	GET_BITFIELD(reg, 12, 14)
168 
169 #define SAD_CONTROL	0xf4
170 
171 /* Device 14 function 0 */
172 
173 static const u32 tad_dram_rule[] = {
174 	0x40, 0x44, 0x48, 0x4c,
175 	0x50, 0x54, 0x58, 0x5c,
176 	0x60, 0x64, 0x68, 0x6c,
177 };
178 #define MAX_TAD	ARRAY_SIZE(tad_dram_rule)
179 
180 #define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
181 #define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
182 #define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
183 #define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
184 #define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
185 #define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
186 #define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)
187 
188 /* Device 15, function 0 */
189 
190 #define MCMTR			0x7c
191 #define KNL_MCMTR		0x624
192 
193 #define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
194 #define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
195 #define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)
196 
197 /* Device 15, function 1 */
198 
199 #define RASENABLES		0xac
200 #define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)
201 
202 /* Device 15, functions 2-5 */
203 
204 static const int mtr_regs[] = {
205 	0x80, 0x84, 0x88,
206 };
207 
208 static const int knl_mtr_reg = 0xb60;
209 
210 #define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
211 #define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
212 #define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
213 #define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
214 #define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)
215 
216 static const u32 tad_ch_nilv_offset[] = {
217 	0x90, 0x94, 0x98, 0x9c,
218 	0xa0, 0xa4, 0xa8, 0xac,
219 	0xb0, 0xb4, 0xb8, 0xbc,
220 };
221 #define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
222 #define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)
223 
224 static const u32 rir_way_limit[] = {
225 	0x108, 0x10c, 0x110, 0x114, 0x118,
226 };
227 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
228 
229 #define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
230 #define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)
231 
232 #define MAX_RIR_WAY	8
233 
234 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
235 	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
236 	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
237 	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
238 	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
239 	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
240 };
241 
242 #define RIR_RNK_TGT(reg)		GET_BITFIELD(reg, 16, 19)
243 #define RIR_OFFSET(reg)		GET_BITFIELD(reg,  2, 14)
244 
245 /* Device 16, functions 2-7 */
246 
247 /*
248  * FIXME: Implement the error count reads directly
249  */
250 
251 static const u32 correrrcnt[] = {
252 	0x104, 0x108, 0x10c, 0x110,
253 };
254 
255 #define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
256 #define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
257 #define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
258 #define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)
259 
260 static const u32 correrrthrsld[] = {
261 	0x11c, 0x120, 0x124, 0x128,
262 };
263 
264 #define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
265 #define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)
266 
267 
268 /* Device 17, function 0 */
269 
270 #define SB_RANK_CFG_A		0x0328
271 
272 #define IB_RANK_CFG_A		0x0320
273 
274 /*
275  * sbridge structs
276  */
277 
278 #define NUM_CHANNELS		8	/* 2MC per socket, four chan per MC */
279 #define MAX_DIMMS		3	/* Max DIMMS per channel */
280 #define KNL_MAX_CHAS		38	/* KNL max num. of Cache Home Agents */
281 #define KNL_MAX_CHANNELS	6	/* KNL max num. of PCI channels */
282 #define KNL_MAX_EDCS		8	/* Embedded DRAM controllers */
283 #define CHANNEL_UNSPECIFIED	0xf	/* Intel IA32 SDM 15-14 */
284 
285 enum type {
286 	SANDY_BRIDGE,
287 	IVY_BRIDGE,
288 	HASWELL,
289 	BROADWELL,
290 	KNIGHTS_LANDING,
291 };
292 
293 struct sbridge_pvt;
294 struct sbridge_info {
295 	enum type	type;
296 	u32		mcmtr;
297 	u32		rankcfgr;
298 	u64		(*get_tolm)(struct sbridge_pvt *pvt);
299 	u64		(*get_tohm)(struct sbridge_pvt *pvt);
300 	u64		(*rir_limit)(u32 reg);
301 	u64		(*sad_limit)(u32 reg);
302 	u32		(*interleave_mode)(u32 reg);
303 	char*		(*show_interleave_mode)(u32 reg);
304 	u32		(*dram_attr)(u32 reg);
305 	const u32	*dram_rule;
306 	const u32	*interleave_list;
307 	const struct interleave_pkg *interleave_pkg;
308 	u8		max_sad;
309 	u8		max_interleave;
310 	u8		(*get_node_id)(struct sbridge_pvt *pvt);
311 	enum mem_type	(*get_memory_type)(struct sbridge_pvt *pvt);
312 	enum dev_type	(*get_width)(struct sbridge_pvt *pvt, u32 mtr);
313 	struct pci_dev	*pci_vtd;
314 };
315 
316 struct sbridge_channel {
317 	u32		ranks;
318 	u32		dimms;
319 };
320 
321 struct pci_id_descr {
322 	int			dev_id;
323 	int			optional;
324 };
325 
326 struct pci_id_table {
327 	const struct pci_id_descr	*descr;
328 	int				n_devs;
329 };
330 
331 struct sbridge_dev {
332 	struct list_head	list;
333 	u8			bus, mc;
334 	u8			node_id, source_id;
335 	struct pci_dev		**pdev;
336 	int			n_devs;
337 	struct mem_ctl_info	*mci;
338 };
339 
340 struct knl_pvt {
341 	struct pci_dev          *pci_cha[KNL_MAX_CHAS];
342 	struct pci_dev          *pci_channel[KNL_MAX_CHANNELS];
343 	struct pci_dev          *pci_mc0;
344 	struct pci_dev          *pci_mc1;
345 	struct pci_dev          *pci_mc0_misc;
346 	struct pci_dev          *pci_mc1_misc;
347 	struct pci_dev          *pci_mc_info; /* tolm, tohm */
348 };
349 
350 struct sbridge_pvt {
351 	struct pci_dev		*pci_ta, *pci_ddrio, *pci_ras;
352 	struct pci_dev		*pci_sad0, *pci_sad1;
353 	struct pci_dev		*pci_ha0, *pci_ha1;
354 	struct pci_dev		*pci_br0, *pci_br1;
355 	struct pci_dev		*pci_ha1_ta;
356 	struct pci_dev		*pci_tad[NUM_CHANNELS];
357 
358 	struct sbridge_dev	*sbridge_dev;
359 
360 	struct sbridge_info	info;
361 	struct sbridge_channel	channel[NUM_CHANNELS];
362 
363 	/* Memory type detection */
364 	bool			is_mirrored, is_lockstep, is_close_pg;
365 	bool			is_chan_hash;
366 
367 	/* Fifo double buffers */
368 	struct mce		mce_entry[MCE_LOG_LEN];
369 	struct mce		mce_outentry[MCE_LOG_LEN];
370 
371 	/* Fifo in/out counters */
372 	unsigned		mce_in, mce_out;
373 
374 	/* Count indicator to show errors not got */
375 	unsigned		mce_overrun;
376 
377 	/* Memory description */
378 	u64			tolm, tohm;
379 	struct knl_pvt knl;
380 };
381 
382 #define PCI_DESCR(device_id, opt)	\
383 	.dev_id = (device_id),		\
384 	.optional = opt
385 
386 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
387 		/* Processor Home Agent */
388 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0)	},
389 
390 		/* Memory controller */
391 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0)	},
392 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0)	},
393 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0)	},
394 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0)	},
395 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0)	},
396 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0)	},
397 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1)	},
398 
399 		/* System Address Decoder */
400 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0)	},
401 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0)	},
402 
403 		/* Broadcast Registers */
404 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0)		},
405 };
406 
407 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
408 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
409 	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
410 	{0,}			/* 0 terminated list. */
411 };
412 
413 /* This changes depending if 1HA or 2HA:
414  * 1HA:
415  *	0x0eb8 (17.0) is DDRIO0
416  * 2HA:
417  *	0x0ebc (17.4) is DDRIO0
418  */
419 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0	0x0eb8
420 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0	0x0ebc
421 
422 /* pci ids */
423 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0		0x0ea0
424 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA		0x0ea8
425 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS		0x0e71
426 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0	0x0eaa
427 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1	0x0eab
428 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2	0x0eac
429 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3	0x0ead
430 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD			0x0ec8
431 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0			0x0ec9
432 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1			0x0eca
433 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1		0x0e60
434 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA		0x0e68
435 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS		0x0e79
436 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0	0x0e6a
437 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1	0x0e6b
438 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2	0x0e6c
439 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3	0x0e6d
440 
441 static const struct pci_id_descr pci_dev_descr_ibridge[] = {
442 		/* Processor Home Agent */
443 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0)		},
444 
445 		/* Memory controller */
446 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0)		},
447 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0)		},
448 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0)	},
449 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0)	},
450 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0)	},
451 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0)	},
452 
453 		/* System Address Decoder */
454 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0)			},
455 
456 		/* Broadcast Registers */
457 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1)			},
458 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0)			},
459 
460 		/* Optional, mode 2HA */
461 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1)		},
462 #if 0
463 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1)	},
464 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1)	},
465 #endif
466 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1)	},
467 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1)	},
468 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2, 1)	},
469 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3, 1)	},
470 
471 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1)	},
472 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1)	},
473 };
474 
475 static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
476 	PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge),
477 	{0,}			/* 0 terminated list. */
478 };
479 
480 /* Haswell support */
481 /* EN processor:
482  *	- 1 IMC
483  *	- 3 DDR3 channels, 2 DPC per channel
484  * EP processor:
485  *	- 1 or 2 IMC
486  *	- 4 DDR4 channels, 3 DPC per channel
487  * EP 4S processor:
488  *	- 2 IMC
489  *	- 4 DDR4 channels, 3 DPC per channel
490  * EX processor:
491  *	- 2 IMC
492  *	- each IMC interfaces with a SMI 2 channel
493  *	- each SMI channel interfaces with a scalable memory buffer
494  *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
495  */
496 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
497 #define HASWELL_HASYSDEFEATURE2 0x84
498 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
499 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0	0x2fa0
500 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1	0x2f60
501 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA	0x2fa8
502 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL 0x2f71
503 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA	0x2f68
504 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL 0x2f79
505 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
506 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
507 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
508 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
509 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
510 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
511 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
512 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
513 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
514 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
515 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
516 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
517 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
518 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
519 static const struct pci_id_descr pci_dev_descr_haswell[] = {
520 	/* first item must be the HA */
521 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0)		},
522 
523 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0)	},
524 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0)	},
525 
526 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1)		},
527 
528 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0)		},
529 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL, 0)	},
530 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0)	},
531 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0)	},
532 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1)	},
533 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1)	},
534 
535 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1)		},
536 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1, 1)		},
537 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2, 1)		},
538 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3, 1)		},
539 
540 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1)		},
541 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL, 1)	},
542 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1)	},
543 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1)	},
544 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1)	},
545 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1)	},
546 };
547 
548 static const struct pci_id_table pci_dev_descr_haswell_table[] = {
549 	PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell),
550 	{0,}			/* 0 terminated list. */
551 };
552 
553 /* Knight's Landing Support */
554 /*
555  * KNL's memory channels are swizzled between memory controllers.
556  * MC0 is mapped to CH3,5,6 and MC1 is mapped to CH0,1,2
557  */
558 #define knl_channel_remap(channel) ((channel + 3) % 6)
559 
560 /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
561 #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840
562 /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
563 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL  0x7843
564 /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
565 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844
566 /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
567 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a
568 /* SAD target - 1-29-1 (1 of these) */
569 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b
570 /* Caching / Home Agent */
571 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c
572 /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
573 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810
574 
575 /*
576  * KNL differs from SB, IB, and Haswell in that it has multiple
577  * instances of the same device with the same device ID, so we handle that
578  * by creating as many copies in the table as we expect to find.
579  * (Like device ID must be grouped together.)
580  */
581 
582 static const struct pci_id_descr pci_dev_descr_knl[] = {
583 	[0]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0, 0) },
584 	[1]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1, 0) },
585 	[2 ... 3]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC, 0)},
586 	[4 ... 41]  = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA, 0) },
587 	[42 ... 47] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL, 0) },
588 	[48]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA, 0) },
589 	[49]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0) },
590 };
591 
592 static const struct pci_id_table pci_dev_descr_knl_table[] = {
593 	PCI_ID_TABLE_ENTRY(pci_dev_descr_knl),
594 	{0,}
595 };
596 
597 /*
598  * Broadwell support
599  *
600  * DE processor:
601  *	- 1 IMC
602  *	- 2 DDR3 channels, 2 DPC per channel
603  * EP processor:
604  *	- 1 or 2 IMC
605  *	- 4 DDR4 channels, 3 DPC per channel
606  * EP 4S processor:
607  *	- 2 IMC
608  *	- 4 DDR4 channels, 3 DPC per channel
609  * EX processor:
610  *	- 2 IMC
611  *	- each IMC interfaces with a SMI 2 channel
612  *	- each SMI channel interfaces with a scalable memory buffer
613  *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
614  */
615 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
616 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0	0x6fa0
617 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1	0x6f60
618 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA	0x6fa8
619 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL 0x6f71
620 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA	0x6f68
621 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL 0x6f79
622 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
623 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
624 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
625 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
626 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
627 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
628 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
629 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
630 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
631 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
632 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
633 
634 static const struct pci_id_descr pci_dev_descr_broadwell[] = {
635 	/* first item must be the HA */
636 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0, 0)		},
637 
638 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0)	},
639 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0)	},
640 
641 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1, 1)		},
642 
643 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA, 0)	},
644 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL, 0)	},
645 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0)	},
646 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0)	},
647 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1)	},
648 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1)	},
649 
650 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0, 1)	},
651 
652 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA, 1)	},
653 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL, 1)	},
654 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1)	},
655 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1)	},
656 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1)	},
657 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1)	},
658 };
659 
660 static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
661 	PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell),
662 	{0,}			/* 0 terminated list. */
663 };
664 
665 /*
666  *	pci_device_id	table for which devices we are looking for
667  */
668 static const struct pci_device_id sbridge_pci_tbl[] = {
669 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0)},
670 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA)},
671 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0)},
672 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0)},
673 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0)},
674 	{0,}			/* 0 terminated list. */
675 };
676 
677 
678 /****************************************************************************
679 			Ancillary status routines
680  ****************************************************************************/
681 
682 static inline int numrank(enum type type, u32 mtr)
683 {
684 	int ranks = (1 << RANK_CNT_BITS(mtr));
685 	int max = 4;
686 
687 	if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
688 		max = 8;
689 
690 	if (ranks > max) {
691 		edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
692 			 ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
693 		return -EINVAL;
694 	}
695 
696 	return ranks;
697 }
698 
699 static inline int numrow(u32 mtr)
700 {
701 	int rows = (RANK_WIDTH_BITS(mtr) + 12);
702 
703 	if (rows < 13 || rows > 18) {
704 		edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
705 			 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
706 		return -EINVAL;
707 	}
708 
709 	return 1 << rows;
710 }
711 
712 static inline int numcol(u32 mtr)
713 {
714 	int cols = (COL_WIDTH_BITS(mtr) + 10);
715 
716 	if (cols > 12) {
717 		edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
718 			 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
719 		return -EINVAL;
720 	}
721 
722 	return 1 << cols;
723 }
724 
725 static struct sbridge_dev *get_sbridge_dev(u8 bus, int multi_bus)
726 {
727 	struct sbridge_dev *sbridge_dev;
728 
729 	/*
730 	 * If we have devices scattered across several busses that pertain
731 	 * to the same memory controller, we'll lump them all together.
