xref: /linux/drivers/edac/sb_edac.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
2  *
3  * This driver supports the memory controllers found on the Intel
4  * processor family Sandy Bridge.
5  *
6  * This file may be distributed under the terms of the
7  * GNU General Public License version 2 only.
8  *
9  * Copyright (c) 2011 by:
10  *	 Mauro Carvalho Chehab <mchehab@redhat.com>
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <asm/processor.h>
25 #include <asm/mce.h>
26 
27 #include "edac_core.h"
28 
29 /* Static vars */
30 static LIST_HEAD(sbridge_edac_list);
31 static DEFINE_MUTEX(sbridge_edac_lock);
32 static int probed;
33 
34 /*
35  * Alter this version for the module when modifications are made
36  */
37 #define SBRIDGE_REVISION    " Ver: 1.0.0 "
38 #define EDAC_MOD_STR      "sbridge_edac"
39 
40 /*
41  * Debug macros
42  */
43 #define sbridge_printk(level, fmt, arg...)			\
44 	edac_printk(level, "sbridge", fmt, ##arg)
45 
46 #define sbridge_mc_printk(mci, level, fmt, arg...)		\
47 	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
48 
49 /*
50  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
51  */
52 #define GET_BITFIELD(v, lo, hi)	\
53 	(((v) & ((1ULL << ((hi) - (lo) + 1)) - 1) << (lo)) >> (lo))
54 
55 /*
56  * sbridge Memory Controller Registers
57  */
58 
59 /*
60  * FIXME: For now, let's order by device function, as it makes
61  * easier for driver's development process. This table should be
62  * moved to pci_id.h when submitted upstream
63  */
64 #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0	0x3cf4	/* 12.6 */
65 #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1	0x3cf6	/* 12.7 */
66 #define PCI_DEVICE_ID_INTEL_SBRIDGE_BR		0x3cf5	/* 13.6 */
67 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0	0x3ca0	/* 14.0 */
68 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA	0x3ca8	/* 15.0 */
69 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS	0x3c71	/* 15.1 */
70 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0	0x3caa	/* 15.2 */
71 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1	0x3cab	/* 15.3 */
72 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2	0x3cac	/* 15.4 */
73 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3	0x3cad	/* 15.5 */
74 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO	0x3cb8	/* 17.0 */
75 
76 	/*
77 	 * Currently, unused, but will be needed in the future
78 	 * implementations, as they hold the error counters
79 	 */
80 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR0	0x3c72	/* 16.2 */
81 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR1	0x3c73	/* 16.3 */
82 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR2	0x3c76	/* 16.6 */
83 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR3	0x3c77	/* 16.7 */
84 
85 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
86 static const u32 dram_rule[] = {
87 	0x80, 0x88, 0x90, 0x98, 0xa0,
88 	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
89 };
90 #define MAX_SAD		ARRAY_SIZE(dram_rule)
91 
92 #define SAD_LIMIT(reg)		((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
93 #define DRAM_ATTR(reg)		GET_BITFIELD(reg, 2,  3)
94 #define INTERLEAVE_MODE(reg)	GET_BITFIELD(reg, 1,  1)
95 #define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)
96 
97 static char *get_dram_attr(u32 reg)
98 {
99 	switch(DRAM_ATTR(reg)) {
100 		case 0:
101 			return "DRAM";
102 		case 1:
103 			return "MMCFG";
104 		case 2:
105 			return "NXM";
106 		default:
107 			return "unknown";
108 	}
109 }
110 
111 static const u32 interleave_list[] = {
112 	0x84, 0x8c, 0x94, 0x9c, 0xa4,
113 	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
114 };
115 #define MAX_INTERLEAVE	ARRAY_SIZE(interleave_list)
116 
117 #define SAD_PKG0(reg)		GET_BITFIELD(reg, 0, 2)
118 #define SAD_PKG1(reg)		GET_BITFIELD(reg, 3, 5)
119 #define SAD_PKG2(reg)		GET_BITFIELD(reg, 8, 10)
120 #define SAD_PKG3(reg)		GET_BITFIELD(reg, 11, 13)
121 #define SAD_PKG4(reg)		GET_BITFIELD(reg, 16, 18)
122 #define SAD_PKG5(reg)		GET_BITFIELD(reg, 19, 21)
123 #define SAD_PKG6(reg)		GET_BITFIELD(reg, 24, 26)
124 #define SAD_PKG7(reg)		GET_BITFIELD(reg, 27, 29)
125 
126 static inline int sad_pkg(u32 reg, int interleave)
127 {
128 	switch (interleave) {
129 	case 0:
130 		return SAD_PKG0(reg);
131 	case 1:
132 		return SAD_PKG1(reg);
133 	case 2:
134 		return SAD_PKG2(reg);
135 	case 3:
136 		return SAD_PKG3(reg);
137 	case 4:
138 		return SAD_PKG4(reg);
139 	case 5:
140 		return SAD_PKG5(reg);
141 	case 6:
142 		return SAD_PKG6(reg);
143 	case 7:
144 		return SAD_PKG7(reg);
145 	default:
146 		return -EINVAL;
147 	}
148 }
149 
150 /* Devices 12 Function 7 */
151 
152 #define TOLM		0x80
153 #define	TOHM		0x84
154 
155 #define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
156 #define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
157 
158 /* Device 13 Function 6 */
159 
160 #define SAD_TARGET	0xf0
161 
162 #define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)
163 
164 #define SAD_CONTROL	0xf4
165 
166 #define NODE_ID(reg)		GET_BITFIELD(reg, 0, 2)
167 
168 /* Device 14 function 0 */
169 
170 static const u32 tad_dram_rule[] = {
171 	0x40, 0x44, 0x48, 0x4c,
172 	0x50, 0x54, 0x58, 0x5c,
173 	0x60, 0x64, 0x68, 0x6c,
174 };
175 #define MAX_TAD	ARRAY_SIZE(tad_dram_rule)
176 
177 #define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
178 #define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
179 #define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
180 #define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
181 #define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
182 #define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
183 #define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)
184 
185 /* Device 15, function 0 */
186 
187 #define MCMTR			0x7c
188 
189 #define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
190 #define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
191 #define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)
192 
193 /* Device 15, function 1 */
194 
195 #define RASENABLES		0xac
196 #define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)
197 
198 /* Device 15, functions 2-5 */
199 
200 static const int mtr_regs[] = {
201 	0x80, 0x84, 0x88,
202 };
203 
204 #define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
205 #define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
206 #define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
207 #define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
