xref: /linux/drivers/edac/sb_edac.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
2  *
3  * This driver supports the memory controllers found on the Intel
4  * processor family Sandy Bridge.
5  *
6  * This file may be distributed under the terms of the
7  * GNU General Public License version 2 only.
8  *
9  * Copyright (c) 2011 by:
10  *	 Mauro Carvalho Chehab
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <asm/processor.h>
25 #include <asm/mce.h>
26 
27 #include "edac_core.h"
28 
29 /* Static vars */
30 static LIST_HEAD(sbridge_edac_list);
31 static DEFINE_MUTEX(sbridge_edac_lock);
32 static int probed;
33 
34 /*
35  * Alter this version for the module when modifications are made
36  */
37 #define SBRIDGE_REVISION    " Ver: 1.1.1 "
38 #define EDAC_MOD_STR      "sbridge_edac"
39 
40 /*
41  * Debug macros
42  */
43 #define sbridge_printk(level, fmt, arg...)			\
44 	edac_printk(level, "sbridge", fmt, ##arg)
45 
46 #define sbridge_mc_printk(mci, level, fmt, arg...)		\
47 	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
48 
49 /*
50  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
51  */
52 #define GET_BITFIELD(v, lo, hi)	\
53 	(((v) & GENMASK_ULL(hi, lo)) >> (lo))
54 
55 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
56 static const u32 sbridge_dram_rule[] = {
57 	0x80, 0x88, 0x90, 0x98, 0xa0,
58 	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
59 };
60 
61 static const u32 ibridge_dram_rule[] = {
62 	0x60, 0x68, 0x70, 0x78, 0x80,
63 	0x88, 0x90, 0x98, 0xa0,	0xa8,
64 	0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
65 	0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
66 };
67 
68 #define SAD_LIMIT(reg)		((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
69 #define DRAM_ATTR(reg)		GET_BITFIELD(reg, 2,  3)
70 #define INTERLEAVE_MODE(reg)	GET_BITFIELD(reg, 1,  1)
71 #define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)
72 #define A7MODE(reg)		GET_BITFIELD(reg, 26, 26)
73 
74 static char *get_dram_attr(u32 reg)
75 {
76 	switch(DRAM_ATTR(reg)) {
77 		case 0:
78 			return "DRAM";
79 		case 1:
80 			return "MMCFG";
81 		case 2:
82 			return "NXM";
83 		default:
84 			return "unknown";
85 	}
86 }
87 
88 static const u32 sbridge_interleave_list[] = {
89 	0x84, 0x8c, 0x94, 0x9c, 0xa4,
90 	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
91 };
92 
93 static const u32 ibridge_interleave_list[] = {
94 	0x64, 0x6c, 0x74, 0x7c, 0x84,
95 	0x8c, 0x94, 0x9c, 0xa4, 0xac,
96 	0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
97 	0xdc, 0xe4, 0xec, 0xf4, 0xfc,
98 };
99 
100 struct interleave_pkg {
101 	unsigned char start;
102 	unsigned char end;
103 };
104 
105 static const struct interleave_pkg sbridge_interleave_pkg[] = {
106 	{ 0, 2 },
107 	{ 3, 5 },
108 	{ 8, 10 },
109 	{ 11, 13 },
110 	{ 16, 18 },
111 	{ 19, 21 },
112 	{ 24, 26 },
113 	{ 27, 29 },
114 };
115 
116 static const struct interleave_pkg ibridge_interleave_pkg[] = {
117 	{ 0, 3 },
118 	{ 4, 7 },
119 	{ 8, 11 },
120 	{ 12, 15 },
121 	{ 16, 19 },
122 	{ 20, 23 },
123 	{ 24, 27 },
124 	{ 28, 31 },
125 };
126 
127 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
128 			  int interleave)
129 {
130 	return GET_BITFIELD(reg, table[interleave].start,
131 			    table[interleave].end);
132 }
133 
134 /* Devices 12 Function 7 */
135 
136 #define TOLM		0x80
137 #define	TOHM		0x84
138 #define HASWELL_TOLM	0xd0
139 #define HASWELL_TOHM_0	0xd4
140 #define HASWELL_TOHM_1	0xd8
141 
142 #define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
143 #define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
144 
145 /* Device 13 Function 6 */
146 
147 #define SAD_TARGET	0xf0
148 
149 #define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)
150 
151 #define SAD_CONTROL	0xf4
152 
153 /* Device 14 function 0 */
154 
155 static const u32 tad_dram_rule[] = {
156 	0x40, 0x44, 0x48, 0x4c,
157 	0x50, 0x54, 0x58, 0x5c,
158 	0x60, 0x64, 0x68, 0x6c,
159 };
160 #define MAX_TAD	ARRAY_SIZE(tad_dram_rule)
161 
162 #define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
163 #define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
164 #define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
165 #define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
166 #define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
167 #define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
168 #define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)
169 
170 /* Device 15, function 0 */
171 
172 #define MCMTR			0x7c
173 
174 #define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
175 #define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
176 #define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)
177 
178 /* Device 15, function 1 */
179 
180 #define RASENABLES		0xac
181 #define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)
182 
183 /* Device 15, functions 2-5 */
184 
185 static const int mtr_regs[] = {
186 	0x80, 0x84, 0x88,
187 };
188 
189 #define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
190 #define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
191 #define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
192 #define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
193 #define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)
194 
195 static const u32 tad_ch_nilv_offset[] = {
196 	0x90, 0x94, 0x98, 0x9c,
197 	0xa0, 0xa4, 0xa8, 0xac,
198 	0xb0, 0xb4, 0xb8, 0xbc,
199 };
200 #define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
201 #define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)
202 
203 static const u32 rir_way_limit[] = {
204 	0x108, 0x10c, 0x110, 0x114, 0x118,
205 };
206 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
207 
208 #define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
209 #define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)
210 
211 #define MAX_RIR_WAY	8
212 
213 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
214 	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
215 	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
216 	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
217 	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
218 	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
219 };
220 
221 #define RIR_RNK_TGT(reg)		GET_BITFIELD(reg, 16, 19)
222 #define RIR_OFFSET(reg)		GET_BITFIELD(reg,  2, 14)
223 
224 /* Device 16, functions 2-7 */
225 
226 /*
227  * FIXME: Implement the error count reads directly
228  */
229 
230 static const u32 correrrcnt[] = {
231 	0x104, 0x108, 0x10c, 0x110,
232 };
233 
234 #define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
235 #define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
236 #define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
237 #define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)
238 
239 static const u32 correrrthrsld[] = {
240 	0x11c, 0x120, 0x124, 0x128,
241 };
242 
243 #define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
244 #define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)
245 
246 
247 /* Device 17, function 0 */
248 
249 #define SB_RANK_CFG_A		0x0328
250 
251 #define IB_RANK_CFG_A		0x0320
252 
253 /*
254  * sbridge structs
255  */
256 
257 #define NUM_CHANNELS		8	/* 2MC per socket, four chan per MC */
258 #define MAX_DIMMS		3	/* Max DIMMS per channel */
259 #define CHANNEL_UNSPECIFIED	0xf	/* Intel IA32 SDM 15-14 */
260 
261 enum type {
262 	SANDY_BRIDGE,
263 	IVY_BRIDGE,
264 	HASWELL,
265 	BROADWELL,
266 };
267 
268 struct sbridge_pvt;
269 struct sbridge_info {
270 	enum type	type;
271 	u32		mcmtr;
272 	u32		rankcfgr;
273 	u64		(*get_tolm)(struct sbridge_pvt *pvt);
274 	u64		(*get_tohm)(struct sbridge_pvt *pvt);
275 	u64		(*rir_limit)(u32 reg);
276 	const u32	*dram_rule;
277 	const u32	*interleave_list;
278 	const struct interleave_pkg *interleave_pkg;
279 	u8		max_sad;
280 	u8		max_interleave;
281 	u8		(*get_node_id)(struct sbridge_pvt *pvt);
282 	enum mem_type	(*get_memory_type)(struct sbridge_pvt *pvt);
283 	struct pci_dev	*pci_vtd;
284 };
285 
286 struct sbridge_channel {
287 	u32		ranks;
288 	u32		dimms;
289 };
290 
291 struct pci_id_descr {
292 	int			dev_id;
293 	int			optional;
294 };
295 
296 struct pci_id_table {
297 	const struct pci_id_descr	*descr;
298 	int				n_devs;
299 };
300 
301 struct sbridge_dev {
302 	struct list_head	list;
303 	u8			bus, mc;
304 	u8			node_id, source_id;
305 	struct pci_dev		**pdev;
306 	int			n_devs;
307 	struct mem_ctl_info	*mci;
308 };
309 
310 struct sbridge_pvt {
311 	struct pci_dev		*pci_ta, *pci_ddrio, *pci_ras;
312 	struct pci_dev		*pci_sad0, *pci_sad1;
313 	struct pci_dev		*pci_ha0, *pci_ha1;
314 	struct pci_dev		*pci_br0, *pci_br1;
315 	struct pci_dev		*pci_ha1_ta;
316 	struct pci_dev		*pci_tad[NUM_CHANNELS];
317 
318 	struct sbridge_dev	*sbridge_dev;
319 
320 	struct sbridge_info	info;
321 	struct sbridge_channel	channel[NUM_CHANNELS];
322 
323 	/* Memory type detection */
324 	bool			is_mirrored, is_lockstep, is_close_pg;
325 
326 	/* Fifo double buffers */
327 	struct mce		mce_entry[MCE_LOG_LEN];
328 	struct mce		mce_outentry[MCE_LOG_LEN];
329 
330 	/* Fifo in/out counters */
331 	unsigned		mce_in, mce_out;
332 
333 	/* Count indicator to show errors not got */
334 	unsigned		mce_overrun;
335 
336 	/* Memory description */
337 	u64			tolm, tohm;
338 };
339 
340 #define PCI_DESCR(device_id, opt)	\
341 	.dev_id = (device_id),		\
342 	.optional = opt
343 
344 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
345 		/* Processor Home Agent */
346 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0)	},
347 
348 		/* Memory controller */
349 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0)	},
350 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0)	},
351 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0)	},
352 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0)	},
353 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0)	},
354 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0)	},
355 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1)	},
356 
357 		/* System Address Decoder */
358 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0)	},
359 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0)	},
360 
361 		/* Broadcast Registers */
362 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0)		},
363 };
364 
365 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
366 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
367 	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
368 	{0,}			/* 0 terminated list. */
369 };
370 
371 /* This changes depending if 1HA or 2HA:
372  * 1HA:
373  *	0x0eb8 (17.0) is DDRIO0
374  * 2HA:
375  *	0x0ebc (17.4) is DDRIO0
376  */
