xref: /linux/drivers/edac/sb_edac.c (revision 32786fdc9506aeba98278c1844d4bfb766863832)
1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
2  *
3  * This driver supports the memory controllers found on the Intel
4  * processor family Sandy Bridge.
5  *
6  * This file may be distributed under the terms of the
7  * GNU General Public License version 2 only.
8  *
9  * Copyright (c) 2011 by:
10  *	 Mauro Carvalho Chehab
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <linux/mod_devicetable.h>
25 #include <asm/cpu_device_id.h>
26 #include <asm/intel-family.h>
27 #include <asm/processor.h>
28 #include <asm/mce.h>
29 
30 #include "edac_module.h"
31 
32 /* Static vars */
33 static LIST_HEAD(sbridge_edac_list);
34 
35 /*
36  * Alter this version for the module when modifications are made
37  */
38 #define SBRIDGE_REVISION    " Ver: 1.1.1 "
39 #define EDAC_MOD_STR      "sbridge_edac"
40 
41 /*
42  * Debug macros
43  */
44 #define sbridge_printk(level, fmt, arg...)			\
45 	edac_printk(level, "sbridge", fmt, ##arg)
46 
47 #define sbridge_mc_printk(mci, level, fmt, arg...)		\
48 	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
49 
50 /*
51  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
52  */
53 #define GET_BITFIELD(v, lo, hi)	\
54 	(((v) & GENMASK_ULL(hi, lo)) >> (lo))
55 
56 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
57 static const u32 sbridge_dram_rule[] = {
58 	0x80, 0x88, 0x90, 0x98, 0xa0,
59 	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
60 };
61 
62 static const u32 ibridge_dram_rule[] = {
63 	0x60, 0x68, 0x70, 0x78, 0x80,
64 	0x88, 0x90, 0x98, 0xa0,	0xa8,
65 	0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
66 	0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
67 };
68 
69 static const u32 knl_dram_rule[] = {
70 	0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
71 	0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
72 	0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
73 	0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
74 	0x100, 0x108, 0x110, 0x118,   /* 20-23 */
75 };
76 
77 #define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)
78 #define A7MODE(reg)		GET_BITFIELD(reg, 26, 26)
79 
80 static char *show_dram_attr(u32 attr)
81 {
82 	switch (attr) {
83 		case 0:
84 			return "DRAM";
85 		case 1:
86 			return "MMCFG";
87 		case 2:
88 			return "NXM";
89 		default:
90 			return "unknown";
91 	}
92 }
93 
94 static const u32 sbridge_interleave_list[] = {
95 	0x84, 0x8c, 0x94, 0x9c, 0xa4,
96 	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
97 };
98 
99 static const u32 ibridge_interleave_list[] = {
100 	0x64, 0x6c, 0x74, 0x7c, 0x84,
101 	0x8c, 0x94, 0x9c, 0xa4, 0xac,
102 	0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
103 	0xdc, 0xe4, 0xec, 0xf4, 0xfc,
104 };
105 
106 static const u32 knl_interleave_list[] = {
107 	0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
108 	0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
109 	0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
110 	0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
111 	0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */
112 };
113 
114 struct interleave_pkg {
115 	unsigned char start;
116 	unsigned char end;
117 };
118 
119 static const struct interleave_pkg sbridge_interleave_pkg[] = {
120 	{ 0, 2 },
121 	{ 3, 5 },
122 	{ 8, 10 },
123 	{ 11, 13 },
124 	{ 16, 18 },
125 	{ 19, 21 },
126 	{ 24, 26 },
127 	{ 27, 29 },
128 };
129 
130 static const struct interleave_pkg ibridge_interleave_pkg[] = {
131 	{ 0, 3 },
132 	{ 4, 7 },
133 	{ 8, 11 },
134 	{ 12, 15 },
135 	{ 16, 19 },
136 	{ 20, 23 },
137 	{ 24, 27 },
138 	{ 28, 31 },
139 };
140 
141 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
142 			  int interleave)
143 {
144 	return GET_BITFIELD(reg, table[interleave].start,
145 			    table[interleave].end);
146 }
147 
148 /* Devices 12 Function 7 */
149 
150 #define TOLM		0x80
151 #define TOHM		0x84
152 #define HASWELL_TOLM	0xd0
153 #define HASWELL_TOHM_0	0xd4
154 #define HASWELL_TOHM_1	0xd8
155 #define KNL_TOLM	0xd0
156 #define KNL_TOHM_0	0xd4
157 #define KNL_TOHM_1	0xd8
158 
159 #define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
160 #define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
161 
162 /* Device 13 Function 6 */
163 
164 #define SAD_TARGET	0xf0
165 
166 #define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)
167 
168 #define SOURCE_ID_KNL(reg)	GET_BITFIELD(reg, 12, 14)
169 
170 #define SAD_CONTROL	0xf4
171 
172 /* Device 14 function 0 */
173 
174 static const u32 tad_dram_rule[] = {
175 	0x40, 0x44, 0x48, 0x4c,
176 	0x50, 0x54, 0x58, 0x5c,
177 	0x60, 0x64, 0x68, 0x6c,
178 };
179 #define MAX_TAD	ARRAY_SIZE(tad_dram_rule)
180 
181 #define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
182 #define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
183 #define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
184 #define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
185 #define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
186 #define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
187 #define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)
188 
189 /* Device 15, function 0 */
190 
191 #define MCMTR			0x7c
192 #define KNL_MCMTR		0x624
193 
194 #define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
195 #define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
196 #define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)
197 
198 /* Device 15, function 1 */
199 
200 #define RASENABLES		0xac
201 #define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)
202 
203 /* Device 15, functions 2-5 */
204 
205 static const int mtr_regs[] = {
206 	0x80, 0x84, 0x88,
207 };
208 
209 static const int knl_mtr_reg = 0xb60;
210 
211 #define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
212 #define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
213 #define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
214 #define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
215 #define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)
216 
217 static const u32 tad_ch_nilv_offset[] = {
218 	0x90, 0x94, 0x98, 0x9c,
219 	0xa0, 0xa4, 0xa8, 0xac,
220 	0xb0, 0xb4, 0xb8, 0xbc,
221 };
222 #define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
223 #define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)
224 
225 static const u32 rir_way_limit[] = {
226 	0x108, 0x10c, 0x110, 0x114, 0x118,
227 };
228 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
229 
230 #define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
231 #define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)
232 
233 #define MAX_RIR_WAY	8
234 
235 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
236 	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
237 	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
238 	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
239 	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
240 	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
241 };
242 
243 #define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
244 	GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
245 
246 #define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
247 	GET_BITFIELD(reg,  2, 15) : GET_BITFIELD(reg,  2, 14))
248 
249 /* Device 16, functions 2-7 */
250 
251 /*
252  * FIXME: Implement the error count reads directly
253  */
254 
255 static const u32 correrrcnt[] = {
256 	0x104, 0x108, 0x10c, 0x110,
257 };
258 
259 #define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
260 #define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
261 #define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
262 #define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)
263 
264 static const u32 correrrthrsld[] = {
265 	0x11c, 0x120, 0x124, 0x128,
266 };
267 
268 #define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
269 #define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)
270 
271 
272 /* Device 17, function 0 */
273 
274 #define SB_RANK_CFG_A		0x0328
275 
276 #define IB_RANK_CFG_A		0x0320
277 
278 /*
279  * sbridge structs
280  */
281 
282 #define NUM_CHANNELS		8	/* 2MC per socket, four chan per MC */
283 #define MAX_DIMMS		3	/* Max DIMMS per channel */
284 #define KNL_MAX_CHAS		38	/* KNL max num. of Cache Home Agents */
285 #define KNL_MAX_CHANNELS	6	/* KNL max num. of PCI channels */
286 #define KNL_MAX_EDCS		8	/* Embedded DRAM controllers */
287 #define CHANNEL_UNSPECIFIED	0xf	/* Intel IA32 SDM 15-14 */
288 
289 enum type {
290 	SANDY_BRIDGE,
291 	IVY_BRIDGE,
292 	HASWELL,
293 	BROADWELL,
294 	KNIGHTS_LANDING,
295 };
296 
297 struct sbridge_pvt;
298 struct sbridge_info {
299 	enum type	type;
300 	u32		mcmtr;
301 	u32		rankcfgr;
302 	u64		(*get_tolm)(struct sbridge_pvt *pvt);
303 	u64		(*get_tohm)(struct sbridge_pvt *pvt);
304 	u64		(*rir_limit)(u32 reg);
305 	u64		(*sad_limit)(u32 reg);
306 	u32		(*interleave_mode)(u32 reg);
307 	char*		(*show_interleave_mode)(u32 reg);
308 	u32		(*dram_attr)(u32 reg);
309 	const u32	*dram_rule;
310 	const u32	*interleave_list;
311 	const struct interleave_pkg *interleave_pkg;
312 	u8		max_sad;
313 	u8		max_interleave;
314 	u8		(*get_node_id)(struct sbridge_pvt *pvt);
315 	enum mem_type	(*get_memory_type)(struct sbridge_pvt *pvt);
316 	enum dev_type	(*get_width)(struct sbridge_pvt *pvt, u32 mtr);
317 	struct pci_dev	*pci_vtd;
318 };
319 
320 struct sbridge_channel {
321 	u32		ranks;
322 	u32		dimms;
323 };
324 
325 struct pci_id_descr {
326 	int			dev_id;
327 	int			optional;
328 };
329 
330 struct pci_id_table {
331 	const struct pci_id_descr	*descr;
332 	int				n_devs;
333 	enum type			type;
334 };
335 
336 struct sbridge_dev {
337 	struct list_head	list;
338 	u8			bus, mc;
339 	u8			node_id, source_id;
340 	struct pci_dev		**pdev;
341 	int			n_devs;
342 	struct mem_ctl_info	*mci;
343 };
344 
345 struct knl_pvt {
346 	struct pci_dev          *pci_cha[KNL_MAX_CHAS];
347 	struct pci_dev          *pci_channel[KNL_MAX_CHANNELS];
348 	struct pci_dev          *pci_mc0;
349 	struct pci_dev          *pci_mc1;
350 	struct pci_dev          *pci_mc0_misc;
351 	struct pci_dev          *pci_mc1_misc;
352 	struct pci_dev          *pci_mc_info; /* tolm, tohm */
353 };
354 
355 struct sbridge_pvt {
356 	struct pci_dev		*pci_ta, *pci_ddrio, *pci_ras;
357 	struct pci_dev		*pci_sad0, *pci_sad1;
358 	struct pci_dev		*pci_ha0, *pci_ha1;
359 	struct pci_dev		*pci_br0, *pci_br1;
360 	struct pci_dev		*pci_ha1_ta;
361 	struct pci_dev		*pci_tad[NUM_CHANNELS];
362 
363 	struct sbridge_dev	*sbridge_dev;
364 
365 	struct sbridge_info	info;
366 	struct sbridge_channel	channel[NUM_CHANNELS];
367 
368 	/* Memory type detection */
369 	bool			is_mirrored, is_lockstep, is_close_pg;
370 	bool			is_chan_hash;
371 
372 	/* Memory description */
373 	u64			tolm, tohm;
374 	struct knl_pvt knl;
375 };
376 
377 #define PCI_DESCR(device_id, opt)	\
378 	.dev_id = (device_id),		\
379 	.optional = opt
380 
381 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
382 		/* Processor Home Agent */
383 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0)	},
384 
385 		/* Memory controller */
386 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0)	},
387 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0)	},
388 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0)	},
389 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0)	},
390 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0)	},
391 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0)	},
392 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1)	},
393 
394 		/* System Address Decoder */
395 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0)	},
396 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0)	},
397 
398 		/* Broadcast Registers */
399 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0)		},
400 };
401 
402 #define PCI_ID_TABLE_ENTRY(A, T) {	\
403 	.descr = A,			\
404 	.n_devs = ARRAY_SIZE(A),	\
405 	.type = T			\
406 }
407 
408 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
409 	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, SANDY_BRIDGE),
410 	{0,}			/* 0 terminated list. */
411 };
412 
413 /* This changes depending if 1HA or 2HA:
414  * 1HA:
415  *	0x0eb8 (17.0) is DDRIO0
416  * 2HA:
417  *	0x0ebc (17.4) is DDRIO0
418  */
419 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0	0x0eb8
420 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0	0x0ebc
421 
422 /* pci ids */
423 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0		0x0ea0
424 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA		0x0ea8
425 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS		0x0e71
426 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0	0x0eaa
427 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1	0x0eab
428 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2	0x0eac
429 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3	0x0ead
430 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD			0x0ec8
431 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0			0x0ec9
432 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1			0x0eca
433 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1		0x0e60
434 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA		0x0e68
435 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS		0x0e79
436 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0	0x0e6a
437 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1	0x0e6b
438 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2	0x0e6c
439 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3	0x0e6d
440 
441 static const struct pci_id_descr pci_dev_descr_ibridge[] = {
442 		/* Processor Home Agent */
443 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0)		},
444 
445 		/* Memory controller */
446 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0)		},
447 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0)		},
448 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0)	},
449 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0)	},
450 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0)	},
451 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0)	},
452 
453 		/* System Address Decoder */
454 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0)			},
455 
456 		/* Broadcast Registers */
457 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1)			},
458 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0)			},
459 
460 		/* Optional, mode 2HA */
461 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1)		},
462 #if 0
463 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1)	},
464 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1)	},
465 #endif
466 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1)	},
467 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1)	},
468 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2, 1)	},
469 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3, 1)	},
470 
471 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1)	},
472 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1)	},
473 };
474 
475 static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
476 	PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, IVY_BRIDGE),
477 	{0,}			/* 0 terminated list. */
478 };
479 
480 /* Haswell support */
481 /* EN processor:
482  *	- 1 IMC
483  *	- 3 DDR3 channels, 2 DPC per channel
484  * EP processor:
485  *	- 1 or 2 IMC
486  *	- 4 DDR4 channels, 3 DPC per channel
487  * EP 4S processor:
488  *	- 2 IMC
489  *	- 4 DDR4 channels, 3 DPC per channel
490  * EX processor:
491  *	- 2 IMC
492  *	- each IMC interfaces with a SMI 2 channel
493  *	- each SMI channel interfaces with a scalable memory buffer
494  *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
495  */
496 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
497 #define HASWELL_HASYSDEFEATURE2 0x84
498 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
499 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0	0x2fa0
500 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1	0x2f60
501 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA	0x2fa8
502 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL 0x2f71
503 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA	0x2f68
504 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL 0x2f79
505 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
506 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
507 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
508 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
509 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
510 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
511 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
512 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
513 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
514 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
515 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
516 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
517 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
518 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
519 static const struct pci_id_descr pci_dev_descr_haswell[] = {
520 	/* first item must be the HA */
521 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0)		},
522 
523 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0)	},
524 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0)	},
525 
526 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1)		},
527 
528 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0)		},
529 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL, 0)	},
530 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0)	},
531 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0)	},
532 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1)	},
533 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1)	},
534 
535 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1)		},
536 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1, 1)		},
537 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2, 1)		},
538 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3, 1)		},
539 
540 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1)		},
541 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL, 1)	},
542 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1)	},
543 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1)	},
544 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1)	},
545 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1)	},
546 };
547 
548 static const struct pci_id_table pci_dev_descr_haswell_table[] = {
549 	PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, HASWELL),
550 	{0,}			/* 0 terminated list. */
551 };
552 
553 /* Knight's Landing Support */
554 /*
555  * KNL's memory channels are swizzled between memory controllers.
