xref: /linux/drivers/edac/pnd2_edac.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Pondicherry2 memory controller.
4  *
5  * Copyright (c) 2016, Intel Corporation.
6  *
7  * [Derived from sb_edac.c]
8  *
9  * Translation of system physical addresses to DIMM addresses
10  * is a two stage process:
11  *
12  * First the Pondicherry 2 memory controller handles slice and channel interleaving
13  * in "sys2pmi()". This is (almost) completley common between platforms.
14  *
15  * Then a platform specific dunit (DIMM unit) completes the process to provide DIMM,
16  * rank, bank, row and column using the appropriate "dunit_ops" functions/parameters.
17  */
18 
19 #include <linux/bitmap.h>
20 #include <linux/delay.h>
21 #include <linux/edac.h>
22 #include <linux/init.h>
23 #include <linux/math64.h>
24 #include <linux/mmzone.h>
25 #include <linux/mod_devicetable.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28 #include <linux/pci_ids.h>
29 #include <linux/sizes.h>
30 #include <linux/slab.h>
31 #include <linux/smp.h>
32 
33 #include <linux/platform_data/x86/p2sb.h>
34 
35 #include <asm/cpu_device_id.h>
36 #include <asm/intel-family.h>
37 #include <asm/processor.h>
38 #include <asm/mce.h>
39 
40 #include "edac_mc.h"
41 #include "edac_module.h"
42 #include "pnd2_edac.h"
43 
44 #define EDAC_MOD_STR		"pnd2_edac"
45 
46 #define APL_NUM_CHANNELS	4
47 #define DNV_NUM_CHANNELS	2
48 #define DNV_MAX_DIMMS		2 /* Max DIMMs per channel */
49 
50 enum type {
51 	APL,
52 	DNV, /* All requests go to PMI CH0 on each slice (CH1 disabled) */
53 };
54 
55 struct dram_addr {
56 	int chan;
57 	int dimm;
58 	int rank;
59 	int bank;
60 	int row;
61 	int col;
62 };
63 
64 struct pnd2_pvt {
65 	int dimm_geom[APL_NUM_CHANNELS];
66 	u64 tolm, tohm;
67 };
68 
69 /*
70  * System address space is divided into multiple regions with
71  * different interleave rules in each. The as0/as1 regions
72  * have no interleaving at all. The as2 region is interleaved
73  * between two channels. The mot region is magic and may overlap
74  * other regions, with its interleave rules taking precedence.
75  * Addresses not in any of these regions are interleaved across
76  * all four channels.
77  */
78 static struct region {
79 	u64	base;
80 	u64	limit;
81 	u8	enabled;
82 } mot, as0, as1, as2;
83 
84 static struct dunit_ops {
85 	char *name;
86 	enum type type;
87 	int pmiaddr_shift;
88 	int pmiidx_shift;
89 	int channels;
90 	int dimms_per_channel;
91 	int (*rd_reg)(int port, int off, int op, void *data, size_t sz, char *name);
92 	int (*get_registers)(void);
93 	int (*check_ecc)(void);
94 	void (*mk_region)(char *name, struct region *rp, void *asym);
95 	void (*get_dimm_config)(struct mem_ctl_info *mci);
96 	int (*pmi2mem)(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx,
97 				   struct dram_addr *daddr, char *msg);
98 } *ops;
99 
100 static struct mem_ctl_info *pnd2_mci;
101 
102 #define PND2_MSG_SIZE	256
103 
104 /* Debug macros */
105 #define pnd2_printk(level, fmt, arg...)			\
106 	edac_printk(level, "pnd2", fmt, ##arg)
107 
108 #define pnd2_mc_printk(mci, level, fmt, arg...)	\
109 	edac_mc_chipset_printk(mci, level, "pnd2", fmt, ##arg)
110 
111 #define MOT_CHAN_INTLV_BIT_1SLC_2CH 12
112 #define MOT_CHAN_INTLV_BIT_2SLC_2CH 13
113 #define SELECTOR_DISABLED (-1)
114 
115 #define PMI_ADDRESS_WIDTH	31
116 #define PND_MAX_PHYS_BIT	39
117 
118 #define APL_ASYMSHIFT		28
119 #define DNV_ASYMSHIFT		31
120 #define CH_HASH_MASK_LSB	6
121 #define SLICE_HASH_MASK_LSB	6
122 #define MOT_SLC_INTLV_BIT	12
123 #define LOG2_PMI_ADDR_GRANULARITY	5
124 #define MOT_SHIFT	24
125 
126 #define GET_BITFIELD(v, lo, hi)	(((v) & GENMASK_ULL(hi, lo)) >> (lo))
127 #define U64_LSHIFT(val, s)	((u64)(val) << (s))
128 
129 /*
130  * On Apollo Lake we access memory controller registers via a
131  * side-band mailbox style interface in a hidden PCI device
132  * configuration space.