377 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0	0x0eb8
378 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0	0x0ebc
379 
380 /* pci ids */
381 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0		0x0ea0
382 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA		0x0ea8
383 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS		0x0e71
384 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0	0x0eaa
385 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1	0x0eab
386 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2	0x0eac
387 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3	0x0ead
388 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD			0x0ec8
389 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0			0x0ec9
390 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1			0x0eca
391 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1		0x0e60
392 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA		0x0e68
393 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS		0x0e79
394 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0	0x0e6a
395 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1	0x0e6b
396 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2	0x0e6c
397 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3	0x0e6d
398 
399 static const struct pci_id_descr pci_dev_descr_ibridge[] = {
400 		/* Processor Home Agent */
401 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0)		},
402 
403 		/* Memory controller */
404 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0)		},
405 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0)		},
406 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0)	},
407 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0)	},
408 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0)	},
409 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0)	},
410 
411 		/* System Address Decoder */
412 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0)			},
413 
414 		/* Broadcast Registers */
415 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1)			},
416 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0)			},
417 
418 		/* Optional, mode 2HA */
419 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1)		},
420 #if 0
421 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1)	},
422 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1)	},
423 #endif
424 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1)	},
425 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1)	},
426 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2, 1)	},
427 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3, 1)	},
428 
429 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1)	},
430 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1)	},
431 };
432 
433 static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
434 	PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge),
435 	{0,}			/* 0 terminated list. */
436 };
437 
438 /* Haswell support */
439 /* EN processor:
440  *	- 1 IMC
441  *	- 3 DDR3 channels, 2 DPC per channel
442  * EP processor:
443  *	- 1 or 2 IMC
444  *	- 4 DDR4 channels, 3 DPC per channel
445  * EP 4S processor:
446  *	- 2 IMC
447  *	- 4 DDR4 channels, 3 DPC per channel
448  * EX processor:
449  *	- 2 IMC
450  *	- each IMC interfaces with a SMI 2 channel
451  *	- each SMI channel interfaces with a scalable memory buffer
452  *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
453  */
454 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
455 #define HASWELL_HASYSDEFEATURE2 0x84
456 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
457 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0	0x2fa0
458 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1	0x2f60
459 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA	0x2fa8
460 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL 0x2f71
461 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA	0x2f68
462 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL 0x2f79
463 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
464 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
465 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
466 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
467 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
468 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
469 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
470 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
471 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
472 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
473 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
474 static const struct pci_id_descr pci_dev_descr_haswell[] = {
475 	/* first item must be the HA */
476 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0)		},
477 
478 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0)	},
479 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0)	},
480 
481 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1)		},
482 
483 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0)		},
484 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL, 0)	},
485 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0)	},
486 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0)	},
487 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1)	},
488 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1)	},
489 
490 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1)		},
491 
492 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1)		},
493 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL, 1)	},
494 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1)	},
495 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1)	},
496 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1)	},
497 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1)	},
498 };
499 
500 static const struct pci_id_table pci_dev_descr_haswell_table[] = {
501 	PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell),
502 	{0,}			/* 0 terminated list. */
503 };
504 
505 /*
506  * Broadwell support
507  *
508  * DE processor:
509  *	- 1 IMC
510  *	- 2 DDR3 channels, 2 DPC per channel
511  * EP processor:
512  *	- 1 or 2 IMC
513  *	- 4 DDR4 channels, 3 DPC per channel
514  * EP 4S processor:
515  *	- 2 IMC
516  *	- 4 DDR4 channels, 3 DPC per channel
517  * EX processor:
518  *	- 2 IMC
519  *	- each IMC interfaces with a SMI 2 channel
520  *	- each SMI channel interfaces with a scalable memory buffer
521  *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
522  */
523 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
524 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0	0x6fa0
525 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1	0x6f60
526 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA	0x6fa8
527 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL 0x6f71
528 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA	0x6f68
529 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL 0x6f79
530 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
531 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
532 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
533 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
534 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
535 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
536 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
537 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
538 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
539 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
540 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
541 
542 static const struct pci_id_descr pci_dev_descr_broadwell[] = {
543 	/* first item must be the HA */
544 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0, 0)		},
545 
546 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0)	},
547 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0)	},
548 
549 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1, 1)		},
550 
551 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA, 0)	},
552 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL, 0)	},
553 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0)	},
554 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0)	},
555 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1)	},
556 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1)	},
557 
558 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0, 1)	},
559 
560 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA, 1)	},
561 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL, 1)	},
562 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1)	},
563 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1)	},
564 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1)	},
565 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1)	},
566 };
567 
568 static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
569 	PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell),
570 	{0,}			/* 0 terminated list. */
571 };
572 
573 /*
574  *	pci_device_id	table for which devices we are looking for
575  */
576 static const struct pci_device_id sbridge_pci_tbl[] = {
577 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0)},
578 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA)},
579 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0)},
580 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0)},
581 	{0,}			/* 0 terminated list. */
582 };
583 
584 
585 /****************************************************************************
586 			Ancillary status routines
587  ****************************************************************************/
588 
589 static inline int numrank(enum type type, u32 mtr)
590 {
591 	int ranks = (1 << RANK_CNT_BITS(mtr));
592 	int max = 4;
593 
594 	if (type == HASWELL || type == BROADWELL)
595 		max = 8;
596 
597 	if (ranks > max) {
598 		edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
599 			 ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
600 		return -EINVAL;
601 	}
602 
603 	return ranks;
604 }
605 
606 static inline int numrow(u32 mtr)
607 {
608 	int rows = (RANK_WIDTH_BITS(mtr) + 12);
609 
610 	if (rows < 13 || rows > 18) {
611 		edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
612 			 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
613 		return -EINVAL;
614 	}
615 
616 	return 1 << rows;
617 }
618 
619 static inline int numcol(u32 mtr)
620 {
621 	int cols = (COL_WIDTH_BITS(mtr) + 10);
622 
623 	if (cols > 12) {
624 		edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
625 			 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
626 		return -EINVAL;
627 	}
628 
629 	return 1 << cols;