556  * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
557  */
558 #define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
559 
560 /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
561 #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840
562 /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
563 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL  0x7843
564 /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
565 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844
566 /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
567 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a
568 /* SAD target - 1-29-1 (1 of these) */
569 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b
570 /* Caching / Home Agent */
571 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c
572 /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
573 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810
574 
575 /*
576  * KNL differs from SB, IB, and Haswell in that it has multiple
577  * instances of the same device with the same device ID, so we handle that
578  * by creating as many copies in the table as we expect to find.
579  * (Like device ID must be grouped together.)
580  */
581 
582 static const struct pci_id_descr pci_dev_descr_knl[] = {
583 	[0]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0, 0) },
584 	[1]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1, 0) },
585 	[2 ... 3]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC, 0)},
586 	[4 ... 41]  = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA, 0) },
587 	[42 ... 47] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL, 0) },
588 	[48]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA, 0) },
589 	[49]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0) },
590 };
591 
592 static const struct pci_id_table pci_dev_descr_knl_table[] = {
593 	PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, KNIGHTS_LANDING),
594 	{0,}
595 };
596 
597 /*
598  * Broadwell support
599  *
600  * DE processor:
601  *	- 1 IMC
602  *	- 2 DDR3 channels, 2 DPC per channel
603  * EP processor:
604  *	- 1 or 2 IMC
605  *	- 4 DDR4 channels, 3 DPC per channel
606  * EP 4S processor:
607  *	- 2 IMC
608  *	- 4 DDR4 channels, 3 DPC per channel
609  * EX processor:
610  *	- 2 IMC
611  *	- each IMC interfaces with a SMI 2 channel
612  *	- each SMI channel interfaces with a scalable memory buffer
613  *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
614  */
615 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
616 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0	0x6fa0
617 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1	0x6f60
618 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA	0x6fa8
619 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL 0x6f71
620 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA	0x6f68
621 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL 0x6f79
622 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
623 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
624 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
625 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
626 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
627 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
628 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
629 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
630 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
631 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
632 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
633 
634 static const struct pci_id_descr pci_dev_descr_broadwell[] = {
635 	/* first item must be the HA */
636 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0, 0)		},
637 
638 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0)	},
639 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0)	},
640 
641 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1, 1)		},
642 
643 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA, 0)	},
644 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL, 0)	},
645 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0)	},
646 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0)	},
647 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1)	},
648 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1)	},
649 
650 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0, 1)	},
651 
652 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA, 1)	},
653 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL, 1)	},
654 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1)	},
655 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1)	},
656 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1)	},
657 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1)	},
658 };
659 
660 static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
661 	PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, BROADWELL),
662 	{0,}			/* 0 terminated list. */
663 };
664 
665 
666 /****************************************************************************
667 			Ancillary status routines
668  ****************************************************************************/
669 
670 static inline int numrank(enum type type, u32 mtr)
671 {
672 	int ranks = (1 << RANK_CNT_BITS(mtr));
673 	int max = 4;
674 
675 	if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
676 		max = 8;
677 
678 	if (ranks > max) {
679 		edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
680 			 ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
681 		return -EINVAL;
682 	}
683 
684 	return ranks;
685 }
686 
687 static inline int numrow(u32 mtr)
688 {
689 	int rows = (RANK_WIDTH_BITS(mtr) + 12);
690 
691 	if (rows < 13 || rows > 18) {
692 		edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
693 			 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
694 		return -EINVAL;
695 	}
696 
697 	return 1 << rows;
698 }
699 
700 static inline int numcol(u32 mtr)
701 {
702 	int cols = (COL_WIDTH_BITS(mtr) + 10);
703 
704 	if (cols > 12) {
705 		edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
706 			 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
707 		return -EINVAL;
708 	}
709 
710 	return 1 << cols;
711 }
712 
713 static struct sbridge_dev *get_sbridge_dev(u8 bus, int multi_bus)
714 {
715 	struct sbridge_dev *sbridge_dev;
716 
717 	/*
718 	 * If we have devices scattered across several busses that pertain
719 	 * to the same memory controller, we'll lump them all together.
720 	 */
721 	if (multi_bus) {
722 		return list_first_entry_or_null(&sbridge_edac_list,
723 				struct sbridge_dev, list);
724 	}
725 
726 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
727 		if (sbridge_dev->bus == bus)
728 			return sbridge_dev;
729 	}
730 
731 	return NULL;
732 }
733 
734 static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
735 					   const struct pci_id_table *table)
736 {
737 	struct sbridge_dev *sbridge_dev;
738 
739 	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
740 	if (!sbridge_dev)
741 		return NULL;
742 
743 	sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
744 				   GFP_KERNEL);
745 	if (!sbridge_dev->pdev) {
746 		kfree(sbridge_dev);
747 		return NULL;
748 	}
749 
750 	sbridge_dev->bus = bus;
751 	sbridge_dev->n_devs = table->n_devs;
752 	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
753 
754 	return sbridge_dev;
755 }
756 
757 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
758 {
759 	list_del(&sbridge_dev->list);
760 	kfree(sbridge_dev->pdev);
761 	kfree(sbridge_dev);
762 }
763 
764 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
765 {
766 	u32 reg;
767 
768 	/* Address range is 32:28 */
769 	pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
770 	return GET_TOLM(reg);
771 }
772 
773 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
774 {
775 	u32 reg;
776 
777 	pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
778 	return GET_TOHM(reg);
779 }
780 
781 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
782 {
783 	u32 reg;
784 
785 	pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
786 
787 	return GET_TOLM(reg);
788 }
789 
790 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
791 {
792 	u32 reg;
793 
794 	pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
795 
796 	return GET_TOHM(reg);
797 }
798 
799 static u64 rir_limit(u32 reg)
800 {
801 	return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
802 }
803 
804 static u64 sad_limit(u32 reg)
805 {
806 	return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
807 }
808 
809 static u32 interleave_mode(u32 reg)
810 {
811 	return GET_BITFIELD(reg, 1, 1);
812 }
813 
814 char *show_interleave_mode(u32 reg)
815 {
816 	return interleave_mode(reg) ? "8:6" : "[8:6]XOR[18:16]";
817 }
818 
819 static u32 dram_attr(u32 reg)
820 {
821 	return GET_BITFIELD(reg, 2, 3);
822 }
823 
824 static u64 knl_sad_limit(u32 reg)
825 {
826 	return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
827 }
828 
829 static u32 knl_interleave_mode(u32 reg)
830 {
831 	return GET_BITFIELD(reg, 1, 2);
832 }
833 
834 static char *knl_show_interleave_mode(u32 reg)
835 {
836 	char *s;
837 
838 	switch (knl_interleave_mode(reg)) {
839 	case 0:
840 		s = "use address bits [8:6]";
841 		break;
842 	case 1:
843 		s = "use address bits [10:8]";
844 		break;
845 	case 2:
846 		s = "use address bits [14:12]";
847 		break;
848 	case 3:
849 		s = "use address bits [32:30]";
850 		break;
851 	default:
852 		WARN_ON(1);
853 		break;
854 	}
855 
856 	return s;
857 }
858 
859 static u32 dram_attr_knl(u32 reg)
860 {
861 	return GET_BITFIELD(reg, 3, 4);
862 }
863 
864 
865 static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
866 {
867 	u32 reg;
868 	enum mem_type mtype;
869 
870 	if (pvt->pci_ddrio) {
871 		pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
872 				      &reg);
873 		if (GET_BITFIELD(reg, 11, 11))
874 			/* FIXME: Can also be LRDIMM */
875 			mtype = MEM_RDDR3;
876 		else
877 			mtype = MEM_DDR3;
878 	} else
879 		mtype = MEM_UNKNOWN;
880 
881 	return mtype;
882 }
883 
884 static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
885 {
886 	u32 reg;
887 	bool registered = false;
888 	enum mem_type mtype = MEM_UNKNOWN;
889 
890 	if (!pvt->pci_ddrio)
891 		goto out;
892 
893 	pci_read_config_dword(pvt->pci_ddrio,
894 			      HASWELL_DDRCRCLKCONTROLS, &reg);
895 	/* Is_Rdimm */
896 	if (GET_BITFIELD(reg, 16, 16))
897 		registered = true;
898 
899 	pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
900 	if (GET_BITFIELD(reg, 14, 14)) {
901 		if (registered)
902 			mtype = MEM_RDDR4;
903 		else
904 			mtype = MEM_DDR4;
905 	} else {
906 		if (registered)
907 			mtype = MEM_RDDR3;
908 		else
909 			mtype = MEM_DDR3;
910 	}
911 
912 out:
913 	return mtype;
914 }
915 
916 static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
917 {
918 	/* for KNL value is fixed */
919 	return DEV_X16;
920 }
921 
922 static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
923 {
924 	/* there's no way to figure out */
925 	return DEV_UNKNOWN;
926 }
927 
928 static enum dev_type __ibridge_get_width(u32 mtr)
929 {
930 	enum dev_type type;
931 
932 	switch (mtr) {
933 	case 3:
934 		type = DEV_UNKNOWN;
935 		break;
936 	case 2:
937 		type = DEV_X16;
938 		break;
939 	case 1:
940 		type = DEV_X8;
941 		break;
942 	case 0:
943 		type = DEV_X4;
944 		break;
945 	}
946 
947 	return type;
948 }
949 
950 static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
951 {
952 	/*
953 	 * ddr3_width on the documentation but also valid for DDR4 on
954 	 * Haswell
955 	 */
956 	return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
957 }
958 
959 static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
960 {
961 	/* ddr3_width on the documentation but also valid for DDR4 */
962 	return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
963 }
964 
965 static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
966 {
967 	/* DDR4 RDIMMS and LRDIMMS are supported */
968 	return MEM_RDDR4;
969 }
970 
971 static u8 get_node_id(struct sbridge_pvt *pvt)
972 {
973 	u32 reg;
974 	pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
975 	return GET_BITFIELD(reg, 0, 2);
976 }
977 
978 static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
979 {
980 	u32 reg;
981 
982 	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
983 	return GET_BITFIELD(reg, 0, 3);
984 }
985 
986 static u8 knl_get_node_id(struct sbridge_pvt *pvt)
987 {
988 	u32 reg;
989 
990 	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
991 	return GET_BITFIELD(reg, 0, 2);
992 }
993 
994 
995 static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
996 {
997 	u32 reg;
998 
999 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
1000 	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1001 }
1002 
1003 static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
1004 {
1005 	u64 rc;
1006 	u32 reg;
1007 
1008 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
1009 	rc = GET_BITFIELD(reg, 26, 31);
1010 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
1011 	rc = ((reg << 6) | rc) << 26;
1012 
1013 	return rc | 0x1ffffff;
1014 }
1015 
1016 static u64 knl_get_tolm(struct sbridge_pvt *pvt)
1017 {
1018 	u32 reg;
1019 
1020 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
1021 	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1022 }
1023 
1024 static u64 knl_get_tohm(struct sbridge_pvt *pvt)
1025 {
1026 	u64 rc;
1027 	u32 reg_lo, reg_hi;
1028 
1029 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
1030 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
1031 	rc = ((u64)reg_hi << 32) | reg_lo;
1032 	return rc | 0x3ffffff;
1033 }
1034 
1035 
1036 static u64 haswell_rir_limit(u32 reg)
1037 {
1038 	return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
1039 }
1040 
1041 static inline u8 sad_pkg_socket(u8 pkg)
1042 {
1043 	/* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1044 	return ((pkg >> 3) << 2) | (pkg & 0x3);
1045 }
1046 
1047 static inline u8 sad_pkg_ha(u8 pkg)
1048 {
1049 	return (pkg >> 2) & 0x1;
1050 }
1051 
1052 static int haswell_chan_hash(int idx, u64 addr)
1053 {
1054 	int i;
1055 
1056 	/*
1057 	 * XOR even bits from 12:26 to bit0 of idx,
1058 	 *     odd bits from 13:27 to bit1
1059 	 */
1060 	for (i = 12; i < 28; i += 2)
1061 		idx ^= (addr >> i) & 3;
1062 
1063 	return idx;
1064 }
1065 
1066 /****************************************************************************
1067 			Memory check routines
1068  ****************************************************************************/
1069 static struct pci_dev *get_pdev_same_bus(u8 bus, u32 id)
1070 {
1071 	struct pci_dev *pdev = NULL;
1072 
1073 	do {
1074 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, pdev);
1075 		if (pdev && pdev->bus->number == bus)
1076 			break;
1077 	} while (pdev);
1078 
1079 	return pdev;
1080 }
1081 
1082 /**
1083  * check_if_ecc_is_active() - Checks if ECC is active
1084  * @bus:	Device bus
1085  * @type:	Memory controller type
1086  * returns: 0 in case ECC is active, -ENODEV if it can't be determined or
1087  *	    disabled
1088  */
1089 static int check_if_ecc_is_active(const u8 bus, enum type type)
1090 {
1091 	struct pci_dev *pdev = NULL;
1092 	u32 mcmtr, id;
1093 
1094 	switch (type) {
1095 	case IVY_BRIDGE:
1096 		id = PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA;
1097 		break;
1098 	case HASWELL:
1099 		id = PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA;
1100 		break;
1101 	case SANDY_BRIDGE:
1102 		id = PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA;
1103 		break;
1104 	case BROADWELL:
1105 		id = PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA;
1106 		break;
1107 	case KNIGHTS_LANDING:
1108 		/*
1109 		 * KNL doesn't group things by bus the same way
1110 		 * SB/IB/Haswell does.