208 #define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)
209 
210 static const u32 tad_ch_nilv_offset[] = {
211 	0x90, 0x94, 0x98, 0x9c,
212 	0xa0, 0xa4, 0xa8, 0xac,
213 	0xb0, 0xb4, 0xb8, 0xbc,
214 };
215 #define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
216 #define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)
217 
218 static const u32 rir_way_limit[] = {
219 	0x108, 0x10c, 0x110, 0x114, 0x118,
220 };
221 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
222 
223 #define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
224 #define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)
225 #define RIR_LIMIT(reg)		((GET_BITFIELD(reg,  1, 10) << 29)| 0x1fffffff)
226 
227 #define MAX_RIR_WAY	8
228 
229 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
230 	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
231 	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
232 	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
233 	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
234 	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
235 };
236 
237 #define RIR_RNK_TGT(reg)		GET_BITFIELD(reg, 16, 19)
238 #define RIR_OFFSET(reg)		GET_BITFIELD(reg,  2, 14)
239 
240 /* Device 16, functions 2-7 */
241 
242 /*
243  * FIXME: Implement the error count reads directly
244  */
245 
246 static const u32 correrrcnt[] = {
247 	0x104, 0x108, 0x10c, 0x110,
248 };
249 
250 #define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
251 #define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
252 #define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
253 #define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)
254 
255 static const u32 correrrthrsld[] = {
256 	0x11c, 0x120, 0x124, 0x128,
257 };
258 
259 #define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
260 #define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)
261 
262 
263 /* Device 17, function 0 */
264 
265 #define RANK_CFG_A		0x0328
266 
267 #define IS_RDIMM_ENABLED(reg)		GET_BITFIELD(reg, 11, 11)
268 
269 /*
270  * sbridge structs
271  */
272 
273 #define NUM_CHANNELS	4
274 #define MAX_DIMMS	3		/* Max DIMMS per channel */
275 
276 struct sbridge_info {
277 	u32	mcmtr;
278 };
279 
280 struct sbridge_channel {
281 	u32		ranks;
282 	u32		dimms;
283 };
284 
285 struct pci_id_descr {
286 	int			dev;
287 	int			func;
288 	int 			dev_id;
289 	int			optional;
290 };
291 
292 struct pci_id_table {
293 	const struct pci_id_descr	*descr;
294 	int				n_devs;
295 };
296 
297 struct sbridge_dev {
298 	struct list_head	list;
299 	u8			bus, mc;
300 	u8			node_id, source_id;
301 	struct pci_dev		**pdev;
302 	int			n_devs;
303 	struct mem_ctl_info	*mci;
304 };
305 
306 struct sbridge_pvt {
307 	struct pci_dev		*pci_ta, *pci_ddrio, *pci_ras;
308 	struct pci_dev		*pci_sad0, *pci_sad1, *pci_ha0;
309 	struct pci_dev		*pci_br;
310 	struct pci_dev		*pci_tad[NUM_CHANNELS];
311 
312 	struct sbridge_dev	*sbridge_dev;
313 
314 	struct sbridge_info	info;
315 	struct sbridge_channel	channel[NUM_CHANNELS];
316 
317 	/* Memory type detection */
318 	bool			is_mirrored, is_lockstep, is_close_pg;
319 
320 	/* Fifo double buffers */
321 	struct mce		mce_entry[MCE_LOG_LEN];
322 	struct mce		mce_outentry[MCE_LOG_LEN];
323 
324 	/* Fifo in/out counters */
325 	unsigned		mce_in, mce_out;
326 
327 	/* Count indicator to show errors not got */
328 	unsigned		mce_overrun;
329 
330 	/* Memory description */
331 	u64			tolm, tohm;
332 };
333 
334 #define PCI_DESCR(device, function, device_id)	\
335 	.dev = (device),			\
336 	.func = (function),			\
337 	.dev_id = (device_id)
338 
339 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
340 		/* Processor Home Agent */
341 	{ PCI_DESCR(14, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0)		},
342 
343 		/* Memory controller */
344 	{ PCI_DESCR(15, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)		},
345 	{ PCI_DESCR(15, 1, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS)		},
346 	{ PCI_DESCR(15, 2, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0)	},
347 	{ PCI_DESCR(15, 3, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1)	},
348 	{ PCI_DESCR(15, 4, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2)	},
349 	{ PCI_DESCR(15, 5, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3)	},
350 	{ PCI_DESCR(17, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO)	},
351 
352 		/* System Address Decoder */
353 	{ PCI_DESCR(12, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0)		},
354 	{ PCI_DESCR(12, 7, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1)		},
355 
356 		/* Broadcast Registers */
357 	{ PCI_DESCR(13, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_BR)		},
358 };
359 
360 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
361 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
362 	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
363 	{0,}			/* 0 terminated list. */
364 };
365 
366 /*
367  *	pci_device_id	table for which devices we are looking for
368  */
369 static DEFINE_PCI_DEVICE_TABLE(sbridge_pci_tbl) = {
370 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)},
371 	{0,}			/* 0 terminated list. */
372 };
373 
374 
375 /****************************************************************************
376 			Ancillary status routines
377  ****************************************************************************/
378 
379 static inline int numrank(u32 mtr)
380 {
381 	int ranks = (1 << RANK_CNT_BITS(mtr));
382 
383 	if (ranks > 4) {
384 		debugf0("Invalid number of ranks: %d (max = 4) raw value = %x (%04x)",
385 			ranks, (unsigned int)RANK_CNT_BITS(mtr), mtr);
386 		return -EINVAL;
387 	}
388 
389 	return ranks;
390 }
391 
392 static inline int numrow(u32 mtr)
393 {
394 	int rows = (RANK_WIDTH_BITS(mtr) + 12);
395 
396 	if (rows < 13 || rows > 18) {
397 		debugf0("Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)",
398 			rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
399 		return -EINVAL;
400 	}
401 
402 	return 1 << rows;
403 }
404 
405 static inline int numcol(u32 mtr)
406 {
407 	int cols = (COL_WIDTH_BITS(mtr) + 10);
408 
409 	if (cols > 12) {
410 		debugf0("Invalid number of cols: %d (max = 4) raw value = %x (%04x)",
411 			cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
412 		return -EINVAL;
413 	}
414 
415 	return 1 << cols;
416 }
417 
418 static struct sbridge_dev *get_sbridge_dev(u8 bus)
419 {
420 	struct sbridge_dev *sbridge_dev;
421 
422 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
423 		if (sbridge_dev->bus == bus)