630 }
631 
632 static struct sbridge_dev *get_sbridge_dev(u8 bus)
633 {
634 	struct sbridge_dev *sbridge_dev;
635 
636 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
637 		if (sbridge_dev->bus == bus)
638 			return sbridge_dev;
639 	}
640 
641 	return NULL;
642 }
643 
644 static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
645 					   const struct pci_id_table *table)
646 {
647 	struct sbridge_dev *sbridge_dev;
648 
649 	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
650 	if (!sbridge_dev)
651 		return NULL;
652 
653 	sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
654 				   GFP_KERNEL);
655 	if (!sbridge_dev->pdev) {
656 		kfree(sbridge_dev);
657 		return NULL;
658 	}
659 
660 	sbridge_dev->bus = bus;
661 	sbridge_dev->n_devs = table->n_devs;
662 	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
663 
664 	return sbridge_dev;
665 }
666 
667 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
668 {
669 	list_del(&sbridge_dev->list);
670 	kfree(sbridge_dev->pdev);
671 	kfree(sbridge_dev);
672 }
673 
674 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
675 {
676 	u32 reg;
677 
678 	/* Address range is 32:28 */
679 	pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
680 	return GET_TOLM(reg);
681 }
682 
683 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
684 {
685 	u32 reg;
686 
687 	pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
688 	return GET_TOHM(reg);
689 }
690 
691 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
692 {
693 	u32 reg;
694 
695 	pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
696 
697 	return GET_TOLM(reg);
698 }
699 
700 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
701 {
702 	u32 reg;
703 
704 	pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
705 
706 	return GET_TOHM(reg);
707 }
708 
709 static u64 rir_limit(u32 reg)
710 {
711 	return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
712 }
713 
714 static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
715 {
716 	u32 reg;
717 	enum mem_type mtype;
718 
719 	if (pvt->pci_ddrio) {
720 		pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
721 				      &reg);
722 		if (GET_BITFIELD(reg, 11, 11))
723 			/* FIXME: Can also be LRDIMM */
724 			mtype = MEM_RDDR3;
725 		else
726 			mtype = MEM_DDR3;
727 	} else
728 		mtype = MEM_UNKNOWN;
729 
730 	return mtype;
731 }
732 
733 static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
734 {
735 	u32 reg;
736 	bool registered = false;
737 	enum mem_type mtype = MEM_UNKNOWN;
738 
739 	if (!pvt->pci_ddrio)
740 		goto out;
741 
742 	pci_read_config_dword(pvt->pci_ddrio,
743 			      HASWELL_DDRCRCLKCONTROLS, &reg);
744 	/* Is_Rdimm */
745 	if (GET_BITFIELD(reg, 16, 16))
746 		registered = true;
747 
748 	pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
749 	if (GET_BITFIELD(reg, 14, 14)) {
750 		if (registered)
751 			mtype = MEM_RDDR4;
752 		else
753 			mtype = MEM_DDR4;
754 	} else {
755 		if (registered)
756 			mtype = MEM_RDDR3;
757 		else
758 			mtype = MEM_DDR3;
759 	}
760 
761 out:
762 	return mtype;
763 }
764 
765 static u8 get_node_id(struct sbridge_pvt *pvt)
766 {
767 	u32 reg;
768 	pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
769 	return GET_BITFIELD(reg, 0, 2);
770 }
771 
772 static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
773 {
774 	u32 reg;
775 
776 	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
777 	return GET_BITFIELD(reg, 0, 3);
778 }
779 
780 static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
781 {
782 	u32 reg;
783 
784 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
785 	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
786 }
787 
788 static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
789 {
790 	u64 rc;
791 	u32 reg;
792 
793 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
794 	rc = GET_BITFIELD(reg, 26, 31);
795 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
796 	rc = ((reg << 6) | rc) << 26;
797 
798 	return rc | 0x1ffffff;
799 }
800 
801 static u64 haswell_rir_limit(u32 reg)
802 {
803 	return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
804 }
805 
806 static inline u8 sad_pkg_socket(u8 pkg)
807 {
808 	/* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
809 	return ((pkg >> 3) << 2) | (pkg & 0x3);
810 }
811 
812 static inline u8 sad_pkg_ha(u8 pkg)
813 {
814 	return (pkg >> 2) & 0x1;
815 }
816 
817 /****************************************************************************
818 			Memory check routines
819  ****************************************************************************/
820 static struct pci_dev *get_pdev_same_bus(u8 bus, u32 id)
821 {
822 	struct pci_dev *pdev = NULL;
823 
824 	do {
825 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, pdev);
826 		if (pdev && pdev->bus->number == bus)
827 			break;
828 	} while (pdev);
829 
830 	return pdev;
831 }
832 
833 /**
834  * check_if_ecc_is_active() - Checks if ECC is active
835  * @bus:	Device bus
836  * @type:	Memory controller type
837  * returns: 0 in case ECC is active, -ENODEV if it can't be determined or
838  *	    disabled
839  */
840 static int check_if_ecc_is_active(const u8 bus, enum type type)
841 {
842 	struct pci_dev *pdev = NULL;
843 	u32 mcmtr, id;
844 
845 	switch (type) {
846 	case IVY_BRIDGE:
847 		id = PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA;
848 		break;
849 	case HASWELL:
850 		id = PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA;
851 		break;
852 	case SANDY_BRIDGE:
853 		id = PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA;
854 		break;
855 	case BROADWELL:
856 		id = PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA;
857 		break;
858 	default:
859 		return -ENODEV;
860 	}
861 
862 	pdev = get_pdev_same_bus(bus, id);
863 	if (!pdev) {
864 		sbridge_printk(KERN_ERR, "Couldn't find PCI device "
865 					"%04x:%04x! on bus %02d\n",
866 					PCI_VENDOR_ID_INTEL, id, bus);
867 		return -ENODEV;
868 	}
869 
870 	pci_read_config_dword(pdev, MCMTR, &mcmtr);
871 	if (!IS_ECC_ENABLED(mcmtr)) {
872 		sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
873 		return -ENODEV;
874 	}
875 	return 0;
876 }
877 
878 static int get_dimm_config(struct mem_ctl_info *mci)
879 {
880 	struct sbridge_pvt *pvt = mci->pvt_info;
881 	struct dimm_info *dimm;
882 	unsigned i, j, banks, ranks, rows, cols, npages;
883 	u64 size;
884 	u32 reg;
885 	enum edac_type mode;
886 	enum mem_type mtype;
887 
888 	if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL)
889 		pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
890 	else
891 		pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
892 
893 	pvt->sbridge_dev->source_id = SOURCE_ID(reg);
894 
895 	pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
896 	edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
897 		 pvt->sbridge_dev->mc,
898 		 pvt->sbridge_dev->node_id,
899 		 pvt->sbridge_dev->source_id);
900 
901 	pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
902 	if (IS_MIRROR_ENABLED(reg)) {
903 		edac_dbg(0, "Memory mirror is enabled\n");
904 		pvt->is_mirrored = true;
905 	} else {
906 		edac_dbg(0, "Memory mirror is disabled\n");
907 		pvt->is_mirrored = false;
908 	}
909 
910 	pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
911 	if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
912 		edac_dbg(0, "Lockstep is enabled\n");
913 		mode = EDAC_S8ECD8ED;
914 		pvt->is_lockstep = true;
915 	} else {
916 		edac_dbg(0, "Lockstep is disabled\n");
917 		mode = EDAC_S4ECD4ED;
918 		pvt->is_lockstep = false;
919 	}
920 	if (IS_CLOSE_PG(pvt->info.mcmtr)) {
921 		edac_dbg(0, "address map is on closed page mode\n");
922 		pvt->is_close_pg = true;
923 	} else {
924 		edac_dbg(0, "address map is on open page mode\n");
925 		pvt->is_close_pg = false;
926 	}
927 
928 	mtype = pvt->info.get_memory_type(pvt);
929 	if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
930 		edac_dbg(0, "Memory is registered\n");
931 	else if (mtype == MEM_UNKNOWN)
932 		edac_dbg(0, "Cannot determine memory type\n");
933 	else
934 		edac_dbg(0, "Memory is unregistered\n");
935 
936 	if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
937 		banks = 16;
938 	else
939 		banks = 8;
940 
941 	for (i = 0; i < NUM_CHANNELS; i++) {
942 		u32 mtr;
943 
944 		if (!pvt->pci_tad[i])
945 			continue;
946 		for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
947 			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
948 				       i, j, 0);
949 			pci_read_config_dword(pvt->pci_tad[i],
950 					      mtr_regs[j], &mtr);
951 			edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
952 			if (IS_DIMM_PRESENT(mtr)) {
953 				pvt->channel[i].dimms++;
954 
955 				ranks = numrank(pvt->info.type, mtr);
956 				rows = numrow(mtr);
957 				cols = numcol(mtr);
958 
959 				size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
960 				npages = MiB_TO_PAGES(size);
961 
962 				edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
963 					 pvt->sbridge_dev->mc, i/4, i%4, j,
964 					 size, npages,
965 					 banks, ranks, rows, cols);
966 
967 				dimm->nr_pages = npages;
968 				dimm->grain = 32;
969 				switch (banks) {
970 				case 16:
971 					dimm->dtype = DEV_X16;
972 					break;
973 				case 8:
974 					dimm->dtype = DEV_X8;
975 					break;
976 				case 4:
977 					dimm->dtype = DEV_X4;
978 					break;
979 				}
980 				dimm->mtype = mtype;
981 				dimm->edac_mode = mode;
982 				snprintf(dimm->label, sizeof(dimm->label),
983 					 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
984 					 pvt->sbridge_dev->source_id, i/4, i%4, j);
985 			}
986 		}
987 	}
988 
989 	return 0;
990 }
991 
992 static void get_memory_layout(const struct mem_ctl_info *mci)
993 {
994 	struct sbridge_pvt *pvt = mci->pvt_info;
995 	int i, j, k, n_sads, n_tads, sad_interl;
996 	u32 reg;
997 	u64 limit, prv = 0;
998 	u64 tmp_mb;
999 	u32 gb, mb;
1000 	u32 rir_way;
1001 
1002 	/*
1003 	 * Step 1) Get TOLM/TOHM ranges
1004 	 */
1005 
1006 	pvt->tolm = pvt->info.get_tolm(pvt);
1007 	tmp_mb = (1 + pvt->tolm) >> 20;
1008 
1009 	gb = div_u64_rem(tmp_mb, 1024, &mb);
1010 	edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1011 		gb, (mb*1000)/1024, (u64)pvt->tolm);
1012 
1013 	/* Address range is already 45:25 */
1014 	pvt->tohm = pvt->info.get_tohm(pvt);
1015 	tmp_mb = (1 + pvt->tohm) >> 20;
1016 
1017 	gb = div_u64_rem(tmp_mb, 1024, &mb);
1018 	edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1019 		gb, (mb*1000)/1024, (u64)pvt->tohm);
1020 
1021 	/*
1022 	 * Step 2) Get SAD range and SAD Interleave list
1023 	 * TAD registers contain the interleave wayness. However, it
1024 	 * seems simpler to just discover it indirectly, with the
1025 	 * algorithm bellow.