1111 		 */
1112 		id = PCI_DEVICE_ID_INTEL_KNL_IMC_TA;
1113 		break;
1114 	default:
1115 		return -ENODEV;
1116 	}
1117 
1118 	if (type != KNIGHTS_LANDING)
1119 		pdev = get_pdev_same_bus(bus, id);
1120 	else
1121 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, 0);
1122 
1123 	if (!pdev) {
1124 		sbridge_printk(KERN_ERR, "Couldn't find PCI device "
1125 					"%04x:%04x! on bus %02d\n",
1126 					PCI_VENDOR_ID_INTEL, id, bus);
1127 		return -ENODEV;
1128 	}
1129 
1130 	pci_read_config_dword(pdev,
1131 			type == KNIGHTS_LANDING ? KNL_MCMTR : MCMTR, &mcmtr);
1132 	if (!IS_ECC_ENABLED(mcmtr)) {
1133 		sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
1134 		return -ENODEV;
1135 	}
1136 	return 0;
1137 }
1138 
1139 /* Low bits of TAD limit, and some metadata. */
1140 static const u32 knl_tad_dram_limit_lo[] = {
1141 	0x400, 0x500, 0x600, 0x700,
1142 	0x800, 0x900, 0xa00, 0xb00,
1143 };
1144 
1145 /* Low bits of TAD offset. */
1146 static const u32 knl_tad_dram_offset_lo[] = {
1147 	0x404, 0x504, 0x604, 0x704,
1148 	0x804, 0x904, 0xa04, 0xb04,
1149 };
1150 
1151 /* High 16 bits of TAD limit and offset. */
1152 static const u32 knl_tad_dram_hi[] = {
1153 	0x408, 0x508, 0x608, 0x708,
1154 	0x808, 0x908, 0xa08, 0xb08,
1155 };
1156 
1157 /* Number of ways a tad entry is interleaved. */
1158 static const u32 knl_tad_ways[] = {
1159 	8, 6, 4, 3, 2, 1,
1160 };
1161 
1162 /*
1163  * Retrieve the n'th Target Address Decode table entry
1164  * from the memory controller's TAD table.
1165  *
1166  * @pvt:	driver private data
1167  * @entry:	which entry you want to retrieve
1168  * @mc:		which memory controller (0 or 1)
1169  * @offset:	output tad range offset
1170  * @limit:	output address of first byte above tad range
1171  * @ways:	output number of interleave ways
1172  *
1173  * The offset value has curious semantics.  It's a sort of running total
1174  * of the sizes of all the memory regions that aren't mapped in this
1175  * tad table.
1176  */
1177 static int knl_get_tad(const struct sbridge_pvt *pvt,
1178 		const int entry,
1179 		const int mc,
1180 		u64 *offset,
1181 		u64 *limit,
1182 		int *ways)
1183 {
1184 	u32 reg_limit_lo, reg_offset_lo, reg_hi;
1185 	struct pci_dev *pci_mc;
1186 	int way_id;
1187 
1188 	switch (mc) {
1189 	case 0:
1190 		pci_mc = pvt->knl.pci_mc0;
1191 		break;
1192 	case 1:
1193 		pci_mc = pvt->knl.pci_mc1;
1194 		break;
1195 	default:
1196 		WARN_ON(1);
1197 		return -EINVAL;
1198 	}
1199 
1200 	pci_read_config_dword(pci_mc,
1201 			knl_tad_dram_limit_lo[entry], &reg_limit_lo);
1202 	pci_read_config_dword(pci_mc,
1203 			knl_tad_dram_offset_lo[entry], &reg_offset_lo);
1204 	pci_read_config_dword(pci_mc,
1205 			knl_tad_dram_hi[entry], &reg_hi);
1206 
1207 	/* Is this TAD entry enabled? */
1208 	if (!GET_BITFIELD(reg_limit_lo, 0, 0))
1209 		return -ENODEV;
1210 
1211 	way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
1212 
1213 	if (way_id < ARRAY_SIZE(knl_tad_ways)) {
1214 		*ways = knl_tad_ways[way_id];
1215 	} else {
1216 		*ways = 0;
1217 		sbridge_printk(KERN_ERR,
1218 				"Unexpected value %d in mc_tad_limit_lo wayness field\n",
1219 				way_id);
1220 		return -ENODEV;
1221 	}
1222 
1223 	/*
1224 	 * The least significant 6 bits of base and limit are truncated.
1225 	 * For limit, we fill the missing bits with 1s.
1226 	 */
1227 	*offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
1228 				((u64) GET_BITFIELD(reg_hi, 0,  15) << 32);
1229 	*limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 |
1230 				((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
1231 
1232 	return 0;
1233 }
1234 
1235 /* Determine which memory controller is responsible for a given channel. */
1236 static int knl_channel_mc(int channel)
1237 {
1238 	WARN_ON(channel < 0 || channel >= 6);
1239 
1240 	return channel < 3 ? 1 : 0;
1241 }
1242 
1243 /*
1244  * Get the Nth entry from EDC_ROUTE_TABLE register.
1245  * (This is the per-tile mapping of logical interleave targets to
1246  *  physical EDC modules.)
1247  *
1248  * entry 0: 0:2
1249  *       1: 3:5
1250  *       2: 6:8
1251  *       3: 9:11
1252  *       4: 12:14
1253  *       5: 15:17
1254  *       6: 18:20
1255  *       7: 21:23
1256  * reserved: 24:31
1257  */
1258 static u32 knl_get_edc_route(int entry, u32 reg)
1259 {
1260 	WARN_ON(entry >= KNL_MAX_EDCS);
1261 	return GET_BITFIELD(reg, entry*3, (entry*3)+2);
1262 }
1263 
1264 /*
1265  * Get the Nth entry from MC_ROUTE_TABLE register.
1266  * (This is the per-tile mapping of logical interleave targets to
1267  *  physical DRAM channels modules.)
1268  *
1269  * entry 0: mc 0:2   channel 18:19
1270  *       1: mc 3:5   channel 20:21
1271  *       2: mc 6:8   channel 22:23
1272  *       3: mc 9:11  channel 24:25
1273  *       4: mc 12:14 channel 26:27
1274  *       5: mc 15:17 channel 28:29
1275  * reserved: 30:31
1276  *
1277  * Though we have 3 bits to identify the MC, we should only see
1278  * the values 0 or 1.
1279  */
1280 
1281 static u32 knl_get_mc_route(int entry, u32 reg)
1282 {
1283 	int mc, chan;
1284 
1285 	WARN_ON(entry >= KNL_MAX_CHANNELS);
1286 
1287 	mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
1288 	chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
1289 
1290 	return knl_channel_remap(mc, chan);
1291 }
1292 
1293 /*
1294  * Render the EDC_ROUTE register in human-readable form.
1295  * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1296  */
1297 static void knl_show_edc_route(u32 reg, char *s)
1298 {
1299 	int i;
1300 
1301 	for (i = 0; i < KNL_MAX_EDCS; i++) {
1302 		s[i*2] = knl_get_edc_route(i, reg) + '0';
1303 		s[i*2+1] = '-';
1304 	}
1305 
1306 	s[KNL_MAX_EDCS*2 - 1] = '\0';
1307 }
1308 
1309 /*
1310  * Render the MC_ROUTE register in human-readable form.
1311  * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1312  */
1313 static void knl_show_mc_route(u32 reg, char *s)
1314 {
1315 	int i;
1316 
1317 	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
1318 		s[i*2] = knl_get_mc_route(i, reg) + '0';
1319 		s[i*2+1] = '-';
1320 	}
1321 
1322 	s[KNL_MAX_CHANNELS*2 - 1] = '\0';
1323 }
1324 
1325 #define KNL_EDC_ROUTE 0xb8
1326 #define KNL_MC_ROUTE 0xb4
1327 
1328 /* Is this dram rule backed by regular DRAM in flat mode? */
1329 #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1330 
1331 /* Is this dram rule cached? */
1332 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1333 
1334 /* Is this rule backed by edc ? */
1335 #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1336 
1337 /* Is this rule backed by DRAM, cacheable in EDRAM? */
1338 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1339 
1340 /* Is this rule mod3? */
1341 #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1342 
1343 /*
1344  * Figure out how big our RAM modules are.
1345  *
1346  * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1347  * have to figure this out from the SAD rules, interleave lists, route tables,
1348  * and TAD rules.
1349  *
1350  * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1351  * inspect the TAD rules to figure out how large the SAD regions really are.
1352  *
1353  * When we know the real size of a SAD region and how many ways it's
1354  * interleaved, we know the individual contribution of each channel to
1355  * TAD is size/ways.
1356  *
1357  * Finally, we have to check whether each channel participates in each SAD
1358  * region.
1359  *
1360  * Fortunately, KNL only supports one DIMM per channel, so once we know how
1361  * much memory the channel uses, we know the DIMM is at least that large.
1362  * (The BIOS might possibly choose not to map all available memory, in which
1363  * case we will underreport the size of the DIMM.)
1364  *
1365  * In theory, we could try to determine the EDC sizes as well, but that would
1366  * only work in flat mode, not in cache mode.
1367  *
1368  * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1369  *            elements)
1370  */
1371 static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
1372 {
1373 	u64 sad_base, sad_size, sad_limit = 0;
1374 	u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
1375 	int sad_rule = 0;
1376 	int tad_rule = 0;
1377 	int intrlv_ways, tad_ways;
1378 	u32 first_pkg, pkg;
1379 	int i;
1380 	u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
1381 	u32 dram_rule, interleave_reg;
1382 	u32 mc_route_reg[KNL_MAX_CHAS];
1383 	u32 edc_route_reg[KNL_MAX_CHAS];
1384 	int edram_only;
1385 	char edc_route_string[KNL_MAX_EDCS*2];
1386 	char mc_route_string[KNL_MAX_CHANNELS*2];
1387 	int cur_reg_start;
1388 	int mc;
1389 	int channel;
1390 	int way;
1391 	int participants[KNL_MAX_CHANNELS];
1392 	int participant_count = 0;
1393 
1394 	for (i = 0; i < KNL_MAX_CHANNELS; i++)
1395 		mc_sizes[i] = 0;
1396 
1397 	/* Read the EDC route table in each CHA. */
1398 	cur_reg_start = 0;
1399 	for (i = 0; i < KNL_MAX_CHAS; i++) {
1400 		pci_read_config_dword(pvt->knl.pci_cha[i],
1401 				KNL_EDC_ROUTE, &edc_route_reg[i]);
1402 
1403 		if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
1404 			knl_show_edc_route(edc_route_reg[i-1],
1405 					edc_route_string);
1406 			if (cur_reg_start == i-1)
1407 				edac_dbg(0, "edc route table for CHA %d: %s\n",
1408 					cur_reg_start, edc_route_string);
1409 			else
1410 				edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1411 					cur_reg_start, i-1, edc_route_string);
1412 			cur_reg_start = i;
1413 		}
1414 	}
1415 	knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
1416 	if (cur_reg_start == i-1)
1417 		edac_dbg(0, "edc route table for CHA %d: %s\n",
1418 			cur_reg_start, edc_route_string);
1419 	else
1420 		edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1421 			cur_reg_start, i-1, edc_route_string);
1422 
1423 	/* Read the MC route table in each CHA. */
1424 	cur_reg_start = 0;
1425 	for (i = 0; i < KNL_MAX_CHAS; i++) {
1426 		pci_read_config_dword(pvt->knl.pci_cha[i],
1427 			KNL_MC_ROUTE, &mc_route_reg[i]);
1428 
1429 		if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
1430 			knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1431 			if (cur_reg_start == i-1)
1432 				edac_dbg(0, "mc route table for CHA %d: %s\n",
1433 					cur_reg_start, mc_route_string);
1434 			else
1435 				edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1436 					cur_reg_start, i-1, mc_route_string);
1437 			cur_reg_start = i;
1438 		}
1439 	}
1440 	knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1441 	if (cur_reg_start == i-1)
1442 		edac_dbg(0, "mc route table for CHA %d: %s\n",
1443 			cur_reg_start, mc_route_string);
1444 	else
1445 		edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1446 			cur_reg_start, i-1, mc_route_string);
1447 
1448 	/* Process DRAM rules */
1449 	for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
1450 		/* previous limit becomes the new base */
1451 		sad_base = sad_limit;
1452 
1453 		pci_read_config_dword(pvt->pci_sad0,
1454 			pvt->info.dram_rule[sad_rule], &dram_rule);
1455 
1456 		if (!DRAM_RULE_ENABLE(dram_rule))
1457 			break;
1458 
1459 		edram_only = KNL_EDRAM_ONLY(dram_rule);
1460 
1461 		sad_limit = pvt->info.sad_limit(dram_rule)+1;
1462 		sad_size = sad_limit - sad_base;
1463 
1464 		pci_read_config_dword(pvt->pci_sad0,
1465 			pvt->info.interleave_list[sad_rule], &interleave_reg);
1466 
1467 		/*
1468 		 * Find out how many ways this dram rule is interleaved.
