xref: /linux/drivers/edac/sb_edac.c (revision 0d456bad36d42d16022be045c8a53ddbb59ee478)
1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
2  *
3  * This driver supports the memory controllers found on the Intel
4  * processor family Sandy Bridge.
5  *
6  * This file may be distributed under the terms of the
7  * GNU General Public License version 2 only.
8  *
9  * Copyright (c) 2011 by:
10  *	 Mauro Carvalho Chehab <mchehab@redhat.com>
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <asm/processor.h>
25 #include <asm/mce.h>
26 
27 #include "edac_core.h"
28 
29 /* Static vars */
30 static LIST_HEAD(sbridge_edac_list);
31 static DEFINE_MUTEX(sbridge_edac_lock);
32 static int probed;
33 
34 /*
35  * Alter this version for the module when modifications are made
36  */
37 #define SBRIDGE_REVISION    " Ver: 1.0.0 "
38 #define EDAC_MOD_STR      "sbridge_edac"
39 
40 /*
41  * Debug macros
42  */
43 #define sbridge_printk(level, fmt, arg...)			\
44 	edac_printk(level, "sbridge", fmt, ##arg)
45 
46 #define sbridge_mc_printk(mci, level, fmt, arg...)		\
47 	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
48 
49 /*
50  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
51  */
52 #define GET_BITFIELD(v, lo, hi)	\
53 	(((v) & ((1ULL << ((hi) - (lo) + 1)) - 1) << (lo)) >> (lo))
54 
55 /*
56  * sbridge Memory Controller Registers
57  */
58 
59 /*
60  * FIXME: For now, let's order by device function, as it makes
61  * easier for driver's development process. This table should be
62  * moved to pci_id.h when submitted upstream
63  */
64 #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0	0x3cf4	/* 12.6 */
65 #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1	0x3cf6	/* 12.7 */
66 #define PCI_DEVICE_ID_INTEL_SBRIDGE_BR		0x3cf5	/* 13.6 */
67 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0	0x3ca0	/* 14.0 */
68 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA	0x3ca8	/* 15.0 */
69 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS	0x3c71	/* 15.1 */
70 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0	0x3caa	/* 15.2 */
71 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1	0x3cab	/* 15.3 */
72 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2	0x3cac	/* 15.4 */
73 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3	0x3cad	/* 15.5 */
74 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO	0x3cb8	/* 17.0 */
75 
76 	/*
77 	 * Currently, unused, but will be needed in the future
78 	 * implementations, as they hold the error counters
79 	 */
80 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR0	0x3c72	/* 16.2 */
81 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR1	0x3c73	/* 16.3 */
82 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR2	0x3c76	/* 16.6 */
83 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR3	0x3c77	/* 16.7 */
84 
85 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
86 static const u32 dram_rule[] = {
87 	0x80, 0x88, 0x90, 0x98, 0xa0,
88 	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
89 };
90 #define MAX_SAD		ARRAY_SIZE(dram_rule)
91 
92 #define SAD_LIMIT(reg)		((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
93 #define DRAM_ATTR(reg)		GET_BITFIELD(reg, 2,  3)
94 #define INTERLEAVE_MODE(reg)	GET_BITFIELD(reg, 1,  1)
95 #define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)
96 
97 static char *get_dram_attr(u32 reg)
98 {
99 	switch(DRAM_ATTR(reg)) {
100 		case 0:
101 			return "DRAM";
102 		case 1:
103 			return "MMCFG";
104 		case 2:
105 			return "NXM";
106 		default:
107 			return "unknown";
108 	}
109 }
110 
111 static const u32 interleave_list[] = {
112 	0x84, 0x8c, 0x94, 0x9c, 0xa4,
113 	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
114 };
115 #define MAX_INTERLEAVE	ARRAY_SIZE(interleave_list)
116 
117 #define SAD_PKG0(reg)		GET_BITFIELD(reg, 0, 2)
118 #define SAD_PKG1(reg)		GET_BITFIELD(reg, 3, 5)
119 #define SAD_PKG2(reg)		GET_BITFIELD(reg, 8, 10)
120 #define SAD_PKG3(reg)		GET_BITFIELD(reg, 11, 13)
121 #define SAD_PKG4(reg)		GET_BITFIELD(reg, 16, 18)
122 #define SAD_PKG5(reg)		GET_BITFIELD(reg, 19, 21)
123 #define SAD_PKG6(reg)		GET_BITFIELD(reg, 24, 26)
124 #define SAD_PKG7(reg)		GET_BITFIELD(reg, 27, 29)
125 
126 static inline int sad_pkg(u32 reg, int interleave)
127 {
128 	switch (interleave) {
129 	case 0:
130 		return SAD_PKG0(reg);
131 	case 1:
132 		return SAD_PKG1(reg);
133 	case 2:
134 		return SAD_PKG2(reg);
135 	case 3:
136 		return SAD_PKG3(reg);
137 	case 4:
138 		return SAD_PKG4(reg);
139 	case 5:
140 		return SAD_PKG5(reg);
141 	case 6:
142 		return SAD_PKG6(reg);
143 	case 7:
144 		return SAD_PKG7(reg);
145 	default:
146 		return -EINVAL;
147 	}
148 }
149 
150 /* Devices 12 Function 7 */
151 
152 #define TOLM		0x80
153 #define	TOHM		0x84
154 
155 #define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
156 #define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
157 
158 /* Device 13 Function 6 */
159 
160 #define SAD_TARGET	0xf0
161 
162 #define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)
163 
164 #define SAD_CONTROL	0xf4
165 
166 #define NODE_ID(reg)		GET_BITFIELD(reg, 0, 2)
167 
168 /* Device 14 function 0 */
169 
170 static const u32 tad_dram_rule[] = {
171 	0x40, 0x44, 0x48, 0x4c,
172 	0x50, 0x54, 0x58, 0x5c,
173 	0x60, 0x64, 0x68, 0x6c,
174 };
175 #define MAX_TAD	ARRAY_SIZE(tad_dram_rule)
176 
177 #define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
178 #define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
179 #define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
180 #define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
181 #define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
182 #define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
183 #define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)
184 
185 /* Device 15, function 0 */
186 
187 #define MCMTR			0x7c
188 
189 #define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
190 #define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
191 #define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)
192 
193 /* Device 15, function 1 */
194 
195 #define RASENABLES		0xac
196 #define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)
197 
198 /* Device 15, functions 2-5 */
199 
200 static const int mtr_regs[] = {
201 	0x80, 0x84, 0x88,
202 };
203 
204 #define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
205 #define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
206 #define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
207 #define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