1026 	 */
1027 	prv = 0;
1028 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1029 		/* SAD_LIMIT Address range is 45:26 */
1030 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1031 				      &reg);
1032 		limit = SAD_LIMIT(reg);
1033 
1034 		if (!DRAM_RULE_ENABLE(reg))
1035 			continue;
1036 
1037 		if (limit <= prv)
1038 			break;
1039 
1040 		tmp_mb = (limit + 1) >> 20;
1041 		gb = div_u64_rem(tmp_mb, 1024, &mb);
1042 		edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1043 			 n_sads,
1044 			 get_dram_attr(reg),
1045 			 gb, (mb*1000)/1024,
1046 			 ((u64)tmp_mb) << 20L,
1047 			 INTERLEAVE_MODE(reg) ? "8:6" : "[8:6]XOR[18:16]",
1048 			 reg);
1049 		prv = limit;
1050 
1051 		pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1052 				      &reg);
1053 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1054 		for (j = 0; j < 8; j++) {
1055 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1056 			if (j > 0 && sad_interl == pkg)
1057 				break;
1058 
1059 			edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1060 				 n_sads, j, pkg);
1061 		}
1062 	}
1063 
1064 	/*
1065 	 * Step 3) Get TAD range
1066 	 */
1067 	prv = 0;
1068 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1069 		pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
1070 				      &reg);
1071 		limit = TAD_LIMIT(reg);
1072 		if (limit <= prv)
1073 			break;
1074 		tmp_mb = (limit + 1) >> 20;
1075 
1076 		gb = div_u64_rem(tmp_mb, 1024, &mb);
1077 		edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1078 			 n_tads, gb, (mb*1000)/1024,
1079 			 ((u64)tmp_mb) << 20L,
1080 			 (u32)TAD_SOCK(reg),
1081 			 (u32)TAD_CH(reg),
1082 			 (u32)TAD_TGT0(reg),
1083 			 (u32)TAD_TGT1(reg),
1084 			 (u32)TAD_TGT2(reg),
1085 			 (u32)TAD_TGT3(reg),
1086 			 reg);
1087 		prv = limit;
1088 	}
1089 
1090 	/*
1091 	 * Step 4) Get TAD offsets, per each channel
1092 	 */
1093 	for (i = 0; i < NUM_CHANNELS; i++) {
1094 		if (!pvt->channel[i].dimms)
1095 			continue;
1096 		for (j = 0; j < n_tads; j++) {
1097 			pci_read_config_dword(pvt->pci_tad[i],
1098 					      tad_ch_nilv_offset[j],
1099 					      &reg);
1100 			tmp_mb = TAD_OFFSET(reg) >> 20;
1101 			gb = div_u64_rem(tmp_mb, 1024, &mb);
1102 			edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1103 				 i, j,
1104 				 gb, (mb*1000)/1024,
1105 				 ((u64)tmp_mb) << 20L,
1106 				 reg);
1107 		}
1108 	}
1109 
1110 	/*
1111 	 * Step 6) Get RIR Wayness/Limit, per each channel
1112 	 */
1113 	for (i = 0; i < NUM_CHANNELS; i++) {
1114 		if (!pvt->channel[i].dimms)
1115 			continue;
1116 		for (j = 0; j < MAX_RIR_RANGES; j++) {
1117 			pci_read_config_dword(pvt->pci_tad[i],
1118 					      rir_way_limit[j],
1119 					      &reg);
1120 
1121 			if (!IS_RIR_VALID(reg))
1122 				continue;
1123 
1124 			tmp_mb = pvt->info.rir_limit(reg) >> 20;
1125 			rir_way = 1 << RIR_WAY(reg);
1126 			gb = div_u64_rem(tmp_mb, 1024, &mb);
1127 			edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1128 				 i, j,
1129 				 gb, (mb*1000)/1024,
1130 				 ((u64)tmp_mb) << 20L,
1131 				 rir_way,
1132 				 reg);
1133 
1134 			for (k = 0; k < rir_way; k++) {
1135 				pci_read_config_dword(pvt->pci_tad[i],
1136 						      rir_offset[j][k],
1137 						      &reg);
1138 				tmp_mb = RIR_OFFSET(reg) << 6;
1139 
1140 				gb = div_u64_rem(tmp_mb, 1024, &mb);
1141 				edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1142 					 i, j, k,
1143 					 gb, (mb*1000)/1024,
1144 					 ((u64)tmp_mb) << 20L,
1145 					 (u32)RIR_RNK_TGT(reg),
1146 					 reg);
1147 			}
1148 		}
1149 	}
1150 }
1151 
1152 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
1153 {
1154 	struct sbridge_dev *sbridge_dev;
1155 
1156 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1157 		if (sbridge_dev->node_id == node_id)
1158 			return sbridge_dev->mci;
1159 	}
1160 	return NULL;
1161 }
1162 
1163 static int get_memory_error_data(struct mem_ctl_info *mci,
1164 				 u64 addr,
1165 				 u8 *socket, u8 *ha,
1166 				 long *channel_mask,
1167 				 u8 *rank,
1168 				 char **area_type, char *msg)
1169 {
1170 	struct mem_ctl_info	*new_mci;
1171 	struct sbridge_pvt *pvt = mci->pvt_info;
1172 	struct pci_dev		*pci_ha;
1173 	int			n_rir, n_sads, n_tads, sad_way, sck_xch;
1174 	int			sad_interl, idx, base_ch;
1175 	int			interleave_mode, shiftup = 0;
1176 	unsigned		sad_interleave[pvt->info.max_interleave];
1177 	u32			reg, dram_rule;
1178 	u8			ch_way, sck_way, pkg, sad_ha = 0, ch_add = 0;
1179 	u32			tad_offset;
1180 	u32			rir_way;
1181 	u32			mb, gb;
1182 	u64			ch_addr, offset, limit = 0, prv = 0;
1183 
1184 
1185 	/*
1186 	 * Step 0) Check if the address is at special memory ranges
1187 	 * The check bellow is probably enough to fill all cases where
1188 	 * the error is not inside a memory, except for the legacy
1189 	 * range (e. g. VGA addresses). It is unlikely, however, that the
1190 	 * memory controller would generate an error on that range.
1191 	 */
1192 	if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1193 		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
1194 		return -EINVAL;
1195 	}
1196 	if (addr >= (u64)pvt->tohm) {
1197 		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
1198 		return -EINVAL;
1199 	}
1200 
1201 	/*
1202 	 * Step 1) Get socket
1203 	 */
1204 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1205 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1206 				      &reg);
1207 
1208 		if (!DRAM_RULE_ENABLE(reg))
1209 			continue;
1210 
1211 		limit = SAD_LIMIT(reg);
1212 		if (limit <= prv) {
1213 			sprintf(msg, "Can't discover the memory socket");
1214 			return -EINVAL;
1215 		}
1216 		if  (addr <= limit)
1217 			break;
1218 		prv = limit;
1219 	}
1220 	if (n_sads == pvt->info.max_sad) {
1221 		sprintf(msg, "Can't discover the memory socket");
1222 		return -EINVAL;
1223 	}
1224 	dram_rule = reg;
1225 	*area_type = get_dram_attr(dram_rule);
1226 	interleave_mode = INTERLEAVE_MODE(dram_rule);
1227 
1228 	pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1229 			      &reg);
1230 
1231 	if (pvt->info.type == SANDY_BRIDGE) {
1232 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1233 		for (sad_way = 0; sad_way < 8; sad_way++) {
1234 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
1235 			if (sad_way > 0 && sad_interl == pkg)
1236 				break;
1237 			sad_interleave[sad_way] = pkg;
1238 			edac_dbg(0, "SAD interleave #%d: %d\n",
1239 				 sad_way, sad_interleave[sad_way]);
1240 		}
1241 		edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
1242 			 pvt->sbridge_dev->mc,
1243 			 n_sads,
1244 			 addr,
1245 			 limit,
1246 			 sad_way + 7,
1247 			 !interleave_mode ? "" : "XOR[18:16]");
1248 		if (interleave_mode)
1249 			idx = ((addr >> 6) ^ (addr >> 16)) & 7;
1250 		else
1251 			idx = (addr >> 6) & 7;
1252 		switch (sad_way) {
1253 		case 1:
1254 			idx = 0;
1255 			break;
1256 		case 2:
1257 			idx = idx & 1;
1258 			break;
1259 		case 4:
1260 			idx = idx & 3;
1261 			break;
1262 		case 8:
1263 			break;
1264 		default:
1265 			sprintf(msg, "Can't discover socket interleave");
1266 			return -EINVAL;
1267 		}
1268 		*socket = sad_interleave[idx];
1269 		edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
1270 			 idx, sad_way, *socket);
1271 	} else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1272 		int bits, a7mode = A7MODE(dram_rule);
1273 
1274 		if (a7mode) {
1275 			/* A7 mode swaps P9 with P6 */
1276 			bits = GET_BITFIELD(addr, 7, 8) << 1;
1277 			bits |= GET_BITFIELD(addr, 9, 9);
1278 		} else
1279 			bits = GET_BITFIELD(addr, 6, 8);
1280 
1281 		if (interleave_mode == 0) {
1282 			/* interleave mode will XOR {8,7,6} with {18,17,16} */
1283 			idx = GET_BITFIELD(addr, 16, 18);
1284 			idx ^= bits;
1285 		} else
1286 			idx = bits;
1287 
1288 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
1289 		*socket = sad_pkg_socket(pkg);
1290 		sad_ha = sad_pkg_ha(pkg);
1291 		if (sad_ha)
1292 			ch_add = 4;
1293 
1294 		if (a7mode) {
1295 			/* MCChanShiftUpEnable */
1296 			pci_read_config_dword(pvt->pci_ha0,
1297 					      HASWELL_HASYSDEFEATURE2, &reg);
1298 			shiftup = GET_BITFIELD(reg, 22, 22);
1299 		}
1300 
1301 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
1302 			 idx, *socket, sad_ha, shiftup);
1303 	} else {
1304 		/* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
1305 		idx = (addr >> 6) & 7;