1469 		 * We stop when we see the first channel again.
1470 		 */
1471 		first_pkg = sad_pkg(pvt->info.interleave_pkg,
1472 						interleave_reg, 0);
1473 		for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
1474 			pkg = sad_pkg(pvt->info.interleave_pkg,
1475 						interleave_reg, intrlv_ways);
1476 
1477 			if ((pkg & 0x8) == 0) {
1478 				/*
1479 				 * 0 bit means memory is non-local,
1480 				 * which KNL doesn't support
1481 				 */
1482 				edac_dbg(0, "Unexpected interleave target %d\n",
1483 					pkg);
1484 				return -1;
1485 			}
1486 
1487 			if (pkg == first_pkg)
1488 				break;
1489 		}
1490 		if (KNL_MOD3(dram_rule))
1491 			intrlv_ways *= 3;
1492 
1493 		edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1494 			sad_rule,
1495 			sad_base,
1496 			sad_limit,
1497 			intrlv_ways,
1498 			edram_only ? ", EDRAM" : "");
1499 
1500 		/*
1501 		 * Find out how big the SAD region really is by iterating
1502 		 * over TAD tables (SAD regions may contain holes).
1503 		 * Each memory controller might have a different TAD table, so
1504 		 * we have to look at both.
1505 		 *
1506 		 * Livespace is the memory that's mapped in this TAD table,
1507 		 * deadspace is the holes (this could be the MMIO hole, or it
1508 		 * could be memory that's mapped by the other TAD table but
1509 		 * not this one).
1510 		 */
1511 		for (mc = 0; mc < 2; mc++) {
1512 			sad_actual_size[mc] = 0;
1513 			tad_livespace = 0;
1514 			for (tad_rule = 0;
1515 					tad_rule < ARRAY_SIZE(
1516 						knl_tad_dram_limit_lo);
1517 					tad_rule++) {
1518 				if (knl_get_tad(pvt,
1519 						tad_rule,
1520 						mc,
1521 						&tad_deadspace,
1522 						&tad_limit,
1523 						&tad_ways))
1524 					break;
1525 
1526 				tad_size = (tad_limit+1) -
1527 					(tad_livespace + tad_deadspace);
1528 				tad_livespace += tad_size;
1529 				tad_base = (tad_limit+1) - tad_size;
1530 
1531 				if (tad_base < sad_base) {
1532 					if (tad_limit > sad_base)
1533 						edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1534 				} else if (tad_base < sad_limit) {
1535 					if (tad_limit+1 > sad_limit) {
1536 						edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1537 					} else {
1538 						/* TAD region is completely inside SAD region */
1539 						edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1540 							tad_rule, tad_base,
1541 							tad_limit, tad_size,
1542 							mc);
1543 						sad_actual_size[mc] += tad_size;
1544 					}
1545 				}
1546 				tad_base = tad_limit+1;
1547 			}
1548 		}
1549 
1550 		for (mc = 0; mc < 2; mc++) {
1551 			edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1552 				mc, sad_actual_size[mc], sad_actual_size[mc]);
1553 		}
1554 
1555 		/* Ignore EDRAM rule */
1556 		if (edram_only)
1557 			continue;
1558 
1559 		/* Figure out which channels participate in interleave. */
1560 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
1561 			participants[channel] = 0;
1562 
1563 		/* For each channel, does at least one CHA have
1564 		 * this channel mapped to the given target?
1565 		 */
1566 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1567 			for (way = 0; way < intrlv_ways; way++) {
1568 				int target;
1569 				int cha;
1570 
1571 				if (KNL_MOD3(dram_rule))
1572 					target = way;
1573 				else
1574 					target = 0x7 & sad_pkg(
1575 				pvt->info.interleave_pkg, interleave_reg, way);
1576 
1577 				for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
1578 					if (knl_get_mc_route(target,
1579 						mc_route_reg[cha]) == channel
1580 						&& !participants[channel]) {
1581 						participant_count++;
1582 						participants[channel] = 1;
1583 						break;
1584 					}
1585 				}
1586 			}
1587 		}
1588 
1589 		if (participant_count != intrlv_ways)
1590 			edac_dbg(0, "participant_count (%d) != interleave_ways (%d): DIMM size may be incorrect\n",
1591 				participant_count, intrlv_ways);
1592 
1593 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1594 			mc = knl_channel_mc(channel);
1595 			if (participants[channel]) {
1596 				edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1597 					channel,
1598 					sad_actual_size[mc]/intrlv_ways,
1599 					sad_rule);
1600 				mc_sizes[channel] +=
1601 					sad_actual_size[mc]/intrlv_ways;
1602 			}
1603 		}
1604 	}
1605 
1606 	return 0;
1607 }
1608 
1609 static int get_dimm_config(struct mem_ctl_info *mci)
1610 {
1611 	struct sbridge_pvt *pvt = mci->pvt_info;
1612 	struct dimm_info *dimm;
1613 	unsigned i, j, banks, ranks, rows, cols, npages;
1614 	u64 size;
1615 	u32 reg;
1616 	enum edac_type mode;
1617 	enum mem_type mtype;
1618 	int channels = pvt->info.type == KNIGHTS_LANDING ?
1619 		KNL_MAX_CHANNELS : NUM_CHANNELS;
1620 	u64 knl_mc_sizes[KNL_MAX_CHANNELS];
1621 
1622 	if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1623 		pci_read_config_dword(pvt->pci_ha0, HASWELL_HASYSDEFEATURE2, &reg);
1624 		pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
1625 	}
1626 	if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
1627 			pvt->info.type == KNIGHTS_LANDING)
1628 		pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
1629 	else
1630 		pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
1631 
1632 	if (pvt->info.type == KNIGHTS_LANDING)
1633 		pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
1634 	else
1635 		pvt->sbridge_dev->source_id = SOURCE_ID(reg);
1636 
1637 	pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
1638 	edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1639 		 pvt->sbridge_dev->mc,
1640 		 pvt->sbridge_dev->node_id,
1641 		 pvt->sbridge_dev->source_id);
1642 
1643 	/* KNL doesn't support mirroring or lockstep,
1644 	 * and is always closed page
1645 	 */
1646 	if (pvt->info.type == KNIGHTS_LANDING) {
1647 		mode = EDAC_S4ECD4ED;
1648 		pvt->is_mirrored = false;
1649 
1650 		if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
1651 			return -1;
1652 	} else {
1653 		pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
1654 		if (IS_MIRROR_ENABLED(reg)) {
1655 			edac_dbg(0, "Memory mirror is enabled\n");
1656 			pvt->is_mirrored = true;
1657 		} else {
1658 			edac_dbg(0, "Memory mirror is disabled\n");
1659 			pvt->is_mirrored = false;
1660 		}
1661 
1662 		pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
1663 		if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
1664 			edac_dbg(0, "Lockstep is enabled\n");
1665 			mode = EDAC_S8ECD8ED;
1666 			pvt->is_lockstep = true;
1667 		} else {
1668 			edac_dbg(0, "Lockstep is disabled\n");
1669 			mode = EDAC_S4ECD4ED;
1670 			pvt->is_lockstep = false;
1671 		}
1672 		if (IS_CLOSE_PG(pvt->info.mcmtr)) {
1673 			edac_dbg(0, "address map is on closed page mode\n");
1674 			pvt->is_close_pg = true;
1675 		} else {
1676 			edac_dbg(0, "address map is on open page mode\n");
1677 			pvt->is_close_pg = false;
1678 		}
1679 	}
1680 
1681 	mtype = pvt->info.get_memory_type(pvt);
1682 	if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
1683 		edac_dbg(0, "Memory is registered\n");
1684 	else if (mtype == MEM_UNKNOWN)
1685 		edac_dbg(0, "Cannot determine memory type\n");
1686 	else
1687 		edac_dbg(0, "Memory is unregistered\n");
1688 
1689 	if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
1690 		banks = 16;
1691 	else
1692 		banks = 8;
1693 
1694 	for (i = 0; i < channels; i++) {
1695 		u32 mtr;
1696 
1697 		int max_dimms_per_channel;
1698 
1699 		if (pvt->info.type == KNIGHTS_LANDING) {
1700 			max_dimms_per_channel = 1;
1701 			if (!pvt->knl.pci_channel[i])
1702 				continue;
1703 		} else {
1704 			max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
1705 			if (!pvt->pci_tad[i])
1706 				continue;
1707 		}
1708 
1709 		for (j = 0; j < max_dimms_per_channel; j++) {
1710 			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
1711 				       i, j, 0);
1712 			if (pvt->info.type == KNIGHTS_LANDING) {
1713 				pci_read_config_dword(pvt->knl.pci_channel[i],
1714 					knl_mtr_reg, &mtr);
1715 			} else {
1716 				pci_read_config_dword(pvt->pci_tad[i],
1717 					mtr_regs[j], &mtr);
1718 			}
1719 			edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
1720 			if (IS_DIMM_PRESENT(mtr)) {
1721 				pvt->channel[i].dimms++;
1722 
1723 				ranks = numrank(pvt->info.type, mtr);
1724 
1725 				if (pvt->info.type == KNIGHTS_LANDING) {
1726 					/* For DDR4, this is fixed. */
1727 					cols = 1 << 10;
1728 					rows = knl_mc_sizes[i] /
1729 						((u64) cols * ranks * banks * 8);
1730 				} else {
1731 					rows = numrow(mtr);
1732 					cols = numcol(mtr);
1733 				}
1734 
1735 				size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1736 				npages = MiB_TO_PAGES(size);
1737 
1738 				edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1739 					 pvt->sbridge_dev->mc, i/4, i%4, j,
1740 					 size, npages,
1741 					 banks, ranks, rows, cols);
1742 
1743 				dimm->nr_pages = npages;
1744 				dimm->grain = 32;
1745 				dimm->dtype = pvt->info.get_width(pvt, mtr);
1746 				dimm->mtype = mtype;
1747 				dimm->edac_mode = mode;
1748 				snprintf(dimm->label, sizeof(dimm->label),
1749 					 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1750 					 pvt->sbridge_dev->source_id, i/4, i%4, j);
1751 			}
1752 		}
1753 	}
1754 
1755 	return 0;
1756 }
1757 
1758 static void get_memory_layout(const struct mem_ctl_info *mci)
1759 {
1760 	struct sbridge_pvt *pvt = mci->pvt_info;
1761 	int i, j, k, n_sads, n_tads, sad_interl;
1762 	u32 reg;
1763 	u64 limit, prv = 0;
1764 	u64 tmp_mb;
1765 	u32 gb, mb;
1766 	u32 rir_way;
1767 
1768 	/*
1769 	 * Step 1) Get TOLM/TOHM ranges
1770 	 */
1771 
1772 	pvt->tolm = pvt->info.get_tolm(pvt);
1773 	tmp_mb = (1 + pvt->tolm) >> 20;
1774 
1775 	gb = div_u64_rem(tmp_mb, 1024, &mb);
1776 	edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1777 		gb, (mb*1000)/1024, (u64)pvt->tolm);
1778 
1779 	/* Address range is already 45:25 */
1780 	pvt->tohm = pvt->info.get_tohm(pvt);
1781 	tmp_mb = (1 + pvt->tohm) >> 20;
1782 
1783 	gb = div_u64_rem(tmp_mb, 1024, &mb);
1784 	edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1785 		gb, (mb*1000)/1024, (u64)pvt->tohm);
1786 
1787 	/*
1788 	 * Step 2) Get SAD range and SAD Interleave list
1789 	 * TAD registers contain the interleave wayness. However, it
1790 	 * seems simpler to just discover it indirectly, with the
1791 	 * algorithm bellow.