208 #define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)
209 
210 static const u32 tad_ch_nilv_offset[] = {
211 	0x90, 0x94, 0x98, 0x9c,
212 	0xa0, 0xa4, 0xa8, 0xac,
213 	0xb0, 0xb4, 0xb8, 0xbc,
214 };
215 #define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
216 #define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)
217 
218 static const u32 rir_way_limit[] = {
219 	0x108, 0x10c, 0x110, 0x114, 0x118,
220 };
221 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
222 
223 #define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
224 #define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)
225 #define RIR_LIMIT(reg)		((GET_BITFIELD(reg,  1, 10) << 29)| 0x1fffffff)
226 
227 #define MAX_RIR_WAY	8
228 
229 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
230 	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
231 	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
232 	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
233 	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
234 	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
235 };
236 
237 #define RIR_RNK_TGT(reg)		GET_BITFIELD(reg, 16, 19)
238 #define RIR_OFFSET(reg)		GET_BITFIELD(reg,  2, 14)
239 
240 /* Device 16, functions 2-7 */
241 
242 /*
243  * FIXME: Implement the error count reads directly
244  */
245 
246 static const u32 correrrcnt[] = {
247 	0x104, 0x108, 0x10c, 0x110,
248 };
249 
250 #define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
251 #define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
252 #define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
253 #define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)
254 
255 static const u32 correrrthrsld[] = {
256 	0x11c, 0x120, 0x124, 0x128,
257 };
258 
259 #define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
260 #define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)
261 
262 
263 /* Device 17, function 0 */
264 
265 #define RANK_CFG_A		0x0328
266 
267 #define IS_RDIMM_ENABLED(reg)		GET_BITFIELD(reg, 11, 11)
268 
269 /*
270  * sbridge structs
271  */
272 
273 #define NUM_CHANNELS	4
274 #define MAX_DIMMS	3		/* Max DIMMS per channel */
275 
276 struct sbridge_info {
277 	u32	mcmtr;
278 };
279 
280 struct sbridge_channel {
281 	u32		ranks;
282 	u32		dimms;
283 };
284 
285 struct pci_id_descr {
286 	int			dev;
287 	int			func;
288 	int 			dev_id;
289 	int			optional;
290 };
291 
292 struct pci_id_table {
293 	const struct pci_id_descr	*descr;
294 	int				n_devs;
295 };
296 
297 struct sbridge_dev {
298 	struct list_head	list;
299 	u8			bus, mc;
300 	u8			node_id, source_id;
301 	struct pci_dev		**pdev;
302 	int			n_devs;
303 	struct mem_ctl_info	*mci;
304 };
305 
306 struct sbridge_pvt {
307 	struct pci_dev		*pci_ta, *pci_ddrio, *pci_ras;
308 	struct pci_dev		*pci_sad0, *pci_sad1, *pci_ha0;
309 	struct pci_dev		*pci_br;
310 	struct pci_dev		*pci_tad[NUM_CHANNELS];
311 
312 	struct sbridge_dev	*sbridge_dev;
313 
314 	struct sbridge_info	info;
315 	struct sbridge_channel	channel[NUM_CHANNELS];
316 
317 	/* Memory type detection */
318 	bool			is_mirrored, is_lockstep, is_close_pg;
319 
320 	/* Fifo double buffers */
321 	struct mce		mce_entry[MCE_LOG_LEN];
322 	struct mce		mce_outentry[MCE_LOG_LEN];
323 
324 	/* Fifo in/out counters */
325 	unsigned		mce_in, mce_out;
326 
327 	/* Count indicator to show errors not got */
328 	unsigned		mce_overrun;
329 
330 	/* Memory description */
331 	u64			tolm, tohm;
332 };
333 
334 #define PCI_DESCR(device, function, device_id)	\
335 	.dev = (device),			\
336 	.func = (function),			\
337 	.dev_id = (device_id)
338 
339 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
340 		/* Processor Home Agent */
341 	{ PCI_DESCR(14, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0)		},
342 
343 		/* Memory controller */
344 	{ PCI_DESCR(15, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)		},
345 	{ PCI_DESCR(15, 1, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS)		},
346 	{ PCI_DESCR(15, 2, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0)	},
347 	{ PCI_DESCR(15, 3, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1)	},
348 	{ PCI_DESCR(15, 4, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2)	},
349 	{ PCI_DESCR(15, 5, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3)	},
350 	{ PCI_DESCR(17, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO)	},
351 
352 		/* System Address Decoder */
353 	{ PCI_DESCR(12, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0)		},
354 	{ PCI_DESCR(12, 7, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1)		},
355 
356 		/* Broadcast Registers */
357 	{ PCI_DESCR(13, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_BR)		},
358 };
359 
360 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
361 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
362 	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
363 	{0,}			/* 0 terminated list. */
364 };
365 
366 /*
367  *	pci_device_id	table for which devices we are looking for
368  */
369 static DEFINE_PCI_DEVICE_TABLE(sbridge_pci_tbl) = {
370 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)},
371 	{0,}			/* 0 terminated list. */
372 };
373 
374 
375 /****************************************************************************
376 			Ancillary status routines
377  ****************************************************************************/
378 
379 static inline int numrank(u32 mtr)
380 {
381 	int ranks = (1 << RANK_CNT_BITS(mtr));
382 
383 	if (ranks > 4) {
384 		edac_dbg(0, "Invalid number of ranks: %d (max = 4) raw value = %x (%04x)\n",
385 			 ranks, (unsigned int)RANK_CNT_BITS(mtr), mtr);
386 		return -EINVAL;
387 	}
388 
389 	return ranks;
390 }
391 
392 static inline int numrow(u32 mtr)
393 {
394 	int rows = (RANK_WIDTH_BITS(mtr) + 12);
395 
396 	if (rows < 13 || rows > 18) {
397 		edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
398 			 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
399 		return -EINVAL;
400 	}
401 
402 	return 1 << rows;
403 }
404 
405 static inline int numcol(u32 mtr)
406 {
407 	int cols = (COL_WIDTH_BITS(mtr) + 10);
408 
409 	if (cols > 12) {
410 		edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
411 			 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
412 		return -EINVAL;
413 	}
414 
415 	return 1 << cols;
416 }
417 
418 static struct sbridge_dev *get_sbridge_dev(u8 bus)
419 {
420 	struct sbridge_dev *sbridge_dev;
421 
422 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
423 		if (sbridge_dev->bus == bus)
424 			return sbridge_dev;
425 	}
426 
427 	return NULL;