424 			return sbridge_dev;
425 	}
426 
427 	return NULL;
428 }
429 
430 static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
431 					   const struct pci_id_table *table)
432 {
433 	struct sbridge_dev *sbridge_dev;
434 
435 	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
436 	if (!sbridge_dev)
437 		return NULL;
438 
439 	sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
440 				   GFP_KERNEL);
441 	if (!sbridge_dev->pdev) {
442 		kfree(sbridge_dev);
443 		return NULL;
444 	}
445 
446 	sbridge_dev->bus = bus;
447 	sbridge_dev->n_devs = table->n_devs;
448 	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
449 
450 	return sbridge_dev;
451 }
452 
453 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
454 {
455 	list_del(&sbridge_dev->list);
456 	kfree(sbridge_dev->pdev);
457 	kfree(sbridge_dev);
458 }
459 
460 /****************************************************************************
461 			Memory check routines
462  ****************************************************************************/
463 static struct pci_dev *get_pdev_slot_func(u8 bus, unsigned slot,
464 					  unsigned func)
465 {
466 	struct sbridge_dev *sbridge_dev = get_sbridge_dev(bus);
467 	int i;
468 
469 	if (!sbridge_dev)
470 		return NULL;
471 
472 	for (i = 0; i < sbridge_dev->n_devs; i++) {
473 		if (!sbridge_dev->pdev[i])
474 			continue;
475 
476 		if (PCI_SLOT(sbridge_dev->pdev[i]->devfn) == slot &&
477 		    PCI_FUNC(sbridge_dev->pdev[i]->devfn) == func) {
478 			debugf1("Associated %02x.%02x.%d with %p\n",
479 				bus, slot, func, sbridge_dev->pdev[i]);
480 			return sbridge_dev->pdev[i];
481 		}
482 	}
483 
484 	return NULL;
485 }
486 
487 /**
488  * check_if_ecc_is_active() - Checks if ECC is active
489  * bus:		Device bus
490  */
491 static int check_if_ecc_is_active(const u8 bus)
492 {
493 	struct pci_dev *pdev = NULL;
494 	u32 mcmtr;
495 
496 	pdev = get_pdev_slot_func(bus, 15, 0);
497 	if (!pdev) {
498 		sbridge_printk(KERN_ERR, "Couldn't find PCI device "
499 					"%2x.%02d.%d!!!\n",
500 					bus, 15, 0);
501 		return -ENODEV;
502 	}
503 
504 	pci_read_config_dword(pdev, MCMTR, &mcmtr);
505 	if (!IS_ECC_ENABLED(mcmtr)) {
506 		sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
507 		return -ENODEV;
508 	}
509 	return 0;
510 }
511 
512 static int get_dimm_config(struct mem_ctl_info *mci)
513 {
514 	struct sbridge_pvt *pvt = mci->pvt_info;
515 	struct dimm_info *dimm;
516 	int i, j, banks, ranks, rows, cols, size, npages;
517 	u32 reg;
518 	enum edac_type mode;
519 	enum mem_type mtype;
520 
521 	pci_read_config_dword(pvt->pci_br, SAD_TARGET, &reg);
522 	pvt->sbridge_dev->source_id = SOURCE_ID(reg);
523 
524 	pci_read_config_dword(pvt->pci_br, SAD_CONTROL, &reg);
525 	pvt->sbridge_dev->node_id = NODE_ID(reg);
526 	debugf0("mc#%d: Node ID: %d, source ID: %d\n",
527 		pvt->sbridge_dev->mc,
528 		pvt->sbridge_dev->node_id,
529 		pvt->sbridge_dev->source_id);
530 
531 	pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
532 	if (IS_MIRROR_ENABLED(reg)) {
533 		debugf0("Memory mirror is enabled\n");
534 		pvt->is_mirrored = true;
535 	} else {
536 		debugf0("Memory mirror is disabled\n");
537 		pvt->is_mirrored = false;
538 	}
539 
540 	pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
541 	if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
542 		debugf0("Lockstep is enabled\n");
543 		mode = EDAC_S8ECD8ED;
544 		pvt->is_lockstep = true;
545 	} else {
546 		debugf0("Lockstep is disabled\n");
547 		mode = EDAC_S4ECD4ED;
548 		pvt->is_lockstep = false;
549 	}
550 	if (IS_CLOSE_PG(pvt->info.mcmtr)) {
551 		debugf0("address map is on closed page mode\n");
552 		pvt->is_close_pg = true;
553 	} else {
554 		debugf0("address map is on open page mode\n");
555 		pvt->is_close_pg = false;
556 	}
557 
558 	pci_read_config_dword(pvt->pci_ddrio, RANK_CFG_A, &reg);
559 	if (IS_RDIMM_ENABLED(reg)) {
560 		/* FIXME: Can also be LRDIMM */
561 		debugf0("Memory is registered\n");
562 		mtype = MEM_RDDR3;
563 	} else {
564 		debugf0("Memory is unregistered\n");
565 		mtype = MEM_DDR3;
566 	}
567 
568 	/* On all supported DDR3 DIMM types, there are 8 banks available */
569 	banks = 8;
570 
571 	for (i = 0; i < NUM_CHANNELS; i++) {
572 		u32 mtr;
573 
574 		for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
575 			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
576 				       i, j, 0);
577 			pci_read_config_dword(pvt->pci_tad[i],
578 					      mtr_regs[j], &mtr);
579 			debugf4("Channel #%d  MTR%d = %x\n", i, j, mtr);
580 			if (IS_DIMM_PRESENT(mtr)) {
581 				pvt->channel[i].dimms++;
582 
583 				ranks = numrank(mtr);
584 				rows = numrow(mtr);
585 				cols = numcol(mtr);
586 
587 				/* DDR3 has 8 I/O banks */
588 				size = (rows * cols * banks * ranks) >> (20 - 3);
589 				npages = MiB_TO_PAGES(size);
590 
591 				debugf0("mc#%d: channel %d, dimm %d, %d Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
592 					pvt->sbridge_dev->mc, i, j,
593 					size, npages,
594 					banks, ranks, rows, cols);
595 
596 				dimm->nr_pages = npages;
597 				dimm->grain = 32;
598 				dimm->dtype = (banks == 8) ? DEV_X8 : DEV_X4;
599 				dimm->mtype = mtype;
600 				dimm->edac_mode = mode;
601 				snprintf(dimm->label, sizeof(dimm->label),
602 					 "CPU_SrcID#%u_Channel#%u_DIMM#%u",
603 					 pvt->sbridge_dev->source_id, i, j);
604 			}
605 		}
606 	}
607 
608 	return 0;
609 }
610 
611 static void get_memory_layout(const struct mem_ctl_info *mci)
612 {
613 	struct sbridge_pvt *pvt = mci->pvt_info;
614 	int i, j, k, n_sads, n_tads, sad_interl;
615 	u32 reg;
616 	u64 limit, prv = 0;
617 	u64 tmp_mb;
618 	u32 mb, kb;
619 	u32 rir_way;
620 
621 	/*
622 	 * Step 1) Get TOLM/TOHM ranges
623 	 */
624 
625 	/* Address range is 32:28 */
626 	pci_read_config_dword(pvt->pci_sad1, TOLM,
627 			      &reg);
628 	pvt->tolm = GET_TOLM(reg);
629 	tmp_mb = (1 + pvt->tolm) >> 20;
630 
631 	mb = div_u64_rem(tmp_mb, 1000, &kb);
632 	debugf0("TOLM: %u.%03u GB (0x%016Lx)\n",
633 		mb, kb, (u64)pvt->tolm);
634 
635 	/* Address range is already 45:25 */
636 	pci_read_config_dword(pvt->pci_sad1, TOHM,
637 			      &reg);
638 	pvt->tohm = GET_TOHM(reg);
639 	tmp_mb = (1 + pvt->tohm) >> 20;
640 
641 	mb = div_u64_rem(tmp_mb, 1000, &kb);
642 	debugf0("TOHM: %u.%03u GB (0x%016Lx)",
643 		mb, kb, (u64)pvt->tohm);
644 
645 	/*
646 	 * Step 2) Get SAD range and SAD Interleave list
647 	 * TAD registers contain the interleave wayness. However, it
648 	 * seems simpler to just discover it indirectly, with the
649 	 * algorithm bellow.