1792 	 */
1793 	prv = 0;
1794 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1795 		/* SAD_LIMIT Address range is 45:26 */
1796 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1797 				      &reg);
1798 		limit = pvt->info.sad_limit(reg);
1799 
1800 		if (!DRAM_RULE_ENABLE(reg))
1801 			continue;
1802 
1803 		if (limit <= prv)
1804 			break;
1805 
1806 		tmp_mb = (limit + 1) >> 20;
1807 		gb = div_u64_rem(tmp_mb, 1024, &mb);
1808 		edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1809 			 n_sads,
1810 			 show_dram_attr(pvt->info.dram_attr(reg)),
1811 			 gb, (mb*1000)/1024,
1812 			 ((u64)tmp_mb) << 20L,
1813 			 pvt->info.show_interleave_mode(reg),
1814 			 reg);
1815 		prv = limit;
1816 
1817 		pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1818 				      &reg);
1819 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1820 		for (j = 0; j < 8; j++) {
1821 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1822 			if (j > 0 && sad_interl == pkg)
1823 				break;
1824 
1825 			edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1826 				 n_sads, j, pkg);
1827 		}
1828 	}
1829 
1830 	if (pvt->info.type == KNIGHTS_LANDING)
1831 		return;
1832 
1833 	/*
1834 	 * Step 3) Get TAD range
1835 	 */
1836 	prv = 0;
1837 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1838 		pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
1839 				      &reg);
1840 		limit = TAD_LIMIT(reg);
1841 		if (limit <= prv)
1842 			break;
1843 		tmp_mb = (limit + 1) >> 20;
1844 
1845 		gb = div_u64_rem(tmp_mb, 1024, &mb);
1846 		edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1847 			 n_tads, gb, (mb*1000)/1024,
1848 			 ((u64)tmp_mb) << 20L,
1849 			 (u32)(1 << TAD_SOCK(reg)),
1850 			 (u32)TAD_CH(reg) + 1,
1851 			 (u32)TAD_TGT0(reg),
1852 			 (u32)TAD_TGT1(reg),
1853 			 (u32)TAD_TGT2(reg),
1854 			 (u32)TAD_TGT3(reg),
1855 			 reg);
1856 		prv = limit;
1857 	}
1858 
1859 	/*
1860 	 * Step 4) Get TAD offsets, per each channel
1861 	 */
1862 	for (i = 0; i < NUM_CHANNELS; i++) {
1863 		if (!pvt->channel[i].dimms)
1864 			continue;
1865 		for (j = 0; j < n_tads; j++) {
1866 			pci_read_config_dword(pvt->pci_tad[i],
1867 					      tad_ch_nilv_offset[j],
1868 					      &reg);
1869 			tmp_mb = TAD_OFFSET(reg) >> 20;
1870 			gb = div_u64_rem(tmp_mb, 1024, &mb);
1871 			edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1872 				 i, j,
1873 				 gb, (mb*1000)/1024,
1874 				 ((u64)tmp_mb) << 20L,
1875 				 reg);
1876 		}
1877 	}
1878 
1879 	/*
1880 	 * Step 6) Get RIR Wayness/Limit, per each channel
1881 	 */
1882 	for (i = 0; i < NUM_CHANNELS; i++) {
1883 		if (!pvt->channel[i].dimms)
1884 			continue;
1885 		for (j = 0; j < MAX_RIR_RANGES; j++) {
1886 			pci_read_config_dword(pvt->pci_tad[i],
1887 					      rir_way_limit[j],
1888 					      &reg);
1889 
1890 			if (!IS_RIR_VALID(reg))
1891 				continue;
1892 
1893 			tmp_mb = pvt->info.rir_limit(reg) >> 20;
1894 			rir_way = 1 << RIR_WAY(reg);
1895 			gb = div_u64_rem(tmp_mb, 1024, &mb);
1896 			edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1897 				 i, j,
1898 				 gb, (mb*1000)/1024,
1899 				 ((u64)tmp_mb) << 20L,
1900 				 rir_way,
1901 				 reg);
1902 
1903 			for (k = 0; k < rir_way; k++) {
1904 				pci_read_config_dword(pvt->pci_tad[i],
1905 						      rir_offset[j][k],
1906 						      &reg);
1907 				tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;
1908 
1909 				gb = div_u64_rem(tmp_mb, 1024, &mb);
1910 				edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1911 					 i, j, k,
1912 					 gb, (mb*1000)/1024,
1913 					 ((u64)tmp_mb) << 20L,
1914 					 (u32)RIR_RNK_TGT(pvt->info.type, reg),
1915 					 reg);
1916 			}
1917 		}
1918 	}
1919 }
1920 
1921 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
1922 {
1923 	struct sbridge_dev *sbridge_dev;
1924 
1925 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1926 		if (sbridge_dev->node_id == node_id)
1927 			return sbridge_dev->mci;
1928 	}
1929 	return NULL;
1930 }
1931 
1932 static int get_memory_error_data(struct mem_ctl_info *mci,
1933 				 u64 addr,
1934 				 u8 *socket, u8 *ha,
1935 				 long *channel_mask,
1936 				 u8 *rank,
1937 				 char **area_type, char *msg)
1938 {
1939 	struct mem_ctl_info	*new_mci;
1940 	struct sbridge_pvt *pvt = mci->pvt_info;
1941 	struct pci_dev		*pci_ha;
1942 	int			n_rir, n_sads, n_tads, sad_way, sck_xch;
1943 	int			sad_interl, idx, base_ch;
1944 	int			interleave_mode, shiftup = 0;
1945 	unsigned		sad_interleave[pvt->info.max_interleave];
1946 	u32			reg, dram_rule;
1947 	u8			ch_way, sck_way, pkg, sad_ha = 0, ch_add = 0;
1948 	u32			tad_offset;
1949 	u32			rir_way;
1950 	u32			mb, gb;
1951 	u64			ch_addr, offset, limit = 0, prv = 0;
1952 
1953 
1954 	/*
1955 	 * Step 0) Check if the address is at special memory ranges
1956 	 * The check bellow is probably enough to fill all cases where
1957 	 * the error is not inside a memory, except for the legacy
1958 	 * range (e. g. VGA addresses). It is unlikely, however, that the
1959 	 * memory controller would generate an error on that range.
1960 	 */
1961 	if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1962 		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
1963 		return -EINVAL;
1964 	}
1965 	if (addr >= (u64)pvt->tohm) {
1966 		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
1967 		return -EINVAL;
1968 	}
1969 
1970 	/*
1971 	 * Step 1) Get socket
1972 	 */
1973 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1974 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1975 				      &reg);
1976 
1977 		if (!DRAM_RULE_ENABLE(reg))
1978 			continue;
1979 
1980 		limit = pvt->info.sad_limit(reg);
1981 		if (limit <= prv) {
1982 			sprintf(msg, "Can't discover the memory socket");
1983 			return -EINVAL;
1984 		}
1985 		if  (addr <= limit)
1986 			break;
1987 		prv = limit;
1988 	}
1989 	if (n_sads == pvt->info.max_sad) {
1990 		sprintf(msg, "Can't discover the memory socket");
1991 		return -EINVAL;
1992 	}
1993 	dram_rule = reg;
1994 	*area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
1995 	interleave_mode = pvt->info.interleave_mode(dram_rule);
1996 
1997 	pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1998 			      &reg);
1999 
2000 	if (pvt->info.type == SANDY_BRIDGE) {
2001 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
2002 		for (sad_way = 0; sad_way < 8; sad_way++) {
2003 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
2004 			if (sad_way > 0 && sad_interl == pkg)
2005 				break;
2006 			sad_interleave[sad_way] = pkg;
2007 			edac_dbg(0, "SAD interleave #%d: %d\n",
2008 				 sad_way, sad_interleave[sad_way]);
2009 		}
2010 		edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
2011 			 pvt->sbridge_dev->mc,
2012 			 n_sads,
2013 			 addr,
2014 			 limit,
2015 			 sad_way + 7,
2016 			 !interleave_mode ? "" : "XOR[18:16]");
2017 		if (interleave_mode)
2018 			idx = ((addr >> 6) ^ (addr >> 16)) & 7;
2019 		else
2020 			idx = (addr >> 6) & 7;
2021 		switch (sad_way) {
2022 		case 1:
2023 			idx = 0;
2024 			break;
2025 		case 2:
2026 			idx = idx & 1;
2027 			break;
2028 		case 4:
2029 			idx = idx & 3;
2030 			break;
2031 		case 8:
2032 			break;
2033 		default:
2034 			sprintf(msg, "Can't discover socket interleave");
2035 			return -EINVAL;
2036 		}
2037 		*socket = sad_interleave[idx];
2038 		edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
2039 			 idx, sad_way, *socket);
2040 	} else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
2041 		int bits, a7mode = A7MODE(dram_rule);
2042 
2043 		if (a7mode) {
2044 			/* A7 mode swaps P9 with P6 */
2045 			bits = GET_BITFIELD(addr, 7, 8) << 1;
2046 			bits |= GET_BITFIELD(addr, 9, 9);
2047 		} else
2048 			bits = GET_BITFIELD(addr, 6, 8);
2049 
2050 		if (interleave_mode == 0) {
2051 			/* interleave mode will XOR {8,7,6} with {18,17,16} */
2052 			idx = GET_BITFIELD(addr, 16, 18);
2053 			idx ^= bits;
2054 		} else
2055 			idx = bits;
2056 
2057 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2058 		*socket = sad_pkg_socket(pkg);
2059 		sad_ha = sad_pkg_ha(pkg);
2060 		if (sad_ha)
2061 			ch_add = 4;
2062 
2063 		if (a7mode) {
2064 			/* MCChanShiftUpEnable */
2065 			pci_read_config_dword(pvt->pci_ha0,
2066 					      HASWELL_HASYSDEFEATURE2, &reg);
2067 			shiftup = GET_BITFIELD(reg, 22, 22);
2068 		}
2069 
2070 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2071 			 idx, *socket, sad_ha, shiftup);
2072 	} else {
2073 		/* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2074 		idx = (addr >> 6) & 7;
2075 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2076 		*socket = sad_pkg_socket(pkg);
2077 		sad_ha = sad_pkg_ha(pkg);
2078 		if (sad_ha)
2079 			ch_add = 4;
2080 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2081 			 idx, *socket, sad_ha);
2082 	}
2083 
2084 	*ha = sad_ha;
2085 
2086 	/*
2087 	 * Move to the proper node structure, in order to access the
2088 	 * right PCI registers
2089 	 */
2090 	new_mci = get_mci_for_node_id(*socket);
2091 	if (!new_mci) {
2092 		sprintf(msg, "Struct for socket #%u wasn't initialized",
2093 			*socket);
2094 		return -EINVAL;
2095 	}
2096 	mci = new_mci;
2097 	pvt = mci->pvt_info;
2098 
2099 	/*
2100 	 * Step 2) Get memory channel
2101 	 */
2102 	prv = 0;
2103 	if (pvt->info.type == SANDY_BRIDGE)
2104 		pci_ha = pvt->pci_ha0;
2105 	else {
2106 		if (sad_ha)
2107 			pci_ha = pvt->pci_ha1;
2108 		else
2109 			pci_ha = pvt->pci_ha0;
2110 	}
2111 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
2112 		pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
2113 		limit = TAD_LIMIT(reg);
2114 		if (limit <= prv) {
2115 			sprintf(msg, "Can't discover the memory channel");
2116 			return -EINVAL;
2117 		}
2118 		if  (addr <= limit)
2119 			break;
2120 		prv = limit;
2121 	}
2122 	if (n_tads == MAX_TAD) {
2123 		sprintf(msg, "Can't discover the memory channel");
2124 		return -EINVAL;
2125 	}
2126 
2127 	ch_way = TAD_CH(reg) + 1;
2128 	sck_way = TAD_SOCK(reg);
2129 
2130 	if (ch_way == 3)
2131 		idx = addr >> 6;
2132 	else {
2133 		idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
2134 		if (pvt->is_chan_hash)
2135 			idx = haswell_chan_hash(idx, addr);
2136 	}
2137 	idx = idx % ch_way;
2138 
2139 	/*
2140 	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2141 	 */
2142 	switch (idx) {
2143 	case 0:
2144 		base_ch = TAD_TGT0(reg);
2145 		break;
2146 	case 1:
2147 		base_ch = TAD_TGT1(reg);
2148 		break;
2149 	case 2:
2150 		base_ch = TAD_TGT2(reg);
2151 		break;
2152 	case 3:
2153 		base_ch = TAD_TGT3(reg);
2154 		break;
2155 	default:
2156 		sprintf(msg, "Can't discover the TAD target");
2157 		return -EINVAL;
2158 	}
2159 	*channel_mask = 1 << base_ch;
2160 
2161 	pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
2162 				tad_ch_nilv_offset[n_tads],
2163 				&tad_offset);
2164 
2165 	if (pvt->is_mirrored) {
2166 		*channel_mask |= 1 << ((base_ch + 2) % 4);
2167 		switch(ch_way) {
2168 		case 2:
2169 		case 4:
2170 			sck_xch = (1 << sck_way) * (ch_way >> 1);
2171 			break;
2172 		default:
2173 			sprintf(msg, "Invalid mirror set. Can't decode addr");
2174 			return -EINVAL;
2175 		}
2176 	} else
2177 		sck_xch = (1 << sck_way) * ch_way;
2178 
2179 	if (pvt->is_lockstep)
2180 		*channel_mask |= 1 << ((base_ch + 1) % 4);
2181 
2182 	offset = TAD_OFFSET(tad_offset);
2183 
2184 	edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2185 		 n_tads,
2186 		 addr,
2187 		 limit,
2188 		 sck_way,
2189 		 ch_way,
2190 		 offset,
2191 		 idx,
2192 		 base_ch,
2193 		 *channel_mask);
2194 
2195 	/* Calculate channel address */
2196 	/* Remove the TAD offset */
2197 
2198 	if (offset > addr) {
2199 		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2200 			offset, addr);
2201 		return -EINVAL;
2202 	}
2203 
2204 	ch_addr = addr - offset;
2205 	ch_addr >>= (6 + shiftup);
2206 	ch_addr /= sck_xch;
2207 	ch_addr <<= (6 + shiftup);
2208 	ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
2209 
2210 	/*
2211 	 * Step 3) Decode rank
2212 	 */
2213 	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
2214 		pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
2215 				      rir_way_limit[n_rir],
2216 				      &reg);
2217 
2218 		if (!IS_RIR_VALID(reg))
2219 			continue;
2220 
2221 		limit = pvt->info.rir_limit(reg);
2222 		gb = div_u64_rem(limit >> 20, 1024, &mb);
2223 		edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2224 			 n_rir,
2225 			 gb, (mb*1000)/1024,
2226 			 limit,
2227 			 1 << RIR_WAY(reg));
2228 		if  (ch_addr <= limit)
2229 			break;
2230 	}
2231 	if (n_rir == MAX_RIR_RANGES) {
2232 		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
2233 			ch_addr);
2234 		return -EINVAL;
2235 	}
2236 	rir_way = RIR_WAY(reg);
2237 
2238 	if (pvt->is_close_pg)
2239 		idx = (ch_addr >> 6);
2240 	else
2241 		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
2242 	idx %= 1 << rir_way;
2243 
2244 	pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
2245 			      rir_offset[n_rir][idx],
2246 			      &reg);
2247 	*rank = RIR_RNK_TGT(pvt->info.type, reg);
2248 
2249 	edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2250 		 n_rir,
2251 		 ch_addr,
2252 		 limit,
2253 		 rir_way,
2254 		 idx);
2255 
2256 	return 0;
2257 }
2258 
2259 /****************************************************************************
2260 	Device initialization routines: put/get, init/exit
2261  ****************************************************************************/
2262 
2263 /*
2264  *	sbridge_put_all_devices	'put' all the devices that we have
2265  *				reserved via 'get'
2266  */
2267 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
2268 {
2269 	int i;
2270 
2271 	edac_dbg(0, "\n");
2272 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2273 		struct pci_dev *pdev = sbridge_dev->pdev[i];
2274 		if (!pdev)
2275 			continue;
2276 		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2277 			 pdev->bus->number,
2278 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2279 		pci_dev_put(pdev);
2280 	}
2281 }
2282 
2283 static void sbridge_put_all_devices(void)
2284 {
2285 	struct sbridge_dev *sbridge_dev, *tmp;
2286 
2287 	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
2288 		sbridge_put_devices(sbridge_dev);
2289 		free_sbridge_dev(sbridge_dev);
2290 	}
2291 }
2292 
2293 static int sbridge_get_onedevice(struct pci_dev **prev,
2294 				 u8 *num_mc,
2295 				 const struct pci_id_table *table,
2296 				 const unsigned devno,
2297 				 const int multi_bus)
2298 {
2299 	struct sbridge_dev *sbridge_dev;
2300 	const struct pci_id_descr *dev_descr = &table->descr[devno];
2301 	struct pci_dev *pdev = NULL;
2302 	u8 bus = 0;
2303 
2304 	sbridge_printk(KERN_DEBUG,
2305 		"Seeking for: PCI ID %04x:%04x\n",
2306 		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2307 
2308 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
2309 			      dev_descr->dev_id, *prev);
2310 
2311 	if (!pdev) {
2312 		if (*prev) {
2313 			*prev = pdev;
2314 			return 0;
2315 		}
2316 
2317 		if (dev_descr->optional)
2318 			return 0;
2319 
2320 		/* if the HA wasn't found */
2321 		if (devno == 0)
2322 			return -ENODEV;
2323 
2324 		sbridge_printk(KERN_INFO,
2325 			"Device not found: %04x:%04x\n",
2326 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2327 
2328 		/* End of list, leave */
2329 		return -ENODEV;
2330 	}
2331 	bus = pdev->bus->number;
2332 
2333 	sbridge_dev = get_sbridge_dev(bus, multi_bus);