133  */
134 static struct pci_bus	*p2sb_bus;
135 #define P2SB_DEVFN	PCI_DEVFN(0xd, 0)
136 #define P2SB_ADDR_OFF	0xd0
137 #define P2SB_DATA_OFF	0xd4
138 #define P2SB_STAT_OFF	0xd8
139 #define P2SB_ROUT_OFF	0xda
140 #define P2SB_EADD_OFF	0xdc
141 #define P2SB_HIDE_OFF	0xe1
142 
143 #define P2SB_BUSY	1
144 
145 #define P2SB_READ(size, off, ptr) \
146 	pci_bus_read_config_##size(p2sb_bus, P2SB_DEVFN, off, ptr)
147 #define P2SB_WRITE(size, off, val) \
148 	pci_bus_write_config_##size(p2sb_bus, P2SB_DEVFN, off, val)
149 
150 static bool p2sb_is_busy(u16 *status)
151 {
152 	P2SB_READ(word, P2SB_STAT_OFF, status);
153 
154 	return !!(*status & P2SB_BUSY);
155 }
156 
157 static int _apl_rd_reg(int port, int off, int op, u32 *data)
158 {
159 	int retries = 0xff, ret;
160 	u16 status;
161 	u8 hidden;
162 
163 	/* Unhide the P2SB device, if it's hidden */
164 	P2SB_READ(byte, P2SB_HIDE_OFF, &hidden);
165 	if (hidden)
166 		P2SB_WRITE(byte, P2SB_HIDE_OFF, 0);
167 
168 	if (p2sb_is_busy(&status)) {
169 		ret = -EAGAIN;
170 		goto out;
171 	}
172 
173 	P2SB_WRITE(dword, P2SB_ADDR_OFF, (port << 24) | off);
174 	P2SB_WRITE(dword, P2SB_DATA_OFF, 0);
175 	P2SB_WRITE(dword, P2SB_EADD_OFF, 0);
176 	P2SB_WRITE(word, P2SB_ROUT_OFF, 0);
177 	P2SB_WRITE(word, P2SB_STAT_OFF, (op << 8) | P2SB_BUSY);
178 
179 	while (p2sb_is_busy(&status)) {
180 		if (retries-- == 0) {
181 			ret = -EBUSY;
182 			goto out;
183 		}
184 	}
185 
186 	P2SB_READ(dword, P2SB_DATA_OFF, data);
187 	ret = (status >> 1) & GENMASK(1, 0);
188 out:
189 	/* Hide the P2SB device, if it was hidden before */
190 	if (hidden)
191 		P2SB_WRITE(byte, P2SB_HIDE_OFF, hidden);
192 
193 	return ret;
194 }
195 
196 static int apl_rd_reg(int port, int off, int op, void *data, size_t sz, char *name)
197 {
198 	int ret = 0;
199 
200 	edac_dbg(2, "Read %s port=%x off=%x op=%x\n", name, port, off, op);
201 	switch (sz) {
202 	case 8:
203 		ret = _apl_rd_reg(port, off + 4, op, (u32 *)(data + 4));
204 		fallthrough;
205 	case 4:
206 		ret |= _apl_rd_reg(port, off, op, (u32 *)data);
207 		pnd2_printk(KERN_DEBUG, "%s=%x%08x ret=%d\n", name,
208 					sz == 8 ? *((u32 *)(data + 4)) : 0, *((u32 *)data), ret);
209 		break;
210 	}
211 
212 	return ret;
213 }
214 
215 static u64 get_mem_ctrl_hub_base_addr(void)
216 {
217 	struct b_cr_mchbar_lo_pci lo;
218 	struct b_cr_mchbar_hi_pci hi;
219 	struct pci_dev *pdev;
220 
221 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x1980, NULL);
222 	if (pdev) {
223 		pci_read_config_dword(pdev, 0x48, (u32 *)&lo);
224 		pci_read_config_dword(pdev, 0x4c, (u32 *)&hi);
225 		pci_dev_put(pdev);
226 	} else {