1306 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
1307 		*socket = sad_pkg_socket(pkg);
1308 		sad_ha = sad_pkg_ha(pkg);
1309 		if (sad_ha)
1310 			ch_add = 4;
1311 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
1312 			 idx, *socket, sad_ha);
1313 	}
1314 
1315 	*ha = sad_ha;
1316 
1317 	/*
1318 	 * Move to the proper node structure, in order to access the
1319 	 * right PCI registers
1320 	 */
1321 	new_mci = get_mci_for_node_id(*socket);
1322 	if (!new_mci) {
1323 		sprintf(msg, "Struct for socket #%u wasn't initialized",
1324 			*socket);
1325 		return -EINVAL;
1326 	}
1327 	mci = new_mci;
1328 	pvt = mci->pvt_info;
1329 
1330 	/*
1331 	 * Step 2) Get memory channel
1332 	 */
1333 	prv = 0;
1334 	if (pvt->info.type == SANDY_BRIDGE)
1335 		pci_ha = pvt->pci_ha0;
1336 	else {
1337 		if (sad_ha)
1338 			pci_ha = pvt->pci_ha1;
1339 		else
1340 			pci_ha = pvt->pci_ha0;
1341 	}
1342 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1343 		pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
1344 		limit = TAD_LIMIT(reg);
1345 		if (limit <= prv) {
1346 			sprintf(msg, "Can't discover the memory channel");
1347 			return -EINVAL;
1348 		}
1349 		if  (addr <= limit)
1350 			break;
1351 		prv = limit;
1352 	}
1353 	if (n_tads == MAX_TAD) {
1354 		sprintf(msg, "Can't discover the memory channel");
1355 		return -EINVAL;
1356 	}
1357 
1358 	ch_way = TAD_CH(reg) + 1;
1359 	sck_way = TAD_SOCK(reg) + 1;
1360 
1361 	if (ch_way == 3)
1362 		idx = addr >> 6;
1363 	else
1364 		idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
1365 	idx = idx % ch_way;
1366 
1367 	/*
1368 	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
1369 	 */
1370 	switch (idx) {
1371 	case 0:
1372 		base_ch = TAD_TGT0(reg);
1373 		break;
1374 	case 1:
1375 		base_ch = TAD_TGT1(reg);
1376 		break;
1377 	case 2:
1378 		base_ch = TAD_TGT2(reg);
1379 		break;
1380 	case 3:
1381 		base_ch = TAD_TGT3(reg);
1382 		break;
1383 	default:
1384 		sprintf(msg, "Can't discover the TAD target");
1385 		return -EINVAL;
1386 	}
1387 	*channel_mask = 1 << base_ch;
1388 
1389 	pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
1390 				tad_ch_nilv_offset[n_tads],
1391 				&tad_offset);
1392 
1393 	if (pvt->is_mirrored) {
1394 		*channel_mask |= 1 << ((base_ch + 2) % 4);
1395 		switch(ch_way) {
1396 		case 2:
1397 		case 4:
1398 			sck_xch = 1 << sck_way * (ch_way >> 1);
1399 			break;
1400 		default:
1401 			sprintf(msg, "Invalid mirror set. Can't decode addr");
1402 			return -EINVAL;
1403 		}
1404 	} else
1405 		sck_xch = (1 << sck_way) * ch_way;
1406 
1407 	if (pvt->is_lockstep)
1408 		*channel_mask |= 1 << ((base_ch + 1) % 4);
1409 
1410 	offset = TAD_OFFSET(tad_offset);
1411 
1412 	edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
1413 		 n_tads,
1414 		 addr,
1415 		 limit,
1416 		 (u32)TAD_SOCK(reg),
1417 		 ch_way,
1418 		 offset,
1419 		 idx,
1420 		 base_ch,
1421 		 *channel_mask);
1422 
1423 	/* Calculate channel address */
1424 	/* Remove the TAD offset */
1425 
1426 	if (offset > addr) {
1427 		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
1428 			offset, addr);
1429 		return -EINVAL;
1430 	}
1431 	addr -= offset;
1432 	/* Store the low bits [0:6] of the addr */
1433 	ch_addr = addr & 0x7f;
1434 	/* Remove socket wayness and remove 6 bits */
1435 	addr >>= 6;
1436 	addr = div_u64(addr, sck_xch);
1437 #if 0
1438 	/* Divide by channel way */
1439 	addr = addr / ch_way;
1440 #endif
1441 	/* Recover the last 6 bits */
1442 	ch_addr |= addr << 6;
1443 
1444 	/*
1445 	 * Step 3) Decode rank
1446 	 */
1447 	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
1448 		pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
1449 				      rir_way_limit[n_rir],
1450 				      &reg);
1451 
1452 		if (!IS_RIR_VALID(reg))
1453 			continue;
1454 
1455 		limit = pvt->info.rir_limit(reg);
1456 		gb = div_u64_rem(limit >> 20, 1024, &mb);
1457 		edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
1458 			 n_rir,
1459 			 gb, (mb*1000)/1024,
1460 			 limit,
1461 			 1 << RIR_WAY(reg));
1462 		if  (ch_addr <= limit)
1463 			break;
1464 	}
1465 	if (n_rir == MAX_RIR_RANGES) {
1466 		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
1467 			ch_addr);
1468 		return -EINVAL;
1469 	}
1470 	rir_way = RIR_WAY(reg);
1471 
1472 	if (pvt->is_close_pg)
1473 		idx = (ch_addr >> 6);
1474 	else
1475 		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
1476 	idx %= 1 << rir_way;
1477 
1478 	pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
1479 			      rir_offset[n_rir][idx],
1480 			      &reg);
1481 	*rank = RIR_RNK_TGT(reg);
1482 
1483 	edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
1484 		 n_rir,
1485 		 ch_addr,
1486 		 limit,
1487 		 rir_way,
1488 		 idx);
1489 
1490 	return 0;
1491 }
1492 
1493 /****************************************************************************
1494 	Device initialization routines: put/get, init/exit
1495  ****************************************************************************/
1496 
1497 /*
1498  *	sbridge_put_all_devices	'put' all the devices that we have
1499  *				reserved via 'get'
1500  */
1501 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
1502 {
1503 	int i;
1504 
1505 	edac_dbg(0, "\n");
1506 	for (i = 0; i < sbridge_dev->n_devs; i++) {
1507 		struct pci_dev *pdev = sbridge_dev->pdev[i];
1508 		if (!pdev)
1509 			continue;
1510 		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
1511 			 pdev->bus->number,
1512 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1513 		pci_dev_put(pdev);
1514 	}
1515 }
1516 
1517 static void sbridge_put_all_devices(void)
1518 {
1519 	struct sbridge_dev *sbridge_dev, *tmp;
1520 
1521 	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
1522 		sbridge_put_devices(sbridge_dev);
1523 		free_sbridge_dev(sbridge_dev);
1524 	}
1525 }
1526 
1527 static int sbridge_get_onedevice(struct pci_dev **prev,
1528 				 u8 *num_mc,
1529 				 const struct pci_id_table *table,
1530 				 const unsigned devno)
1531 {
1532 	struct sbridge_dev *sbridge_dev;
1533 	const struct pci_id_descr *dev_descr = &table->descr[devno];
1534 	struct pci_dev *pdev = NULL;
1535 	u8 bus = 0;
1536 
1537 	sbridge_printk(KERN_DEBUG,
1538 		"Seeking for: PCI ID %04x:%04x\n",
1539 		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1540 
1541 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1542 			      dev_descr->dev_id, *prev);
1543 
1544 	if (!pdev) {
1545 		if (*prev) {
1546 			*prev = pdev;
1547 			return 0;
1548 		}
1549 
1550 		if (dev_descr->optional)
1551 			return 0;
1552 
1553 		/* if the HA wasn't found */
1554 		if (devno == 0)
1555 			return -ENODEV;
1556 
1557 		sbridge_printk(KERN_INFO,
1558 			"Device not found: %04x:%04x\n",
1559 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1560 
1561 		/* End of list, leave */
1562 		return -ENODEV;
1563 	}
1564 	bus = pdev->bus->number;
1565 
1566 	sbridge_dev = get_sbridge_dev(bus);
1567 	if (!sbridge_dev) {
1568 		sbridge_dev = alloc_sbridge_dev(bus, table);
1569 		if (!sbridge_dev) {
1570 			pci_dev_put(pdev);
1571 			return -ENOMEM;
1572 		}
1573 		(*num_mc)++;
1574 	}
1575 
1576 	if (sbridge_dev->pdev[devno]) {
1577 		sbridge_printk(KERN_ERR,
1578 			"Duplicated device for %04x:%04x\n",
1579 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1580 		pci_dev_put(pdev);
1581 		return -ENODEV;
1582 	}
1583 
1584 	sbridge_dev->pdev[devno] = pdev;
1585 
1586 	/* Be sure that the device is enabled */
1587 	if (unlikely(pci_enable_device(pdev) < 0)) {
1588 		sbridge_printk(KERN_ERR,
1589 			"Couldn't enable %04x:%04x\n",
1590 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1591 		return -ENODEV;
1592 	}
1593 
1594 	edac_dbg(0, "Detected %04x:%04x\n",
1595 		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1596 
1597 	/*
1598 	 * As stated on drivers/pci/search.c, the reference count for
1599 	 * @from is always decremented if it is not %NULL. So, as we need
1600 	 * to get all devices up to null, we need to do a get for the device
1601 	 */
1602 	pci_dev_get(pdev);
1603 
1604 	*prev = pdev;
1605 
1606 	return 0;
1607 }
1608 
1609 /*
1610  * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
1611  *			     devices we want to reference for this driver.
1612  * @num_mc: pointer to the memory controllers count, to be incremented in case
1613  *	    of success.