732 	 */
733 	if (multi_bus) {
734 		return list_first_entry_or_null(&sbridge_edac_list,
735 				struct sbridge_dev, list);
736 	}
737 
738 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
739 		if (sbridge_dev->bus == bus)
740 			return sbridge_dev;
741 	}
742 
743 	return NULL;
744 }
745 
746 static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
747 					   const struct pci_id_table *table)
748 {
749 	struct sbridge_dev *sbridge_dev;
750 
751 	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
752 	if (!sbridge_dev)
753 		return NULL;
754 
755 	sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
756 				   GFP_KERNEL);
757 	if (!sbridge_dev->pdev) {
758 		kfree(sbridge_dev);
759 		return NULL;
760 	}
761 
762 	sbridge_dev->bus = bus;
763 	sbridge_dev->n_devs = table->n_devs;
764 	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
765 
766 	return sbridge_dev;
767 }
768 
769 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
770 {
771 	list_del(&sbridge_dev->list);
772 	kfree(sbridge_dev->pdev);
773 	kfree(sbridge_dev);
774 }
775 
776 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
777 {
778 	u32 reg;
779 
780 	/* Address range is 32:28 */
781 	pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
782 	return GET_TOLM(reg);
783 }
784 
785 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
786 {
787 	u32 reg;
788 
789 	pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
790 	return GET_TOHM(reg);
791 }
792 
793 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
794 {
795 	u32 reg;
796 
797 	pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
798 
799 	return GET_TOLM(reg);
800 }
801 
802 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
803 {
804 	u32 reg;
805 
806 	pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
807 
808 	return GET_TOHM(reg);
809 }
810 
811 static u64 rir_limit(u32 reg)
812 {
813 	return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
814 }
815 
816 static u64 sad_limit(u32 reg)
817 {
818 	return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
819 }
820 
821 static u32 interleave_mode(u32 reg)
822 {
823 	return GET_BITFIELD(reg, 1, 1);
824 }
825 
826 char *show_interleave_mode(u32 reg)
827 {
828 	return interleave_mode(reg) ? "8:6" : "[8:6]XOR[18:16]";
829 }
830 
831 static u32 dram_attr(u32 reg)
832 {
833 	return GET_BITFIELD(reg, 2, 3);
834 }
835 
836 static u64 knl_sad_limit(u32 reg)
837 {
838 	return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
839 }
840 
841 static u32 knl_interleave_mode(u32 reg)
842 {
843 	return GET_BITFIELD(reg, 1, 2);
844 }
845 
846 static char *knl_show_interleave_mode(u32 reg)
847 {
848 	char *s;
849 
850 	switch (knl_interleave_mode(reg)) {
851 	case 0:
852 		s = "use address bits [8:6]";
853 		break;
854 	case 1:
855 		s = "use address bits [10:8]";
856 		break;
857 	case 2:
858 		s = "use address bits [14:12]";
859 		break;
860 	case 3:
861 		s = "use address bits [32:30]";
862 		break;
863 	default:
864 		WARN_ON(1);
865 		break;
866 	}
867 
868 	return s;
869 }
870 
871 static u32 dram_attr_knl(u32 reg)
872 {
873 	return GET_BITFIELD(reg, 3, 4);
874 }
875 
876 
877 static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
878 {
879 	u32 reg;
880 	enum mem_type mtype;
881 
882 	if (pvt->pci_ddrio) {
883 		pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
884 				      &reg);
885 		if (GET_BITFIELD(reg, 11, 11))
886 			/* FIXME: Can also be LRDIMM */
887 			mtype = MEM_RDDR3;
888 		else
889 			mtype = MEM_DDR3;
890 	} else
891 		mtype = MEM_UNKNOWN;
892 
893 	return mtype;
894 }
895 
896 static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
897 {
898 	u32 reg;
899 	bool registered = false;
900 	enum mem_type mtype = MEM_UNKNOWN;
901 
902 	if (!pvt->pci_ddrio)
903 		goto out;
904 
905 	pci_read_config_dword(pvt->pci_ddrio,
906 			      HASWELL_DDRCRCLKCONTROLS, &reg);
907 	/* Is_Rdimm */
908 	if (GET_BITFIELD(reg, 16, 16))
909 		registered = true;
910 
911 	pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
912 	if (GET_BITFIELD(reg, 14, 14)) {
913 		if (registered)
914 			mtype = MEM_RDDR4;
915 		else
916 			mtype = MEM_DDR4;
917 	} else {
918 		if (registered)
919 			mtype = MEM_RDDR3;
920 		else
921 			mtype = MEM_DDR3;
922 	}
923 
924 out:
925 	return mtype;
926 }
927 
928 static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
929 {
930 	/* for KNL value is fixed */
931 	return DEV_X16;
932 }
933 
934 static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
935 {
936 	/* there's no way to figure out */
937 	return DEV_UNKNOWN;
938 }
939 
940 static enum dev_type __ibridge_get_width(u32 mtr)
941 {
942 	enum dev_type type;
943 
944 	switch (mtr) {
945 	case 3:
946 		type = DEV_UNKNOWN;
947 		break;
948 	case 2:
949 		type = DEV_X16;
950 		break;
951 	case 1:
952 		type = DEV_X8;
953 		break;
954 	case 0:
955 		type = DEV_X4;
956 		break;
957 	}
958 
959 	return type;
960 }
961 
962 static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
963 {
964 	/*
965 	 * ddr3_width on the documentation but also valid for DDR4 on
966 	 * Haswell
967 	 */
968 	return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
969 }
970 
971 static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
972 {
973 	/* ddr3_width on the documentation but also valid for DDR4 */
974 	return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
975 }
976 
977 static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
978 {
979 	/* DDR4 RDIMMS and LRDIMMS are supported */
980 	return MEM_RDDR4;
981 }
982 
983 static u8 get_node_id(struct sbridge_pvt *pvt)
984 {
985 	u32 reg;
986 	pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
987 	return GET_BITFIELD(reg, 0, 2);
988 }
989 
990 static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
991 {
992 	u32 reg;
993 
994 	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
995 	return GET_BITFIELD(reg, 0, 3);
996 }
997 
998 static u8 knl_get_node_id(struct sbridge_pvt *pvt)
999 {
1000 	u32 reg;
1001 
1002 	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
1003 	return GET_BITFIELD(reg, 0, 2);
1004 }
1005 
1006 
1007 static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
1008 {
1009 	u32 reg;
1010 
1011 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
1012 	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1013 }
1014 
1015 static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
1016 {
1017 	u64 rc;
1018 	u32 reg;
1019 
1020 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
1021 	rc = GET_BITFIELD(reg, 26, 31);
1022 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
1023 	rc = ((reg << 6) | rc) << 26;
1024 
1025 	return rc | 0x1ffffff;
1026 }
1027 
1028 static u64 knl_get_tolm(struct sbridge_pvt *pvt)
1029 {
1030 	u32 reg;
1031 
1032 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
1033 	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1034 }
1035 
1036 static u64 knl_get_tohm(struct sbridge_pvt *pvt)
1037 {
1038 	u64 rc;
1039 	u32 reg_lo, reg_hi;
1040 
1041 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
1042 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
1043 	rc = ((u64)reg_hi << 32) | reg_lo;
1044 	return rc | 0x3ffffff;
1045 }
1046 
1047 
1048 static u64 haswell_rir_limit(u32 reg)
1049 {
1050 	return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
1051 }
1052 
1053 static inline u8 sad_pkg_socket(u8 pkg)
1054 {
1055 	/* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1056 	return ((pkg >> 3) << 2) | (pkg & 0x3);
1057 }
1058 
1059 static inline u8 sad_pkg_ha(u8 pkg)
1060 {
1061 	return (pkg >> 2) & 0x1;
1062 }
1063 
1064 static int haswell_chan_hash(int idx, u64 addr)
1065 {
1066 	int i;
1067 
1068 	/*
1069 	 * XOR even bits from 12:26 to bit0 of idx,
1070 	 *     odd bits from 13:27 to bit1
1071 	 */
1072 	for (i = 12; i < 28; i += 2)
1073 		idx ^= (addr >> i) & 3;
1074 
1075 	return idx;
1076 }
1077 
1078 /****************************************************************************
1079 			Memory check routines
1080  ****************************************************************************/
1081 static struct pci_dev *get_pdev_same_bus(u8 bus, u32 id)
1082 {
1083 	struct pci_dev *pdev = NULL;
1084 
1085 	do {
1086 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, pdev);
1087 		if (pdev && pdev->bus->number == bus)
1088 			break;
1089 	} while (pdev);
1090 
1091 	return pdev;
1092 }
1093 
1094 /**
1095  * check_if_ecc_is_active() - Checks if ECC is active
1096  * @bus:	Device bus
1097  * @type:	Memory controller type
1098  * returns: 0 in case ECC is active, -ENODEV if it can't be determined or
1099  *	    disabled
1100  */
1101 static int check_if_ecc_is_active(const u8 bus, enum type type)
1102 {
1103 	struct pci_dev *pdev = NULL;
1104 	u32 mcmtr, id;
1105 
1106 	switch (type) {
1107 	case IVY_BRIDGE:
1108 		id = PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA;
1109 		break;
1110 	case HASWELL:
1111 		id = PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA;
1112 		break;
1113 	case SANDY_BRIDGE:
1114 		id = PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA;
1115 		break;
1116 	case BROADWELL:
1117 		id = PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA;
1118 		break;
1119 	case KNIGHTS_LANDING:
1120 		/*
1121 		 * KNL doesn't group things by bus the same way
1122 		 * SB/IB/Haswell does.
1123 		 */
1124 		id = PCI_DEVICE_ID_INTEL_KNL_IMC_TA;
1125 		break;
1126 	default:
1127 		return -ENODEV;
1128 	}
1129 
1130 	if (type != KNIGHTS_LANDING)
1131 		pdev = get_pdev_same_bus(bus, id);
1132 	else
1133 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, 0);
1134 
1135 	if (!pdev) {
1136 		sbridge_printk(KERN_ERR, "Couldn't find PCI device "
1137 					"%04x:%04x! on bus %02d\n",
1138 					PCI_VENDOR_ID_INTEL, id, bus);
1139 		return -ENODEV;
1140 	}
1141 
1142 	pci_read_config_dword(pdev,
1143 			type == KNIGHTS_LANDING ? KNL_MCMTR : MCMTR, &mcmtr);
1144 	if (!IS_ECC_ENABLED(mcmtr)) {
1145 		sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
1146 		return -ENODEV;
1147 	}
1148 	return 0;
1149 }
1150 
1151 /* Low bits of TAD limit, and some metadata. */
1152 static const u32 knl_tad_dram_limit_lo[] = {
1153 	0x400, 0x500, 0x600, 0x700,
1154 	0x800, 0x900, 0xa00, 0xb00,
1155 };
1156 
1157 /* Low bits of TAD offset. */
1158 static const u32 knl_tad_dram_offset_lo[] = {
1159 	0x404, 0x504, 0x604, 0x704,
1160 	0x804, 0x904, 0xa04, 0xb04,
1161 };
1162 
1163 /* High 16 bits of TAD limit and offset. */
1164 static const u32 knl_tad_dram_hi[] = {
1165 	0x408, 0x508, 0x608, 0x708,
1166 	0x808, 0x908, 0xa08, 0xb08,
1167 };
1168 
1169 /* Number of ways a tad entry is interleaved. */
1170 static const u32 knl_tad_ways[] = {
1171 	8, 6, 4, 3, 2, 1,
1172 };
1173 
1174 /*
1175  * Retrieve the n'th Target Address Decode table entry
1176  * from the memory controller's TAD table.
1177  *
1178  * @pvt:	driver private data
1179  * @entry:	which entry you want to retrieve
1180  * @mc:		which memory controller (0 or 1)
1181  * @offset:	output tad range offset
1182  * @limit:	output address of first byte above tad range
1183  * @ways:	output number of interleave ways
1184  *
1185  * The offset value has curious semantics.  It's a sort of running total
1186  * of the sizes of all the memory regions that aren't mapped in this
1187  * tad table.