227 		return 0;
228 	}
229 
230 	if (!lo.enable) {
231 		edac_dbg(2, "MMIO via memory controller hub base address is disabled!\n");
232 		return 0;
233 	}
234 
235 	return U64_LSHIFT(hi.base, 32) | U64_LSHIFT(lo.base, 15);
236 }
237 
238 #define DNV_MCHBAR_SIZE  0x8000
239 #define DNV_SB_PORT_SIZE 0x10000
240 static int dnv_rd_reg(int port, int off, int op, void *data, size_t sz, char *name)
241 {
242 	struct pci_dev *pdev;
243 	void __iomem *base;
244 	struct resource r;
245 	int ret;
246 
247 	if (op == 4) {
248 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x1980, NULL);
249 		if (!pdev)
250 			return -ENODEV;
251 
252 		pci_read_config_dword(pdev, off, data);
253 		pci_dev_put(pdev);
254 	} else {
255 		/* MMIO via memory controller hub base address */
256 		if (op == 0 && port == 0x4c) {
257 			memset(&r, 0, sizeof(r));
258 
259 			r.start = get_mem_ctrl_hub_base_addr();
260 			if (!r.start)
261 				return -ENODEV;
262 			r.end = r.start + DNV_MCHBAR_SIZE - 1;
263 		} else {
264 			/* MMIO via sideband register base address */
265 			ret = p2sb_bar(NULL, 0, &r);
266 			if (ret)
267 				return ret;
268 
269 			r.start += (port << 16);
270 			r.end = r.start + DNV_SB_PORT_SIZE - 1;
271 		}
272 
273 		base = ioremap(r.start, resource_size(&r));
274 		if (!base)
275 			return -ENODEV;
276 
277 		if (sz == 8)
278 			*(u64 *)data = readq(base + off);
279 		else
280 			*(u32 *)data = readl(base + off);
281 
282 		iounmap(base);
283 	}
284 
285 	edac_dbg(2, "Read %s=%.8x_%.8x\n", name,
286 			(sz == 8) ? *(u32 *)(data + 4) : 0, *(u32 *)data);
287 
288 	return 0;
289 }
290 
291 #define RD_REGP(regp, regname, port)	\
292 	ops->rd_reg(port,					\
293 		regname##_offset,				\
294 		regname##_r_opcode,				\
295 		regp, sizeof(struct regname),	\
296 		#regname)
297 
298 #define RD_REG(regp, regname)			\
299 	ops->rd_reg(regname ## _port,		\
300 		regname##_offset,				\
301 		regname##_r_opcode,				\
302 		regp, sizeof(struct regname),	\
303 		#regname)
304 
305 static u64 top_lm, top_hm;
306 static bool two_slices;
307 static bool two_channels; /* Both PMI channels in one slice enabled */
308 
309 static u8 sym_chan_mask;
310 static u8 asym_chan_mask;
311 static unsigned long chan_mask;
312 
313 static int slice_selector = -1;
314 static int chan_selector = -1;
315 static u64 slice_hash_mask;
316 static u64 chan_hash_mask;
317 
318 static void mk_region(char *name, struct region *rp, u64 base, u64 limit)
319 {
320 	rp->enabled = 1;
321 	rp->base = base;
322 	rp->limit = limit;
323 	edac_dbg(2, "Region:%s [%llx, %llx]\n", name, base, limit);
324 }
325 