428 }
429 
430 static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
431 					   const struct pci_id_table *table)
432 {
433 	struct sbridge_dev *sbridge_dev;
434 
435 	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
436 	if (!sbridge_dev)
437 		return NULL;
438 
439 	sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
440 				   GFP_KERNEL);
441 	if (!sbridge_dev->pdev) {
442 		kfree(sbridge_dev);
443 		return NULL;
444 	}
445 
446 	sbridge_dev->bus = bus;
447 	sbridge_dev->n_devs = table->n_devs;
448 	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
449 
450 	return sbridge_dev;
451 }
452 
453 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
454 {
455 	list_del(&sbridge_dev->list);
456 	kfree(sbridge_dev->pdev);
457 	kfree(sbridge_dev);
458 }
459 
460 /****************************************************************************
461 			Memory check routines
462  ****************************************************************************/
463 static struct pci_dev *get_pdev_slot_func(u8 bus, unsigned slot,
464 					  unsigned func)
465 {
466 	struct sbridge_dev *sbridge_dev = get_sbridge_dev(bus);
467 	int i;
468 
469 	if (!sbridge_dev)
470 		return NULL;
471 
472 	for (i = 0; i < sbridge_dev->n_devs; i++) {
473 		if (!sbridge_dev->pdev[i])
474 			continue;
475 
476 		if (PCI_SLOT(sbridge_dev->pdev[i]->devfn) == slot &&
477 		    PCI_FUNC(sbridge_dev->pdev[i]->devfn) == func) {
478 			edac_dbg(1, "Associated %02x.%02x.%d with %p\n",
479 				 bus, slot, func, sbridge_dev->pdev[i]);
480 			return sbridge_dev->pdev[i];
481 		}
482 	}
483 
484 	return NULL;
485 }
486 
487 /**
488  * check_if_ecc_is_active() - Checks if ECC is active
489  * bus:		Device bus
490  */
491 static int check_if_ecc_is_active(const u8 bus)
492 {
493 	struct pci_dev *pdev = NULL;
494 	u32 mcmtr;
495 
496 	pdev = get_pdev_slot_func(bus, 15, 0);
497 	if (!pdev) {
498 		sbridge_printk(KERN_ERR, "Couldn't find PCI device "
499 					"%2x.%02d.%d!!!\n",
500 					bus, 15, 0);
501 		return -ENODEV;
502 	}
503 
504 	pci_read_config_dword(pdev, MCMTR, &mcmtr);
505 	if (!IS_ECC_ENABLED(mcmtr)) {
506 		sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
507 		return -ENODEV;
508 	}
509 	return 0;
510 }
511 
512 static int get_dimm_config(struct mem_ctl_info *mci)
513 {
514 	struct sbridge_pvt *pvt = mci->pvt_info;
515 	struct dimm_info *dimm;
516 	unsigned i, j, banks, ranks, rows, cols, npages;
517 	u64 size;
518 	u32 reg;
519 	enum edac_type mode;
520 	enum mem_type mtype;
521 
522 	pci_read_config_dword(pvt->pci_br, SAD_TARGET, &reg);
523 	pvt->sbridge_dev->source_id = SOURCE_ID(reg);
524 
525 	pci_read_config_dword(pvt->pci_br, SAD_CONTROL, &reg);
526 	pvt->sbridge_dev->node_id = NODE_ID(reg);
527 	edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
528 		 pvt->sbridge_dev->mc,
529 		 pvt->sbridge_dev->node_id,
530 		 pvt->sbridge_dev->source_id);
531 
532 	pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
533 	if (IS_MIRROR_ENABLED(reg)) {
534 		edac_dbg(0, "Memory mirror is enabled\n");
535 		pvt->is_mirrored = true;
536 	} else {
537 		edac_dbg(0, "Memory mirror is disabled\n");
538 		pvt->is_mirrored = false;
539 	}
540 
541 	pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
542 	if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
543 		edac_dbg(0, "Lockstep is enabled\n");
544 		mode = EDAC_S8ECD8ED;
545 		pvt->is_lockstep = true;
546 	} else {
547 		edac_dbg(0, "Lockstep is disabled\n");
548 		mode = EDAC_S4ECD4ED;
549 		pvt->is_lockstep = false;
550 	}
551 	if (IS_CLOSE_PG(pvt->info.mcmtr)) {
552 		edac_dbg(0, "address map is on closed page mode\n");
553 		pvt->is_close_pg = true;
554 	} else {
555 		edac_dbg(0, "address map is on open page mode\n");
556 		pvt->is_close_pg = false;
557 	}
558 
559 	pci_read_config_dword(pvt->pci_ddrio, RANK_CFG_A, &reg);
560 	if (IS_RDIMM_ENABLED(reg)) {
561 		/* FIXME: Can also be LRDIMM */
562 		edac_dbg(0, "Memory is registered\n");
563 		mtype = MEM_RDDR3;
564 	} else {
565 		edac_dbg(0, "Memory is unregistered\n");
566 		mtype = MEM_DDR3;
567 	}
568 
569 	/* On all supported DDR3 DIMM types, there are 8 banks available */
570 	banks = 8;
571 
572 	for (i = 0; i < NUM_CHANNELS; i++) {
573 		u32 mtr;
574 
575 		for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
576 			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
577 				       i, j, 0);
578 			pci_read_config_dword(pvt->pci_tad[i],
579 					      mtr_regs[j], &mtr);
580 			edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
581 			if (IS_DIMM_PRESENT(mtr)) {
582 				pvt->channel[i].dimms++;
583 
584 				ranks = numrank(mtr);
585 				rows = numrow(mtr);
586 				cols = numcol(mtr);
587 
588 				/* DDR3 has 8 I/O banks */
589 				size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
590 				npages = MiB_TO_PAGES(size);
591 
592 				edac_dbg(0, "mc#%d: channel %d, dimm %d, %Ld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
593 					 pvt->sbridge_dev->mc, i, j,
594 					 size, npages,
595 					 banks, ranks, rows, cols);
596 
597 				dimm->nr_pages = npages;
598 				dimm->grain = 32;
599 				dimm->dtype = (banks == 8) ? DEV_X8 : DEV_X4;
600 				dimm->mtype = mtype;
601 				dimm->edac_mode = mode;
602 				snprintf(dimm->label, sizeof(dimm->label),
603 					 "CPU_SrcID#%u_Channel#%u_DIMM#%u",
604 					 pvt->sbridge_dev->source_id, i, j);
605 			}
606 		}
607 	}
608 
609 	return 0;
610 }
611 
612 static void get_memory_layout(const struct mem_ctl_info *mci)
613 {
614 	struct sbridge_pvt *pvt = mci->pvt_info;
615 	int i, j, k, n_sads, n_tads, sad_interl;
616 	u32 reg;
617 	u64 limit, prv = 0;
618 	u64 tmp_mb;
619 	u32 mb, kb;
620 	u32 rir_way;
621 
622 	/*
623 	 * Step 1) Get TOLM/TOHM ranges
624 	 */
625 
626 	/* Address range is 32:28 */
627 	pci_read_config_dword(pvt->pci_sad1, TOLM,
628 			      &reg);
629 	pvt->tolm = GET_TOLM(reg);
630 	tmp_mb = (1 + pvt->tolm) >> 20;
631 
632 	mb = div_u64_rem(tmp_mb, 1000, &kb);
633 	edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n", mb, kb, (u64)pvt->tolm);
634 
635 	/* Address range is already 45:25 */
636 	pci_read_config_dword(pvt->pci_sad1, TOHM,
637 			      &reg);
638 	pvt->tohm = GET_TOHM(reg);
639 	tmp_mb = (1 + pvt->tohm) >> 20;
640 
641 	mb = div_u64_rem(tmp_mb, 1000, &kb);
642 	edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)", mb, kb, (u64)pvt->tohm);
643 
644 	/*
645 	 * Step 2) Get SAD range and SAD Interleave list
646 	 * TAD registers contain the interleave wayness. However, it
647 	 * seems simpler to just discover it indirectly, with the
648 	 * algorithm bellow.