1188  */
1189 static int knl_get_tad(const struct sbridge_pvt *pvt,
1190 		const int entry,
1191 		const int mc,
1192 		u64 *offset,
1193 		u64 *limit,
1194 		int *ways)
1195 {
1196 	u32 reg_limit_lo, reg_offset_lo, reg_hi;
1197 	struct pci_dev *pci_mc;
1198 	int way_id;
1199 
1200 	switch (mc) {
1201 	case 0:
1202 		pci_mc = pvt->knl.pci_mc0;
1203 		break;
1204 	case 1:
1205 		pci_mc = pvt->knl.pci_mc1;
1206 		break;
1207 	default:
1208 		WARN_ON(1);
1209 		return -EINVAL;
1210 	}
1211 
1212 	pci_read_config_dword(pci_mc,
1213 			knl_tad_dram_limit_lo[entry], &reg_limit_lo);
1214 	pci_read_config_dword(pci_mc,
1215 			knl_tad_dram_offset_lo[entry], &reg_offset_lo);
1216 	pci_read_config_dword(pci_mc,
1217 			knl_tad_dram_hi[entry], &reg_hi);
1218 
1219 	/* Is this TAD entry enabled? */
1220 	if (!GET_BITFIELD(reg_limit_lo, 0, 0))
1221 		return -ENODEV;
1222 
1223 	way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
1224 
1225 	if (way_id < ARRAY_SIZE(knl_tad_ways)) {
1226 		*ways = knl_tad_ways[way_id];
1227 	} else {
1228 		*ways = 0;
1229 		sbridge_printk(KERN_ERR,
1230 				"Unexpected value %d in mc_tad_limit_lo wayness field\n",
1231 				way_id);
1232 		return -ENODEV;
1233 	}
1234 
1235 	/*
1236 	 * The least significant 6 bits of base and limit are truncated.
1237 	 * For limit, we fill the missing bits with 1s.
1238 	 */
1239 	*offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
1240 				((u64) GET_BITFIELD(reg_hi, 0,  15) << 32);
1241 	*limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 |
1242 				((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
1243 
1244 	return 0;
1245 }
1246 
1247 /* Determine which memory controller is responsible for a given channel. */
1248 static int knl_channel_mc(int channel)
1249 {
1250 	WARN_ON(channel < 0 || channel >= 6);
1251 
1252 	return channel < 3 ? 1 : 0;
1253 }
1254 
1255 /*
1256  * Get the Nth entry from EDC_ROUTE_TABLE register.
1257  * (This is the per-tile mapping of logical interleave targets to
1258  *  physical EDC modules.)
1259  *
1260  * entry 0: 0:2
1261  *       1: 3:5
1262  *       2: 6:8
1263  *       3: 9:11
1264  *       4: 12:14
1265  *       5: 15:17
1266  *       6: 18:20
1267  *       7: 21:23
1268  * reserved: 24:31
1269  */
1270 static u32 knl_get_edc_route(int entry, u32 reg)
1271 {
1272 	WARN_ON(entry >= KNL_MAX_EDCS);
1273 	return GET_BITFIELD(reg, entry*3, (entry*3)+2);
1274 }
1275 
1276 /*
1277  * Get the Nth entry from MC_ROUTE_TABLE register.
1278  * (This is the per-tile mapping of logical interleave targets to
1279  *  physical DRAM channels modules.)
1280  *
1281  * entry 0: mc 0:2   channel 18:19
1282  *       1: mc 3:5   channel 20:21
1283  *       2: mc 6:8   channel 22:23
1284  *       3: mc 9:11  channel 24:25
1285  *       4: mc 12:14 channel 26:27
1286  *       5: mc 15:17 channel 28:29
1287  * reserved: 30:31
1288  *
1289  * Though we have 3 bits to identify the MC, we should only see
1290  * the values 0 or 1.
1291  */
1292 
1293 static u32 knl_get_mc_route(int entry, u32 reg)
1294 {
1295 	int mc, chan;
1296 
1297 	WARN_ON(entry >= KNL_MAX_CHANNELS);
1298 
1299 	mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
1300 	chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
1301 
1302 	return knl_channel_remap(mc*3 + chan);
1303 }
1304 
1305 /*
1306  * Render the EDC_ROUTE register in human-readable form.
1307  * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1308  */
1309 static void knl_show_edc_route(u32 reg, char *s)
1310 {
1311 	int i;
1312 
1313 	for (i = 0; i < KNL_MAX_EDCS; i++) {
1314 		s[i*2] = knl_get_edc_route(i, reg) + '0';
1315 		s[i*2+1] = '-';
1316 	}
1317 
1318 	s[KNL_MAX_EDCS*2 - 1] = '\0';
1319 }
1320 
1321 /*
1322  * Render the MC_ROUTE register in human-readable form.
1323  * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1324  */
1325 static void knl_show_mc_route(u32 reg, char *s)
1326 {
1327 	int i;
1328 
1329 	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
1330 		s[i*2] = knl_get_mc_route(i, reg) + '0';
1331 		s[i*2+1] = '-';
1332 	}
1333 
1334 	s[KNL_MAX_CHANNELS*2 - 1] = '\0';
1335 }
1336 
1337 #define KNL_EDC_ROUTE 0xb8
1338 #define KNL_MC_ROUTE 0xb4
1339 
1340 /* Is this dram rule backed by regular DRAM in flat mode? */
1341 #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1342 
1343 /* Is this dram rule cached? */
1344 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1345 
1346 /* Is this rule backed by edc ? */
1347 #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1348 
1349 /* Is this rule backed by DRAM, cacheable in EDRAM? */
1350 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1351 
1352 /* Is this rule mod3? */
1353 #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1354 
1355 /*
1356  * Figure out how big our RAM modules are.
1357  *
1358  * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1359  * have to figure this out from the SAD rules, interleave lists, route tables,
1360  * and TAD rules.
1361  *
1362  * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1363  * inspect the TAD rules to figure out how large the SAD regions really are.
1364  *
1365  * When we know the real size of a SAD region and how many ways it's
1366  * interleaved, we know the individual contribution of each channel to
1367  * TAD is size/ways.
1368  *
1369  * Finally, we have to check whether each channel participates in each SAD
1370  * region.
1371  *
1372  * Fortunately, KNL only supports one DIMM per channel, so once we know how
1373  * much memory the channel uses, we know the DIMM is at least that large.
1374  * (The BIOS might possibly choose not to map all available memory, in which
1375  * case we will underreport the size of the DIMM.)
1376  *
1377  * In theory, we could try to determine the EDC sizes as well, but that would
1378  * only work in flat mode, not in cache mode.
1379  *
1380  * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1381  *            elements)
1382  */
1383 static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
1384 {
1385 	u64 sad_base, sad_size, sad_limit = 0;
1386 	u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
1387 	int sad_rule = 0;
1388 	int tad_rule = 0;
1389 	int intrlv_ways, tad_ways;
1390 	u32 first_pkg, pkg;
1391 	int i;
1392 	u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
1393 	u32 dram_rule, interleave_reg;
1394 	u32 mc_route_reg[KNL_MAX_CHAS];
1395 	u32 edc_route_reg[KNL_MAX_CHAS];
1396 	int edram_only;
1397 	char edc_route_string[KNL_MAX_EDCS*2];
1398 	char mc_route_string[KNL_MAX_CHANNELS*2];
1399 	int cur_reg_start;
1400 	int mc;
1401 	int channel;
1402 	int way;
1403 	int participants[KNL_MAX_CHANNELS];
1404 	int participant_count = 0;
1405 
1406 	for (i = 0; i < KNL_MAX_CHANNELS; i++)
1407 		mc_sizes[i] = 0;
1408 
1409 	/* Read the EDC route table in each CHA. */
1410 	cur_reg_start = 0;
1411 	for (i = 0; i < KNL_MAX_CHAS; i++) {
1412 		pci_read_config_dword(pvt->knl.pci_cha[i],
1413 				KNL_EDC_ROUTE, &edc_route_reg[i]);
1414 
1415 		if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
1416 			knl_show_edc_route(edc_route_reg[i-1],
1417 					edc_route_string);
1418 			if (cur_reg_start == i-1)
1419 				edac_dbg(0, "edc route table for CHA %d: %s\n",
1420 					cur_reg_start, edc_route_string);
1421 			else
1422 				edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1423 					cur_reg_start, i-1, edc_route_string);
1424 			cur_reg_start = i;
1425 		}
1426 	}
1427 	knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
1428 	if (cur_reg_start == i-1)
1429 		edac_dbg(0, "edc route table for CHA %d: %s\n",
1430 			cur_reg_start, edc_route_string);
1431 	else
1432 		edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1433 			cur_reg_start, i-1, edc_route_string);
1434 
1435 	/* Read the MC route table in each CHA. */
1436 	cur_reg_start = 0;
1437 	for (i = 0; i < KNL_MAX_CHAS; i++) {
1438 		pci_read_config_dword(pvt->knl.pci_cha[i],
1439 			KNL_MC_ROUTE, &mc_route_reg[i]);
1440 
1441 		if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
1442 			knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1443 			if (cur_reg_start == i-1)
1444 				edac_dbg(0, "mc route table for CHA %d: %s\n",
1445 					cur_reg_start, mc_route_string);
1446 			else
1447 				edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1448 					cur_reg_start, i-1, mc_route_string);
1449 			cur_reg_start = i;
1450 		}
1451 	}
1452 	knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1453 	if (cur_reg_start == i-1)
1454 		edac_dbg(0, "mc route table for CHA %d: %s\n",
1455 			cur_reg_start, mc_route_string);
1456 	else
1457 		edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1458 			cur_reg_start, i-1, mc_route_string);
1459 
1460 	/* Process DRAM rules */
1461 	for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
1462 		/* previous limit becomes the new base */
1463 		sad_base = sad_limit;
1464 
1465 		pci_read_config_dword(pvt->pci_sad0,
1466 			pvt->info.dram_rule[sad_rule], &dram_rule);
1467 
1468 		if (!DRAM_RULE_ENABLE(dram_rule))
1469 			break;
1470 
1471 		edram_only = KNL_EDRAM_ONLY(dram_rule);
1472 
1473 		sad_limit = pvt->info.sad_limit(dram_rule)+1;
1474 		sad_size = sad_limit - sad_base;
1475 
1476 		pci_read_config_dword(pvt->pci_sad0,
1477 			pvt->info.interleave_list[sad_rule], &interleave_reg);
1478 
1479 		/*
1480 		 * Find out how many ways this dram rule is interleaved.
1481 		 * We stop when we see the first channel again.
1482 		 */
1483 		first_pkg = sad_pkg(pvt->info.interleave_pkg,
1484 						interleave_reg, 0);
1485 		for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
1486 			pkg = sad_pkg(pvt->info.interleave_pkg,
1487 						interleave_reg, intrlv_ways);
1488 
1489 			if ((pkg & 0x8) == 0) {
1490 				/*
1491 				 * 0 bit means memory is non-local,
1492 				 * which KNL doesn't support
1493 				 */
1494 				edac_dbg(0, "Unexpected interleave target %d\n",
1495 					pkg);
1496 				return -1;
1497 			}
1498 
1499 			if (pkg == first_pkg)
1500 				break;
1501 		}
1502 		if (KNL_MOD3(dram_rule))
1503 			intrlv_ways *= 3;
1504 
1505 		edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1506 			sad_rule,
1507 			sad_base,
1508 			sad_limit,
1509 			intrlv_ways,
1510 			edram_only ? ", EDRAM" : "");
1511 
1512 		/*
1513 		 * Find out how big the SAD region really is by iterating
1514 		 * over TAD tables (SAD regions may contain holes).
1515 		 * Each memory controller might have a different TAD table, so
1516 		 * we have to look at both.
1517 		 *
1518 		 * Livespace is the memory that's mapped in this TAD table,
1519 		 * deadspace is the holes (this could be the MMIO hole, or it
1520 		 * could be memory that's mapped by the other TAD table but
1521 		 * not this one).
1522 		 */
1523 		for (mc = 0; mc < 2; mc++) {
1524 			sad_actual_size[mc] = 0;
1525 			tad_livespace = 0;
1526 			for (tad_rule = 0;
1527 					tad_rule < ARRAY_SIZE(
1528 						knl_tad_dram_limit_lo);
1529 					tad_rule++) {
1530 				if (knl_get_tad(pvt,
1531 						tad_rule,
1532 						mc,
1533 						&tad_deadspace,
1534 						&tad_limit,
1535 						&tad_ways))
1536 					break;
1537 
1538 				tad_size = (tad_limit+1) -
1539 					(tad_livespace + tad_deadspace);
1540 				tad_livespace += tad_size;
1541 				tad_base = (tad_limit+1) - tad_size;
1542 
1543 				if (tad_base < sad_base) {
1544 					if (tad_limit > sad_base)
1545 						edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1546 				} else if (tad_base < sad_limit) {
1547 					if (tad_limit+1 > sad_limit) {
1548 						edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1549 					} else {
1550 						/* TAD region is completely inside SAD region */
1551 						edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1552 							tad_rule, tad_base,
1553 							tad_limit, tad_size,
1554 							mc);
1555 						sad_actual_size[mc] += tad_size;
1556 					}
1557 				}
1558 				tad_base = tad_limit+1;
1559 			}
1560 		}
1561 
1562 		for (mc = 0; mc < 2; mc++) {
1563 			edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1564 				mc, sad_actual_size[mc], sad_actual_size[mc]);
1565 		}
1566 
1567 		/* Ignore EDRAM rule */
1568 		if (edram_only)
1569 			continue;
1570 
1571 		/* Figure out which channels participate in interleave. */
1572 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
1573 			participants[channel] = 0;
1574 
1575 		/* For each channel, does at least one CHA have
1576 		 * this channel mapped to the given target?