650 	 */
651 	prv = 0;
652 	for (n_sads = 0; n_sads < MAX_SAD; n_sads++) {
653 		/* SAD_LIMIT Address range is 45:26 */
654 		pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads],
655 				      &reg);
656 		limit = SAD_LIMIT(reg);
657 
658 		if (!DRAM_RULE_ENABLE(reg))
659 			continue;
660 
661 		if (limit <= prv)
662 			break;
663 
664 		tmp_mb = (limit + 1) >> 20;
665 		mb = div_u64_rem(tmp_mb, 1000, &kb);
666 		debugf0("SAD#%d %s up to %u.%03u GB (0x%016Lx) %s reg=0x%08x\n",
667 			n_sads,
668 			get_dram_attr(reg),
669 			mb, kb,
670 			((u64)tmp_mb) << 20L,
671 			INTERLEAVE_MODE(reg) ? "Interleave: 8:6" : "Interleave: [8:6]XOR[18:16]",
672 			reg);
673 		prv = limit;
674 
675 		pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads],
676 				      &reg);
677 		sad_interl = sad_pkg(reg, 0);
678 		for (j = 0; j < 8; j++) {
679 			if (j > 0 && sad_interl == sad_pkg(reg, j))
680 				break;
681 
682 			debugf0("SAD#%d, interleave #%d: %d\n",
683 			n_sads, j, sad_pkg(reg, j));
684 		}
685 	}
686 
687 	/*
688 	 * Step 3) Get TAD range
689 	 */
690 	prv = 0;
691 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
692 		pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
693 				      &reg);
694 		limit = TAD_LIMIT(reg);
695 		if (limit <= prv)
696 			break;
697 		tmp_mb = (limit + 1) >> 20;
698 
699 		mb = div_u64_rem(tmp_mb, 1000, &kb);
700 		debugf0("TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
701 			n_tads, mb, kb,
702 			((u64)tmp_mb) << 20L,
703 			(u32)TAD_SOCK(reg),
704 			(u32)TAD_CH(reg),
705 			(u32)TAD_TGT0(reg),
706 			(u32)TAD_TGT1(reg),
707 			(u32)TAD_TGT2(reg),
708 			(u32)TAD_TGT3(reg),
709 			reg);
710 		prv = limit;
711 	}
712 
713 	/*
714 	 * Step 4) Get TAD offsets, per each channel
715 	 */
716 	for (i = 0; i < NUM_CHANNELS; i++) {
717 		if (!pvt->channel[i].dimms)
718 			continue;
719 		for (j = 0; j < n_tads; j++) {
720 			pci_read_config_dword(pvt->pci_tad[i],
721 					      tad_ch_nilv_offset[j],
722 					      &reg);
723 			tmp_mb = TAD_OFFSET(reg) >> 20;
724 			mb = div_u64_rem(tmp_mb, 1000, &kb);
725 			debugf0("TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
726 				i, j,
727 				mb, kb,
728 				((u64)tmp_mb) << 20L,
729 				reg);
730 		}
731 	}
732 
733 	/*
734 	 * Step 6) Get RIR Wayness/Limit, per each channel
735 	 */
736 	for (i = 0; i < NUM_CHANNELS; i++) {
737 		if (!pvt->channel[i].dimms)
738 			continue;
739 		for (j = 0; j < MAX_RIR_RANGES; j++) {
740 			pci_read_config_dword(pvt->pci_tad[i],
741 					      rir_way_limit[j],
742 					      &reg);
743 
744 			if (!IS_RIR_VALID(reg))
745 				continue;
746 
747 			tmp_mb = RIR_LIMIT(reg) >> 20;
748 			rir_way = 1 << RIR_WAY(reg);
749 			mb = div_u64_rem(tmp_mb, 1000, &kb);
750 			debugf0("CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
751 				i, j,
752 				mb, kb,
753 				((u64)tmp_mb) << 20L,
754 				rir_way,
755 				reg);
756 
757 			for (k = 0; k < rir_way; k++) {
758 				pci_read_config_dword(pvt->pci_tad[i],
759 						      rir_offset[j][k],
760 						      &reg);
761 				tmp_mb = RIR_OFFSET(reg) << 6;
762 
763 				mb = div_u64_rem(tmp_mb, 1000, &kb);
764 				debugf0("CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
765 					i, j, k,
766 					mb, kb,
767 					((u64)tmp_mb) << 20L,
768 					(u32)RIR_RNK_TGT(reg),
769 					reg);
770 			}
771 		}
772 	}
773 }
774 
775 struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
776 {
777 	struct sbridge_dev *sbridge_dev;
778 
779 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
780 		if (sbridge_dev->node_id == node_id)
781 			return sbridge_dev->mci;
782 	}
783 	return NULL;
784 }
785 
786 static int get_memory_error_data(struct mem_ctl_info *mci,
787 				 u64 addr,
788 				 u8 *socket,
789 				 long *channel_mask,
790 				 u8 *rank,
791 				 char **area_type, char *msg)
792 {
793 	struct mem_ctl_info	*new_mci;
794 	struct sbridge_pvt *pvt = mci->pvt_info;
795 	int 			n_rir, n_sads, n_tads, sad_way, sck_xch;
796 	int			sad_interl, idx, base_ch;
797 	int			interleave_mode;
798 	unsigned		sad_interleave[MAX_INTERLEAVE];
799 	u32			reg;
800 	u8			ch_way,sck_way;
801 	u32			tad_offset;
802 	u32			rir_way;
803 	u32			mb, kb;
804 	u64			ch_addr, offset, limit, prv = 0;
805 
806 
807 	/*
808 	 * Step 0) Check if the address is at special memory ranges
809 	 * The check bellow is probably enough to fill all cases where
810 	 * the error is not inside a memory, except for the legacy
811 	 * range (e. g. VGA addresses). It is unlikely, however, that the
812 	 * memory controller would generate an error on that range.
813 	 */
814 	if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
815 		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
816 		return -EINVAL;
817 	}
818 	if (addr >= (u64)pvt->tohm) {
819 		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
820 		return -EINVAL;
821 	}
822 
823 	/*
824 	 * Step 1) Get socket
825 	 */
826 	for (n_sads = 0; n_sads < MAX_SAD; n_sads++) {
827 		pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads],
828 				      &reg);
829 
830 		if (!DRAM_RULE_ENABLE(reg))
831 			continue;
832 
833 		limit = SAD_LIMIT(reg);
834 		if (limit <= prv) {
835 			sprintf(msg, "Can't discover the memory socket");
836 			return -EINVAL;
837 		}
838 		if  (addr <= limit)
839 			break;
840 		prv = limit;
841 	}
842 	if (n_sads == MAX_SAD) {
843 		sprintf(msg, "Can't discover the memory socket");
844 		return -EINVAL;
845 	}
846 	*area_type = get_dram_attr(reg);
847 	interleave_mode = INTERLEAVE_MODE(reg);
848 
849 	pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads],
850 			      &reg);
851 	sad_interl = sad_pkg(reg, 0);
852 	for (sad_way = 0; sad_way < 8; sad_way++) {
853 		if (sad_way > 0 && sad_interl == sad_pkg(reg, sad_way))
854 			break;
855 		sad_interleave[sad_way] = sad_pkg(reg, sad_way);
856 		debugf0("SAD interleave #%d: %d\n",
857 			sad_way, sad_interleave[sad_way]);
858 	}
859 	debugf0("mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
860 		pvt->sbridge_dev->mc,
861 		n_sads,
862 		addr,
863 		limit,
864 		sad_way + 7,
865 		interleave_mode ? "" : "XOR[18:16]");
866 	if (interleave_mode)
867 		idx = ((addr >> 6) ^ (addr >> 16)) & 7;
868 	else
869 		idx = (addr >> 6) & 7;
870 	switch (sad_way) {
871 	case 1:
872 		idx = 0;
873 		break;
874 	case 2:
875 		idx = idx & 1;
876 		break;
877 	case 4:
878 		idx = idx & 3;
879 		break;
880 	case 8:
881 		break;
882 	default:
883 		sprintf(msg, "Can't discover socket interleave");
884 		return -EINVAL;
885 	}
886 	*socket = sad_interleave[idx];
887 	debugf0("SAD interleave index: %d (wayness %d) = CPU socket %d\n",
888 		idx, sad_way, *socket);
889 
890 	/*
891 	 * Move to the proper node structure, in order to access the
892 	 * right PCI registers
893 	 */
894 	new_mci = get_mci_for_node_id(*socket);
895 	if (!new_mci) {
896 		sprintf(msg, "Struct for socket #%u wasn't initialized",
897 			*socket);
898 		return -EINVAL;
899 	}
900 	mci = new_mci;
901 	pvt = mci->pvt_info;
902 
903 	/*
904 	 * Step 2) Get memory channel
905 	 */
906 	prv = 0;
907 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
908 		pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
909 				      &reg);
910 		limit = TAD_LIMIT(reg);
911 		if (limit <= prv) {
912 			sprintf(msg, "Can't discover the memory channel");
913 			return -EINVAL;
914 		}
915 		if  (addr <= limit)
916 			break;
917 		prv = limit;
918 	}
919 	ch_way = TAD_CH(reg) + 1;
920 	sck_way = TAD_SOCK(reg) + 1;
921 	/*
922 	 * FIXME: Is it right to always use channel 0 for offsets?