649 	 */
650 	prv = 0;
651 	for (n_sads = 0; n_sads < MAX_SAD; n_sads++) {
652 		/* SAD_LIMIT Address range is 45:26 */
653 		pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads],
654 				      &reg);
655 		limit = SAD_LIMIT(reg);
656 
657 		if (!DRAM_RULE_ENABLE(reg))
658 			continue;
659 
660 		if (limit <= prv)
661 			break;
662 
663 		tmp_mb = (limit + 1) >> 20;
664 		mb = div_u64_rem(tmp_mb, 1000, &kb);
665 		edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
666 			 n_sads,
667 			 get_dram_attr(reg),
668 			 mb, kb,
669 			 ((u64)tmp_mb) << 20L,
670 			 INTERLEAVE_MODE(reg) ? "8:6" : "[8:6]XOR[18:16]",
671 			 reg);
672 		prv = limit;
673 
674 		pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads],
675 				      &reg);
676 		sad_interl = sad_pkg(reg, 0);
677 		for (j = 0; j < 8; j++) {
678 			if (j > 0 && sad_interl == sad_pkg(reg, j))
679 				break;
680 
681 			edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
682 				 n_sads, j, sad_pkg(reg, j));
683 		}
684 	}
685 
686 	/*
687 	 * Step 3) Get TAD range
688 	 */
689 	prv = 0;
690 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
691 		pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
692 				      &reg);
693 		limit = TAD_LIMIT(reg);
694 		if (limit <= prv)
695 			break;
696 		tmp_mb = (limit + 1) >> 20;
697 
698 		mb = div_u64_rem(tmp_mb, 1000, &kb);
699 		edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
700 			 n_tads, mb, kb,
701 			 ((u64)tmp_mb) << 20L,
702 			 (u32)TAD_SOCK(reg),
703 			 (u32)TAD_CH(reg),
704 			 (u32)TAD_TGT0(reg),
705 			 (u32)TAD_TGT1(reg),
706 			 (u32)TAD_TGT2(reg),
707 			 (u32)TAD_TGT3(reg),
708 			 reg);
709 		prv = limit;
710 	}
711 
712 	/*
713 	 * Step 4) Get TAD offsets, per each channel
714 	 */
715 	for (i = 0; i < NUM_CHANNELS; i++) {
716 		if (!pvt->channel[i].dimms)
717 			continue;
718 		for (j = 0; j < n_tads; j++) {
719 			pci_read_config_dword(pvt->pci_tad[i],
720 					      tad_ch_nilv_offset[j],
721 					      &reg);
722 			tmp_mb = TAD_OFFSET(reg) >> 20;
723 			mb = div_u64_rem(tmp_mb, 1000, &kb);
724 			edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
725 				 i, j,
726 				 mb, kb,
727 				 ((u64)tmp_mb) << 20L,
728 				 reg);
729 		}
730 	}
731 
732 	/*
733 	 * Step 6) Get RIR Wayness/Limit, per each channel
734 	 */
735 	for (i = 0; i < NUM_CHANNELS; i++) {
736 		if (!pvt->channel[i].dimms)
737 			continue;
738 		for (j = 0; j < MAX_RIR_RANGES; j++) {
739 			pci_read_config_dword(pvt->pci_tad[i],
740 					      rir_way_limit[j],
741 					      &reg);
742 
743 			if (!IS_RIR_VALID(reg))
744 				continue;
745 
746 			tmp_mb = RIR_LIMIT(reg) >> 20;
747 			rir_way = 1 << RIR_WAY(reg);
748 			mb = div_u64_rem(tmp_mb, 1000, &kb);
749 			edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
750 				 i, j,
751 				 mb, kb,
752 				 ((u64)tmp_mb) << 20L,
753 				 rir_way,
754 				 reg);
755 
756 			for (k = 0; k < rir_way; k++) {
757 				pci_read_config_dword(pvt->pci_tad[i],
758 						      rir_offset[j][k],
759 						      &reg);
760 				tmp_mb = RIR_OFFSET(reg) << 6;
761 
762 				mb = div_u64_rem(tmp_mb, 1000, &kb);
763 				edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
764 					 i, j, k,
765 					 mb, kb,
766 					 ((u64)tmp_mb) << 20L,
767 					 (u32)RIR_RNK_TGT(reg),
768 					 reg);
769 			}
770 		}
771 	}
772 }
773 
774 struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
775 {
776 	struct sbridge_dev *sbridge_dev;
777 
778 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
779 		if (sbridge_dev->node_id == node_id)
780 			return sbridge_dev->mci;
781 	}
782 	return NULL;
783 }
784 
785 static int get_memory_error_data(struct mem_ctl_info *mci,
786 				 u64 addr,
787 				 u8 *socket,
788 				 long *channel_mask,
789 				 u8 *rank,
790 				 char **area_type, char *msg)
791 {
792 	struct mem_ctl_info	*new_mci;
793 	struct sbridge_pvt *pvt = mci->pvt_info;
794 	int 			n_rir, n_sads, n_tads, sad_way, sck_xch;
795 	int			sad_interl, idx, base_ch;
796 	int			interleave_mode;
797 	unsigned		sad_interleave[MAX_INTERLEAVE];
798 	u32			reg;
799 	u8			ch_way,sck_way;
800 	u32			tad_offset;
801 	u32			rir_way;
802 	u32			mb, kb;
803 	u64			ch_addr, offset, limit, prv = 0;
804 
805 
806 	/*
807 	 * Step 0) Check if the address is at special memory ranges
808 	 * The check bellow is probably enough to fill all cases where
809 	 * the error is not inside a memory, except for the legacy
810 	 * range (e. g. VGA addresses). It is unlikely, however, that the
811 	 * memory controller would generate an error on that range.
812 	 */
813 	if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
814 		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
815 		return -EINVAL;
816 	}
817 	if (addr >= (u64)pvt->tohm) {
818 		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
819 		return -EINVAL;
820 	}
821 
822 	/*
823 	 * Step 1) Get socket
824 	 */
825 	for (n_sads = 0; n_sads < MAX_SAD; n_sads++) {
826 		pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads],
827 				      &reg);
828 
829 		if (!DRAM_RULE_ENABLE(reg))
830 			continue;
831 
832 		limit = SAD_LIMIT(reg);
833 		if (limit <= prv) {
834 			sprintf(msg, "Can't discover the memory socket");
835 			return -EINVAL;
836 		}
837 		if  (addr <= limit)
838 			break;
839 		prv = limit;
840 	}
841 	if (n_sads == MAX_SAD) {
842 		sprintf(msg, "Can't discover the memory socket");
843 		return -EINVAL;
844 	}
845 	*area_type = get_dram_attr(reg);
846 	interleave_mode = INTERLEAVE_MODE(reg);
847 
848 	pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads],
849 			      &reg);
850 	sad_interl = sad_pkg(reg, 0);
851 	for (sad_way = 0; sad_way < 8; sad_way++) {
852 		if (sad_way > 0 && sad_interl == sad_pkg(reg, sad_way))
853 			break;
854 		sad_interleave[sad_way] = sad_pkg(reg, sad_way);
855 		edac_dbg(0, "SAD interleave #%d: %d\n",
856 			 sad_way, sad_interleave[sad_way]);
857 	}
858 	edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
859 		 pvt->sbridge_dev->mc,
860 		 n_sads,
861 		 addr,
862 		 limit,
863 		 sad_way + 7,
864 		 interleave_mode ? "" : "XOR[18:16]");
865 	if (interleave_mode)
866 		idx = ((addr >> 6) ^ (addr >> 16)) & 7;
867 	else
868 		idx = (addr >> 6) & 7;
869 	switch (sad_way) {
870 	case 1:
871 		idx = 0;
872 		break;
873 	case 2:
874 		idx = idx & 1;
875 		break;
876 	case 4:
877 		idx = idx & 3;
878 		break;
879 	case 8:
880 		break;
881 	default:
882 		sprintf(msg, "Can't discover socket interleave");
883 		return -EINVAL;
884 	}
885 	*socket = sad_interleave[idx];
886 	edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
887 		 idx, sad_way, *socket);
888 
889 	/*
890 	 * Move to the proper node structure, in order to access the
891 	 * right PCI registers
892 	 */
893 	new_mci = get_mci_for_node_id(*socket);
894 	if (!new_mci) {
895 		sprintf(msg, "Struct for socket #%u wasn't initialized",
896 			*socket);
897 		return -EINVAL;
898 	}
899 	mci = new_mci;
900 	pvt = mci->pvt_info;
901 
902 	/*
903 	 * Step 2) Get memory channel
904 	 */
905 	prv = 0;
906 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
907 		pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
908 				      &reg);
909 		limit = TAD_LIMIT(reg);
910 		if (limit <= prv) {
911 			sprintf(msg, "Can't discover the memory channel");
912 			return -EINVAL;
913 		}
914 		if  (addr <= limit)
915 			break;
916 		prv = limit;
917 	}
918 	ch_way = TAD_CH(reg) + 1;
919 	sck_way = TAD_SOCK(reg) + 1;
920 	/*
921 	 * FIXME: Is it right to always use channel 0 for offsets?