1577 		 */
1578 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1579 			for (way = 0; way < intrlv_ways; way++) {
1580 				int target;
1581 				int cha;
1582 
1583 				if (KNL_MOD3(dram_rule))
1584 					target = way;
1585 				else
1586 					target = 0x7 & sad_pkg(
1587 				pvt->info.interleave_pkg, interleave_reg, way);
1588 
1589 				for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
1590 					if (knl_get_mc_route(target,
1591 						mc_route_reg[cha]) == channel
1592 						&& !participants[channel]) {
1593 						participant_count++;
1594 						participants[channel] = 1;
1595 						break;
1596 					}
1597 				}
1598 			}
1599 		}
1600 
1601 		if (participant_count != intrlv_ways)
1602 			edac_dbg(0, "participant_count (%d) != interleave_ways (%d): DIMM size may be incorrect\n",
1603 				participant_count, intrlv_ways);
1604 
1605 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1606 			mc = knl_channel_mc(channel);
1607 			if (participants[channel]) {
1608 				edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1609 					channel,
1610 					sad_actual_size[mc]/intrlv_ways,
1611 					sad_rule);
1612 				mc_sizes[channel] +=
1613 					sad_actual_size[mc]/intrlv_ways;
1614 			}
1615 		}
1616 	}
1617 
1618 	return 0;
1619 }
1620 
1621 static int get_dimm_config(struct mem_ctl_info *mci)
1622 {
1623 	struct sbridge_pvt *pvt = mci->pvt_info;
1624 	struct dimm_info *dimm;
1625 	unsigned i, j, banks, ranks, rows, cols, npages;
1626 	u64 size;
1627 	u32 reg;
1628 	enum edac_type mode;
1629 	enum mem_type mtype;
1630 	int channels = pvt->info.type == KNIGHTS_LANDING ?
1631 		KNL_MAX_CHANNELS : NUM_CHANNELS;
1632 	u64 knl_mc_sizes[KNL_MAX_CHANNELS];
1633 
1634 	if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1635 		pci_read_config_dword(pvt->pci_ha0, HASWELL_HASYSDEFEATURE2, &reg);
1636 		pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
1637 	}
1638 	if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
1639 			pvt->info.type == KNIGHTS_LANDING)
1640 		pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
1641 	else
1642 		pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
1643 
1644 	if (pvt->info.type == KNIGHTS_LANDING)
1645 		pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
1646 	else
1647 		pvt->sbridge_dev->source_id = SOURCE_ID(reg);
1648 
1649 	pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
1650 	edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1651 		 pvt->sbridge_dev->mc,
1652 		 pvt->sbridge_dev->node_id,
1653 		 pvt->sbridge_dev->source_id);
1654 
1655 	/* KNL doesn't support mirroring or lockstep,
1656 	 * and is always closed page
1657 	 */
1658 	if (pvt->info.type == KNIGHTS_LANDING) {
1659 		mode = EDAC_S4ECD4ED;
1660 		pvt->is_mirrored = false;
1661 
1662 		if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
1663 			return -1;
1664 	} else {
1665 		pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
1666 		if (IS_MIRROR_ENABLED(reg)) {
1667 			edac_dbg(0, "Memory mirror is enabled\n");
1668 			pvt->is_mirrored = true;
1669 		} else {
1670 			edac_dbg(0, "Memory mirror is disabled\n");
1671 			pvt->is_mirrored = false;
1672 		}
1673 
1674 		pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
1675 		if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
1676 			edac_dbg(0, "Lockstep is enabled\n");
1677 			mode = EDAC_S8ECD8ED;
1678 			pvt->is_lockstep = true;
1679 		} else {
1680 			edac_dbg(0, "Lockstep is disabled\n");
1681 			mode = EDAC_S4ECD4ED;
1682 			pvt->is_lockstep = false;
1683 		}
1684 		if (IS_CLOSE_PG(pvt->info.mcmtr)) {
1685 			edac_dbg(0, "address map is on closed page mode\n");
1686 			pvt->is_close_pg = true;
1687 		} else {
1688 			edac_dbg(0, "address map is on open page mode\n");
1689 			pvt->is_close_pg = false;
1690 		}
1691 	}
1692 
1693 	mtype = pvt->info.get_memory_type(pvt);
1694 	if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
1695 		edac_dbg(0, "Memory is registered\n");
1696 	else if (mtype == MEM_UNKNOWN)
1697 		edac_dbg(0, "Cannot determine memory type\n");
1698 	else
1699 		edac_dbg(0, "Memory is unregistered\n");
1700 
1701 	if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
1702 		banks = 16;
1703 	else
1704 		banks = 8;
1705 
1706 	for (i = 0; i < channels; i++) {
1707 		u32 mtr;
1708 
1709 		int max_dimms_per_channel;
1710 
1711 		if (pvt->info.type == KNIGHTS_LANDING) {
1712 			max_dimms_per_channel = 1;
1713 			if (!pvt->knl.pci_channel[i])
1714 				continue;
1715 		} else {
1716 			max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
1717 			if (!pvt->pci_tad[i])
1718 				continue;
1719 		}
1720 
1721 		for (j = 0; j < max_dimms_per_channel; j++) {
1722 			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
1723 				       i, j, 0);
1724 			if (pvt->info.type == KNIGHTS_LANDING) {
1725 				pci_read_config_dword(pvt->knl.pci_channel[i],
1726 					knl_mtr_reg, &mtr);
1727 			} else {
1728 				pci_read_config_dword(pvt->pci_tad[i],
1729 					mtr_regs[j], &mtr);
1730 			}
1731 			edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
1732 			if (IS_DIMM_PRESENT(mtr)) {
1733 				pvt->channel[i].dimms++;
1734 
1735 				ranks = numrank(pvt->info.type, mtr);
1736 
1737 				if (pvt->info.type == KNIGHTS_LANDING) {
1738 					/* For DDR4, this is fixed. */
1739 					cols = 1 << 10;
1740 					rows = knl_mc_sizes[i] /
1741 						((u64) cols * ranks * banks * 8);
1742 				} else {
1743 					rows = numrow(mtr);
1744 					cols = numcol(mtr);
1745 				}
1746 
1747 				size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1748 				npages = MiB_TO_PAGES(size);
1749 
1750 				edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1751 					 pvt->sbridge_dev->mc, i/4, i%4, j,
1752 					 size, npages,
1753 					 banks, ranks, rows, cols);
1754 
1755 				dimm->nr_pages = npages;
1756 				dimm->grain = 32;
1757 				dimm->dtype = pvt->info.get_width(pvt, mtr);
1758 				dimm->mtype = mtype;
1759 				dimm->edac_mode = mode;
1760 				snprintf(dimm->label, sizeof(dimm->label),
1761 					 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1762 					 pvt->sbridge_dev->source_id, i/4, i%4, j);
1763 			}
1764 		}
1765 	}
1766 
1767 	return 0;
1768 }
1769 
1770 static void get_memory_layout(const struct mem_ctl_info *mci)
1771 {
1772 	struct sbridge_pvt *pvt = mci->pvt_info;
1773 	int i, j, k, n_sads, n_tads, sad_interl;
1774 	u32 reg;
1775 	u64 limit, prv = 0;
1776 	u64 tmp_mb;
1777 	u32 gb, mb;
1778 	u32 rir_way;
1779 
1780 	/*
1781 	 * Step 1) Get TOLM/TOHM ranges
1782 	 */
1783 
1784 	pvt->tolm = pvt->info.get_tolm(pvt);
1785 	tmp_mb = (1 + pvt->tolm) >> 20;
1786 
1787 	gb = div_u64_rem(tmp_mb, 1024, &mb);
1788 	edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1789 		gb, (mb*1000)/1024, (u64)pvt->tolm);
1790 
1791 	/* Address range is already 45:25 */
1792 	pvt->tohm = pvt->info.get_tohm(pvt);
1793 	tmp_mb = (1 + pvt->tohm) >> 20;
1794 
1795 	gb = div_u64_rem(tmp_mb, 1024, &mb);
1796 	edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1797 		gb, (mb*1000)/1024, (u64)pvt->tohm);
1798 
1799 	/*
1800 	 * Step 2) Get SAD range and SAD Interleave list
1801 	 * TAD registers contain the interleave wayness. However, it
1802 	 * seems simpler to just discover it indirectly, with the
1803 	 * algorithm bellow.
1804 	 */
1805 	prv = 0;
1806 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1807 		/* SAD_LIMIT Address range is 45:26 */
1808 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1809 				      &reg);
1810 		limit = pvt->info.sad_limit(reg);
1811 
1812 		if (!DRAM_RULE_ENABLE(reg))
1813 			continue;
1814 
1815 		if (limit <= prv)
1816 			break;
1817 
1818 		tmp_mb = (limit + 1) >> 20;
1819 		gb = div_u64_rem(tmp_mb, 1024, &mb);
1820 		edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1821 			 n_sads,
1822 			 show_dram_attr(pvt->info.dram_attr(reg)),
1823 			 gb, (mb*1000)/1024,
1824 			 ((u64)tmp_mb) << 20L,
1825 			 pvt->info.show_interleave_mode(reg),
1826 			 reg);
1827 		prv = limit;
1828 
1829 		pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1830 				      &reg);
1831 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1832 		for (j = 0; j < 8; j++) {
1833 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1834 			if (j > 0 && sad_interl == pkg)
1835 				break;
1836 
1837 			edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1838 				 n_sads, j, pkg);
1839 		}
1840 	}
1841 
1842 	if (pvt->info.type == KNIGHTS_LANDING)
1843 		return;
1844 
1845 	/*
1846 	 * Step 3) Get TAD range
1847 	 */
1848 	prv = 0;
1849 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1850 		pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
1851 				      &reg);
1852 		limit = TAD_LIMIT(reg);
1853 		if (limit <= prv)
1854 			break;
1855 		tmp_mb = (limit + 1) >> 20;
1856 
1857 		gb = div_u64_rem(tmp_mb, 1024, &mb);
1858 		edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1859 			 n_tads, gb, (mb*1000)/1024,
1860 			 ((u64)tmp_mb) << 20L,
1861 			 (u32)(1 << TAD_SOCK(reg)),
1862 			 (u32)TAD_CH(reg) + 1,
1863 			 (u32)TAD_TGT0(reg),
1864 			 (u32)TAD_TGT1(reg),
1865 			 (u32)TAD_TGT2(reg),
1866 			 (u32)TAD_TGT3(reg),
1867 			 reg);
1868 		prv = limit;
1869 	}
1870 
1871 	/*
1872 	 * Step 4) Get TAD offsets, per each channel
1873 	 */
1874 	for (i = 0; i < NUM_CHANNELS; i++) {
1875 		if (!pvt->channel[i].dimms)
1876 			continue;
1877 		for (j = 0; j < n_tads; j++) {
1878 			pci_read_config_dword(pvt->pci_tad[i],
1879 					      tad_ch_nilv_offset[j],
1880 					      &reg);
1881 			tmp_mb = TAD_OFFSET(reg) >> 20;
1882 			gb = div_u64_rem(tmp_mb, 1024, &mb);
1883 			edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1884 				 i, j,
1885 				 gb, (mb*1000)/1024,
1886 				 ((u64)tmp_mb) << 20L,
1887 				 reg);
1888 		}
1889 	}
1890 
1891 	/*
1892 	 * Step 6) Get RIR Wayness/Limit, per each channel
1893 	 */
1894 	for (i = 0; i < NUM_CHANNELS; i++) {
1895 		if (!pvt->channel[i].dimms)
1896 			continue;
1897 		for (j = 0; j < MAX_RIR_RANGES; j++) {
1898 			pci_read_config_dword(pvt->pci_tad[i],
1899 					      rir_way_limit[j],
1900 					      &reg);
1901 
1902 			if (!IS_RIR_VALID(reg))
1903 				continue;
1904 
1905 			tmp_mb = pvt->info.rir_limit(reg) >> 20;
1906 			rir_way = 1 << RIR_WAY(reg);
1907 			gb = div_u64_rem(tmp_mb, 1024, &mb);
1908 			edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1909 				 i, j,
1910 				 gb, (mb*1000)/1024,
1911 				 ((u64)tmp_mb) << 20L,
1912 				 rir_way,
1913 				 reg);
1914 
1915 			for (k = 0; k < rir_way; k++) {
1916 				pci_read_config_dword(pvt->pci_tad[i],
1917 						      rir_offset[j][k],
1918 						      &reg);
1919 				tmp_mb = RIR_OFFSET(reg) << 6;
1920 
1921 				gb = div_u64_rem(tmp_mb, 1024, &mb);
1922 				edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1923 					 i, j, k,
1924 					 gb, (mb*1000)/1024,
1925 					 ((u64)tmp_mb) << 20L,
1926 					 (u32)RIR_RNK_TGT(reg),
1927 					 reg);
1928 			}
1929 		}
1930 	}
1931 }
1932 
1933 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
1934 {
1935 	struct sbridge_dev *sbridge_dev;
1936 
1937 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1938 		if (sbridge_dev->node_id == node_id)
1939 			return sbridge_dev->mci;
1940 	}
1941 	return NULL;
1942 }
1943 
1944 static int get_memory_error_data(struct mem_ctl_info *mci,
1945 				 u64 addr,
1946 				 u8 *socket, u8 *ha,
1947 				 long *channel_mask,
1948 				 u8 *rank,
1949 				 char **area_type, char *msg)
1950 {
1951 	struct mem_ctl_info	*new_mci;
1952 	struct sbridge_pvt *pvt = mci->pvt_info;
1953 	struct pci_dev		*pci_ha;
1954 	int			n_rir, n_sads, n_tads, sad_way, sck_xch;
1955 	int			sad_interl, idx, base_ch;
1956 	int			interleave_mode, shiftup = 0;
1957 	unsigned		sad_interleave[pvt->info.max_interleave];
1958 	u32			reg, dram_rule;
1959 	u8			ch_way, sck_way, pkg, sad_ha = 0, ch_add = 0;
1960 	u32			tad_offset;
1961 	u32			rir_way;
1962 	u32			mb, gb;
1963 	u64			ch_addr, offset, limit = 0, prv = 0;
1964 
1965 
1966 	/*
1967 	 * Step 0) Check if the address is at special memory ranges
1968 	 * The check bellow is probably enough to fill all cases where
1969 	 * the error is not inside a memory, except for the legacy
1970 	 * range (e. g. VGA addresses). It is unlikely, however, that the
1971 	 * memory controller would generate an error on that range.