2334 	if (!sbridge_dev) {
2335 		sbridge_dev = alloc_sbridge_dev(bus, table);
2336 		if (!sbridge_dev) {
2337 			pci_dev_put(pdev);
2338 			return -ENOMEM;
2339 		}
2340 		(*num_mc)++;
2341 	}
2342 
2343 	if (sbridge_dev->pdev[devno]) {
2344 		sbridge_printk(KERN_ERR,
2345 			"Duplicated device for %04x:%04x\n",
2346 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2347 		pci_dev_put(pdev);
2348 		return -ENODEV;
2349 	}
2350 
2351 	sbridge_dev->pdev[devno] = pdev;
2352 
2353 	/* Be sure that the device is enabled */
2354 	if (unlikely(pci_enable_device(pdev) < 0)) {
2355 		sbridge_printk(KERN_ERR,
2356 			"Couldn't enable %04x:%04x\n",
2357 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2358 		return -ENODEV;
2359 	}
2360 
2361 	edac_dbg(0, "Detected %04x:%04x\n",
2362 		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2363 
2364 	/*
2365 	 * As stated on drivers/pci/search.c, the reference count for
2366 	 * @from is always decremented if it is not %NULL. So, as we need
2367 	 * to get all devices up to null, we need to do a get for the device
2368 	 */
2369 	pci_dev_get(pdev);
2370 
2371 	*prev = pdev;
2372 
2373 	return 0;
2374 }
2375 
2376 /*
2377  * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2378  *			     devices we want to reference for this driver.
2379  * @num_mc: pointer to the memory controllers count, to be incremented in case
2380  *	    of success.
2381  * @table: model specific table
2382  *
2383  * returns 0 in case of success or error code
2384  */
2385 static int sbridge_get_all_devices(u8 *num_mc,
2386 					const struct pci_id_table *table)
2387 {
2388 	int i, rc;
2389 	struct pci_dev *pdev = NULL;
2390 	int allow_dups = 0;
2391 	int multi_bus = 0;
2392 
2393 	if (table->type == KNIGHTS_LANDING)
2394 		allow_dups = multi_bus = 1;
2395 	while (table && table->descr) {
2396 		for (i = 0; i < table->n_devs; i++) {
2397 			if (!allow_dups || i == 0 ||
2398 					table->descr[i].dev_id !=
2399 						table->descr[i-1].dev_id) {
2400 				pdev = NULL;
2401 			}
2402 			do {
2403 				rc = sbridge_get_onedevice(&pdev, num_mc,
2404 							   table, i, multi_bus);
2405 				if (rc < 0) {
2406 					if (i == 0) {
2407 						i = table->n_devs;
2408 						break;
2409 					}
2410 					sbridge_put_all_devices();
2411 					return -ENODEV;
2412 				}
2413 			} while (pdev && !allow_dups);
2414 		}
2415 		table++;
2416 	}
2417 
2418 	return 0;
2419 }
2420 
2421 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
2422 				 struct sbridge_dev *sbridge_dev)
2423 {
2424 	struct sbridge_pvt *pvt = mci->pvt_info;
2425 	struct pci_dev *pdev;
2426 	u8 saw_chan_mask = 0;
2427 	int i;
2428 
2429 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2430 		pdev = sbridge_dev->pdev[i];
2431 		if (!pdev)
2432 			continue;
2433 
2434 		switch (pdev->device) {
2435 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
2436 			pvt->pci_sad0 = pdev;
2437 			break;
2438 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
2439 			pvt->pci_sad1 = pdev;
2440 			break;
2441 		case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
2442 			pvt->pci_br0 = pdev;
2443 			break;
2444 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2445 			pvt->pci_ha0 = pdev;
2446 			break;
2447 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
2448 			pvt->pci_ta = pdev;
2449 			break;
2450 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
2451 			pvt->pci_ras = pdev;
2452 			break;
2453 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
2454 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
2455 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
2456 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
2457 		{
2458 			int id = pdev->device - PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0;
2459 			pvt->pci_tad[id] = pdev;
2460 			saw_chan_mask |= 1 << id;
2461 		}
2462 			break;
2463 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
2464 			pvt->pci_ddrio = pdev;
2465 			break;
2466 		default:
2467 			goto error;
2468 		}
2469 
2470 		edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2471 			 pdev->vendor, pdev->device,
2472 			 sbridge_dev->bus,
2473 			 pdev);
2474 	}
2475 
2476 	/* Check if everything were registered */
2477 	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
2478 	    !pvt->pci_ras || !pvt->pci_ta)
2479 		goto enodev;
2480 
2481 	if (saw_chan_mask != 0x0f)
2482 		goto enodev;
2483 	return 0;
2484 
2485 enodev:
2486 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2487 	return -ENODEV;
2488 
2489 error:
2490 	sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
2491 		       PCI_VENDOR_ID_INTEL, pdev->device);
2492 	return -EINVAL;
2493 }
2494 
2495 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
2496 				 struct sbridge_dev *sbridge_dev)
2497 {
2498 	struct sbridge_pvt *pvt = mci->pvt_info;
2499 	struct pci_dev *pdev;
2500 	u8 saw_chan_mask = 0;
2501 	int i;
2502 
2503 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2504 		pdev = sbridge_dev->pdev[i];
2505 		if (!pdev)
2506 			continue;
2507 
2508 		switch (pdev->device) {
2509 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
2510 			pvt->pci_ha0 = pdev;
2511 			break;
2512 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2513 			pvt->pci_ta = pdev;
2514 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
2515 			pvt->pci_ras = pdev;
2516 			break;
2517 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
2518 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
2519 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
2520 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
2521 		{
2522 			int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0;
2523 			pvt->pci_tad[id] = pdev;
2524 			saw_chan_mask |= 1 << id;
2525 		}
2526 			break;
2527 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
2528 			pvt->pci_ddrio = pdev;
2529 			break;
2530 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
2531 			pvt->pci_ddrio = pdev;
2532 			break;
2533 		case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
2534 			pvt->pci_sad0 = pdev;
2535 			break;
2536 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
2537 			pvt->pci_br0 = pdev;
2538 			break;
2539 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
2540 			pvt->pci_br1 = pdev;
2541 			break;
2542 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
2543 			pvt->pci_ha1 = pdev;
2544 			break;
2545 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
2546 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
2547 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
2548 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
2549 		{
2550 			int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 + 4;
2551 			pvt->pci_tad[id] = pdev;
2552 			saw_chan_mask |= 1 << id;
2553 		}
2554 			break;
2555 		default:
2556 			goto error;
2557 		}
2558 
2559 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2560 			 sbridge_dev->bus,
2561 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2562 			 pdev);
2563 	}
2564 
2565 	/* Check if everything were registered */
2566 	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_br0 ||
2567 	    !pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta)
2568 		goto enodev;
2569 
2570 	if (saw_chan_mask != 0x0f && /* -EN */
2571 	    saw_chan_mask != 0x33 && /* -EP */
2572 	    saw_chan_mask != 0xff)   /* -EX */
2573 		goto enodev;
2574 	return 0;
2575 
2576 enodev:
2577 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2578 	return -ENODEV;
2579 
2580 error:
2581 	sbridge_printk(KERN_ERR,
2582 		       "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
2583 			pdev->device);
2584 	return -EINVAL;
2585 }
2586 
2587 static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
2588 				 struct sbridge_dev *sbridge_dev)
2589 {
2590 	struct sbridge_pvt *pvt = mci->pvt_info;
2591 	struct pci_dev *pdev;
2592 	u8 saw_chan_mask = 0;
2593 	int i;
2594 
2595 	/* there's only one device per system; not tied to any bus */
2596 	if (pvt->info.pci_vtd == NULL)
2597 		/* result will be checked later */
2598 		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2599 						   PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
2600 						   NULL);
2601 
2602 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2603 		pdev = sbridge_dev->pdev[i];
2604 		if (!pdev)
2605 			continue;
2606 
2607 		switch (pdev->device) {
2608 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
2609 			pvt->pci_sad0 = pdev;
2610 			break;
2611 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
2612 			pvt->pci_sad1 = pdev;
2613 			break;
2614 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2615 			pvt->pci_ha0 = pdev;
2616 			break;
2617 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
2618 			pvt->pci_ta = pdev;
2619 			break;
2620 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL:
2621 			pvt->pci_ras = pdev;
2622 			break;
2623 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
2624 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
2625 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
2626 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
2627 		{
2628 			int id = pdev->device - PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0;
2629 
2630 			pvt->pci_tad[id] = pdev;
2631 			saw_chan_mask |= 1 << id;
2632 		}
2633 			break;
2634 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
2635 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
2636 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
2637 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
2638 		{
2639 			int id = pdev->device - PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 + 4;
2640 
2641 			pvt->pci_tad[id] = pdev;
2642 			saw_chan_mask |= 1 << id;
2643 		}
2644 			break;
2645 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
2646 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
2647 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
2648 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
2649 			if (!pvt->pci_ddrio)
2650 				pvt->pci_ddrio = pdev;
2651 			break;
2652 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
2653 			pvt->pci_ha1 = pdev;
2654 			break;
2655 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
2656 			pvt->pci_ha1_ta = pdev;
2657 			break;
2658 		default:
2659 			break;
2660 		}
2661 
2662 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2663 			 sbridge_dev->bus,
2664 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2665 			 pdev);
2666 	}
2667 
2668 	/* Check if everything were registered */
2669 	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
2670 	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2671 		goto enodev;
2672 
2673 	if (saw_chan_mask != 0x0f && /* -EN */
2674 	    saw_chan_mask != 0x33 && /* -EP */
2675 	    saw_chan_mask != 0xff)   /* -EX */
2676 		goto enodev;
2677 	return 0;
2678 
2679 enodev:
2680 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2681 	return -ENODEV;
2682 }
2683 
2684 static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
2685 				 struct sbridge_dev *sbridge_dev)
2686 {
2687 	struct sbridge_pvt *pvt = mci->pvt_info;
2688 	struct pci_dev *pdev;
2689 	u8 saw_chan_mask = 0;
2690 	int i;
2691 
2692 	/* there's only one device per system; not tied to any bus */
2693 	if (pvt->info.pci_vtd == NULL)
2694 		/* result will be checked later */
2695 		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2696 						   PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
2697 						   NULL);
2698 
2699 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2700 		pdev = sbridge_dev->pdev[i];
2701 		if (!pdev)
2702 			continue;
2703 
2704 		switch (pdev->device) {
2705 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
2706 			pvt->pci_sad0 = pdev;
2707 			break;
2708 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
2709 			pvt->pci_sad1 = pdev;
2710 			break;
2711 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2712 			pvt->pci_ha0 = pdev;
2713 			break;
2714 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
2715 			pvt->pci_ta = pdev;
2716 			break;
2717 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL:
2718 			pvt->pci_ras = pdev;
2719 			break;
2720 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
2721 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
2722 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
2723 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
2724 		{
2725 			int id = pdev->device - PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0;
2726 			pvt->pci_tad[id] = pdev;
2727 			saw_chan_mask |= 1 << id;
2728 		}
2729 			break;
2730 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
2731 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
2732 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
2733 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
2734 		{
2735 			int id = pdev->device - PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 + 4;
2736 			pvt->pci_tad[id] = pdev;
2737 			saw_chan_mask |= 1 << id;
2738 		}
2739 			break;
2740 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
2741 			pvt->pci_ddrio = pdev;
2742 			break;
2743 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2744 			pvt->pci_ha1 = pdev;
2745 			break;
2746 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2747 			pvt->pci_ha1_ta = pdev;
2748 			break;
2749 		default:
2750 			break;
2751 		}
2752 
2753 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2754 			 sbridge_dev->bus,
2755 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2756 			 pdev);
2757 	}
2758 
2759 	/* Check if everything were registered */
2760 	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
2761 	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2762 		goto enodev;
2763 
2764 	if (saw_chan_mask != 0x0f && /* -EN */
2765 	    saw_chan_mask != 0x33 && /* -EP */
2766 	    saw_chan_mask != 0xff)   /* -EX */
2767 		goto enodev;
2768 	return 0;
2769 
2770 enodev:
2771 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2772 	return -ENODEV;
2773 }
2774 
2775 static int knl_mci_bind_devs(struct mem_ctl_info *mci,
2776 			struct sbridge_dev *sbridge_dev)
2777 {
2778 	struct sbridge_pvt *pvt = mci->pvt_info;
2779 	struct pci_dev *pdev;
2780 	int dev, func;
2781 
2782 	int i;
2783 	int devidx;
2784 
2785 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2786 		pdev = sbridge_dev->pdev[i];
2787 		if (!pdev)
2788 			continue;
2789 
2790 		/* Extract PCI device and function. */
2791 		dev = (pdev->devfn >> 3) & 0x1f;
2792 		func = pdev->devfn & 0x7;
2793 
2794 		switch (pdev->device) {
2795 		case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
2796 			if (dev == 8)
2797 				pvt->knl.pci_mc0 = pdev;
2798 			else if (dev == 9)
2799 				pvt->knl.pci_mc1 = pdev;
2800 			else {
2801 				sbridge_printk(KERN_ERR,
2802 					"Memory controller in unexpected place! (dev %d, fn %d)\n",
2803 					dev, func);
2804 				continue;
2805 			}
2806 			break;
2807 
2808 		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
2809 			pvt->pci_sad0 = pdev;
2810 			break;
2811 
2812 		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
2813 			pvt->pci_sad1 = pdev;
2814 			break;
2815 
2816 		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
2817 			/* There are one of these per tile, and range from
2818 			 * 1.14.0 to 1.18.5.