922 	 */
923 	pci_read_config_dword(pvt->pci_tad[0],
924 				tad_ch_nilv_offset[n_tads],
925 				&tad_offset);
926 
927 	if (ch_way == 3)
928 		idx = addr >> 6;
929 	else
930 		idx = addr >> (6 + sck_way);
931 	idx = idx % ch_way;
932 
933 	/*
934 	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
935 	 */
936 	switch (idx) {
937 	case 0:
938 		base_ch = TAD_TGT0(reg);
939 		break;
940 	case 1:
941 		base_ch = TAD_TGT1(reg);
942 		break;
943 	case 2:
944 		base_ch = TAD_TGT2(reg);
945 		break;
946 	case 3:
947 		base_ch = TAD_TGT3(reg);
948 		break;
949 	default:
950 		sprintf(msg, "Can't discover the TAD target");
951 		return -EINVAL;
952 	}
953 	*channel_mask = 1 << base_ch;
954 
955 	if (pvt->is_mirrored) {
956 		*channel_mask |= 1 << ((base_ch + 2) % 4);
957 		switch(ch_way) {
958 		case 2:
959 		case 4:
960 			sck_xch = 1 << sck_way * (ch_way >> 1);
961 			break;
962 		default:
963 			sprintf(msg, "Invalid mirror set. Can't decode addr");
964 			return -EINVAL;
965 		}
966 	} else
967 		sck_xch = (1 << sck_way) * ch_way;
968 
969 	if (pvt->is_lockstep)
970 		*channel_mask |= 1 << ((base_ch + 1) % 4);
971 
972 	offset = TAD_OFFSET(tad_offset);
973 
974 	edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
975 		 n_tads,
976 		 addr,
977 		 limit,
978 		 (u32)TAD_SOCK(reg),
979 		 ch_way,
980 		 offset,
981 		 idx,
982 		 base_ch,
983 		 *channel_mask);
984 
985 	/* Calculate channel address */
986 	/* Remove the TAD offset */
987 
988 	if (offset > addr) {
989 		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
990 			offset, addr);
991 		return -EINVAL;
992 	}
993 	addr -= offset;
994 	/* Store the low bits [0:6] of the addr */
995 	ch_addr = addr & 0x7f;
996 	/* Remove socket wayness and remove 6 bits */
997 	addr >>= 6;
998 	addr = div_u64(addr, sck_xch);
999 #if 0
1000 	/* Divide by channel way */
1001 	addr = addr / ch_way;
1002 #endif
1003 	/* Recover the last 6 bits */
1004 	ch_addr |= addr << 6;
1005 
1006 	/*
1007 	 * Step 3) Decode rank
1008 	 */
1009 	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
1010 		pci_read_config_dword(pvt->pci_tad[base_ch],
1011 				      rir_way_limit[n_rir],
1012 				      &reg);
1013 
1014 		if (!IS_RIR_VALID(reg))
1015 			continue;
1016 
1017 		limit = RIR_LIMIT(reg);
1018 		mb = div_u64_rem(limit >> 20, 1000, &kb);
1019 		edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
1020 			 n_rir,
1021 			 mb, kb,
1022 			 limit,
1023 			 1 << RIR_WAY(reg));
1024 		if  (ch_addr <= limit)
1025 			break;
1026 	}
1027 	if (n_rir == MAX_RIR_RANGES) {
1028 		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
1029 			ch_addr);
1030 		return -EINVAL;
1031 	}
1032 	rir_way = RIR_WAY(reg);
1033 	if (pvt->is_close_pg)
1034 		idx = (ch_addr >> 6);
1035 	else
1036 		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
1037 	idx %= 1 << rir_way;
1038 
1039 	pci_read_config_dword(pvt->pci_tad[base_ch],
1040 			      rir_offset[n_rir][idx],
1041 			      &reg);
1042 	*rank = RIR_RNK_TGT(reg);
1043 
1044 	edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
1045 		 n_rir,
1046 		 ch_addr,
1047 		 limit,
1048 		 rir_way,
1049 		 idx);
1050 
1051 	return 0;
1052 }
1053 
1054 /****************************************************************************
1055 	Device initialization routines: put/get, init/exit
1056  ****************************************************************************/
1057 
1058 /*
1059  *	sbridge_put_all_devices	'put' all the devices that we have
1060  *				reserved via 'get'
1061  */
1062 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
1063 {
1064 	int i;
1065 
1066 	edac_dbg(0, "\n");
1067 	for (i = 0; i < sbridge_dev->n_devs; i++) {
1068 		struct pci_dev *pdev = sbridge_dev->pdev[i];
1069 		if (!pdev)
1070 			continue;
1071 		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
1072 			 pdev->bus->number,
1073 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1074 		pci_dev_put(pdev);
1075 	}
1076 }
1077 
1078 static void sbridge_put_all_devices(void)
1079 {
1080 	struct sbridge_dev *sbridge_dev, *tmp;
1081 
1082 	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
1083 		sbridge_put_devices(sbridge_dev);
1084 		free_sbridge_dev(sbridge_dev);
1085 	}
1086 }
1087 
1088 /*
1089  *	sbridge_get_all_devices	Find and perform 'get' operation on the MCH's
1090  *			device/functions we want to reference for this driver
1091  *
1092  *			Need to 'get' device 16 func 1 and func 2
1093  */
1094 static int sbridge_get_onedevice(struct pci_dev **prev,
1095 				 u8 *num_mc,
1096 				 const struct pci_id_table *table,
1097 				 const unsigned devno)
1098 {
1099 	struct sbridge_dev *sbridge_dev;
1100 	const struct pci_id_descr *dev_descr = &table->descr[devno];
1101 
1102 	struct pci_dev *pdev = NULL;
1103 	u8 bus = 0;
1104 
1105 	sbridge_printk(KERN_INFO,
1106 		"Seeking for: dev %02x.%d PCI ID %04x:%04x\n",
1107 		dev_descr->dev, dev_descr->func,
1108 		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1109 
1110 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1111 			      dev_descr->dev_id, *prev);
1112 
1113 	if (!pdev) {
1114 		if (*prev) {
1115 			*prev = pdev;
1116 			return 0;
1117 		}
1118 
1119 		if (dev_descr->optional)
1120 			return 0;
1121 
1122 		if (devno == 0)
1123 			return -ENODEV;
1124 
1125 		sbridge_printk(KERN_INFO,
1126 			"Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1127 			dev_descr->dev, dev_descr->func,
1128 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1129 
1130 		/* End of list, leave */
1131 		return -ENODEV;
1132 	}
1133 	bus = pdev->bus->number;
1134 
1135 	sbridge_dev = get_sbridge_dev(bus);
1136 	if (!sbridge_dev) {
1137 		sbridge_dev = alloc_sbridge_dev(bus, table);
1138 		if (!sbridge_dev) {
1139 			pci_dev_put(pdev);
1140 			return -ENOMEM;
1141 		}
1142 		(*num_mc)++;
1143 	}
1144 
1145 	if (sbridge_dev->pdev[devno]) {
1146 		sbridge_printk(KERN_ERR,
1147 			"Duplicated device for "
1148 			"dev %02x:%d.%d PCI ID %04x:%04x\n",
1149 			bus, dev_descr->dev, dev_descr->func,
1150 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1151 		pci_dev_put(pdev);
1152 		return -ENODEV;
1153 	}
1154 
1155 	sbridge_dev->pdev[devno] = pdev;
1156 
1157 	/* Sanity check */
1158 	if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
1159 			PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1160 		sbridge_printk(KERN_ERR,
1161 			"Device PCI ID %04x:%04x "
1162 			"has dev %02x:%d.%d instead of dev %02x:%02x.%d\n",
1163 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1164 			bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1165 			bus, dev_descr->dev, dev_descr->func);
1166 		return -ENODEV;
1167 	}
1168 
1169 	/* Be sure that the device is enabled */
1170 	if (unlikely(pci_enable_device(pdev) < 0)) {
1171 		sbridge_printk(KERN_ERR,
1172 			"Couldn't enable "
1173 			"dev %02x:%d.%d PCI ID %04x:%04x\n",
1174 			bus, dev_descr->dev, dev_descr->func,
1175 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1176 		return -ENODEV;