1972 	 */
1973 	if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1974 		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
1975 		return -EINVAL;
1976 	}
1977 	if (addr >= (u64)pvt->tohm) {
1978 		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
1979 		return -EINVAL;
1980 	}
1981 
1982 	/*
1983 	 * Step 1) Get socket
1984 	 */
1985 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1986 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1987 				      &reg);
1988 
1989 		if (!DRAM_RULE_ENABLE(reg))
1990 			continue;
1991 
1992 		limit = pvt->info.sad_limit(reg);
1993 		if (limit <= prv) {
1994 			sprintf(msg, "Can't discover the memory socket");
1995 			return -EINVAL;
1996 		}
1997 		if  (addr <= limit)
1998 			break;
1999 		prv = limit;
2000 	}
2001 	if (n_sads == pvt->info.max_sad) {
2002 		sprintf(msg, "Can't discover the memory socket");
2003 		return -EINVAL;
2004 	}
2005 	dram_rule = reg;
2006 	*area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
2007 	interleave_mode = pvt->info.interleave_mode(dram_rule);
2008 
2009 	pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
2010 			      &reg);
2011 
2012 	if (pvt->info.type == SANDY_BRIDGE) {
2013 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
2014 		for (sad_way = 0; sad_way < 8; sad_way++) {
2015 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
2016 			if (sad_way > 0 && sad_interl == pkg)
2017 				break;
2018 			sad_interleave[sad_way] = pkg;
2019 			edac_dbg(0, "SAD interleave #%d: %d\n",
2020 				 sad_way, sad_interleave[sad_way]);
2021 		}
2022 		edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
2023 			 pvt->sbridge_dev->mc,
2024 			 n_sads,
2025 			 addr,
2026 			 limit,
2027 			 sad_way + 7,
2028 			 !interleave_mode ? "" : "XOR[18:16]");
2029 		if (interleave_mode)
2030 			idx = ((addr >> 6) ^ (addr >> 16)) & 7;
2031 		else
2032 			idx = (addr >> 6) & 7;
2033 		switch (sad_way) {
2034 		case 1:
2035 			idx = 0;
2036 			break;
2037 		case 2:
2038 			idx = idx & 1;
2039 			break;
2040 		case 4:
2041 			idx = idx & 3;
2042 			break;
2043 		case 8:
2044 			break;
2045 		default:
2046 			sprintf(msg, "Can't discover socket interleave");
2047 			return -EINVAL;
2048 		}
2049 		*socket = sad_interleave[idx];
2050 		edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
2051 			 idx, sad_way, *socket);
2052 	} else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
2053 		int bits, a7mode = A7MODE(dram_rule);
2054 
2055 		if (a7mode) {
2056 			/* A7 mode swaps P9 with P6 */
2057 			bits = GET_BITFIELD(addr, 7, 8) << 1;
2058 			bits |= GET_BITFIELD(addr, 9, 9);
2059 		} else
2060 			bits = GET_BITFIELD(addr, 6, 8);
2061 
2062 		if (interleave_mode == 0) {
2063 			/* interleave mode will XOR {8,7,6} with {18,17,16} */
2064 			idx = GET_BITFIELD(addr, 16, 18);
2065 			idx ^= bits;
2066 		} else
2067 			idx = bits;
2068 
2069 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2070 		*socket = sad_pkg_socket(pkg);
2071 		sad_ha = sad_pkg_ha(pkg);
2072 		if (sad_ha)
2073 			ch_add = 4;
2074 
2075 		if (a7mode) {
2076 			/* MCChanShiftUpEnable */
2077 			pci_read_config_dword(pvt->pci_ha0,
2078 					      HASWELL_HASYSDEFEATURE2, &reg);
2079 			shiftup = GET_BITFIELD(reg, 22, 22);
2080 		}
2081 
2082 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2083 			 idx, *socket, sad_ha, shiftup);
2084 	} else {
2085 		/* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2086 		idx = (addr >> 6) & 7;
2087 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2088 		*socket = sad_pkg_socket(pkg);
2089 		sad_ha = sad_pkg_ha(pkg);
2090 		if (sad_ha)
2091 			ch_add = 4;
2092 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2093 			 idx, *socket, sad_ha);
2094 	}
2095 
2096 	*ha = sad_ha;
2097 
2098 	/*
2099 	 * Move to the proper node structure, in order to access the
2100 	 * right PCI registers
2101 	 */
2102 	new_mci = get_mci_for_node_id(*socket);
2103 	if (!new_mci) {
2104 		sprintf(msg, "Struct for socket #%u wasn't initialized",
2105 			*socket);
2106 		return -EINVAL;
2107 	}
2108 	mci = new_mci;
2109 	pvt = mci->pvt_info;
2110 
2111 	/*
2112 	 * Step 2) Get memory channel
2113 	 */
2114 	prv = 0;
2115 	if (pvt->info.type == SANDY_BRIDGE)
2116 		pci_ha = pvt->pci_ha0;
2117 	else {
2118 		if (sad_ha)
2119 			pci_ha = pvt->pci_ha1;
2120 		else
2121 			pci_ha = pvt->pci_ha0;
2122 	}
2123 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
2124 		pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
2125 		limit = TAD_LIMIT(reg);
2126 		if (limit <= prv) {
2127 			sprintf(msg, "Can't discover the memory channel");
2128 			return -EINVAL;
2129 		}
2130 		if  (addr <= limit)
2131 			break;
2132 		prv = limit;
2133 	}
2134 	if (n_tads == MAX_TAD) {
2135 		sprintf(msg, "Can't discover the memory channel");
2136 		return -EINVAL;
2137 	}
2138 
2139 	ch_way = TAD_CH(reg) + 1;
2140 	sck_way = TAD_SOCK(reg);
2141 
2142 	if (ch_way == 3)
2143 		idx = addr >> 6;
2144 	else {
2145 		idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
2146 		if (pvt->is_chan_hash)
2147 			idx = haswell_chan_hash(idx, addr);
2148 	}
2149 	idx = idx % ch_way;
2150 
2151 	/*
2152 	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2153 	 */
2154 	switch (idx) {
2155 	case 0:
2156 		base_ch = TAD_TGT0(reg);
2157 		break;
2158 	case 1:
2159 		base_ch = TAD_TGT1(reg);
2160 		break;
2161 	case 2:
2162 		base_ch = TAD_TGT2(reg);
2163 		break;
2164 	case 3:
2165 		base_ch = TAD_TGT3(reg);
2166 		break;
2167 	default:
2168 		sprintf(msg, "Can't discover the TAD target");
2169 		return -EINVAL;
2170 	}
2171 	*channel_mask = 1 << base_ch;
2172 
2173 	pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
2174 				tad_ch_nilv_offset[n_tads],
2175 				&tad_offset);
2176 
2177 	if (pvt->is_mirrored) {
2178 		*channel_mask |= 1 << ((base_ch + 2) % 4);
2179 		switch(ch_way) {
2180 		case 2:
2181 		case 4:
2182 			sck_xch = (1 << sck_way) * (ch_way >> 1);
2183 			break;
2184 		default:
2185 			sprintf(msg, "Invalid mirror set. Can't decode addr");
2186 			return -EINVAL;
2187 		}
2188 	} else
2189 		sck_xch = (1 << sck_way) * ch_way;
2190 
2191 	if (pvt->is_lockstep)
2192 		*channel_mask |= 1 << ((base_ch + 1) % 4);
2193 
2194 	offset = TAD_OFFSET(tad_offset);
2195 
2196 	edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2197 		 n_tads,
2198 		 addr,
2199 		 limit,
2200 		 sck_way,
2201 		 ch_way,
2202 		 offset,
2203 		 idx,
2204 		 base_ch,
2205 		 *channel_mask);
2206 
2207 	/* Calculate channel address */
2208 	/* Remove the TAD offset */
2209 
2210 	if (offset > addr) {
2211 		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2212 			offset, addr);
2213 		return -EINVAL;
2214 	}
2215 
2216 	ch_addr = addr - offset;
2217 	ch_addr >>= (6 + shiftup);
2218 	ch_addr /= sck_xch;
2219 	ch_addr <<= (6 + shiftup);
2220 	ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
2221 
2222 	/*
2223 	 * Step 3) Decode rank
2224 	 */
2225 	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
2226 		pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
2227 				      rir_way_limit[n_rir],
2228 				      &reg);
2229 
2230 		if (!IS_RIR_VALID(reg))
2231 			continue;
2232 
2233 		limit = pvt->info.rir_limit(reg);
2234 		gb = div_u64_rem(limit >> 20, 1024, &mb);
2235 		edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2236 			 n_rir,
2237 			 gb, (mb*1000)/1024,
2238 			 limit,
2239 			 1 << RIR_WAY(reg));
2240 		if  (ch_addr <= limit)
2241 			break;
2242 	}
2243 	if (n_rir == MAX_RIR_RANGES) {
2244 		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
2245 			ch_addr);
2246 		return -EINVAL;
2247 	}
2248 	rir_way = RIR_WAY(reg);
2249 
2250 	if (pvt->is_close_pg)
2251 		idx = (ch_addr >> 6);
2252 	else
2253 		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
2254 	idx %= 1 << rir_way;
2255 
2256 	pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
2257 			      rir_offset[n_rir][idx],
2258 			      &reg);
2259 	*rank = RIR_RNK_TGT(reg);
2260 
2261 	edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2262 		 n_rir,
2263 		 ch_addr,
2264 		 limit,
2265 		 rir_way,
2266 		 idx);
2267 
2268 	return 0;
2269 }
2270 
2271 /****************************************************************************
2272 	Device initialization routines: put/get, init/exit
2273  ****************************************************************************/
2274 
2275 /*
2276  *	sbridge_put_all_devices	'put' all the devices that we have
2277  *				reserved via 'get'
2278  */
2279 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
2280 {
2281 	int i;
2282 
2283 	edac_dbg(0, "\n");
2284 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2285 		struct pci_dev *pdev = sbridge_dev->pdev[i];
2286 		if (!pdev)
2287 			continue;
2288 		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2289 			 pdev->bus->number,
2290 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2291 		pci_dev_put(pdev);
2292 	}
2293 }
2294 
2295 static void sbridge_put_all_devices(void)
2296 {
2297 	struct sbridge_dev *sbridge_dev, *tmp;
2298 
2299 	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
2300 		sbridge_put_devices(sbridge_dev);
2301 		free_sbridge_dev(sbridge_dev);
2302 	}
2303 }
2304 
2305 static int sbridge_get_onedevice(struct pci_dev **prev,
2306 				 u8 *num_mc,
2307 				 const struct pci_id_table *table,
2308 				 const unsigned devno,
2309 				 const int multi_bus)
2310 {
2311 	struct sbridge_dev *sbridge_dev;
2312 	const struct pci_id_descr *dev_descr = &table->descr[devno];
2313 	struct pci_dev *pdev = NULL;
2314 	u8 bus = 0;
2315 
2316 	sbridge_printk(KERN_DEBUG,
2317 		"Seeking for: PCI ID %04x:%04x\n",
2318 		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2319 
2320 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
2321 			      dev_descr->dev_id, *prev);
2322 
2323 	if (!pdev) {
2324 		if (*prev) {
2325 			*prev = pdev;
2326 			return 0;
2327 		}
2328 
2329 		if (dev_descr->optional)
2330 			return 0;
2331 
2332 		/* if the HA wasn't found */
2333 		if (devno == 0)
2334 			return -ENODEV;
2335 
2336 		sbridge_printk(KERN_INFO,
2337 			"Device not found: %04x:%04x\n",
2338 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2339 
2340 		/* End of list, leave */
2341 		return -ENODEV;
2342 	}
2343 	bus = pdev->bus->number;
2344 
2345 	sbridge_dev = get_sbridge_dev(bus, multi_bus);
2346 	if (!sbridge_dev) {
2347 		sbridge_dev = alloc_sbridge_dev(bus, table);
2348 		if (!sbridge_dev) {
2349 			pci_dev_put(pdev);
2350 			return -ENOMEM;
2351 		}
2352 		(*num_mc)++;
2353 	}
2354 
2355 	if (sbridge_dev->pdev[devno]) {
2356 		sbridge_printk(KERN_ERR,
2357 			"Duplicated device for %04x:%04x\n",
2358 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2359 		pci_dev_put(pdev);
2360 		return -ENODEV;
2361 	}
2362 
2363 	sbridge_dev->pdev[devno] = pdev;
2364 
2365 	/* Be sure that the device is enabled */
2366 	if (unlikely(pci_enable_device(pdev) < 0)) {
2367 		sbridge_printk(KERN_ERR,
2368 			"Couldn't enable %04x:%04x\n",
2369 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2370 		return -ENODEV;
2371 	}
2372 
2373 	edac_dbg(0, "Detected %04x:%04x\n",
2374 		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2375 
2376 	/*
2377 	 * As stated on drivers/pci/search.c, the reference count for
2378 	 * @from is always decremented if it is not %NULL. So, as we need
2379 	 * to get all devices up to null, we need to do a get for the device
2380 	 */
2381 	pci_dev_get(pdev);
2382 
2383 	*prev = pdev;
2384 
2385 	return 0;
2386 }
2387 
2388 /*
2389  * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2390  *			     devices we want to reference for this driver.