1614  * @table: model specific table
1615  *
1616  * returns 0 in case of success or error code
1617  */
1618 static int sbridge_get_all_devices(u8 *num_mc,
1619 				   const struct pci_id_table *table)
1620 {
1621 	int i, rc;
1622 	struct pci_dev *pdev = NULL;
1623 
1624 	while (table && table->descr) {
1625 		for (i = 0; i < table->n_devs; i++) {
1626 			pdev = NULL;
1627 			do {
1628 				rc = sbridge_get_onedevice(&pdev, num_mc,
1629 							   table, i);
1630 				if (rc < 0) {
1631 					if (i == 0) {
1632 						i = table->n_devs;
1633 						break;
1634 					}
1635 					sbridge_put_all_devices();
1636 					return -ENODEV;
1637 				}
1638 			} while (pdev);
1639 		}
1640 		table++;
1641 	}
1642 
1643 	return 0;
1644 }
1645 
1646 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
1647 				 struct sbridge_dev *sbridge_dev)
1648 {
1649 	struct sbridge_pvt *pvt = mci->pvt_info;
1650 	struct pci_dev *pdev;
1651 	int i;
1652 
1653 	for (i = 0; i < sbridge_dev->n_devs; i++) {
1654 		pdev = sbridge_dev->pdev[i];
1655 		if (!pdev)
1656 			continue;
1657 
1658 		switch (pdev->device) {
1659 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
1660 			pvt->pci_sad0 = pdev;
1661 			break;
1662 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
1663 			pvt->pci_sad1 = pdev;
1664 			break;
1665 		case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
1666 			pvt->pci_br0 = pdev;
1667 			break;
1668 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
1669 			pvt->pci_ha0 = pdev;
1670 			break;
1671 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
1672 			pvt->pci_ta = pdev;
1673 			break;
1674 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
1675 			pvt->pci_ras = pdev;
1676 			break;
1677 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
1678 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
1679 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
1680 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
1681 		{
1682 			int id = pdev->device - PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0;
1683 			pvt->pci_tad[id] = pdev;
1684 		}
1685 			break;
1686 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
1687 			pvt->pci_ddrio = pdev;
1688 			break;
1689 		default:
1690 			goto error;
1691 		}
1692 
1693 		edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
1694 			 pdev->vendor, pdev->device,
1695 			 sbridge_dev->bus,
1696 			 pdev);
1697 	}
1698 
1699 	/* Check if everything were registered */
1700 	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
1701 	    !pvt-> pci_tad || !pvt->pci_ras  || !pvt->pci_ta)
1702 		goto enodev;
1703 
1704 	for (i = 0; i < NUM_CHANNELS; i++) {
1705 		if (!pvt->pci_tad[i])
1706 			goto enodev;
1707 	}
1708 	return 0;
1709 
1710 enodev:
1711 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1712 	return -ENODEV;
1713 
1714 error:
1715 	sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
1716 		       PCI_VENDOR_ID_INTEL, pdev->device);
1717 	return -EINVAL;
1718 }
1719 
1720 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
1721 				 struct sbridge_dev *sbridge_dev)
1722 {
1723 	struct sbridge_pvt *pvt = mci->pvt_info;
1724 	struct pci_dev *pdev;
1725 	u8 saw_chan_mask = 0;
1726 	int i;
1727 
1728 	for (i = 0; i < sbridge_dev->n_devs; i++) {
1729 		pdev = sbridge_dev->pdev[i];
1730 		if (!pdev)
1731 			continue;
1732 
1733 		switch (pdev->device) {
1734 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
1735 			pvt->pci_ha0 = pdev;
1736 			break;
1737 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
1738 			pvt->pci_ta = pdev;
1739 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
1740 			pvt->pci_ras = pdev;
1741 			break;
1742 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
1743 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
1744 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
1745 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
1746 		{
1747 			int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0;
1748 			pvt->pci_tad[id] = pdev;
1749 			saw_chan_mask |= 1 << id;
1750 		}
1751 			break;
1752 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
1753 			pvt->pci_ddrio = pdev;
1754 			break;
1755 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
1756 			pvt->pci_ddrio = pdev;
1757 			break;
1758 		case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
1759 			pvt->pci_sad0 = pdev;
1760 			break;
1761 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
1762 			pvt->pci_br0 = pdev;
1763 			break;
1764 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
1765 			pvt->pci_br1 = pdev;
1766 			break;
1767 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
1768 			pvt->pci_ha1 = pdev;
1769 			break;
1770 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
1771 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
1772 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
1773 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
1774 		{
1775 			int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 + 4;
1776 			pvt->pci_tad[id] = pdev;
1777 			saw_chan_mask |= 1 << id;
1778 		}
1779 			break;
1780 		default:
1781 			goto error;
1782 		}
1783 
1784 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1785 			 sbridge_dev->bus,
1786 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1787 			 pdev);
1788 	}
1789 
1790 	/* Check if everything were registered */
1791 	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_br0 ||
1792 	    !pvt->pci_br1 || !pvt->pci_tad || !pvt->pci_ras  ||
1793 	    !pvt->pci_ta)
1794 		goto enodev;
1795 
1796 	if (saw_chan_mask != 0x0f && /* -EN */
1797 	    saw_chan_mask != 0x33 && /* -EP */
1798 	    saw_chan_mask != 0xff)   /* -EX */
1799 		goto enodev;
1800 	return 0;
1801 
1802 enodev:
1803 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1804 	return -ENODEV;
1805 
1806 error:
1807 	sbridge_printk(KERN_ERR,
1808 		       "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
1809 			pdev->device);
1810 	return -EINVAL;
1811 }
1812 
1813 static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
1814 				 struct sbridge_dev *sbridge_dev)
1815 {
1816 	struct sbridge_pvt *pvt = mci->pvt_info;
1817 	struct pci_dev *pdev;
1818 	u8 saw_chan_mask = 0;
1819 	int i;
1820 
1821 	/* there's only one device per system; not tied to any bus */
1822 	if (pvt->info.pci_vtd == NULL)
1823 		/* result will be checked later */
1824 		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
1825 						   PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
1826 						   NULL);
1827 
1828 	for (i = 0; i < sbridge_dev->n_devs; i++) {
1829 		pdev = sbridge_dev->pdev[i];
1830 		if (!pdev)
1831 			continue;
1832 
1833 		switch (pdev->device) {
1834 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
1835 			pvt->pci_sad0 = pdev;
1836 			break;
1837 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
1838 			pvt->pci_sad1 = pdev;
1839 			break;
1840 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
1841 			pvt->pci_ha0 = pdev;
1842 			break;
1843 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
1844 			pvt->pci_ta = pdev;
1845 			break;
1846 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL:
1847 			pvt->pci_ras = pdev;
1848 			break;
1849 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
1850 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
1851 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
1852 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
1853 		{
1854 			int id = pdev->device - PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0;
1855 
1856 			pvt->pci_tad[id] = pdev;
1857 			saw_chan_mask |= 1 << id;
1858 		}
1859 			break;
1860 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
1861 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
1862 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
1863 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
1864 		{
1865 			int id = pdev->device - PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 + 4;
1866 
1867 			pvt->pci_tad[id] = pdev;
1868 			saw_chan_mask |= 1 << id;
1869 		}
1870 			break;
1871 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
1872 			pvt->pci_ddrio = pdev;
1873 			break;
1874 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
1875 			pvt->pci_ha1 = pdev;
1876 			break;
1877 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
1878 			pvt->pci_ha1_ta = pdev;
1879 			break;
1880 		default:
1881 			break;
1882 		}
1883 
1884 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1885 			 sbridge_dev->bus,
1886 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1887 			 pdev);
1888 	}
1889 
1890 	/* Check if everything were registered */
1891 	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
1892 	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
1893 		goto enodev;
1894 
1895 	if (saw_chan_mask != 0x0f && /* -EN */
1896 	    saw_chan_mask != 0x33 && /* -EP */
1897 	    saw_chan_mask != 0xff)   /* -EX */
1898 		goto enodev;
1899 	return 0;
1900 
1901 enodev:
1902 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1903 	return -ENODEV;
1904 }
1905 
1906 static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
1907 				 struct sbridge_dev *sbridge_dev)
1908 {
1909 	struct sbridge_pvt *pvt = mci->pvt_info;
1910 	struct pci_dev *pdev;
1911 	u8 saw_chan_mask = 0;
1912 	int i;
1913 
1914 	/* there's only one device per system; not tied to any bus */
1915 	if (pvt->info.pci_vtd == NULL)
1916 		/* result will be checked later */
1917 		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
1918 						   PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
1919 						   NULL);
1920 
1921 	for (i = 0; i < sbridge_dev->n_devs; i++) {
1922 		pdev = sbridge_dev->pdev[i];
1923 		if (!pdev)
1924 			continue;
1925 
1926 		switch (pdev->device) {
1927 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
1928 			pvt->pci_sad0 = pdev;
1929 			break;
1930 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
1931 			pvt->pci_sad1 = pdev;
1932 			break;
1933 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
1934 			pvt->pci_ha0 = pdev;
1935 			break;
1936 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
1937 			pvt->pci_ta = pdev;
1938 			break;
1939 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL:
1940 			pvt->pci_ras = pdev;
1941 			break;
1942 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
1943 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
1944 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
1945 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
1946 		{
1947 			int id = pdev->device - PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0;
1948 			pvt->pci_tad[id] = pdev;
1949 			saw_chan_mask |= 1 << id;
1950 		}
1951 			break;
1952 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
1953 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
1954 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
1955 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
1956 		{
1957 			int id = pdev->device - PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 + 4;
1958 			pvt->pci_tad[id] = pdev;
1959 			saw_chan_mask |= 1 << id;
1960 		}
1961 			break;
1962 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
1963 			pvt->pci_ddrio = pdev;
1964 			break;
1965 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
1966 			pvt->pci_ha1 = pdev;
1967 			break;
1968 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
1969 			pvt->pci_ha1_ta = pdev;
1970 			break;
1971 		default:
1972 			break;
1973 		}
1974 
1975 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1976 			 sbridge_dev->bus,
1977 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1978 			 pdev);
1979 	}
1980 
1981 	/* Check if everything were registered */
1982 	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
1983 	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
1984 		goto enodev;
1985 
1986 	if (saw_chan_mask != 0x0f && /* -EN */
1987 	    saw_chan_mask != 0x33 && /* -EP */
1988 	    saw_chan_mask != 0xff)   /* -EX */
1989 		goto enodev;
1990 	return 0;
1991 
1992 enodev:
1993 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1994 	return -ENODEV;
1995 }
1996 
1997 /****************************************************************************
1998 			Error check routines
1999  ****************************************************************************/
2000 
2001 /*
2002  * While Sandy Bridge has error count registers, SMI BIOS read values from
2003  * and resets the counters. So, they are not reliable for the OS to read
2004  * from them. So, we have no option but to just trust on whatever MCE is
2005  * telling us about the errors.