1177 	}
1178 
1179 	edac_dbg(0, "Detected dev %02x:%d.%d PCI ID %04x:%04x\n",
1180 		 bus, dev_descr->dev, dev_descr->func,
1181 		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1182 
1183 	/*
1184 	 * As stated on drivers/pci/search.c, the reference count for
1185 	 * @from is always decremented if it is not %NULL. So, as we need
1186 	 * to get all devices up to null, we need to do a get for the device
1187 	 */
1188 	pci_dev_get(pdev);
1189 
1190 	*prev = pdev;
1191 
1192 	return 0;
1193 }
1194 
1195 static int sbridge_get_all_devices(u8 *num_mc)
1196 {
1197 	int i, rc;
1198 	struct pci_dev *pdev = NULL;
1199 	const struct pci_id_table *table = pci_dev_descr_sbridge_table;
1200 
1201 	while (table && table->descr) {
1202 		for (i = 0; i < table->n_devs; i++) {
1203 			pdev = NULL;
1204 			do {
1205 				rc = sbridge_get_onedevice(&pdev, num_mc,
1206 							   table, i);
1207 				if (rc < 0) {
1208 					if (i == 0) {
1209 						i = table->n_devs;
1210 						break;
1211 					}
1212 					sbridge_put_all_devices();
1213 					return -ENODEV;
1214 				}
1215 			} while (pdev);
1216 		}
1217 		table++;
1218 	}
1219 
1220 	return 0;
1221 }
1222 
1223 static int mci_bind_devs(struct mem_ctl_info *mci,
1224 			 struct sbridge_dev *sbridge_dev)
1225 {
1226 	struct sbridge_pvt *pvt = mci->pvt_info;
1227 	struct pci_dev *pdev;
1228 	int i, func, slot;
1229 
1230 	for (i = 0; i < sbridge_dev->n_devs; i++) {
1231 		pdev = sbridge_dev->pdev[i];
1232 		if (!pdev)
1233 			continue;
1234 		slot = PCI_SLOT(pdev->devfn);
1235 		func = PCI_FUNC(pdev->devfn);
1236 		switch (slot) {
1237 		case 12:
1238 			switch (func) {
1239 			case 6:
1240 				pvt->pci_sad0 = pdev;
1241 				break;
1242 			case 7:
1243 				pvt->pci_sad1 = pdev;
1244 				break;
1245 			default:
1246 				goto error;
1247 			}
1248 			break;
1249 		case 13:
1250 			switch (func) {
1251 			case 6:
1252 				pvt->pci_br = pdev;
1253 				break;
1254 			default:
1255 				goto error;
1256 			}
1257 			break;
1258 		case 14:
1259 			switch (func) {
1260 			case 0:
1261 				pvt->pci_ha0 = pdev;
1262 				break;
1263 			default:
1264 				goto error;
1265 			}
1266 			break;
1267 		case 15:
1268 			switch (func) {
1269 			case 0:
1270 				pvt->pci_ta = pdev;
1271 				break;
1272 			case 1:
1273 				pvt->pci_ras = pdev;
1274 				break;
1275 			case 2:
1276 			case 3:
1277 			case 4:
1278 			case 5:
1279 				pvt->pci_tad[func - 2] = pdev;
1280 				break;
1281 			default:
1282 				goto error;
1283 			}
1284 			break;
1285 		case 17:
1286 			switch (func) {
1287 			case 0:
1288 				pvt->pci_ddrio = pdev;
1289 				break;
1290 			default:
1291 				goto error;
1292 			}
1293 			break;
1294 		default:
1295 			goto error;
1296 		}
1297 
1298 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1299 			 sbridge_dev->bus,
1300 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1301 			 pdev);
1302 	}
1303 
1304 	/* Check if everything were registered */
1305 	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
1306 	    !pvt-> pci_tad || !pvt->pci_ras  || !pvt->pci_ta ||
1307 	    !pvt->pci_ddrio)
1308 		goto enodev;
1309 
1310 	for (i = 0; i < NUM_CHANNELS; i++) {
1311 		if (!pvt->pci_tad[i])
1312 			goto enodev;
1313 	}
1314 	return 0;
1315 
1316 enodev:
1317 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1318 	return -ENODEV;
1319 
1320 error:
1321 	sbridge_printk(KERN_ERR, "Device %d, function %d "
1322 		      "is out of the expected range\n",
1323 		      slot, func);
1324 	return -EINVAL;
1325 }
1326 
1327 /****************************************************************************
1328 			Error check routines
1329  ****************************************************************************/
1330 
1331 /*
1332  * While Sandy Bridge has error count registers, SMI BIOS read values from
1333  * and resets the counters. So, they are not reliable for the OS to read
1334  * from them. So, we have no option but to just trust on whatever MCE is
1335  * telling us about the errors.
1336  */
1337 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
1338 				    const struct mce *m)
1339 {
1340 	struct mem_ctl_info *new_mci;
1341 	struct sbridge_pvt *pvt = mci->pvt_info;
1342 	enum hw_event_mc_err_type tp_event;
1343 	char *type, *optype, msg[256];
1344 	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
1345 	bool overflow = GET_BITFIELD(m->status, 62, 62);
1346 	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
1347 	bool recoverable = GET_BITFIELD(m->status, 56, 56);
1348 	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
1349 	u32 mscod = GET_BITFIELD(m->status, 16, 31);
1350 	u32 errcode = GET_BITFIELD(m->status, 0, 15);
1351 	u32 channel = GET_BITFIELD(m->status, 0, 3);
1352 	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
1353 	long channel_mask, first_channel;
1354 	u8  rank, socket;
1355 	int rc, dimm;
1356 	char *area_type = NULL;
1357 
1358 	if (uncorrected_error) {
1359 		if (ripv) {
1360 			type = "FATAL";
1361 			tp_event = HW_EVENT_ERR_FATAL;
1362 		} else {
1363 			type = "NON_FATAL";
1364 			tp_event = HW_EVENT_ERR_UNCORRECTED;
1365 		}
1366 	} else {
1367 		type = "CORRECTED";
1368 		tp_event = HW_EVENT_ERR_CORRECTED;
1369 	}
1370 
1371 	/*
1372 	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
1373 	 * memory errors should fit in this mask:
1374 	 *	000f 0000 1mmm cccc (binary)
1375 	 * where:
1376 	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
1377 	 *	    won't be shown
1378 	 *	mmm = error type
1379 	 *	cccc = channel
1380 	 * If the mask doesn't match, report an error to the parsing logic
1381 	 */
1382 	if (! ((errcode & 0xef80) == 0x80)) {
1383 		optype = "Can't parse: it is not a mem";
1384 	} else {
1385 		switch (optypenum) {
1386 		case 0:
1387 			optype = "generic undef request error";
1388 			break;
1389 		case 1:
1390 			optype = "memory read error";
1391 			break;
1392 		case 2:
1393 			optype = "memory write error";
1394 			break;
1395 		case 3:
1396 			optype = "addr/cmd error";
1397 			break;
1398 		case 4:
1399 			optype = "memory scrubbing error";
1400 			break;
1401 		default:
1402 			optype = "reserved";
1403 			break;
1404 		}
1405 	}
1406 
1407 	rc = get_memory_error_data(mci, m->addr, &socket,
1408 				   &channel_mask, &rank, &area_type, msg);
1409 	if (rc < 0)
1410 		goto err_parsing;
1411 	new_mci = get_mci_for_node_id(socket);
1412 	if (!new_mci) {
1413 		strcpy(msg, "Error: socket got corrupted!");
1414 		goto err_parsing;
1415 	}
1416 	mci = new_mci;
1417 	pvt = mci->pvt_info;
1418 
1419 	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
1420 
1421 	if (rank < 4)
1422 		dimm = 0;
1423 	else if (rank < 8)
1424 		dimm = 1;
1425 	else
1426 		dimm = 2;
1427 
1428 
1429 	/*
1430 	 * FIXME: On some memory configurations (mirror, lockstep), the
1431 	 * Memory Controller can't point the error to a single DIMM. The
1432 	 * EDAC core should be handling the channel mask, in order to point
1433 	 * to the group of dimm's where the error may be happening.