2391  * @num_mc: pointer to the memory controllers count, to be incremented in case
2392  *	    of success.
2393  * @table: model specific table
2394  * @allow_dups: allow for multiple devices to exist with the same device id
2395  *              (as implemented, this isn't expected to work correctly in the
2396  *              multi-socket case).
2397  * @multi_bus: don't assume devices on different buses belong to different
2398  *             memory controllers.
2399  *
2400  * returns 0 in case of success or error code
2401  */
2402 static int sbridge_get_all_devices_full(u8 *num_mc,
2403 					const struct pci_id_table *table,
2404 					int allow_dups,
2405 					int multi_bus)
2406 {
2407 	int i, rc;
2408 	struct pci_dev *pdev = NULL;
2409 
2410 	while (table && table->descr) {
2411 		for (i = 0; i < table->n_devs; i++) {
2412 			if (!allow_dups || i == 0 ||
2413 					table->descr[i].dev_id !=
2414 						table->descr[i-1].dev_id) {
2415 				pdev = NULL;
2416 			}
2417 			do {
2418 				rc = sbridge_get_onedevice(&pdev, num_mc,
2419 							   table, i, multi_bus);
2420 				if (rc < 0) {
2421 					if (i == 0) {
2422 						i = table->n_devs;
2423 						break;
2424 					}
2425 					sbridge_put_all_devices();
2426 					return -ENODEV;
2427 				}
2428 			} while (pdev && !allow_dups);
2429 		}
2430 		table++;
2431 	}
2432 
2433 	return 0;
2434 }
2435 
2436 #define sbridge_get_all_devices(num_mc, table) \
2437 		sbridge_get_all_devices_full(num_mc, table, 0, 0)
2438 #define sbridge_get_all_devices_knl(num_mc, table) \
2439 		sbridge_get_all_devices_full(num_mc, table, 1, 1)
2440 
2441 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
2442 				 struct sbridge_dev *sbridge_dev)
2443 {
2444 	struct sbridge_pvt *pvt = mci->pvt_info;
2445 	struct pci_dev *pdev;
2446 	u8 saw_chan_mask = 0;
2447 	int i;
2448 
2449 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2450 		pdev = sbridge_dev->pdev[i];
2451 		if (!pdev)
2452 			continue;
2453 
2454 		switch (pdev->device) {
2455 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
2456 			pvt->pci_sad0 = pdev;
2457 			break;
2458 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
2459 			pvt->pci_sad1 = pdev;
2460 			break;
2461 		case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
2462 			pvt->pci_br0 = pdev;
2463 			break;
2464 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2465 			pvt->pci_ha0 = pdev;
2466 			break;
2467 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
2468 			pvt->pci_ta = pdev;
2469 			break;
2470 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
2471 			pvt->pci_ras = pdev;
2472 			break;
2473 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
2474 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
2475 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
2476 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
2477 		{
2478 			int id = pdev->device - PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0;
2479 			pvt->pci_tad[id] = pdev;
2480 			saw_chan_mask |= 1 << id;
2481 		}
2482 			break;
2483 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
2484 			pvt->pci_ddrio = pdev;
2485 			break;
2486 		default:
2487 			goto error;
2488 		}
2489 
2490 		edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2491 			 pdev->vendor, pdev->device,
2492 			 sbridge_dev->bus,
2493 			 pdev);
2494 	}
2495 
2496 	/* Check if everything were registered */
2497 	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
2498 	    !pvt-> pci_tad || !pvt->pci_ras  || !pvt->pci_ta)
2499 		goto enodev;
2500 
2501 	if (saw_chan_mask != 0x0f)
2502 		goto enodev;
2503 	return 0;
2504 
2505 enodev:
2506 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2507 	return -ENODEV;
2508 
2509 error:
2510 	sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
2511 		       PCI_VENDOR_ID_INTEL, pdev->device);
2512 	return -EINVAL;
2513 }
2514 
2515 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
2516 				 struct sbridge_dev *sbridge_dev)
2517 {
2518 	struct sbridge_pvt *pvt = mci->pvt_info;
2519 	struct pci_dev *pdev;
2520 	u8 saw_chan_mask = 0;
2521 	int i;
2522 
2523 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2524 		pdev = sbridge_dev->pdev[i];
2525 		if (!pdev)
2526 			continue;
2527 
2528 		switch (pdev->device) {
2529 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
2530 			pvt->pci_ha0 = pdev;
2531 			break;
2532 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2533 			pvt->pci_ta = pdev;
2534 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
2535 			pvt->pci_ras = pdev;
2536 			break;
2537 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
2538 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
2539 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
2540 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
2541 		{
2542 			int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0;
2543 			pvt->pci_tad[id] = pdev;
2544 			saw_chan_mask |= 1 << id;
2545 		}
2546 			break;
2547 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
2548 			pvt->pci_ddrio = pdev;
2549 			break;
2550 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
2551 			pvt->pci_ddrio = pdev;
2552 			break;
2553 		case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
2554 			pvt->pci_sad0 = pdev;
2555 			break;
2556 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
2557 			pvt->pci_br0 = pdev;
2558 			break;
2559 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
2560 			pvt->pci_br1 = pdev;
2561 			break;
2562 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
2563 			pvt->pci_ha1 = pdev;
2564 			break;
2565 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
2566 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
2567 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
2568 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
2569 		{
2570 			int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 + 4;
2571 			pvt->pci_tad[id] = pdev;
2572 			saw_chan_mask |= 1 << id;
2573 		}
2574 			break;
2575 		default:
2576 			goto error;
2577 		}
2578 
2579 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2580 			 sbridge_dev->bus,
2581 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2582 			 pdev);
2583 	}
2584 
2585 	/* Check if everything were registered */
2586 	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_br0 ||
2587 	    !pvt->pci_br1 || !pvt->pci_tad || !pvt->pci_ras  ||
2588 	    !pvt->pci_ta)
2589 		goto enodev;
2590 
2591 	if (saw_chan_mask != 0x0f && /* -EN */
2592 	    saw_chan_mask != 0x33 && /* -EP */
2593 	    saw_chan_mask != 0xff)   /* -EX */
2594 		goto enodev;
2595 	return 0;
2596 
2597 enodev:
2598 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2599 	return -ENODEV;
2600 
2601 error:
2602 	sbridge_printk(KERN_ERR,
2603 		       "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
2604 			pdev->device);
2605 	return -EINVAL;
2606 }
2607 
2608 static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
2609 				 struct sbridge_dev *sbridge_dev)
2610 {
2611 	struct sbridge_pvt *pvt = mci->pvt_info;
2612 	struct pci_dev *pdev;
2613 	u8 saw_chan_mask = 0;
2614 	int i;
2615 
2616 	/* there's only one device per system; not tied to any bus */
2617 	if (pvt->info.pci_vtd == NULL)
2618 		/* result will be checked later */
2619 		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2620 						   PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
2621 						   NULL);
2622 
2623 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2624 		pdev = sbridge_dev->pdev[i];
2625 		if (!pdev)
2626 			continue;
2627 
2628 		switch (pdev->device) {
2629 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
2630 			pvt->pci_sad0 = pdev;
2631 			break;
2632 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
2633 			pvt->pci_sad1 = pdev;
2634 			break;
2635 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2636 			pvt->pci_ha0 = pdev;
2637 			break;
2638 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
2639 			pvt->pci_ta = pdev;
2640 			break;
2641 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL:
2642 			pvt->pci_ras = pdev;
2643 			break;
2644 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
2645 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
2646 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
2647 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
2648 		{
2649 			int id = pdev->device - PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0;
2650 
2651 			pvt->pci_tad[id] = pdev;
2652 			saw_chan_mask |= 1 << id;
2653 		}
2654 			break;
2655 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
2656 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
2657 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
2658 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
2659 		{
2660 			int id = pdev->device - PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 + 4;
2661 
2662 			pvt->pci_tad[id] = pdev;
2663 			saw_chan_mask |= 1 << id;
2664 		}
2665 			break;
2666 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
2667 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
2668 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
2669 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
2670 			if (!pvt->pci_ddrio)
2671 				pvt->pci_ddrio = pdev;
2672 			break;
2673 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
2674 			pvt->pci_ha1 = pdev;
2675 			break;
2676 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
2677 			pvt->pci_ha1_ta = pdev;
2678 			break;
2679 		default:
2680 			break;
2681 		}
2682 
2683 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2684 			 sbridge_dev->bus,
2685 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2686 			 pdev);
2687 	}
2688 
2689 	/* Check if everything were registered */
2690 	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
2691 	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2692 		goto enodev;
2693 
2694 	if (saw_chan_mask != 0x0f && /* -EN */
2695 	    saw_chan_mask != 0x33 && /* -EP */
2696 	    saw_chan_mask != 0xff)   /* -EX */
2697 		goto enodev;
2698 	return 0;
2699 
2700 enodev:
2701 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2702 	return -ENODEV;
2703 }
2704 
2705 static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
2706 				 struct sbridge_dev *sbridge_dev)
2707 {
2708 	struct sbridge_pvt *pvt = mci->pvt_info;
2709 	struct pci_dev *pdev;
2710 	u8 saw_chan_mask = 0;
2711 	int i;
2712 
2713 	/* there's only one device per system; not tied to any bus */
2714 	if (pvt->info.pci_vtd == NULL)
2715 		/* result will be checked later */
2716 		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2717 						   PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
2718 						   NULL);
2719 
2720 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2721 		pdev = sbridge_dev->pdev[i];
2722 		if (!pdev)
2723 			continue;
2724 
2725 		switch (pdev->device) {
2726 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
2727 			pvt->pci_sad0 = pdev;
2728 			break;
2729 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
2730 			pvt->pci_sad1 = pdev;
2731 			break;
2732 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2733 			pvt->pci_ha0 = pdev;
2734 			break;
2735 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
2736 			pvt->pci_ta = pdev;
2737 			break;
2738 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL:
2739 			pvt->pci_ras = pdev;
2740 			break;
2741 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
2742 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
2743 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
2744 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
2745 		{
2746 			int id = pdev->device - PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0;
2747 			pvt->pci_tad[id] = pdev;
2748 			saw_chan_mask |= 1 << id;
2749 		}
2750 			break;
2751 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
2752 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
2753 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
2754 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
2755 		{
2756 			int id = pdev->device - PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 + 4;
2757 			pvt->pci_tad[id] = pdev;
2758 			saw_chan_mask |= 1 << id;
2759 		}
2760 			break;
2761 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
2762 			pvt->pci_ddrio = pdev;
2763 			break;
2764 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2765 			pvt->pci_ha1 = pdev;
2766 			break;
2767 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2768 			pvt->pci_ha1_ta = pdev;
2769 			break;
2770 		default:
2771 			break;
2772 		}
2773 
2774 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2775 			 sbridge_dev->bus,
2776 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2777 			 pdev);
2778 	}
2779 
2780 	/* Check if everything were registered */
2781 	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
2782 	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2783 		goto enodev;
2784 
2785 	if (saw_chan_mask != 0x0f && /* -EN */
2786 	    saw_chan_mask != 0x33 && /* -EP */
2787 	    saw_chan_mask != 0xff)   /* -EX */
2788 		goto enodev;
2789 	return 0;
2790 
2791 enodev:
2792 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2793 	return -ENODEV;
2794 }
2795 
2796 static int knl_mci_bind_devs(struct mem_ctl_info *mci,
2797 			struct sbridge_dev *sbridge_dev)
2798 {
2799 	struct sbridge_pvt *pvt = mci->pvt_info;
2800 	struct pci_dev *pdev;
2801 	int dev, func;
2802 
2803 	int i;
2804 	int devidx;
2805 
2806 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2807 		pdev = sbridge_dev->pdev[i];
2808 		if (!pdev)
2809 			continue;
2810 
2811 		/* Extract PCI device and function. */
2812 		dev = (pdev->devfn >> 3) & 0x1f;
2813 		func = pdev->devfn & 0x7;
2814 
2815 		switch (pdev->device) {
2816 		case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
2817 			if (dev == 8)
2818 				pvt->knl.pci_mc0 = pdev;
2819 			else if (dev == 9)
2820 				pvt->knl.pci_mc1 = pdev;
2821 			else {
2822 				sbridge_printk(KERN_ERR,
2823 					"Memory controller in unexpected place! (dev %d, fn %d)\n",
2824 					dev, func);
2825 				continue;
2826 			}
2827 			break;
2828 
2829 		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
2830 			pvt->pci_sad0 = pdev;
2831 			break;
2832 
2833 		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
2834 			pvt->pci_sad1 = pdev;
2835 			break;
2836 
2837 		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
2838 			/* There are one of these per tile, and range from
2839 			 * 1.14.0 to 1.18.5.