2006  */
2007 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
2008 				    const struct mce *m)
2009 {
2010 	struct mem_ctl_info *new_mci;
2011 	struct sbridge_pvt *pvt = mci->pvt_info;
2012 	enum hw_event_mc_err_type tp_event;
2013 	char *type, *optype, msg[256];
2014 	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
2015 	bool overflow = GET_BITFIELD(m->status, 62, 62);
2016 	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
2017 	bool recoverable;
2018 	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
2019 	u32 mscod = GET_BITFIELD(m->status, 16, 31);
2020 	u32 errcode = GET_BITFIELD(m->status, 0, 15);
2021 	u32 channel = GET_BITFIELD(m->status, 0, 3);
2022 	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
2023 	long channel_mask, first_channel;
2024 	u8  rank, socket, ha;
2025 	int rc, dimm;
2026 	char *area_type = NULL;
2027 
2028 	if (pvt->info.type != SANDY_BRIDGE)
2029 		recoverable = true;
2030 	else
2031 		recoverable = GET_BITFIELD(m->status, 56, 56);
2032 
2033 	if (uncorrected_error) {
2034 		if (ripv) {
2035 			type = "FATAL";
2036 			tp_event = HW_EVENT_ERR_FATAL;
2037 		} else {
2038 			type = "NON_FATAL";
2039 			tp_event = HW_EVENT_ERR_UNCORRECTED;
2040 		}
2041 	} else {
2042 		type = "CORRECTED";
2043 		tp_event = HW_EVENT_ERR_CORRECTED;
2044 	}
2045 
2046 	/*
2047 	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
2048 	 * memory errors should fit in this mask:
2049 	 *	000f 0000 1mmm cccc (binary)
2050 	 * where:
2051 	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
2052 	 *	    won't be shown
2053 	 *	mmm = error type
2054 	 *	cccc = channel
2055 	 * If the mask doesn't match, report an error to the parsing logic
2056 	 */
2057 	if (! ((errcode & 0xef80) == 0x80)) {
2058 		optype = "Can't parse: it is not a mem";
2059 	} else {
2060 		switch (optypenum) {
2061 		case 0:
2062 			optype = "generic undef request error";
2063 			break;
2064 		case 1:
2065 			optype = "memory read error";
2066 			break;
2067 		case 2:
2068 			optype = "memory write error";
2069 			break;
2070 		case 3:
2071 			optype = "addr/cmd error";
2072 			break;
2073 		case 4:
2074 			optype = "memory scrubbing error";
2075 			break;
2076 		default:
2077 			optype = "reserved";
2078 			break;
2079 		}
2080 	}
2081 
2082 	/* Only decode errors with an valid address (ADDRV) */
2083 	if (!GET_BITFIELD(m->status, 58, 58))
2084 		return;
2085 
2086 	rc = get_memory_error_data(mci, m->addr, &socket, &ha,
2087 				   &channel_mask, &rank, &area_type, msg);
2088 	if (rc < 0)
2089 		goto err_parsing;
2090 	new_mci = get_mci_for_node_id(socket);
2091 	if (!new_mci) {
2092 		strcpy(msg, "Error: socket got corrupted!");
2093 		goto err_parsing;
2094 	}
2095 	mci = new_mci;
2096 	pvt = mci->pvt_info;
2097 
2098 	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
2099 
2100 	if (rank < 4)
2101 		dimm = 0;
2102 	else if (rank < 8)
2103 		dimm = 1;
2104 	else
2105 		dimm = 2;
2106 
2107 
2108 	/*
2109 	 * FIXME: On some memory configurations (mirror, lockstep), the
2110 	 * Memory Controller can't point the error to a single DIMM. The
2111 	 * EDAC core should be handling the channel mask, in order to point
2112 	 * to the group of dimm's where the error may be happening.
2113 	 */
2114 	if (!pvt->is_lockstep && !pvt->is_mirrored && !pvt->is_close_pg)
2115 		channel = first_channel;
2116 
2117 	snprintf(msg, sizeof(msg),
2118 		 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
2119 		 overflow ? " OVERFLOW" : "",
2120 		 (uncorrected_error && recoverable) ? " recoverable" : "",
2121 		 area_type,
2122 		 mscod, errcode,
2123 		 socket, ha,
2124 		 channel_mask,
2125 		 rank);
2126 
2127 	edac_dbg(0, "%s\n", msg);
2128 
2129 	/* FIXME: need support for channel mask */
2130 
2131 	if (channel == CHANNEL_UNSPECIFIED)
2132 		channel = -1;
2133 
2134 	/* Call the helper to output message */
2135 	edac_mc_handle_error(tp_event, mci, core_err_cnt,
2136 			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
2137 			     4*ha+channel, dimm, -1,
2138 			     optype, msg);
2139 	return;
2140 err_parsing:
2141 	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
2142 			     -1, -1, -1,
2143 			     msg, "");
2144 
2145 }
2146 
2147 /*
2148  *	sbridge_check_error	Retrieve and process errors reported by the
2149  *				hardware. Called by the Core module.
2150  */
2151 static void sbridge_check_error(struct mem_ctl_info *mci)
2152 {
2153 	struct sbridge_pvt *pvt = mci->pvt_info;
2154 	int i;
2155 	unsigned count = 0;
2156 	struct mce *m;
2157 
2158 	/*
2159 	 * MCE first step: Copy all mce errors into a temporary buffer
2160 	 * We use a double buffering here, to reduce the risk of
2161 	 * loosing an error.
2162 	 */
2163 	smp_rmb();
2164 	count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
2165 		% MCE_LOG_LEN;
2166 	if (!count)
2167 		return;
2168 
2169 	m = pvt->mce_outentry;
2170 	if (pvt->mce_in + count > MCE_LOG_LEN) {
2171 		unsigned l = MCE_LOG_LEN - pvt->mce_in;
2172 
2173 		memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
2174 		smp_wmb();
2175 		pvt->mce_in = 0;
2176 		count -= l;
2177 		m += l;
2178 	}
2179 	memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
2180 	smp_wmb();
2181 	pvt->mce_in += count;
2182 
2183 	smp_rmb();
2184 	if (pvt->mce_overrun) {
2185 		sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
2186 			      pvt->mce_overrun);
2187 		smp_wmb();
2188 		pvt->mce_overrun = 0;
2189 	}
2190 
2191 	/*
2192 	 * MCE second step: parse errors and display
2193 	 */
2194 	for (i = 0; i < count; i++)
2195 		sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
2196 }
2197 
2198 /*
2199  * sbridge_mce_check_error	Replicates mcelog routine to get errors
2200  *				This routine simply queues mcelog errors, and
2201  *				return. The error itself should be handled later
2202  *				by sbridge_check_error.
2203  * WARNING: As this routine should be called at NMI time, extra care should
2204  * be taken to avoid deadlocks, and to be as fast as possible.
2205  */
2206 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
2207 				   void *data)
2208 {
2209 	struct mce *mce = (struct mce *)data;
2210 	struct mem_ctl_info *mci;
2211 	struct sbridge_pvt *pvt;
2212 	char *type;
2213 
2214 	if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
2215 		return NOTIFY_DONE;
2216 
2217 	mci = get_mci_for_node_id(mce->socketid);
2218 	if (!mci)
2219 		return NOTIFY_BAD;
2220 	pvt = mci->pvt_info;
2221 
2222 	/*
2223 	 * Just let mcelog handle it if the error is
2224 	 * outside the memory controller. A memory error
2225 	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
2226 	 * bit 12 has an special meaning.
2227 	 */
2228 	if ((mce->status & 0xefff) >> 7 != 1)
2229 		return NOTIFY_DONE;
2230 
2231 	if (mce->mcgstatus & MCG_STATUS_MCIP)
2232 		type = "Exception";
2233 	else
2234 		type = "Event";
2235 
2236 	sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
2237 
2238 	sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
2239 			  "Bank %d: %016Lx\n", mce->extcpu, type,
2240 			  mce->mcgstatus, mce->bank, mce->status);
2241 	sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
2242 	sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
2243 	sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
2244 
2245 	sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
2246 			  "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
2247 			  mce->time, mce->socketid, mce->apicid);
2248 
2249 	smp_rmb();
2250 	if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
2251 		smp_wmb();
2252 		pvt->mce_overrun++;
2253 		return NOTIFY_DONE;
2254 	}
2255 
2256 	/* Copy memory error at the ringbuffer */
2257 	memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
2258 	smp_wmb();
2259 	pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
2260 
2261 	/* Handle fatal errors immediately */
2262 	if (mce->mcgstatus & 1)
2263 		sbridge_check_error(mci);
2264 
2265 	/* Advice mcelog that the error were handled */
2266 	return NOTIFY_STOP;
2267 }
2268 
2269 static struct notifier_block sbridge_mce_dec = {
2270 	.notifier_call      = sbridge_mce_check_error,
2271 };
2272 
2273 /****************************************************************************
2274 			EDAC register/unregister logic
2275  ****************************************************************************/
2276 
2277 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
2278 {
2279 	struct mem_ctl_info *mci = sbridge_dev->mci;
2280 	struct sbridge_pvt *pvt;
2281 
2282 	if (unlikely(!mci || !mci->pvt_info)) {
2283 		edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
2284 
2285 		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
2286 		return;
2287 	}
2288 
2289 	pvt = mci->pvt_info;
2290 
2291 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
2292 		 mci, &sbridge_dev->pdev[0]->dev);
2293 
2294 	/* Remove MC sysfs nodes */
2295 	edac_mc_del_mc(mci->pdev);
2296 
2297 	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
2298 	kfree(mci->ctl_name);
2299 	edac_mc_free(mci);
2300 	sbridge_dev->mci = NULL;
2301 }
2302 
2303 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
2304 {
2305 	struct mem_ctl_info *mci;
2306 	struct edac_mc_layer layers[2];
2307 	struct sbridge_pvt *pvt;
2308 	struct pci_dev *pdev = sbridge_dev->pdev[0];
2309 	int rc;
2310 
2311 	/* Check the number of active and not disabled channels */
2312 	rc = check_if_ecc_is_active(sbridge_dev->bus, type);
2313 	if (unlikely(rc < 0))
2314 		return rc;
2315 
2316 	/* allocate a new MC control structure */
2317 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
2318 	layers[0].size = NUM_CHANNELS;
2319 	layers[0].is_virt_csrow = false;
2320 	layers[1].type = EDAC_MC_LAYER_SLOT;
2321 	layers[1].size = MAX_DIMMS;
2322 	layers[1].is_virt_csrow = true;
2323 	mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
2324 			    sizeof(*pvt));