1434 	 */
1435 	snprintf(msg, sizeof(msg),
1436 		 "%s%s area:%s err_code:%04x:%04x socket:%d channel_mask:%ld rank:%d",
1437 		 overflow ? " OVERFLOW" : "",
1438 		 (uncorrected_error && recoverable) ? " recoverable" : "",
1439 		 area_type,
1440 		 mscod, errcode,
1441 		 socket,
1442 		 channel_mask,
1443 		 rank);
1444 
1445 	edac_dbg(0, "%s\n", msg);
1446 
1447 	/* FIXME: need support for channel mask */
1448 
1449 	/* Call the helper to output message */
1450 	edac_mc_handle_error(tp_event, mci, core_err_cnt,
1451 			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
1452 			     channel, dimm, -1,
1453 			     optype, msg);
1454 	return;
1455 err_parsing:
1456 	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
1457 			     -1, -1, -1,
1458 			     msg, "");
1459 
1460 }
1461 
1462 /*
1463  *	sbridge_check_error	Retrieve and process errors reported by the
1464  *				hardware. Called by the Core module.
1465  */
1466 static void sbridge_check_error(struct mem_ctl_info *mci)
1467 {
1468 	struct sbridge_pvt *pvt = mci->pvt_info;
1469 	int i;
1470 	unsigned count = 0;
1471 	struct mce *m;
1472 
1473 	/*
1474 	 * MCE first step: Copy all mce errors into a temporary buffer
1475 	 * We use a double buffering here, to reduce the risk of
1476 	 * loosing an error.
1477 	 */
1478 	smp_rmb();
1479 	count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
1480 		% MCE_LOG_LEN;
1481 	if (!count)
1482 		return;
1483 
1484 	m = pvt->mce_outentry;
1485 	if (pvt->mce_in + count > MCE_LOG_LEN) {
1486 		unsigned l = MCE_LOG_LEN - pvt->mce_in;
1487 
1488 		memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
1489 		smp_wmb();
1490 		pvt->mce_in = 0;
1491 		count -= l;
1492 		m += l;
1493 	}
1494 	memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
1495 	smp_wmb();
1496 	pvt->mce_in += count;
1497 
1498 	smp_rmb();
1499 	if (pvt->mce_overrun) {
1500 		sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
1501 			      pvt->mce_overrun);
1502 		smp_wmb();
1503 		pvt->mce_overrun = 0;
1504 	}
1505 
1506 	/*
1507 	 * MCE second step: parse errors and display
1508 	 */
1509 	for (i = 0; i < count; i++)
1510 		sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
1511 }
1512 
1513 /*
1514  * sbridge_mce_check_error	Replicates mcelog routine to get errors
1515  *				This routine simply queues mcelog errors, and
1516  *				return. The error itself should be handled later
1517  *				by sbridge_check_error.
1518  * WARNING: As this routine should be called at NMI time, extra care should
1519  * be taken to avoid deadlocks, and to be as fast as possible.
1520  */
1521 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
1522 				   void *data)
1523 {
1524 	struct mce *mce = (struct mce *)data;
1525 	struct mem_ctl_info *mci;
1526 	struct sbridge_pvt *pvt;
1527 
1528 	mci = get_mci_for_node_id(mce->socketid);
1529 	if (!mci)
1530 		return NOTIFY_BAD;
1531 	pvt = mci->pvt_info;
1532 
1533 	/*
1534 	 * Just let mcelog handle it if the error is
1535 	 * outside the memory controller. A memory error
1536 	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
1537 	 * bit 12 has an special meaning.
1538 	 */
1539 	if ((mce->status & 0xefff) >> 7 != 1)
1540 		return NOTIFY_DONE;
1541 
1542 	printk("sbridge: HANDLING MCE MEMORY ERROR\n");
1543 
1544 	printk("CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
1545 	       mce->extcpu, mce->mcgstatus, mce->bank, mce->status);
1546 	printk("TSC %llx ", mce->tsc);
1547 	printk("ADDR %llx ", mce->addr);
1548 	printk("MISC %llx ", mce->misc);
1549 
1550 	printk("PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
1551 		mce->cpuvendor, mce->cpuid, mce->time,
1552 		mce->socketid, mce->apicid);
1553 
1554 	/* Only handle if it is the right mc controller */
1555 	if (cpu_data(mce->cpu).phys_proc_id != pvt->sbridge_dev->mc)
1556 		return NOTIFY_DONE;
1557 
1558 	smp_rmb();
1559 	if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
1560 		smp_wmb();
1561 		pvt->mce_overrun++;
1562 		return NOTIFY_DONE;
1563 	}
1564 
1565 	/* Copy memory error at the ringbuffer */
1566 	memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
1567 	smp_wmb();
1568 	pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
1569 
1570 	/* Handle fatal errors immediately */
1571 	if (mce->mcgstatus & 1)
1572 		sbridge_check_error(mci);
1573 
1574 	/* Advice mcelog that the error were handled */
1575 	return NOTIFY_STOP;
1576 }
1577 
1578 static struct notifier_block sbridge_mce_dec = {
1579 	.notifier_call      = sbridge_mce_check_error,
1580 };
1581 
1582 /****************************************************************************
1583 			EDAC register/unregister logic
1584  ****************************************************************************/
1585 
1586 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
1587 {
1588 	struct mem_ctl_info *mci = sbridge_dev->mci;
1589 	struct sbridge_pvt *pvt;
1590 
1591 	if (unlikely(!mci || !mci->pvt_info)) {
1592 		edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
1593 
1594 		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
1595 		return;
1596 	}
1597 
1598 	pvt = mci->pvt_info;
1599 
1600 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
1601 		 mci, &sbridge_dev->pdev[0]->dev);
1602 
1603 	/* Remove MC sysfs nodes */
1604 	edac_mc_del_mc(mci->pdev);
1605 
1606 	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
1607 	kfree(mci->ctl_name);
1608 	edac_mc_free(mci);
1609 	sbridge_dev->mci = NULL;
1610 }
1611 
1612 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev)
1613 {
1614 	struct mem_ctl_info *mci;
1615 	struct edac_mc_layer layers[2];
1616 	struct sbridge_pvt *pvt;
1617 	int rc;
1618 
1619 	/* Check the number of active and not disabled channels */
1620 	rc = check_if_ecc_is_active(sbridge_dev->bus);
1621 	if (unlikely(rc < 0))
1622 		return rc;
1623 
1624 	/* allocate a new MC control structure */
1625 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
1626 	layers[0].size = NUM_CHANNELS;