923 	 */
924 	pci_read_config_dword(pvt->pci_tad[0],
925 				tad_ch_nilv_offset[n_tads],
926 				&tad_offset);
927 
928 	if (ch_way == 3)
929 		idx = addr >> 6;
930 	else
931 		idx = addr >> (6 + sck_way);
932 	idx = idx % ch_way;
933 
934 	/*
935 	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
936 	 */
937 	switch (idx) {
938 	case 0:
939 		base_ch = TAD_TGT0(reg);
940 		break;
941 	case 1:
942 		base_ch = TAD_TGT1(reg);
943 		break;
944 	case 2:
945 		base_ch = TAD_TGT2(reg);
946 		break;
947 	case 3:
948 		base_ch = TAD_TGT3(reg);
949 		break;
950 	default:
951 		sprintf(msg, "Can't discover the TAD target");
952 		return -EINVAL;
953 	}
954 	*channel_mask = 1 << base_ch;
955 
956 	if (pvt->is_mirrored) {
957 		*channel_mask |= 1 << ((base_ch + 2) % 4);
958 		switch(ch_way) {
959 		case 2:
960 		case 4:
961 			sck_xch = 1 << sck_way * (ch_way >> 1);
962 			break;
963 		default:
964 			sprintf(msg, "Invalid mirror set. Can't decode addr");
965 			return -EINVAL;
966 		}
967 	} else
968 		sck_xch = (1 << sck_way) * ch_way;
969 
970 	if (pvt->is_lockstep)
971 		*channel_mask |= 1 << ((base_ch + 1) % 4);
972 
973 	offset = TAD_OFFSET(tad_offset);
974 
975 	debugf0("TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
976 		n_tads,
977 		addr,
978 		limit,
979 		(u32)TAD_SOCK(reg),
980 		ch_way,
981 		offset,
982 		idx,
983 		base_ch,
984 		*channel_mask);
985 
986 	/* Calculate channel address */
987 	/* Remove the TAD offset */
988 
989 	if (offset > addr) {
990 		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
991 			offset, addr);
992 		return -EINVAL;
993 	}
994 	addr -= offset;
995 	/* Store the low bits [0:6] of the addr */
996 	ch_addr = addr & 0x7f;
997 	/* Remove socket wayness and remove 6 bits */
998 	addr >>= 6;
999 	addr = div_u64(addr, sck_xch);
1000 #if 0
1001 	/* Divide by channel way */
1002 	addr = addr / ch_way;
1003 #endif
1004 	/* Recover the last 6 bits */
1005 	ch_addr |= addr << 6;
1006 
1007 	/*
1008 	 * Step 3) Decode rank
1009 	 */
1010 	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
1011 		pci_read_config_dword(pvt->pci_tad[base_ch],
1012 				      rir_way_limit[n_rir],
1013 				      &reg);
1014 
1015 		if (!IS_RIR_VALID(reg))
1016 			continue;
1017 
1018 		limit = RIR_LIMIT(reg);
1019 		mb = div_u64_rem(limit >> 20, 1000, &kb);
1020 		debugf0("RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
1021 			n_rir,
1022 			mb, kb,
1023 			limit,
1024 			1 << RIR_WAY(reg));
1025 		if  (ch_addr <= limit)
1026 			break;
1027 	}
1028 	if (n_rir == MAX_RIR_RANGES) {
1029 		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
1030 			ch_addr);
1031 		return -EINVAL;
1032 	}
1033 	rir_way = RIR_WAY(reg);
1034 	if (pvt->is_close_pg)
1035 		idx = (ch_addr >> 6);
1036 	else
1037 		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
1038 	idx %= 1 << rir_way;
1039 
1040 	pci_read_config_dword(pvt->pci_tad[base_ch],
1041 			      rir_offset[n_rir][idx],
1042 			      &reg);
1043 	*rank = RIR_RNK_TGT(reg);
1044 
1045 	debugf0("RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
1046 		n_rir,
1047 		ch_addr,
1048 		limit,
1049 		rir_way,
1050 		idx);
1051 
1052 	return 0;
1053 }
1054 
1055 /****************************************************************************
1056 	Device initialization routines: put/get, init/exit
1057  ****************************************************************************/
1058 
1059 /*
1060  *	sbridge_put_all_devices	'put' all the devices that we have
1061  *				reserved via 'get'
1062  */
1063 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
1064 {
1065 	int i;
1066 
1067 	debugf0(__FILE__ ": %s()\n", __func__);
1068 	for (i = 0; i < sbridge_dev->n_devs; i++) {
1069 		struct pci_dev *pdev = sbridge_dev->pdev[i];
1070 		if (!pdev)
1071 			continue;
1072 		debugf0("Removing dev %02x:%02x.%d\n",
1073 			pdev->bus->number,
1074 			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1075 		pci_dev_put(pdev);
1076 	}
1077 }
1078 
1079 static void sbridge_put_all_devices(void)
1080 {
1081 	struct sbridge_dev *sbridge_dev, *tmp;
1082 
1083 	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
1084 		sbridge_put_devices(sbridge_dev);
1085 		free_sbridge_dev(sbridge_dev);
1086 	}
1087 }
1088 
1089 /*
1090  *	sbridge_get_all_devices	Find and perform 'get' operation on the MCH's
1091  *			device/functions we want to reference for this driver
1092  *
1093  *			Need to 'get' device 16 func 1 and func 2
1094  */
1095 static int sbridge_get_onedevice(struct pci_dev **prev,
1096 				 u8 *num_mc,
1097 				 const struct pci_id_table *table,
1098 				 const unsigned devno)
1099 {
1100 	struct sbridge_dev *sbridge_dev;
1101 	const struct pci_id_descr *dev_descr = &table->descr[devno];
1102 
1103 	struct pci_dev *pdev = NULL;
1104 	u8 bus = 0;
1105 
1106 	sbridge_printk(KERN_INFO,
1107 		"Seeking for: dev %02x.%d PCI ID %04x:%04x\n",
1108 		dev_descr->dev, dev_descr->func,
1109 		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1110 
1111 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1112 			      dev_descr->dev_id, *prev);
1113 
1114 	if (!pdev) {
1115 		if (*prev) {
1116 			*prev = pdev;
1117 			return 0;
1118 		}
1119 
1120 		if (dev_descr->optional)
1121 			return 0;
1122 
1123 		if (devno == 0)
1124 			return -ENODEV;
1125 
1126 		sbridge_printk(KERN_INFO,
1127 			"Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1128 			dev_descr->dev, dev_descr->func,
1129 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1130 
1131 		/* End of list, leave */
1132 		return -ENODEV;
1133 	}
1134 	bus = pdev->bus->number;
1135 
1136 	sbridge_dev = get_sbridge_dev(bus);
1137 	if (!sbridge_dev) {
1138 		sbridge_dev = alloc_sbridge_dev(bus, table);
1139 		if (!sbridge_dev) {
1140 			pci_dev_put(pdev);
1141 			return -ENOMEM;
1142 		}
1143 		(*num_mc)++;
1144 	}
1145 
1146 	if (sbridge_dev->pdev[devno]) {
1147 		sbridge_printk(KERN_ERR,
1148 			"Duplicated device for "
1149 			"dev %02x:%d.%d PCI ID %04x:%04x\n",
1150 			bus, dev_descr->dev, dev_descr->func,
1151 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1152 		pci_dev_put(pdev);
1153 		return -ENODEV;
1154 	}
1155 
1156 	sbridge_dev->pdev[devno] = pdev;
1157 
1158 	/* Sanity check */
1159 	if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
1160 			PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1161 		sbridge_printk(KERN_ERR,
1162 			"Device PCI ID %04x:%04x "
1163 			"has dev %02x:%d.%d instead of dev %02x:%02x.%d\n",
1164 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1165 			bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1166 			bus, dev_descr->dev, dev_descr->func);
1167 		return -ENODEV;
1168 	}
1169 
1170 	/* Be sure that the device is enabled */
1171 	if (unlikely(pci_enable_device(pdev) < 0)) {
1172 		sbridge_printk(KERN_ERR,
1173 			"Couldn't enable "
1174 			"dev %02x:%d.%d PCI ID %04x:%04x\n",
1175 			bus, dev_descr->dev, dev_descr->func,
1176 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1177 		return -ENODEV;