2325 
2326 	if (unlikely(!mci))
2327 		return -ENOMEM;
2328 
2329 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
2330 		 mci, &pdev->dev);
2331 
2332 	pvt = mci->pvt_info;
2333 	memset(pvt, 0, sizeof(*pvt));
2334 
2335 	/* Associate sbridge_dev and mci for future usage */
2336 	pvt->sbridge_dev = sbridge_dev;
2337 	sbridge_dev->mci = mci;
2338 
2339 	mci->mtype_cap = MEM_FLAG_DDR3;
2340 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
2341 	mci->edac_cap = EDAC_FLAG_NONE;
2342 	mci->mod_name = "sbridge_edac.c";
2343 	mci->mod_ver = SBRIDGE_REVISION;
2344 	mci->dev_name = pci_name(pdev);
2345 	mci->ctl_page_to_phys = NULL;
2346 
2347 	/* Set the function pointer to an actual operation function */
2348 	mci->edac_check = sbridge_check_error;
2349 
2350 	pvt->info.type = type;
2351 	switch (type) {
2352 	case IVY_BRIDGE:
2353 		pvt->info.rankcfgr = IB_RANK_CFG_A;
2354 		pvt->info.get_tolm = ibridge_get_tolm;
2355 		pvt->info.get_tohm = ibridge_get_tohm;
2356 		pvt->info.dram_rule = ibridge_dram_rule;
2357 		pvt->info.get_memory_type = get_memory_type;
2358 		pvt->info.get_node_id = get_node_id;
2359 		pvt->info.rir_limit = rir_limit;
2360 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
2361 		pvt->info.interleave_list = ibridge_interleave_list;
2362 		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
2363 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
2364 		mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge Socket#%d", mci->mc_idx);
2365 
2366 		/* Store pci devices at mci for faster access */
2367 		rc = ibridge_mci_bind_devs(mci, sbridge_dev);
2368 		if (unlikely(rc < 0))
2369 			goto fail0;
2370 		break;
2371 	case SANDY_BRIDGE:
2372 		pvt->info.rankcfgr = SB_RANK_CFG_A;
2373 		pvt->info.get_tolm = sbridge_get_tolm;
2374 		pvt->info.get_tohm = sbridge_get_tohm;
2375 		pvt->info.dram_rule = sbridge_dram_rule;
2376 		pvt->info.get_memory_type = get_memory_type;
2377 		pvt->info.get_node_id = get_node_id;
2378 		pvt->info.rir_limit = rir_limit;
2379 		pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
2380 		pvt->info.interleave_list = sbridge_interleave_list;
2381 		pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list);
2382 		pvt->info.interleave_pkg = sbridge_interleave_pkg;
2383 		mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
2384 
2385 		/* Store pci devices at mci for faster access */
2386 		rc = sbridge_mci_bind_devs(mci, sbridge_dev);
2387 		if (unlikely(rc < 0))
2388 			goto fail0;
2389 		break;
2390 	case HASWELL:
2391 		/* rankcfgr isn't used */
2392 		pvt->info.get_tolm = haswell_get_tolm;
2393 		pvt->info.get_tohm = haswell_get_tohm;
2394 		pvt->info.dram_rule = ibridge_dram_rule;
2395 		pvt->info.get_memory_type = haswell_get_memory_type;
2396 		pvt->info.get_node_id = haswell_get_node_id;
2397 		pvt->info.rir_limit = haswell_rir_limit;
2398 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
2399 		pvt->info.interleave_list = ibridge_interleave_list;
2400 		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
2401 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
2402 		mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell Socket#%d", mci->mc_idx);
2403 
2404 		/* Store pci devices at mci for faster access */
2405 		rc = haswell_mci_bind_devs(mci, sbridge_dev);
2406 		if (unlikely(rc < 0))
2407 			goto fail0;
2408 		break;
2409 	case BROADWELL:
2410 		/* rankcfgr isn't used */
2411 		pvt->info.get_tolm = haswell_get_tolm;
2412 		pvt->info.get_tohm = haswell_get_tohm;
2413 		pvt->info.dram_rule = ibridge_dram_rule;
2414 		pvt->info.get_memory_type = haswell_get_memory_type;
2415 		pvt->info.get_node_id = haswell_get_node_id;
2416 		pvt->info.rir_limit = haswell_rir_limit;
2417 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
2418 		pvt->info.interleave_list = ibridge_interleave_list;
2419 		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
2420 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
2421 		mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell Socket#%d", mci->mc_idx);
2422 
2423 		/* Store pci devices at mci for faster access */
2424 		rc = broadwell_mci_bind_devs(mci, sbridge_dev);
2425 		if (unlikely(rc < 0))
2426 			goto fail0;
2427 		break;
2428 	}
2429 
2430 	/* Get dimm basic config and the memory layout */
2431 	get_dimm_config(mci);
2432 	get_memory_layout(mci);
2433 
2434 	/* record ptr to the generic device */
2435 	mci->pdev = &pdev->dev;
2436 
2437 	/* add this new MC control structure to EDAC's list of MCs */
2438 	if (unlikely(edac_mc_add_mc(mci))) {
2439 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
2440 		rc = -EINVAL;
2441 		goto fail0;
2442 	}
2443 
2444 	return 0;
2445 
2446 fail0:
2447 	kfree(mci->ctl_name);
2448 	edac_mc_free(mci);
2449 	sbridge_dev->mci = NULL;
2450 	return rc;
2451 }
2452 
2453 /*
2454  *	sbridge_probe	Probe for ONE instance of device to see if it is
2455  *			present.
2456  *	return:
2457  *		0 for FOUND a device
2458  *		< 0 for error code
2459  */
2460 
2461 static int sbridge_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2462 {
2463 	int rc = -ENODEV;
2464 	u8 mc, num_mc = 0;
2465 	struct sbridge_dev *sbridge_dev;
2466 	enum type type = SANDY_BRIDGE;
2467 
2468 	/* get the pci devices we want to reserve for our use */
2469 	mutex_lock(&sbridge_edac_lock);
2470 
2471 	/*
2472 	 * All memory controllers are allocated at the first pass.
2473 	 */
2474 	if (unlikely(probed >= 1)) {
2475 		mutex_unlock(&sbridge_edac_lock);
2476 		return -ENODEV;
2477 	}
2478 	probed++;
2479 
2480 	switch (pdev->device) {
2481 	case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2482 		rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_ibridge_table);
2483 		type = IVY_BRIDGE;
2484 		break;
2485 	case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2486 		rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_sbridge_table);
2487 		type = SANDY_BRIDGE;
2488 		break;
2489 	case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2490 		rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_haswell_table);
2491 		type = HASWELL;
2492 		break;
2493 	case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2494 		rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_broadwell_table);
2495 		type = BROADWELL;
2496 		break;
2497 	}
2498 	if (unlikely(rc < 0)) {
2499 		edac_dbg(0, "couldn't get all devices for 0x%x\n", pdev->device);
2500 		goto fail0;
2501 	}
2502 
2503 	mc = 0;
2504 
2505 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
2506 		edac_dbg(0, "Registering MC#%d (%d of %d)\n",
2507 			 mc, mc + 1, num_mc);
2508 
2509 		sbridge_dev->mc = mc++;
2510 		rc = sbridge_register_mci(sbridge_dev, type);
2511 		if (unlikely(rc < 0))
2512 			goto fail1;
2513 	}
2514 
2515 	sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
2516 
2517 	mutex_unlock(&sbridge_edac_lock);
2518 	return 0;
2519 
2520 fail1:
2521 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
2522 		sbridge_unregister_mci(sbridge_dev);
2523 
2524 	sbridge_put_all_devices();
2525 fail0:
2526 	mutex_unlock(&sbridge_edac_lock);
2527 	return rc;
2528 }
2529 
2530 /*
2531  *	sbridge_remove	destructor for one instance of device
2532  *
2533  */
2534 static void sbridge_remove(struct pci_dev *pdev)
2535 {
2536 	struct sbridge_dev *sbridge_dev;
2537 
2538 	edac_dbg(0, "\n");
2539 
2540 	/*
2541 	 * we have a trouble here: pdev value for removal will be wrong, since
2542 	 * it will point to the X58 register used to detect that the machine
2543 	 * is a Nehalem or upper design. However, due to the way several PCI
2544 	 * devices are grouped together to provide MC functionality, we need
2545 	 * to use a different method for releasing the devices
2546 	 */
2547 
2548 	mutex_lock(&sbridge_edac_lock);
2549 
2550 	if (unlikely(!probed)) {
2551 		mutex_unlock(&sbridge_edac_lock);
2552 		return;
2553 	}
2554 
2555 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
2556 		sbridge_unregister_mci(sbridge_dev);
2557 
2558 	/* Release PCI resources */
2559 	sbridge_put_all_devices();
2560 
2561 	probed--;
2562 
2563 	mutex_unlock(&sbridge_edac_lock);
2564 }
2565 
2566 MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
2567 
2568 /*
2569  *	sbridge_driver	pci_driver structure for this module
2570  *
2571  */
2572 static struct pci_driver sbridge_driver = {
2573 	.name     = "sbridge_edac",
2574 	.probe    = sbridge_probe,
2575 	.remove   = sbridge_remove,
2576 	.id_table = sbridge_pci_tbl,
2577 };
2578 
2579 /*
2580  *	sbridge_init		Module entry function
2581  *			Try to initialize this module for its devices
2582  */
2583 static int __init sbridge_init(void)
2584 {
2585 	int pci_rc;
2586 
2587 	edac_dbg(2, "\n");
2588 
2589 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
2590 	opstate_init();
2591 
2592 	pci_rc = pci_register_driver(&sbridge_driver);
2593 	if (pci_rc >= 0) {
2594 		mce_register_decode_chain(&sbridge_mce_dec);
2595 		if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
2596 			sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
2597 		return 0;
2598 	}
2599 
2600 	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
2601 		      pci_rc);
2602 
2603 	return pci_rc;
2604 }
2605 
2606 /*
2607  *	sbridge_exit()	Module exit function
2608  *			Unregister the driver
2609  */
2610 static void __exit sbridge_exit(void)
2611 {
2612 	edac_dbg(2, "\n");
2613 	pci_unregister_driver(&sbridge_driver);
2614 	mce_unregister_decode_chain(&sbridge_mce_dec);
2615 }
2616 
2617 module_init(sbridge_init);
2618 module_exit(sbridge_exit);
2619 
2620 module_param(edac_op_state, int, 0444);
2621 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
2622 
2623 MODULE_LICENSE("GPL");
2624 MODULE_AUTHOR("Mauro Carvalho Chehab");
2625 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
2626 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
2627 		   SBRIDGE_REVISION);
2628