2819 			 */
2820 			devidx = ((dev-14)*8)+func;
2821 
2822 			if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
2823 				sbridge_printk(KERN_ERR,
2824 					"Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2825 					dev, func);
2826 				continue;
2827 			}
2828 
2829 			WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
2830 
2831 			pvt->knl.pci_cha[devidx] = pdev;
2832 			break;
2833 
2834 		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL:
2835 			devidx = -1;
2836 
2837 			/*
2838 			 *  MC0 channels 0-2 are device 9 function 2-4,
2839 			 *  MC1 channels 3-5 are device 8 function 2-4.
2840 			 */
2841 
2842 			if (dev == 9)
2843 				devidx = func-2;
2844 			else if (dev == 8)
2845 				devidx = 3 + (func-2);
2846 
2847 			if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
2848 				sbridge_printk(KERN_ERR,
2849 					"DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
2850 					dev, func);
2851 				continue;
2852 			}
2853 
2854 			WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
2855 			pvt->knl.pci_channel[devidx] = pdev;
2856 			break;
2857 
2858 		case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
2859 			pvt->knl.pci_mc_info = pdev;
2860 			break;
2861 
2862 		case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
2863 			pvt->pci_ta = pdev;
2864 			break;
2865 
2866 		default:
2867 			sbridge_printk(KERN_ERR, "Unexpected device %d\n",
2868 				pdev->device);
2869 			break;
2870 		}
2871 	}
2872 
2873 	if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 ||
2874 	    !pvt->pci_sad0     || !pvt->pci_sad1    ||
2875 	    !pvt->pci_ta) {
2876 		goto enodev;
2877 	}
2878 
2879 	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
2880 		if (!pvt->knl.pci_channel[i]) {
2881 			sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
2882 			goto enodev;
2883 		}
2884 	}
2885 
2886 	for (i = 0; i < KNL_MAX_CHAS; i++) {
2887 		if (!pvt->knl.pci_cha[i]) {
2888 			sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
2889 			goto enodev;
2890 		}
2891 	}
2892 
2893 	return 0;
2894 
2895 enodev:
2896 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2897 	return -ENODEV;
2898 }
2899 
2900 /****************************************************************************
2901 			Error check routines
2902  ****************************************************************************/
2903 
2904 /*
2905  * While Sandy Bridge has error count registers, SMI BIOS read values from
2906  * and resets the counters. So, they are not reliable for the OS to read
2907  * from them. So, we have no option but to just trust on whatever MCE is
2908  * telling us about the errors.
2909  */
2910 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
2911 				    const struct mce *m)
2912 {
2913 	struct mem_ctl_info *new_mci;
2914 	struct sbridge_pvt *pvt = mci->pvt_info;
2915 	enum hw_event_mc_err_type tp_event;
2916 	char *type, *optype, msg[256];
2917 	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
2918 	bool overflow = GET_BITFIELD(m->status, 62, 62);
2919 	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
2920 	bool recoverable;
2921 	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
2922 	u32 mscod = GET_BITFIELD(m->status, 16, 31);
2923 	u32 errcode = GET_BITFIELD(m->status, 0, 15);
2924 	u32 channel = GET_BITFIELD(m->status, 0, 3);
2925 	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
2926 	long channel_mask, first_channel;
2927 	u8  rank, socket, ha;
2928 	int rc, dimm;
2929 	char *area_type = NULL;
2930 
2931 	if (pvt->info.type != SANDY_BRIDGE)
2932 		recoverable = true;
2933 	else
2934 		recoverable = GET_BITFIELD(m->status, 56, 56);
2935 
2936 	if (uncorrected_error) {
2937 		if (ripv) {
2938 			type = "FATAL";
2939 			tp_event = HW_EVENT_ERR_FATAL;
2940 		} else {
2941 			type = "NON_FATAL";
2942 			tp_event = HW_EVENT_ERR_UNCORRECTED;
2943 		}
2944 	} else {
2945 		type = "CORRECTED";
2946 		tp_event = HW_EVENT_ERR_CORRECTED;
2947 	}
2948 
2949 	/*
2950 	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
2951 	 * memory errors should fit in this mask:
2952 	 *	000f 0000 1mmm cccc (binary)
2953 	 * where:
2954 	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
2955 	 *	    won't be shown
2956 	 *	mmm = error type
2957 	 *	cccc = channel
2958 	 * If the mask doesn't match, report an error to the parsing logic
2959 	 */
2960 	if (! ((errcode & 0xef80) == 0x80)) {
2961 		optype = "Can't parse: it is not a mem";
2962 	} else {
2963 		switch (optypenum) {
2964 		case 0:
2965 			optype = "generic undef request error";
2966 			break;
2967 		case 1:
2968 			optype = "memory read error";
2969 			break;
2970 		case 2:
2971 			optype = "memory write error";
2972 			break;
2973 		case 3:
2974 			optype = "addr/cmd error";
2975 			break;
2976 		case 4:
2977 			optype = "memory scrubbing error";
2978 			break;
2979 		default:
2980 			optype = "reserved";
2981 			break;
2982 		}
2983 	}
2984 
2985 	/* Only decode errors with an valid address (ADDRV) */
2986 	if (!GET_BITFIELD(m->status, 58, 58))
2987 		return;
2988 
2989 	if (pvt->info.type == KNIGHTS_LANDING) {
2990 		if (channel == 14) {
2991 			edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
2992 				overflow ? " OVERFLOW" : "",
2993 				(uncorrected_error && recoverable)
2994 				? " recoverable" : "",
2995 				mscod, errcode,
2996 				m->bank);
2997 		} else {
2998 			char A = *("A");
2999 
3000 			/*
3001 			 * Reported channel is in range 0-2, so we can't map it
3002 			 * back to mc. To figure out mc we check machine check
3003 			 * bank register that reported this error.
3004 			 * bank15 means mc0 and bank16 means mc1.
3005 			 */
3006 			channel = knl_channel_remap(m->bank == 16, channel);
3007 			channel_mask = 1 << channel;
3008 
3009 			snprintf(msg, sizeof(msg),
3010 				"%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
3011 				overflow ? " OVERFLOW" : "",
3012 				(uncorrected_error && recoverable)
3013 				? " recoverable" : " ",
3014 				mscod, errcode, channel, A + channel);
3015 			edac_mc_handle_error(tp_event, mci, core_err_cnt,
3016 				m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3017 				channel, 0, -1,
3018 				optype, msg);
3019 		}
3020 		return;
3021 	} else {
3022 		rc = get_memory_error_data(mci, m->addr, &socket, &ha,
3023 				&channel_mask, &rank, &area_type, msg);
3024 	}
3025 
3026 	if (rc < 0)
3027 		goto err_parsing;
3028 	new_mci = get_mci_for_node_id(socket);
3029 	if (!new_mci) {
3030 		strcpy(msg, "Error: socket got corrupted!");
3031 		goto err_parsing;
3032 	}
3033 	mci = new_mci;
3034 	pvt = mci->pvt_info;
3035 
3036 	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
3037 
3038 	if (rank < 4)
3039 		dimm = 0;
3040 	else if (rank < 8)
3041 		dimm = 1;
3042 	else
3043 		dimm = 2;
3044 
3045 
3046 	/*
3047 	 * FIXME: On some memory configurations (mirror, lockstep), the
3048 	 * Memory Controller can't point the error to a single DIMM. The
3049 	 * EDAC core should be handling the channel mask, in order to point
3050 	 * to the group of dimm's where the error may be happening.
3051 	 */
3052 	if (!pvt->is_lockstep && !pvt->is_mirrored && !pvt->is_close_pg)
3053 		channel = first_channel;
3054 
3055 	snprintf(msg, sizeof(msg),
3056 		 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
3057 		 overflow ? " OVERFLOW" : "",
3058 		 (uncorrected_error && recoverable) ? " recoverable" : "",
3059 		 area_type,
3060 		 mscod, errcode,
3061 		 socket, ha,
3062 		 channel_mask,
3063 		 rank);
3064 
3065 	edac_dbg(0, "%s\n", msg);
3066 
3067 	/* FIXME: need support for channel mask */
3068 
3069 	if (channel == CHANNEL_UNSPECIFIED)
3070 		channel = -1;
3071 
3072 	/* Call the helper to output message */
3073 	edac_mc_handle_error(tp_event, mci, core_err_cnt,
3074 			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3075 			     4*ha+channel, dimm, -1,
3076 			     optype, msg);
3077 	return;
3078 err_parsing:
3079 	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
3080 			     -1, -1, -1,
3081 			     msg, "");
3082 
3083 }
3084 
3085 /*
3086  * Check that logging is enabled and that this is the right type
3087  * of error for us to handle.
3088  */
3089 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
3090 				   void *data)
3091 {
3092 	struct mce *mce = (struct mce *)data;
3093 	struct mem_ctl_info *mci;
3094 	struct sbridge_pvt *pvt;
3095 	char *type;
3096 
3097 	if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
3098 		return NOTIFY_DONE;
3099 
3100 	mci = get_mci_for_node_id(mce->socketid);
3101 	if (!mci)
3102 		return NOTIFY_DONE;
3103 	pvt = mci->pvt_info;
3104 
3105 	/*
3106 	 * Just let mcelog handle it if the error is
3107 	 * outside the memory controller. A memory error
3108 	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3109 	 * bit 12 has an special meaning.
3110 	 */
3111 	if ((mce->status & 0xefff) >> 7 != 1)
3112 		return NOTIFY_DONE;
3113 
3114 	if (mce->mcgstatus & MCG_STATUS_MCIP)
3115 		type = "Exception";
3116 	else
3117 		type = "Event";
3118 
3119 	sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
3120 
3121 	sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
3122 			  "Bank %d: %016Lx\n", mce->extcpu, type,
3123 			  mce->mcgstatus, mce->bank, mce->status);
3124 	sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
3125 	sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
3126 	sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
3127 
3128 	sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
3129 			  "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
3130 			  mce->time, mce->socketid, mce->apicid);
3131 
3132 	sbridge_mce_output_error(mci, mce);
3133 
3134 	/* Advice mcelog that the error were handled */
3135 	return NOTIFY_STOP;
3136 }
3137 
3138 static struct notifier_block sbridge_mce_dec = {
3139 	.notifier_call      = sbridge_mce_check_error,
3140 };
3141 
3142 /****************************************************************************
3143 			EDAC register/unregister logic
3144  ****************************************************************************/
3145 
3146 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
3147 {
3148 	struct mem_ctl_info *mci = sbridge_dev->mci;
3149 	struct sbridge_pvt *pvt;
3150 
3151 	if (unlikely(!mci || !mci->pvt_info)) {
3152 		edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
3153 
3154 		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
3155 		return;
3156 	}
3157 
3158 	pvt = mci->pvt_info;
3159 
3160 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
3161 		 mci, &sbridge_dev->pdev[0]->dev);
3162 
3163 	/* Remove MC sysfs nodes */
3164 	edac_mc_del_mc(mci->pdev);
3165 
3166 	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
3167 	kfree(mci->ctl_name);
3168 	edac_mc_free(mci);
3169 	sbridge_dev->mci = NULL;
3170 }
3171 
3172 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
3173 {
3174 	struct mem_ctl_info *mci;
3175 	struct edac_mc_layer layers[2];
3176 	struct sbridge_pvt *pvt;
3177 	struct pci_dev *pdev = sbridge_dev->pdev[0];
3178 	int rc;
3179 
3180 	/* Check the number of active and not disabled channels */
3181 	rc = check_if_ecc_is_active(sbridge_dev->bus, type);
3182 	if (unlikely(rc < 0))
3183 		return rc;
3184 
3185 	/* allocate a new MC control structure */
3186 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
3187 	layers[0].size = type == KNIGHTS_LANDING ?