1178 	}
1179 
1180 	debugf0("Detected dev %02x:%d.%d PCI ID %04x:%04x\n",
1181 		bus, dev_descr->dev,
1182 		dev_descr->func,
1183 		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1184 
1185 	/*
1186 	 * As stated on drivers/pci/search.c, the reference count for
1187 	 * @from is always decremented if it is not %NULL. So, as we need
1188 	 * to get all devices up to null, we need to do a get for the device
1189 	 */
1190 	pci_dev_get(pdev);
1191 
1192 	*prev = pdev;
1193 
1194 	return 0;
1195 }
1196 
1197 static int sbridge_get_all_devices(u8 *num_mc)
1198 {
1199 	int i, rc;
1200 	struct pci_dev *pdev = NULL;
1201 	const struct pci_id_table *table = pci_dev_descr_sbridge_table;
1202 
1203 	while (table && table->descr) {
1204 		for (i = 0; i < table->n_devs; i++) {
1205 			pdev = NULL;
1206 			do {
1207 				rc = sbridge_get_onedevice(&pdev, num_mc,
1208 							   table, i);
1209 				if (rc < 0) {
1210 					if (i == 0) {
1211 						i = table->n_devs;
1212 						break;
1213 					}
1214 					sbridge_put_all_devices();
1215 					return -ENODEV;
1216 				}
1217 			} while (pdev);
1218 		}
1219 		table++;
1220 	}
1221 
1222 	return 0;
1223 }
1224 
1225 static int mci_bind_devs(struct mem_ctl_info *mci,
1226 			 struct sbridge_dev *sbridge_dev)
1227 {
1228 	struct sbridge_pvt *pvt = mci->pvt_info;
1229 	struct pci_dev *pdev;
1230 	int i, func, slot;
1231 
1232 	for (i = 0; i < sbridge_dev->n_devs; i++) {
1233 		pdev = sbridge_dev->pdev[i];
1234 		if (!pdev)
1235 			continue;
1236 		slot = PCI_SLOT(pdev->devfn);
1237 		func = PCI_FUNC(pdev->devfn);
1238 		switch (slot) {
1239 		case 12:
1240 			switch (func) {
1241 			case 6:
1242 				pvt->pci_sad0 = pdev;
1243 				break;
1244 			case 7:
1245 				pvt->pci_sad1 = pdev;
1246 				break;
1247 			default:
1248 				goto error;
1249 			}
1250 			break;
1251 		case 13:
1252 			switch (func) {
1253 			case 6:
1254 				pvt->pci_br = pdev;
1255 				break;
1256 			default:
1257 				goto error;
1258 			}
1259 			break;
1260 		case 14:
1261 			switch (func) {
1262 			case 0:
1263 				pvt->pci_ha0 = pdev;
1264 				break;
1265 			default:
1266 				goto error;
1267 			}
1268 			break;
1269 		case 15:
1270 			switch (func) {
1271 			case 0:
1272 				pvt->pci_ta = pdev;
1273 				break;
1274 			case 1:
1275 				pvt->pci_ras = pdev;
1276 				break;
1277 			case 2:
1278 			case 3:
1279 			case 4:
1280 			case 5:
1281 				pvt->pci_tad[func - 2] = pdev;
1282 				break;
1283 			default:
1284 				goto error;
1285 			}
1286 			break;
1287 		case 17:
1288 			switch (func) {
1289 			case 0:
1290 				pvt->pci_ddrio = pdev;
1291 				break;
1292 			default:
1293 				goto error;
1294 			}
1295 			break;
1296 		default:
1297 			goto error;
1298 		}
1299 
1300 		debugf0("Associated PCI %02x.%02d.%d with dev = %p\n",
1301 			sbridge_dev->bus,
1302 			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1303 			pdev);
1304 	}
1305 
1306 	/* Check if everything were registered */
1307 	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
1308 	    !pvt-> pci_tad || !pvt->pci_ras  || !pvt->pci_ta ||
1309 	    !pvt->pci_ddrio)
1310 		goto enodev;
1311 
1312 	for (i = 0; i < NUM_CHANNELS; i++) {
1313 		if (!pvt->pci_tad[i])
1314 			goto enodev;
1315 	}
1316 	return 0;
1317 
1318 enodev:
1319 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1320 	return -ENODEV;
1321 
1322 error:
1323 	sbridge_printk(KERN_ERR, "Device %d, function %d "
1324 		      "is out of the expected range\n",
1325 		      slot, func);
1326 	return -EINVAL;
1327 }
1328 
1329 /****************************************************************************
1330 			Error check routines
1331  ****************************************************************************/
1332 
1333 /*
1334  * While Sandy Bridge has error count registers, SMI BIOS read values from
1335  * and resets the counters. So, they are not reliable for the OS to read
1336  * from them. So, we have no option but to just trust on whatever MCE is
1337  * telling us about the errors.
1338  */
1339 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
1340 				    const struct mce *m)
1341 {
1342 	struct mem_ctl_info *new_mci;
1343 	struct sbridge_pvt *pvt = mci->pvt_info;
1344 	enum hw_event_mc_err_type tp_event;
1345 	char *type, *optype, msg[256];
1346 	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
1347 	bool overflow = GET_BITFIELD(m->status, 62, 62);
1348 	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
1349 	bool recoverable = GET_BITFIELD(m->status, 56, 56);
1350 	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
1351 	u32 mscod = GET_BITFIELD(m->status, 16, 31);
1352 	u32 errcode = GET_BITFIELD(m->status, 0, 15);
1353 	u32 channel = GET_BITFIELD(m->status, 0, 3);
1354 	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
1355 	long channel_mask, first_channel;
1356 	u8  rank, socket;
1357 	int rc, dimm;
1358 	char *area_type = NULL;
1359 
1360 	if (uncorrected_error) {
1361 		if (ripv) {
1362 			type = "FATAL";
1363 			tp_event = HW_EVENT_ERR_FATAL;
1364 		} else {
1365 			type = "NON_FATAL";
1366 			tp_event = HW_EVENT_ERR_UNCORRECTED;
1367 		}
1368 	} else {
1369 		type = "CORRECTED";
1370 		tp_event = HW_EVENT_ERR_CORRECTED;
1371 	}
1372 
1373 	/*
1374 	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
1375 	 * memory errors should fit in this mask:
1376 	 *	000f 0000 1mmm cccc (binary)
1377 	 * where:
1378 	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
1379 	 *	    won't be shown
1380 	 *	mmm = error type
1381 	 *	cccc = channel
1382 	 * If the mask doesn't match, report an error to the parsing logic
1383 	 */
1384 	if (! ((errcode & 0xef80) == 0x80)) {
1385 		optype = "Can't parse: it is not a mem";
1386 	} else {
1387 		switch (optypenum) {
1388 		case 0:
1389 			optype = "generic undef request error";
1390 			break;
1391 		case 1:
1392 			optype = "memory read error";
1393 			break;
1394 		case 2:
1395 			optype = "memory write error";
1396 			break;
1397 		case 3:
1398 			optype = "addr/cmd error";
1399 			break;
1400 		case 4:
1401 			optype = "memory scrubbing error";
1402 			break;
1403 		default:
1404 			optype = "reserved";
1405 			break;
1406 		}
1407 	}
1408 
1409 	rc = get_memory_error_data(mci, m->addr, &socket,
1410 				   &channel_mask, &rank, &area_type, msg);
1411 	if (rc < 0)
1412 		goto err_parsing;
1413 	new_mci = get_mci_for_node_id(socket);
1414 	if (!new_mci) {
1415 		strcpy(msg, "Error: socket got corrupted!");
1416 		goto err_parsing;
1417 	}
1418 	mci = new_mci;
1419 	pvt = mci->pvt_info;
1420 
1421 	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
1422 
1423 	if (rank < 4)
1424 		dimm = 0;
1425 	else if (rank < 8)
1426 		dimm = 1;
1427 	else
1428 		dimm = 2;
1429 
1430 
1431 	/*
1432 	 * FIXME: On some memory configurations (mirror, lockstep), the
1433 	 * Memory Controller can't point the error to a single DIMM. The
1434 	 * EDAC core should be handling the channel mask, in order to point
1435 	 * to the group of dimm's where the error may be happening.