1627 	layers[0].is_virt_csrow = false;
1628 	layers[1].type = EDAC_MC_LAYER_SLOT;
1629 	layers[1].size = MAX_DIMMS;
1630 	layers[1].is_virt_csrow = true;
1631 	mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
1632 			    sizeof(*pvt));
1633 
1634 	if (unlikely(!mci))
1635 		return -ENOMEM;
1636 
1637 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
1638 		 mci, &sbridge_dev->pdev[0]->dev);
1639 
1640 	pvt = mci->pvt_info;
1641 	memset(pvt, 0, sizeof(*pvt));
1642 
1643 	/* Associate sbridge_dev and mci for future usage */
1644 	pvt->sbridge_dev = sbridge_dev;
1645 	sbridge_dev->mci = mci;
1646 
1647 	mci->mtype_cap = MEM_FLAG_DDR3;
1648 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
1649 	mci->edac_cap = EDAC_FLAG_NONE;
1650 	mci->mod_name = "sbridge_edac.c";
1651 	mci->mod_ver = SBRIDGE_REVISION;
1652 	mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
1653 	mci->dev_name = pci_name(sbridge_dev->pdev[0]);
1654 	mci->ctl_page_to_phys = NULL;
1655 
1656 	/* Set the function pointer to an actual operation function */
1657 	mci->edac_check = sbridge_check_error;
1658 
1659 	/* Store pci devices at mci for faster access */
1660 	rc = mci_bind_devs(mci, sbridge_dev);
1661 	if (unlikely(rc < 0))
1662 		goto fail0;
1663 
1664 	/* Get dimm basic config and the memory layout */
1665 	get_dimm_config(mci);
1666 	get_memory_layout(mci);
1667 
1668 	/* record ptr to the generic device */
1669 	mci->pdev = &sbridge_dev->pdev[0]->dev;
1670 
1671 	/* add this new MC control structure to EDAC's list of MCs */
1672 	if (unlikely(edac_mc_add_mc(mci))) {
1673 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
1674 		rc = -EINVAL;
1675 		goto fail0;
1676 	}
1677 
1678 	return 0;
1679 
1680 fail0:
1681 	kfree(mci->ctl_name);
1682 	edac_mc_free(mci);
1683 	sbridge_dev->mci = NULL;
1684 	return rc;
1685 }
1686 
1687 /*
1688  *	sbridge_probe	Probe for ONE instance of device to see if it is
1689  *			present.
1690  *	return:
1691  *		0 for FOUND a device
1692  *		< 0 for error code
1693  */
1694 
1695 static int __devinit sbridge_probe(struct pci_dev *pdev,
1696 				  const struct pci_device_id *id)
1697 {
1698 	int rc;
1699 	u8 mc, num_mc = 0;
1700 	struct sbridge_dev *sbridge_dev;
1701 
1702 	/* get the pci devices we want to reserve for our use */
1703 	mutex_lock(&sbridge_edac_lock);
1704 
1705 	/*
1706 	 * All memory controllers are allocated at the first pass.
1707 	 */
1708 	if (unlikely(probed >= 1)) {
1709 		mutex_unlock(&sbridge_edac_lock);
1710 		return -ENODEV;
1711 	}
1712 	probed++;
1713 
1714 	rc = sbridge_get_all_devices(&num_mc);
1715 	if (unlikely(rc < 0))
1716 		goto fail0;
1717 	mc = 0;
1718 
1719 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1720 		edac_dbg(0, "Registering MC#%d (%d of %d)\n",
1721 			 mc, mc + 1, num_mc);
1722 		sbridge_dev->mc = mc++;
1723 		rc = sbridge_register_mci(sbridge_dev);
1724 		if (unlikely(rc < 0))
1725 			goto fail1;
1726 	}
1727 
1728 	sbridge_printk(KERN_INFO, "Driver loaded.\n");
1729 
1730 	mutex_unlock(&sbridge_edac_lock);
1731 	return 0;
1732 
1733 fail1:
1734 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
1735 		sbridge_unregister_mci(sbridge_dev);
1736 
1737 	sbridge_put_all_devices();
1738 fail0:
1739 	mutex_unlock(&sbridge_edac_lock);
1740 	return rc;
1741 }
1742 
1743 /*
1744  *	sbridge_remove	destructor for one instance of device
1745  *
1746  */
1747 static void __devexit sbridge_remove(struct pci_dev *pdev)
1748 {
1749 	struct sbridge_dev *sbridge_dev;
1750 
1751 	edac_dbg(0, "\n");
1752 
1753 	/*
1754 	 * we have a trouble here: pdev value for removal will be wrong, since
1755 	 * it will point to the X58 register used to detect that the machine
1756 	 * is a Nehalem or upper design. However, due to the way several PCI
1757 	 * devices are grouped together to provide MC functionality, we need
1758 	 * to use a different method for releasing the devices
1759 	 */
1760 
1761 	mutex_lock(&sbridge_edac_lock);
1762 
1763 	if (unlikely(!probed)) {
1764 		mutex_unlock(&sbridge_edac_lock);
1765 		return;
1766 	}
1767 
1768 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
1769 		sbridge_unregister_mci(sbridge_dev);
1770 
1771 	/* Release PCI resources */
1772 	sbridge_put_all_devices();
1773 
1774 	probed--;
1775 
1776 	mutex_unlock(&sbridge_edac_lock);
1777 }
1778 
1779 MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
1780 
1781 /*
1782  *	sbridge_driver	pci_driver structure for this module
1783  *
1784  */
1785 static struct pci_driver sbridge_driver = {
1786 	.name     = "sbridge_edac",
1787 	.probe    = sbridge_probe,
1788 	.remove   = __devexit_p(sbridge_remove),
1789 	.id_table = sbridge_pci_tbl,
1790 };
1791 
1792 /*
1793  *	sbridge_init		Module entry function
1794  *			Try to initialize this module for its devices
1795  */
1796 static int __init sbridge_init(void)
1797 {
1798 	int pci_rc;
1799 
1800 	edac_dbg(2, "\n");
1801 
1802 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
1803 	opstate_init();
1804 
1805 	pci_rc = pci_register_driver(&sbridge_driver);
1806 
1807 	if (pci_rc >= 0) {
1808 		mce_register_decode_chain(&sbridge_mce_dec);
1809 		return 0;
1810 	}
1811 
1812 	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
1813 		      pci_rc);
1814 
1815 	return pci_rc;
1816 }
1817 
1818 /*
1819  *	sbridge_exit()	Module exit function
1820  *			Unregister the driver
1821  */
1822 static void __exit sbridge_exit(void)
1823 {
1824 	edac_dbg(2, "\n");
1825 	pci_unregister_driver(&sbridge_driver);
1826 	mce_unregister_decode_chain(&sbridge_mce_dec);
1827 }
1828 
1829 module_init(sbridge_init);
1830 module_exit(sbridge_exit);
1831 
1832 module_param(edac_op_state, int, 0444);
1833 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1834 
1835 MODULE_LICENSE("GPL");
1836 MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
1837 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
1838 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge memory controllers - "
1839 		   SBRIDGE_REVISION);
1840