326 static void mk_region_mask(char *name, struct region *rp, u64 base, u64 mask)
327 {
328 	if (mask == 0) {
329 		pr_info(FW_BUG "MOT mask cannot be zero\n");
330 		return;
331 	}
332 	if (mask != GENMASK_ULL(PND_MAX_PHYS_BIT, __ffs(mask))) {
333 		pr_info(FW_BUG "MOT mask is invalid\n");
334 		return;
335 	}
336 	if (base & ~mask) {
337 		pr_info(FW_BUG "MOT region base/mask alignment error\n");
338 		return;
339 	}
340 	rp->base = base;
341 	rp->limit = (base | ~mask) & GENMASK_ULL(PND_MAX_PHYS_BIT, 0);
342 	rp->enabled = 1;
343 	edac_dbg(2, "Region:%s [%llx, %llx]\n", name, base, rp->limit);
344 }
345 
346 static bool in_region(struct region *rp, u64 addr)
347 {
348 	if (!rp->enabled)
349 		return false;
350 
351 	return rp->base <= addr && addr <= rp->limit;
352 }
353 
354 static int gen_sym_mask(struct b_cr_slice_channel_hash *p)
355 {
356 	int mask = 0;
357 
358 	if (!p->slice_0_mem_disabled)
359 		mask |= p->sym_slice0_channel_enabled;
360 
361 	if (!p->slice_1_disabled)
362 		mask |= p->sym_slice1_channel_enabled << 2;
363 
364 	if (p->ch_1_disabled || p->enable_pmi_dual_data_mode)
365 		mask &= 0x5;
366 
367 	return mask;
368 }
369 
370 static int gen_asym_mask(struct b_cr_slice_channel_hash *p,
371 			 struct b_cr_asym_mem_region0_mchbar *as0,
372 			 struct b_cr_asym_mem_region1_mchbar *as1,
373 			 struct b_cr_asym_2way_mem_region_mchbar *as2way)
374 {
375 	const int intlv[] = { 0x5, 0xA, 0x3, 0xC };
376 	int mask = 0;
377 
378 	if (as2way->asym_2way_interleave_enable)
379 		mask = intlv[as2way->asym_2way_intlv_mode];
380 	if (as0->slice0_asym_enable)
381 		mask |= (1 << as0->slice0_asym_channel_select);
382 	if (as1->slice1_asym_enable)
383 		mask |= (4 << as1->slice1_asym_channel_select);
384 	if (p->slice_0_mem_disabled)
385 		mask &= 0xc;
386 	if (p->slice_1_disabled)
387 		mask &= 0x3;
388 	if (p->ch_1_disabled || p->enable_pmi_dual_data_mode)
389 		mask &= 0x5;
390 
391 	return mask;
392 }
393 
394 static struct b_cr_tolud_pci tolud;
395 static struct b_cr_touud_lo_pci touud_lo;
396 static struct b_cr_touud_hi_pci touud_hi;
397 static struct b_cr_asym_mem_region0_mchbar asym0;
398 static struct b_cr_asym_mem_region1_mchbar asym1;
399 static struct b_cr_asym_2way_mem_region_mchbar asym_2way;
400 static struct b_cr_mot_out_base_mchbar mot_base;
401 static struct b_cr_mot_out_mask_mchbar mot_mask;
402 static struct b_cr_slice_channel_hash chash;
403 
404 /* Apollo Lake dunit */
405 /*
406  * Validated on board with just two DIMMs in the [0] and [2] positions
407  * in this array. Other port number matches documentation, but caution
408  * advised.