1436 	 */
1437 	snprintf(msg, sizeof(msg),
1438 		 "count:%d%s%s area:%s err_code:%04x:%04x socket:%d channel_mask:%ld rank:%d",
1439 		 core_err_cnt,
1440 		 overflow ? " OVERFLOW" : "",
1441 		 (uncorrected_error && recoverable) ? " recoverable" : "",
1442 		 area_type,
1443 		 mscod, errcode,
1444 		 socket,
1445 		 channel_mask,
1446 		 rank);
1447 
1448 	debugf0("%s", msg);
1449 
1450 	/* FIXME: need support for channel mask */
1451 
1452 	/* Call the helper to output message */
1453 	edac_mc_handle_error(tp_event, mci,
1454 			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
1455 			     channel, dimm, -1,
1456 			     optype, msg, m);
1457 	return;
1458 err_parsing:
1459 	edac_mc_handle_error(tp_event, mci, 0, 0, 0,
1460 			     -1, -1, -1,
1461 			     msg, "", m);
1462 
1463 }
1464 
1465 /*
1466  *	sbridge_check_error	Retrieve and process errors reported by the
1467  *				hardware. Called by the Core module.
1468  */
1469 static void sbridge_check_error(struct mem_ctl_info *mci)
1470 {
1471 	struct sbridge_pvt *pvt = mci->pvt_info;
1472 	int i;
1473 	unsigned count = 0;
1474 	struct mce *m;
1475 
1476 	/*
1477 	 * MCE first step: Copy all mce errors into a temporary buffer
1478 	 * We use a double buffering here, to reduce the risk of
1479 	 * loosing an error.
1480 	 */
1481 	smp_rmb();
1482 	count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
1483 		% MCE_LOG_LEN;
1484 	if (!count)
1485 		return;
1486 
1487 	m = pvt->mce_outentry;
1488 	if (pvt->mce_in + count > MCE_LOG_LEN) {
1489 		unsigned l = MCE_LOG_LEN - pvt->mce_in;
1490 
1491 		memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
1492 		smp_wmb();
1493 		pvt->mce_in = 0;
1494 		count -= l;
1495 		m += l;
1496 	}
1497 	memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
1498 	smp_wmb();
1499 	pvt->mce_in += count;
1500 
1501 	smp_rmb();
1502 	if (pvt->mce_overrun) {
1503 		sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
1504 			      pvt->mce_overrun);
1505 		smp_wmb();
1506 		pvt->mce_overrun = 0;
1507 	}
1508 
1509 	/*
1510 	 * MCE second step: parse errors and display
1511 	 */
1512 	for (i = 0; i < count; i++)
1513 		sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
1514 }
1515 
1516 /*
1517  * sbridge_mce_check_error	Replicates mcelog routine to get errors
1518  *				This routine simply queues mcelog errors, and
1519  *				return. The error itself should be handled later
1520  *				by sbridge_check_error.
1521  * WARNING: As this routine should be called at NMI time, extra care should
1522  * be taken to avoid deadlocks, and to be as fast as possible.
1523  */
1524 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
1525 				   void *data)
1526 {
1527 	struct mce *mce = (struct mce *)data;
1528 	struct mem_ctl_info *mci;
1529 	struct sbridge_pvt *pvt;
1530 
1531 	mci = get_mci_for_node_id(mce->socketid);
1532 	if (!mci)
1533 		return NOTIFY_BAD;
1534 	pvt = mci->pvt_info;
1535 
1536 	/*
1537 	 * Just let mcelog handle it if the error is
1538 	 * outside the memory controller. A memory error
1539 	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
1540 	 * bit 12 has an special meaning.
1541 	 */
1542 	if ((mce->status & 0xefff) >> 7 != 1)
1543 		return NOTIFY_DONE;
1544 
1545 	printk("sbridge: HANDLING MCE MEMORY ERROR\n");
1546 
1547 	printk("CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
1548 	       mce->extcpu, mce->mcgstatus, mce->bank, mce->status);
1549 	printk("TSC %llx ", mce->tsc);
1550 	printk("ADDR %llx ", mce->addr);
1551 	printk("MISC %llx ", mce->misc);
1552 
1553 	printk("PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
1554 		mce->cpuvendor, mce->cpuid, mce->time,
1555 		mce->socketid, mce->apicid);
1556 
1557 	/* Only handle if it is the right mc controller */
1558 	if (cpu_data(mce->cpu).phys_proc_id != pvt->sbridge_dev->mc)
1559 		return NOTIFY_DONE;
1560 
1561 	smp_rmb();
1562 	if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
1563 		smp_wmb();
1564 		pvt->mce_overrun++;
1565 		return NOTIFY_DONE;
1566 	}
1567 
1568 	/* Copy memory error at the ringbuffer */
1569 	memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
1570 	smp_wmb();
1571 	pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
1572 
1573 	/* Handle fatal errors immediately */
1574 	if (mce->mcgstatus & 1)
1575 		sbridge_check_error(mci);
1576 
1577 	/* Advice mcelog that the error were handled */
1578 	return NOTIFY_STOP;
1579 }
1580 
1581 static struct notifier_block sbridge_mce_dec = {
1582 	.notifier_call      = sbridge_mce_check_error,
1583 };
1584 
1585 /****************************************************************************
1586 			EDAC register/unregister logic
1587  ****************************************************************************/
1588 
1589 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
1590 {
1591 	struct mem_ctl_info *mci = sbridge_dev->mci;
1592 	struct sbridge_pvt *pvt;
1593 
1594 	if (unlikely(!mci || !mci->pvt_info)) {
1595 		debugf0("MC: " __FILE__ ": %s(): dev = %p\n",
1596 			__func__, &sbridge_dev->pdev[0]->dev);
1597 
1598 		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
1599 		return;
1600 	}
1601 
1602 	pvt = mci->pvt_info;
1603 
1604 	debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
1605 		__func__, mci, &sbridge_dev->pdev[0]->dev);
1606 
1607 	/* Remove MC sysfs nodes */
1608 	edac_mc_del_mc(mci->dev);
1609 
1610 	debugf1("%s: free mci struct\n", mci->ctl_name);
1611 	kfree(mci->ctl_name);
1612 	edac_mc_free(mci);
1613 	sbridge_dev->mci = NULL;
1614 }
1615 
1616 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev)
1617 {
1618 	struct mem_ctl_info *mci;
1619 	struct edac_mc_layer layers[2];
1620 	struct sbridge_pvt *pvt;
1621 	int rc;
1622 
1623 	/* Check the number of active and not disabled channels */
1624 	rc = check_if_ecc_is_active(sbridge_dev->bus);
1625 	if (unlikely(rc < 0))
1626 		return rc;
1627 
1628 	/* allocate a new MC control structure */
1629 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
1630 	layers[0].size = NUM_CHANNELS;
1631 	layers[0].is_virt_csrow = false;