2840 			 */
2841 			devidx = ((dev-14)*8)+func;
2842 
2843 			if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
2844 				sbridge_printk(KERN_ERR,
2845 					"Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2846 					dev, func);
2847 				continue;
2848 			}
2849 
2850 			WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
2851 
2852 			pvt->knl.pci_cha[devidx] = pdev;
2853 			break;
2854 
2855 		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL:
2856 			devidx = -1;
2857 
2858 			/*
2859 			 *  MC0 channels 0-2 are device 9 function 2-4,
2860 			 *  MC1 channels 3-5 are device 8 function 2-4.
2861 			 */
2862 
2863 			if (dev == 9)
2864 				devidx = func-2;
2865 			else if (dev == 8)
2866 				devidx = 3 + (func-2);
2867 
2868 			if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
2869 				sbridge_printk(KERN_ERR,
2870 					"DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
2871 					dev, func);
2872 				continue;
2873 			}
2874 
2875 			WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
2876 			pvt->knl.pci_channel[devidx] = pdev;
2877 			break;
2878 
2879 		case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
2880 			pvt->knl.pci_mc_info = pdev;
2881 			break;
2882 
2883 		case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
2884 			pvt->pci_ta = pdev;
2885 			break;
2886 
2887 		default:
2888 			sbridge_printk(KERN_ERR, "Unexpected device %d\n",
2889 				pdev->device);
2890 			break;
2891 		}
2892 	}
2893 
2894 	if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 ||
2895 	    !pvt->pci_sad0     || !pvt->pci_sad1    ||
2896 	    !pvt->pci_ta) {
2897 		goto enodev;
2898 	}
2899 
2900 	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
2901 		if (!pvt->knl.pci_channel[i]) {
2902 			sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
2903 			goto enodev;
2904 		}
2905 	}
2906 
2907 	for (i = 0; i < KNL_MAX_CHAS; i++) {
2908 		if (!pvt->knl.pci_cha[i]) {
2909 			sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
2910 			goto enodev;
2911 		}
2912 	}
2913 
2914 	return 0;
2915 
2916 enodev:
2917 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2918 	return -ENODEV;
2919 }
2920 
2921 /****************************************************************************
2922 			Error check routines
2923  ****************************************************************************/
2924 
2925 /*
2926  * While Sandy Bridge has error count registers, SMI BIOS read values from
2927  * and resets the counters. So, they are not reliable for the OS to read
2928  * from them. So, we have no option but to just trust on whatever MCE is
2929  * telling us about the errors.
2930  */
2931 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
2932 				    const struct mce *m)
2933 {
2934 	struct mem_ctl_info *new_mci;
2935 	struct sbridge_pvt *pvt = mci->pvt_info;
2936 	enum hw_event_mc_err_type tp_event;
2937 	char *type, *optype, msg[256];
2938 	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
2939 	bool overflow = GET_BITFIELD(m->status, 62, 62);
2940 	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
2941 	bool recoverable;
2942 	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
2943 	u32 mscod = GET_BITFIELD(m->status, 16, 31);
2944 	u32 errcode = GET_BITFIELD(m->status, 0, 15);
2945 	u32 channel = GET_BITFIELD(m->status, 0, 3);
2946 	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
2947 	long channel_mask, first_channel;
2948 	u8  rank, socket, ha;
2949 	int rc, dimm;
2950 	char *area_type = NULL;
2951 
2952 	if (pvt->info.type != SANDY_BRIDGE)
2953 		recoverable = true;
2954 	else
2955 		recoverable = GET_BITFIELD(m->status, 56, 56);
2956 
2957 	if (uncorrected_error) {
2958 		if (ripv) {
2959 			type = "FATAL";
2960 			tp_event = HW_EVENT_ERR_FATAL;
2961 		} else {
2962 			type = "NON_FATAL";
2963 			tp_event = HW_EVENT_ERR_UNCORRECTED;
2964 		}
2965 	} else {
2966 		type = "CORRECTED";
2967 		tp_event = HW_EVENT_ERR_CORRECTED;
2968 	}
2969 
2970 	/*
2971 	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
2972 	 * memory errors should fit in this mask:
2973 	 *	000f 0000 1mmm cccc (binary)
2974 	 * where:
2975 	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
2976 	 *	    won't be shown
2977 	 *	mmm = error type
2978 	 *	cccc = channel
2979 	 * If the mask doesn't match, report an error to the parsing logic
2980 	 */
2981 	if (! ((errcode & 0xef80) == 0x80)) {
2982 		optype = "Can't parse: it is not a mem";
2983 	} else {
2984 		switch (optypenum) {
2985 		case 0:
2986 			optype = "generic undef request error";
2987 			break;
2988 		case 1:
2989 			optype = "memory read error";
2990 			break;
2991 		case 2:
2992 			optype = "memory write error";
2993 			break;
2994 		case 3:
2995 			optype = "addr/cmd error";
2996 			break;
2997 		case 4:
2998 			optype = "memory scrubbing error";
2999 			break;
3000 		default:
3001 			optype = "reserved";
3002 			break;
3003 		}
3004 	}
3005 
3006 	/* Only decode errors with an valid address (ADDRV) */
3007 	if (!GET_BITFIELD(m->status, 58, 58))
3008 		return;
3009 
3010 	if (pvt->info.type == KNIGHTS_LANDING) {
3011 		if (channel == 14) {
3012 			edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
3013 				overflow ? " OVERFLOW" : "",
3014 				(uncorrected_error && recoverable)
3015 				? " recoverable" : "",
3016 				mscod, errcode,
3017 				m->bank);
3018 		} else {
3019 			char A = *("A");
3020 
3021 			channel = knl_channel_remap(channel);
3022 			channel_mask = 1 << channel;
3023 			snprintf(msg, sizeof(msg),
3024 				"%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
3025 				overflow ? " OVERFLOW" : "",
3026 				(uncorrected_error && recoverable)
3027 				? " recoverable" : " ",
3028 				mscod, errcode, channel, A + channel);
3029 			edac_mc_handle_error(tp_event, mci, core_err_cnt,
3030 				m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3031 				channel, 0, -1,
3032 				optype, msg);
3033 		}
3034 		return;
3035 	} else {
3036 		rc = get_memory_error_data(mci, m->addr, &socket, &ha,
3037 				&channel_mask, &rank, &area_type, msg);
3038 	}
3039 
3040 	if (rc < 0)
3041 		goto err_parsing;
3042 	new_mci = get_mci_for_node_id(socket);
3043 	if (!new_mci) {
3044 		strcpy(msg, "Error: socket got corrupted!");
3045 		goto err_parsing;
3046 	}
3047 	mci = new_mci;
3048 	pvt = mci->pvt_info;
3049 
3050 	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
3051 
3052 	if (rank < 4)
3053 		dimm = 0;
3054 	else if (rank < 8)
3055 		dimm = 1;
3056 	else
3057 		dimm = 2;
3058 
3059 
3060 	/*
3061 	 * FIXME: On some memory configurations (mirror, lockstep), the
3062 	 * Memory Controller can't point the error to a single DIMM. The
3063 	 * EDAC core should be handling the channel mask, in order to point
3064 	 * to the group of dimm's where the error may be happening.
3065 	 */
3066 	if (!pvt->is_lockstep && !pvt->is_mirrored && !pvt->is_close_pg)
3067 		channel = first_channel;
3068 
3069 	snprintf(msg, sizeof(msg),
3070 		 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
3071 		 overflow ? " OVERFLOW" : "",
3072 		 (uncorrected_error && recoverable) ? " recoverable" : "",
3073 		 area_type,
3074 		 mscod, errcode,
3075 		 socket, ha,
3076 		 channel_mask,
3077 		 rank);
3078 
3079 	edac_dbg(0, "%s\n", msg);
3080 
3081 	/* FIXME: need support for channel mask */
3082 
3083 	if (channel == CHANNEL_UNSPECIFIED)
3084 		channel = -1;
3085 
3086 	/* Call the helper to output message */
3087 	edac_mc_handle_error(tp_event, mci, core_err_cnt,
3088 			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3089 			     4*ha+channel, dimm, -1,
3090 			     optype, msg);
3091 	return;
3092 err_parsing:
3093 	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
3094 			     -1, -1, -1,
3095 			     msg, "");
3096 
3097 }
3098 
3099 /*
3100  *	sbridge_check_error	Retrieve and process errors reported by the
3101  *				hardware. Called by the Core module.
3102  */
3103 static void sbridge_check_error(struct mem_ctl_info *mci)
3104 {
3105 	struct sbridge_pvt *pvt = mci->pvt_info;
3106 	int i;
3107 	unsigned count = 0;
3108 	struct mce *m;
3109 
3110 	/*
3111 	 * MCE first step: Copy all mce errors into a temporary buffer
3112 	 * We use a double buffering here, to reduce the risk of
3113 	 * loosing an error.
3114 	 */
3115 	smp_rmb();
3116 	count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
3117 		% MCE_LOG_LEN;
3118 	if (!count)
3119 		return;
3120 
3121 	m = pvt->mce_outentry;
3122 	if (pvt->mce_in + count > MCE_LOG_LEN) {
3123 		unsigned l = MCE_LOG_LEN - pvt->mce_in;
3124 
3125 		memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
3126 		smp_wmb();
3127 		pvt->mce_in = 0;
3128 		count -= l;
3129 		m += l;
3130 	}
3131 	memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
3132 	smp_wmb();
3133 	pvt->mce_in += count;
3134 
3135 	smp_rmb();
3136 	if (pvt->mce_overrun) {
3137 		sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
3138 			      pvt->mce_overrun);
3139 		smp_wmb();
3140 		pvt->mce_overrun = 0;
3141 	}
3142 
3143 	/*
3144 	 * MCE second step: parse errors and display
3145 	 */
3146 	for (i = 0; i < count; i++)
3147 		sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
3148 }
3149 
3150 /*
3151  * sbridge_mce_check_error	Replicates mcelog routine to get errors
3152  *				This routine simply queues mcelog errors, and
3153  *				return. The error itself should be handled later
3154  *				by sbridge_check_error.
3155  * WARNING: As this routine should be called at NMI time, extra care should
3156  * be taken to avoid deadlocks, and to be as fast as possible.
3157  */
3158 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
3159 				   void *data)
3160 {
3161 	struct mce *mce = (struct mce *)data;
3162 	struct mem_ctl_info *mci;
3163 	struct sbridge_pvt *pvt;
3164 	char *type;
3165 
3166 	if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
3167 		return NOTIFY_DONE;
3168 
3169 	mci = get_mci_for_node_id(mce->socketid);
3170 	if (!mci)
3171 		return NOTIFY_DONE;
3172 	pvt = mci->pvt_info;
3173 
3174 	/*
3175 	 * Just let mcelog handle it if the error is
3176 	 * outside the memory controller. A memory error
3177 	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3178 	 * bit 12 has an special meaning.
3179 	 */
3180 	if ((mce->status & 0xefff) >> 7 != 1)
3181 		return NOTIFY_DONE;
3182 
3183 	if (mce->mcgstatus & MCG_STATUS_MCIP)
3184 		type = "Exception";
3185 	else
3186 		type = "Event";
3187 
3188 	sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
3189 
3190 	sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
3191 			  "Bank %d: %016Lx\n", mce->extcpu, type,
3192 			  mce->mcgstatus, mce->bank, mce->status);
3193 	sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
3194 	sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
3195 	sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
3196 
3197 	sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
3198 			  "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
3199 			  mce->time, mce->socketid, mce->apicid);
3200 
3201 	smp_rmb();
3202 	if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
3203 		smp_wmb();
3204 		pvt->mce_overrun++;
3205 		return NOTIFY_DONE;
3206 	}
3207 
3208 	/* Copy memory error at the ringbuffer */
3209 	memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
3210 	smp_wmb();
3211 	pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
3212 
3213 	/* Handle fatal errors immediately */
3214 	if (mce->mcgstatus & 1)
3215 		sbridge_check_error(mci);
3216 
3217 	/* Advice mcelog that the error were handled */
3218 	return NOTIFY_STOP;
3219 }
3220 
3221 static struct notifier_block sbridge_mce_dec = {
3222 	.notifier_call      = sbridge_mce_check_error,
3223 };
3224 
3225 /****************************************************************************
3226 			EDAC register/unregister logic
3227  ****************************************************************************/
3228 
3229 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
3230 {
3231 	struct mem_ctl_info *mci = sbridge_dev->mci;
3232 	struct sbridge_pvt *pvt;
3233 
3234 	if (unlikely(!mci || !mci->pvt_info)) {
3235 		edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
3236 
3237 		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
3238 		return;
3239 	}
3240 
3241 	pvt = mci->pvt_info;
3242 
3243 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
3244 		 mci, &sbridge_dev->pdev[0]->dev);
3245 
3246 	/* Remove MC sysfs nodes */
3247 	edac_mc_del_mc(mci->pdev);
3248 
3249 	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
3250 	kfree(mci->ctl_name);
3251 	edac_mc_free(mci);
3252 	sbridge_dev->mci = NULL;
3253 }
3254 
3255 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
3256 {
3257 	struct mem_ctl_info *mci;
3258 	struct edac_mc_layer layers[2];
3259 	struct sbridge_pvt *pvt;
3260 	struct pci_dev *pdev = sbridge_dev->pdev[0];
3261 	int rc;
3262 
3263 	/* Check the number of active and not disabled channels */
3264 	rc = check_if_ecc_is_active(sbridge_dev->bus, type);
3265 	if (unlikely(rc < 0))
3266 		return rc;
3267 
3268 	/* allocate a new MC control structure */
3269 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
3270 	layers[0].size = type == KNIGHTS_LANDING ?