3188 		KNL_MAX_CHANNELS : NUM_CHANNELS;
3189 	layers[0].is_virt_csrow = false;
3190 	layers[1].type = EDAC_MC_LAYER_SLOT;
3191 	layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
3192 	layers[1].is_virt_csrow = true;
3193 	mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
3194 			    sizeof(*pvt));
3195 
3196 	if (unlikely(!mci))
3197 		return -ENOMEM;
3198 
3199 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
3200 		 mci, &pdev->dev);
3201 
3202 	pvt = mci->pvt_info;
3203 	memset(pvt, 0, sizeof(*pvt));
3204 
3205 	/* Associate sbridge_dev and mci for future usage */
3206 	pvt->sbridge_dev = sbridge_dev;
3207 	sbridge_dev->mci = mci;
3208 
3209 	mci->mtype_cap = type == KNIGHTS_LANDING ?
3210 		MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
3211 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
3212 	mci->edac_cap = EDAC_FLAG_NONE;
3213 	mci->mod_name = "sbridge_edac.c";
3214 	mci->mod_ver = SBRIDGE_REVISION;
3215 	mci->dev_name = pci_name(pdev);
3216 	mci->ctl_page_to_phys = NULL;
3217 
3218 	pvt->info.type = type;
3219 	switch (type) {
3220 	case IVY_BRIDGE:
3221 		pvt->info.rankcfgr = IB_RANK_CFG_A;
3222 		pvt->info.get_tolm = ibridge_get_tolm;
3223 		pvt->info.get_tohm = ibridge_get_tohm;
3224 		pvt->info.dram_rule = ibridge_dram_rule;
3225 		pvt->info.get_memory_type = get_memory_type;
3226 		pvt->info.get_node_id = get_node_id;
3227 		pvt->info.rir_limit = rir_limit;
3228 		pvt->info.sad_limit = sad_limit;
3229 		pvt->info.interleave_mode = interleave_mode;
3230 		pvt->info.show_interleave_mode = show_interleave_mode;
3231 		pvt->info.dram_attr = dram_attr;
3232 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3233 		pvt->info.interleave_list = ibridge_interleave_list;
3234 		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3235 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3236 		pvt->info.get_width = ibridge_get_width;
3237 		mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge Socket#%d", mci->mc_idx);
3238 
3239 		/* Store pci devices at mci for faster access */
3240 		rc = ibridge_mci_bind_devs(mci, sbridge_dev);
3241 		if (unlikely(rc < 0))
3242 			goto fail0;
3243 		break;
3244 	case SANDY_BRIDGE:
3245 		pvt->info.rankcfgr = SB_RANK_CFG_A;
3246 		pvt->info.get_tolm = sbridge_get_tolm;
3247 		pvt->info.get_tohm = sbridge_get_tohm;
3248 		pvt->info.dram_rule = sbridge_dram_rule;
3249 		pvt->info.get_memory_type = get_memory_type;
3250 		pvt->info.get_node_id = get_node_id;
3251 		pvt->info.rir_limit = rir_limit;
3252 		pvt->info.sad_limit = sad_limit;
3253 		pvt->info.interleave_mode = interleave_mode;
3254 		pvt->info.show_interleave_mode = show_interleave_mode;
3255 		pvt->info.dram_attr = dram_attr;
3256 		pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
3257 		pvt->info.interleave_list = sbridge_interleave_list;
3258 		pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list);
3259 		pvt->info.interleave_pkg = sbridge_interleave_pkg;
3260 		pvt->info.get_width = sbridge_get_width;
3261 		mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
3262 
3263 		/* Store pci devices at mci for faster access */
3264 		rc = sbridge_mci_bind_devs(mci, sbridge_dev);
3265 		if (unlikely(rc < 0))
3266 			goto fail0;
3267 		break;
3268 	case HASWELL:
3269 		/* rankcfgr isn't used */
3270 		pvt->info.get_tolm = haswell_get_tolm;
3271 		pvt->info.get_tohm = haswell_get_tohm;
3272 		pvt->info.dram_rule = ibridge_dram_rule;
3273 		pvt->info.get_memory_type = haswell_get_memory_type;
3274 		pvt->info.get_node_id = haswell_get_node_id;
3275 		pvt->info.rir_limit = haswell_rir_limit;
3276 		pvt->info.sad_limit = sad_limit;
3277 		pvt->info.interleave_mode = interleave_mode;
3278 		pvt->info.show_interleave_mode = show_interleave_mode;
3279 		pvt->info.dram_attr = dram_attr;
3280 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3281 		pvt->info.interleave_list = ibridge_interleave_list;
3282 		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3283 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3284 		pvt->info.get_width = ibridge_get_width;
3285 		mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell Socket#%d", mci->mc_idx);
3286 
3287 		/* Store pci devices at mci for faster access */
3288 		rc = haswell_mci_bind_devs(mci, sbridge_dev);
3289 		if (unlikely(rc < 0))
3290 			goto fail0;
3291 		break;
3292 	case BROADWELL:
3293 		/* rankcfgr isn't used */
3294 		pvt->info.get_tolm = haswell_get_tolm;
3295 		pvt->info.get_tohm = haswell_get_tohm;
3296 		pvt->info.dram_rule = ibridge_dram_rule;
3297 		pvt->info.get_memory_type = haswell_get_memory_type;
3298 		pvt->info.get_node_id = haswell_get_node_id;
3299 		pvt->info.rir_limit = haswell_rir_limit;
3300 		pvt->info.sad_limit = sad_limit;
3301 		pvt->info.interleave_mode = interleave_mode;
3302 		pvt->info.show_interleave_mode = show_interleave_mode;
3303 		pvt->info.dram_attr = dram_attr;
3304 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3305 		pvt->info.interleave_list = ibridge_interleave_list;
3306 		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3307 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3308 		pvt->info.get_width = broadwell_get_width;
3309 		mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell Socket#%d", mci->mc_idx);
3310 
3311 		/* Store pci devices at mci for faster access */
3312 		rc = broadwell_mci_bind_devs(mci, sbridge_dev);
3313 		if (unlikely(rc < 0))
3314 			goto fail0;
3315 		break;
3316 	case KNIGHTS_LANDING:
3317 		/* pvt->info.rankcfgr == ??? */
3318 		pvt->info.get_tolm = knl_get_tolm;
3319 		pvt->info.get_tohm = knl_get_tohm;
3320 		pvt->info.dram_rule = knl_dram_rule;
3321 		pvt->info.get_memory_type = knl_get_memory_type;
3322 		pvt->info.get_node_id = knl_get_node_id;
3323 		pvt->info.rir_limit = NULL;
3324 		pvt->info.sad_limit = knl_sad_limit;
3325 		pvt->info.interleave_mode = knl_interleave_mode;
3326 		pvt->info.show_interleave_mode = knl_show_interleave_mode;
3327 		pvt->info.dram_attr = dram_attr_knl;
3328 		pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
3329 		pvt->info.interleave_list = knl_interleave_list;
3330 		pvt->info.max_interleave = ARRAY_SIZE(knl_interleave_list);
3331 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3332 		pvt->info.get_width = knl_get_width;
3333 		mci->ctl_name = kasprintf(GFP_KERNEL,
3334 			"Knights Landing Socket#%d", mci->mc_idx);
3335 
3336 		rc = knl_mci_bind_devs(mci, sbridge_dev);
3337 		if (unlikely(rc < 0))
3338 			goto fail0;
3339 		break;
3340 	}
3341 
3342 	/* Get dimm basic config and the memory layout */
3343 	get_dimm_config(mci);
3344 	get_memory_layout(mci);
3345 
3346 	/* record ptr to the generic device */
3347 	mci->pdev = &pdev->dev;
3348 
3349 	/* add this new MC control structure to EDAC's list of MCs */
3350 	if (unlikely(edac_mc_add_mc(mci))) {
3351 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3352 		rc = -EINVAL;
3353 		goto fail0;
3354 	}
3355 
3356 	return 0;
3357 
3358 fail0:
3359 	kfree(mci->ctl_name);
3360 	edac_mc_free(mci);
3361 	sbridge_dev->mci = NULL;
3362 	return rc;
3363 }
3364 
3365 #define ICPU(model, table) \
3366 	{ X86_VENDOR_INTEL, 6, model, 0, (unsigned long)&table }
3367 
3368 static const struct x86_cpu_id sbridge_cpuids[] = {
3369 	ICPU(INTEL_FAM6_SANDYBRIDGE_X,	  pci_dev_descr_sbridge_table),
3370 	ICPU(INTEL_FAM6_IVYBRIDGE_X,	  pci_dev_descr_ibridge_table),
3371 	ICPU(INTEL_FAM6_HASWELL_X,	  pci_dev_descr_haswell_table),
3372 	ICPU(INTEL_FAM6_BROADWELL_X,	  pci_dev_descr_broadwell_table),
3373 	ICPU(INTEL_FAM6_BROADWELL_XEON_D, pci_dev_descr_broadwell_table),
3374 	ICPU(INTEL_FAM6_XEON_PHI_KNL,	  pci_dev_descr_knl_table),
3375 	ICPU(INTEL_FAM6_XEON_PHI_KNM,	  pci_dev_descr_knl_table),
3376 	{ }
3377 };
3378 MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);
3379 
3380 /*
3381  *	sbridge_probe	Get all devices and register memory controllers
3382  *			present.
3383  *	return:
3384  *		0 for FOUND a device
3385  *		< 0 for error code
3386  */
3387 
3388 static int sbridge_probe(const struct x86_cpu_id *id)
3389 {
3390 	int rc = -ENODEV;
3391 	u8 mc, num_mc = 0;
3392 	struct sbridge_dev *sbridge_dev;
3393 	struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;
3394 
3395 	/* get the pci devices we want to reserve for our use */
3396 	rc = sbridge_get_all_devices(&num_mc, ptable);
3397 
3398 	if (unlikely(rc < 0)) {
3399 		edac_dbg(0, "couldn't get all devices\n");
3400 		goto fail0;
3401 	}
3402 
3403 	mc = 0;
3404 
3405 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
3406 		edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3407 			 mc, mc + 1, num_mc);
3408 
3409 		sbridge_dev->mc = mc++;
3410 		rc = sbridge_register_mci(sbridge_dev, ptable->type);
3411 		if (unlikely(rc < 0))
3412 			goto fail1;
3413 	}
3414 
3415 	sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
3416 
3417 	return 0;
3418 
3419 fail1:
3420 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3421 		sbridge_unregister_mci(sbridge_dev);
3422 
3423 	sbridge_put_all_devices();
3424 fail0:
3425 	return rc;
3426 }
3427 
3428 /*
3429  *	sbridge_remove	cleanup
3430  *
3431  */
3432 static void sbridge_remove(void)
3433 {
3434 	struct sbridge_dev *sbridge_dev;
3435 
3436 	edac_dbg(0, "\n");
3437 
3438 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3439 		sbridge_unregister_mci(sbridge_dev);
3440 
3441 	/* Release PCI resources */
3442 	sbridge_put_all_devices();
3443 }
3444 
3445 /*
3446  *	sbridge_init		Module entry function
3447  *			Try to initialize this module for its devices
3448  */
3449 static int __init sbridge_init(void)
3450 {
3451 	const struct x86_cpu_id *id;
3452 	int rc;
3453 
3454 	edac_dbg(2, "\n");
3455 
3456 	id = x86_match_cpu(sbridge_cpuids);
3457 	if (!id)
3458 		return -ENODEV;
3459 
3460 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
3461 	opstate_init();
3462 
3463 	rc = sbridge_probe(id);
3464 
3465 	if (rc >= 0) {
3466 		mce_register_decode_chain(&sbridge_mce_dec);
3467 		if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
3468 			sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
3469 		return 0;
3470 	}
3471 
3472 	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
3473 		      rc);
3474 
3475 	return rc;
3476 }
3477 
3478 /*
3479  *	sbridge_exit()	Module exit function
3480  *			Unregister the driver
3481  */
3482 static void __exit sbridge_exit(void)
3483 {
3484 	edac_dbg(2, "\n");
3485 	sbridge_remove();
3486 	mce_unregister_decode_chain(&sbridge_mce_dec);
3487 }
3488 
3489 module_init(sbridge_init);
3490 module_exit(sbridge_exit);
3491 
3492 module_param(edac_op_state, int, 0444);
3493 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3494 
3495 MODULE_LICENSE("GPL");
3496 MODULE_AUTHOR("Mauro Carvalho Chehab");
3497 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
3498 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
3499 		   SBRIDGE_REVISION);
3500