1632 	layers[1].type = EDAC_MC_LAYER_SLOT;
1633 	layers[1].size = MAX_DIMMS;
1634 	layers[1].is_virt_csrow = true;
1635 	mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
1636 			    sizeof(*pvt));
1637 
1638 	if (unlikely(!mci))
1639 		return -ENOMEM;
1640 
1641 	debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
1642 		__func__, mci, &sbridge_dev->pdev[0]->dev);
1643 
1644 	pvt = mci->pvt_info;
1645 	memset(pvt, 0, sizeof(*pvt));
1646 
1647 	/* Associate sbridge_dev and mci for future usage */
1648 	pvt->sbridge_dev = sbridge_dev;
1649 	sbridge_dev->mci = mci;
1650 
1651 	mci->mtype_cap = MEM_FLAG_DDR3;
1652 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
1653 	mci->edac_cap = EDAC_FLAG_NONE;
1654 	mci->mod_name = "sbridge_edac.c";
1655 	mci->mod_ver = SBRIDGE_REVISION;
1656 	mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
1657 	mci->dev_name = pci_name(sbridge_dev->pdev[0]);
1658 	mci->ctl_page_to_phys = NULL;
1659 
1660 	/* Set the function pointer to an actual operation function */
1661 	mci->edac_check = sbridge_check_error;
1662 
1663 	/* Store pci devices at mci for faster access */
1664 	rc = mci_bind_devs(mci, sbridge_dev);
1665 	if (unlikely(rc < 0))
1666 		goto fail0;
1667 
1668 	/* Get dimm basic config and the memory layout */
1669 	get_dimm_config(mci);
1670 	get_memory_layout(mci);
1671 
1672 	/* record ptr to the generic device */
1673 	mci->dev = &sbridge_dev->pdev[0]->dev;
1674 
1675 	/* add this new MC control structure to EDAC's list of MCs */
1676 	if (unlikely(edac_mc_add_mc(mci))) {
1677 		debugf0("MC: " __FILE__
1678 			": %s(): failed edac_mc_add_mc()\n", __func__);
1679 		rc = -EINVAL;
1680 		goto fail0;
1681 	}
1682 
1683 	return 0;
1684 
1685 fail0:
1686 	kfree(mci->ctl_name);
1687 	edac_mc_free(mci);
1688 	sbridge_dev->mci = NULL;
1689 	return rc;
1690 }
1691 
1692 /*
1693  *	sbridge_probe	Probe for ONE instance of device to see if it is
1694  *			present.
1695  *	return:
1696  *		0 for FOUND a device
1697  *		< 0 for error code
1698  */
1699 
1700 static int __devinit sbridge_probe(struct pci_dev *pdev,
1701 				  const struct pci_device_id *id)
1702 {
1703 	int rc;
1704 	u8 mc, num_mc = 0;
1705 	struct sbridge_dev *sbridge_dev;
1706 
1707 	/* get the pci devices we want to reserve for our use */
1708 	mutex_lock(&sbridge_edac_lock);
1709 
1710 	/*
1711 	 * All memory controllers are allocated at the first pass.
1712 	 */
1713 	if (unlikely(probed >= 1)) {
1714 		mutex_unlock(&sbridge_edac_lock);
1715 		return -ENODEV;
1716 	}
1717 	probed++;
1718 
1719 	rc = sbridge_get_all_devices(&num_mc);
1720 	if (unlikely(rc < 0))
1721 		goto fail0;
1722 	mc = 0;
1723 
1724 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1725 		debugf0("Registering MC#%d (%d of %d)\n", mc, mc + 1, num_mc);
1726 		sbridge_dev->mc = mc++;
1727 		rc = sbridge_register_mci(sbridge_dev);
1728 		if (unlikely(rc < 0))
1729 			goto fail1;
1730 	}
1731 
1732 	sbridge_printk(KERN_INFO, "Driver loaded.\n");
1733 
1734 	mutex_unlock(&sbridge_edac_lock);
1735 	return 0;
1736 
1737 fail1:
1738 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
1739 		sbridge_unregister_mci(sbridge_dev);
1740 
1741 	sbridge_put_all_devices();
1742 fail0:
1743 	mutex_unlock(&sbridge_edac_lock);
1744 	return rc;
1745 }
1746 
1747 /*
1748  *	sbridge_remove	destructor for one instance of device
1749  *
1750  */
1751 static void __devexit sbridge_remove(struct pci_dev *pdev)
1752 {
1753 	struct sbridge_dev *sbridge_dev;
1754 
1755 	debugf0(__FILE__ ": %s()\n", __func__);
1756 
1757 	/*
1758 	 * we have a trouble here: pdev value for removal will be wrong, since
1759 	 * it will point to the X58 register used to detect that the machine
1760 	 * is a Nehalem or upper design. However, due to the way several PCI
1761 	 * devices are grouped together to provide MC functionality, we need
1762 	 * to use a different method for releasing the devices
1763 	 */
1764 
1765 	mutex_lock(&sbridge_edac_lock);
1766 
1767 	if (unlikely(!probed)) {
1768 		mutex_unlock(&sbridge_edac_lock);
1769 		return;
1770 	}
1771 
1772 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
1773 		sbridge_unregister_mci(sbridge_dev);
1774 
1775 	/* Release PCI resources */
1776 	sbridge_put_all_devices();
1777 
1778 	probed--;
1779 
1780 	mutex_unlock(&sbridge_edac_lock);
1781 }
1782 
1783 MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
1784 
1785 /*
1786  *	sbridge_driver	pci_driver structure for this module
1787  *
1788  */
1789 static struct pci_driver sbridge_driver = {
1790 	.name     = "sbridge_edac",
1791 	.probe    = sbridge_probe,
1792 	.remove   = __devexit_p(sbridge_remove),
1793 	.id_table = sbridge_pci_tbl,
1794 };
1795 
1796 /*
1797  *	sbridge_init		Module entry function
1798  *			Try to initialize this module for its devices
1799  */
1800 static int __init sbridge_init(void)
1801 {
1802 	int pci_rc;
1803 
1804 	debugf2("MC: " __FILE__ ": %s()\n", __func__);
1805 
1806 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
1807 	opstate_init();
1808 
1809 	pci_rc = pci_register_driver(&sbridge_driver);
1810 
1811 	if (pci_rc >= 0) {
1812 		mce_register_decode_chain(&sbridge_mce_dec);
1813 		return 0;
1814 	}
1815 
1816 	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
1817 		      pci_rc);
1818 
1819 	return pci_rc;
1820 }
1821 
1822 /*
1823  *	sbridge_exit()	Module exit function
1824  *			Unregister the driver
1825  */
1826 static void __exit sbridge_exit(void)
1827 {
1828 	debugf2("MC: " __FILE__ ": %s()\n", __func__);
1829 	pci_unregister_driver(&sbridge_driver);
1830 	mce_unregister_decode_chain(&sbridge_mce_dec);
1831 }
1832 
1833 module_init(sbridge_init);
1834 module_exit(sbridge_exit);
1835 
1836 module_param(edac_op_state, int, 0444);
1837 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1838 
1839 MODULE_LICENSE("GPL");
1840 MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
1841 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
1842 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge memory controllers - "
1843 		   SBRIDGE_REVISION);
1844