3271 		KNL_MAX_CHANNELS : NUM_CHANNELS;
3272 	layers[0].is_virt_csrow = false;
3273 	layers[1].type = EDAC_MC_LAYER_SLOT;
3274 	layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
3275 	layers[1].is_virt_csrow = true;
3276 	mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
3277 			    sizeof(*pvt));
3278 
3279 	if (unlikely(!mci))
3280 		return -ENOMEM;
3281 
3282 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
3283 		 mci, &pdev->dev);
3284 
3285 	pvt = mci->pvt_info;
3286 	memset(pvt, 0, sizeof(*pvt));
3287 
3288 	/* Associate sbridge_dev and mci for future usage */
3289 	pvt->sbridge_dev = sbridge_dev;
3290 	sbridge_dev->mci = mci;
3291 
3292 	mci->mtype_cap = type == KNIGHTS_LANDING ?
3293 		MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
3294 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
3295 	mci->edac_cap = EDAC_FLAG_NONE;
3296 	mci->mod_name = "sbridge_edac.c";
3297 	mci->mod_ver = SBRIDGE_REVISION;
3298 	mci->dev_name = pci_name(pdev);
3299 	mci->ctl_page_to_phys = NULL;
3300 
3301 	/* Set the function pointer to an actual operation function */
3302 	mci->edac_check = sbridge_check_error;
3303 
3304 	pvt->info.type = type;
3305 	switch (type) {
3306 	case IVY_BRIDGE:
3307 		pvt->info.rankcfgr = IB_RANK_CFG_A;
3308 		pvt->info.get_tolm = ibridge_get_tolm;
3309 		pvt->info.get_tohm = ibridge_get_tohm;
3310 		pvt->info.dram_rule = ibridge_dram_rule;
3311 		pvt->info.get_memory_type = get_memory_type;
3312 		pvt->info.get_node_id = get_node_id;
3313 		pvt->info.rir_limit = rir_limit;
3314 		pvt->info.sad_limit = sad_limit;
3315 		pvt->info.interleave_mode = interleave_mode;
3316 		pvt->info.show_interleave_mode = show_interleave_mode;
3317 		pvt->info.dram_attr = dram_attr;
3318 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3319 		pvt->info.interleave_list = ibridge_interleave_list;
3320 		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3321 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3322 		pvt->info.get_width = ibridge_get_width;
3323 		mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge Socket#%d", mci->mc_idx);
3324 
3325 		/* Store pci devices at mci for faster access */
3326 		rc = ibridge_mci_bind_devs(mci, sbridge_dev);
3327 		if (unlikely(rc < 0))
3328 			goto fail0;
3329 		break;
3330 	case SANDY_BRIDGE:
3331 		pvt->info.rankcfgr = SB_RANK_CFG_A;
3332 		pvt->info.get_tolm = sbridge_get_tolm;
3333 		pvt->info.get_tohm = sbridge_get_tohm;
3334 		pvt->info.dram_rule = sbridge_dram_rule;
3335 		pvt->info.get_memory_type = get_memory_type;
3336 		pvt->info.get_node_id = get_node_id;
3337 		pvt->info.rir_limit = rir_limit;
3338 		pvt->info.sad_limit = sad_limit;
3339 		pvt->info.interleave_mode = interleave_mode;
3340 		pvt->info.show_interleave_mode = show_interleave_mode;
3341 		pvt->info.dram_attr = dram_attr;
3342 		pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
3343 		pvt->info.interleave_list = sbridge_interleave_list;
3344 		pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list);
3345 		pvt->info.interleave_pkg = sbridge_interleave_pkg;
3346 		pvt->info.get_width = sbridge_get_width;
3347 		mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
3348 
3349 		/* Store pci devices at mci for faster access */
3350 		rc = sbridge_mci_bind_devs(mci, sbridge_dev);
3351 		if (unlikely(rc < 0))
3352 			goto fail0;
3353 		break;
3354 	case HASWELL:
3355 		/* rankcfgr isn't used */
3356 		pvt->info.get_tolm = haswell_get_tolm;
3357 		pvt->info.get_tohm = haswell_get_tohm;
3358 		pvt->info.dram_rule = ibridge_dram_rule;
3359 		pvt->info.get_memory_type = haswell_get_memory_type;
3360 		pvt->info.get_node_id = haswell_get_node_id;
3361 		pvt->info.rir_limit = haswell_rir_limit;
3362 		pvt->info.sad_limit = sad_limit;
3363 		pvt->info.interleave_mode = interleave_mode;
3364 		pvt->info.show_interleave_mode = show_interleave_mode;
3365 		pvt->info.dram_attr = dram_attr;
3366 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3367 		pvt->info.interleave_list = ibridge_interleave_list;
3368 		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3369 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3370 		pvt->info.get_width = ibridge_get_width;
3371 		mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell Socket#%d", mci->mc_idx);
3372 
3373 		/* Store pci devices at mci for faster access */
3374 		rc = haswell_mci_bind_devs(mci, sbridge_dev);
3375 		if (unlikely(rc < 0))
3376 			goto fail0;
3377 		break;
3378 	case BROADWELL:
3379 		/* rankcfgr isn't used */
3380 		pvt->info.get_tolm = haswell_get_tolm;
3381 		pvt->info.get_tohm = haswell_get_tohm;
3382 		pvt->info.dram_rule = ibridge_dram_rule;
3383 		pvt->info.get_memory_type = haswell_get_memory_type;
3384 		pvt->info.get_node_id = haswell_get_node_id;
3385 		pvt->info.rir_limit = haswell_rir_limit;
3386 		pvt->info.sad_limit = sad_limit;
3387 		pvt->info.interleave_mode = interleave_mode;
3388 		pvt->info.show_interleave_mode = show_interleave_mode;
3389 		pvt->info.dram_attr = dram_attr;
3390 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3391 		pvt->info.interleave_list = ibridge_interleave_list;
3392 		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3393 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3394 		pvt->info.get_width = broadwell_get_width;
3395 		mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell Socket#%d", mci->mc_idx);
3396 
3397 		/* Store pci devices at mci for faster access */
3398 		rc = broadwell_mci_bind_devs(mci, sbridge_dev);
3399 		if (unlikely(rc < 0))
3400 			goto fail0;
3401 		break;
3402 	case KNIGHTS_LANDING:
3403 		/* pvt->info.rankcfgr == ??? */
3404 		pvt->info.get_tolm = knl_get_tolm;
3405 		pvt->info.get_tohm = knl_get_tohm;
3406 		pvt->info.dram_rule = knl_dram_rule;
3407 		pvt->info.get_memory_type = knl_get_memory_type;
3408 		pvt->info.get_node_id = knl_get_node_id;
3409 		pvt->info.rir_limit = NULL;
3410 		pvt->info.sad_limit = knl_sad_limit;
3411 		pvt->info.interleave_mode = knl_interleave_mode;
3412 		pvt->info.show_interleave_mode = knl_show_interleave_mode;
3413 		pvt->info.dram_attr = dram_attr_knl;
3414 		pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
3415 		pvt->info.interleave_list = knl_interleave_list;
3416 		pvt->info.max_interleave = ARRAY_SIZE(knl_interleave_list);
3417 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3418 		pvt->info.get_width = knl_get_width;
3419 		mci->ctl_name = kasprintf(GFP_KERNEL,
3420 			"Knights Landing Socket#%d", mci->mc_idx);
3421 
3422 		rc = knl_mci_bind_devs(mci, sbridge_dev);
3423 		if (unlikely(rc < 0))
3424 			goto fail0;
3425 		break;
3426 	}
3427 
3428 	/* Get dimm basic config and the memory layout */
3429 	get_dimm_config(mci);
3430 	get_memory_layout(mci);
3431 
3432 	/* record ptr to the generic device */
3433 	mci->pdev = &pdev->dev;
3434 
3435 	/* add this new MC control structure to EDAC's list of MCs */
3436 	if (unlikely(edac_mc_add_mc(mci))) {
3437 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3438 		rc = -EINVAL;
3439 		goto fail0;
3440 	}
3441 
3442 	return 0;
3443 
3444 fail0:
3445 	kfree(mci->ctl_name);
3446 	edac_mc_free(mci);
3447 	sbridge_dev->mci = NULL;
3448 	return rc;
3449 }
3450 
3451 /*
3452  *	sbridge_probe	Probe for ONE instance of device to see if it is
3453  *			present.
3454  *	return:
3455  *		0 for FOUND a device
3456  *		< 0 for error code
3457  */
3458 
3459 static int sbridge_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3460 {
3461 	int rc = -ENODEV;
3462 	u8 mc, num_mc = 0;
3463 	struct sbridge_dev *sbridge_dev;
3464 	enum type type = SANDY_BRIDGE;
3465 
3466 	/* get the pci devices we want to reserve for our use */
3467 	mutex_lock(&sbridge_edac_lock);
3468 
3469 	/*
3470 	 * All memory controllers are allocated at the first pass.
3471 	 */
3472 	if (unlikely(probed >= 1)) {
3473 		mutex_unlock(&sbridge_edac_lock);
3474 		return -ENODEV;
3475 	}
3476 	probed++;
3477 
3478 	switch (pdev->device) {
3479 	case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
3480 		rc = sbridge_get_all_devices(&num_mc,
3481 					pci_dev_descr_ibridge_table);
3482 		type = IVY_BRIDGE;
3483 		break;
3484 	case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
3485 		rc = sbridge_get_all_devices(&num_mc,
3486 					pci_dev_descr_sbridge_table);
3487 		type = SANDY_BRIDGE;
3488 		break;
3489 	case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
3490 		rc = sbridge_get_all_devices(&num_mc,
3491 					pci_dev_descr_haswell_table);
3492 		type = HASWELL;
3493 		break;
3494 	case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
3495 		rc = sbridge_get_all_devices(&num_mc,
3496 					pci_dev_descr_broadwell_table);
3497 		type = BROADWELL;
3498 	    break;
3499 	case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
3500 		rc = sbridge_get_all_devices_knl(&num_mc,
3501 					pci_dev_descr_knl_table);
3502 		type = KNIGHTS_LANDING;
3503 		break;
3504 	}
3505 	if (unlikely(rc < 0)) {
3506 		edac_dbg(0, "couldn't get all devices for 0x%x\n", pdev->device);
3507 		goto fail0;
3508 	}
3509 
3510 	mc = 0;
3511 
3512 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
3513 		edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3514 			 mc, mc + 1, num_mc);
3515 
3516 		sbridge_dev->mc = mc++;
3517 		rc = sbridge_register_mci(sbridge_dev, type);
3518 		if (unlikely(rc < 0))
3519 			goto fail1;
3520 	}
3521 
3522 	sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
3523 
3524 	mutex_unlock(&sbridge_edac_lock);
3525 	return 0;
3526 
3527 fail1:
3528 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3529 		sbridge_unregister_mci(sbridge_dev);
3530 
3531 	sbridge_put_all_devices();
3532 fail0:
3533 	mutex_unlock(&sbridge_edac_lock);
3534 	return rc;
3535 }
3536 
3537 /*
3538  *	sbridge_remove	destructor for one instance of device
3539  *
3540  */
3541 static void sbridge_remove(struct pci_dev *pdev)
3542 {
3543 	struct sbridge_dev *sbridge_dev;
3544 
3545 	edac_dbg(0, "\n");
3546 
3547 	/*
3548 	 * we have a trouble here: pdev value for removal will be wrong, since
3549 	 * it will point to the X58 register used to detect that the machine
3550 	 * is a Nehalem or upper design. However, due to the way several PCI
3551 	 * devices are grouped together to provide MC functionality, we need
3552 	 * to use a different method for releasing the devices
3553 	 */
3554 
3555 	mutex_lock(&sbridge_edac_lock);
3556 
3557 	if (unlikely(!probed)) {
3558 		mutex_unlock(&sbridge_edac_lock);
3559 		return;
3560 	}
3561 
3562 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3563 		sbridge_unregister_mci(sbridge_dev);
3564 
3565 	/* Release PCI resources */
3566 	sbridge_put_all_devices();
3567 
3568 	probed--;
3569 
3570 	mutex_unlock(&sbridge_edac_lock);
3571 }
3572 
3573 MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
3574 
3575 /*
3576  *	sbridge_driver	pci_driver structure for this module
3577  *
3578  */
3579 static struct pci_driver sbridge_driver = {
3580 	.name     = "sbridge_edac",
3581 	.probe    = sbridge_probe,
3582 	.remove   = sbridge_remove,
3583 	.id_table = sbridge_pci_tbl,
3584 };
3585 
3586 /*
3587  *	sbridge_init		Module entry function
3588  *			Try to initialize this module for its devices
3589  */
3590 static int __init sbridge_init(void)
3591 {
3592 	int pci_rc;
3593 
3594 	edac_dbg(2, "\n");
3595 
3596 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
3597 	opstate_init();
3598 
3599 	pci_rc = pci_register_driver(&sbridge_driver);
3600 	if (pci_rc >= 0) {
3601 		mce_register_decode_chain(&sbridge_mce_dec);
3602 		if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
3603 			sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
3604 		return 0;
3605 	}
3606 
3607 	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
3608 		      pci_rc);
3609 
3610 	return pci_rc;
3611 }
3612 
3613 /*
3614  *	sbridge_exit()	Module exit function
3615  *			Unregister the driver
3616  */
3617 static void __exit sbridge_exit(void)
3618 {
3619 	edac_dbg(2, "\n");
3620 	pci_unregister_driver(&sbridge_driver);
3621 	mce_unregister_decode_chain(&sbridge_mce_dec);
3622 }
3623 
3624 module_init(sbridge_init);
3625 module_exit(sbridge_exit);
3626 
3627 module_param(edac_op_state, int, 0444);
3628 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3629 
3630 MODULE_LICENSE("GPL");
3631 MODULE_AUTHOR("Mauro Carvalho Chehab");
3632 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
3633 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
3634 		   SBRIDGE_REVISION);
3635