409  */
410 static const int apl_dports[APL_NUM_CHANNELS] = { 0x18, 0x10, 0x11, 0x19 };
411 static struct d_cr_drp0 drp0[APL_NUM_CHANNELS];
412 
413 /* Denverton dunit */
414 static const int dnv_dports[DNV_NUM_CHANNELS] = { 0x10, 0x12 };
415 static struct d_cr_dsch dsch;
416 static struct d_cr_ecc_ctrl ecc_ctrl[DNV_NUM_CHANNELS];
417 static struct d_cr_drp drp[DNV_NUM_CHANNELS];
418 static struct d_cr_dmap dmap[DNV_NUM_CHANNELS];
419 static struct d_cr_dmap1 dmap1[DNV_NUM_CHANNELS];
420 static struct d_cr_dmap2 dmap2[DNV_NUM_CHANNELS];
421 static struct d_cr_dmap3 dmap3[DNV_NUM_CHANNELS];
422 static struct d_cr_dmap4 dmap4[DNV_NUM_CHANNELS];
423 static struct d_cr_dmap5 dmap5[DNV_NUM_CHANNELS];
424 
425 static void apl_mk_region(char *name, struct region *rp, void *asym)
426 {
427 	struct b_cr_asym_mem_region0_mchbar *a = asym;
428 
429 	mk_region(name, rp,
430 			  U64_LSHIFT(a->slice0_asym_base, APL_ASYMSHIFT),
431 			  U64_LSHIFT(a->slice0_asym_limit, APL_ASYMSHIFT) +
432 			  GENMASK_ULL(APL_ASYMSHIFT - 1, 0));
433 }
434 
435 static void dnv_mk_region(char *name, struct region *rp, void *asym)
436 {
437 	struct b_cr_asym_mem_region_denverton *a = asym;
438 
439 	mk_region(name, rp,
440 			  U64_LSHIFT(a->slice_asym_base, DNV_ASYMSHIFT),
441 			  U64_LSHIFT(a->slice_asym_limit, DNV_ASYMSHIFT) +
442 			  GENMASK_ULL(DNV_ASYMSHIFT - 1, 0));
443 }
444 
445 static int apl_get_registers(void)
446 {
447 	int ret = -ENODEV;
448 	int i;
449 
450 	if (RD_REG(&asym_2way, b_cr_asym_2way_mem_region_mchbar))
451 		return -ENODEV;
452 
453 	/*
454 	 * RD_REGP() will fail for unpopulated or non-existent
455 	 * DIMM slots. Return success if we find at least one DIMM.
456 	 */
457 	for (i = 0; i < APL_NUM_CHANNELS; i++)
458 		if (!RD_REGP(&drp0[i], d_cr_drp0, apl_dports[i]))
459 			ret = 0;
460 
461 	return ret;
462 }
463 
464 static int dnv_get_registers(void)
465 {
466 	int i;
467 
468 	if (RD_REG(&dsch, d_cr_dsch))
469 		return -ENODEV;
470 
471 	for (i = 0; i < DNV_NUM_CHANNELS; i++)
472 		if (RD_REGP(&ecc_ctrl[i], d_cr_ecc_ctrl, dnv_dports[i]) ||
473 			RD_REGP(&drp[i], d_cr_drp, dnv_dports[i]) ||
474 			RD_REGP(&dmap[i], d_cr_dmap, dnv_dports[i]) ||
475 			RD_REGP(&dmap1[i], d_cr_dmap1, dnv_dports[i]) ||
476 			RD_REGP(&dmap2[i], d_cr_dmap2, dnv_dports[i]) ||
477 			RD_REGP(&dmap3[i], d_cr_dmap3, dnv_dports[i]) ||
478 			RD_REGP(&dmap4[i], d_cr_dmap4, dnv_dports[i]) ||
479 			RD_REGP(&dmap5[i], d_cr_dmap5, dnv_dports[i]))
480 			return -ENODEV;
481 
482 	return 0;
483 }
484 
485 /*
486  * Read all the h/w config registers once here (they don't
487  * change at run time. Figure out which address ranges have
488  * which interleave characteristics.
489  */
490 static int get_registers(void)
491 {
492 	const int intlv[] = { 10, 11, 12, 12 };
493 
494 	if (RD_REG(&tolud, b_cr_tolud_pci) ||
495 		RD_REG(&touud_lo, b_cr_touud_lo_pci) ||
496 		RD_REG(&touud_hi, b_cr_touud_hi_pci) ||
497 		RD_REG(&asym0, b_cr_asym_mem_region0_mchbar) ||
498 		RD_REG(&asym1, b_cr_asym_mem_region1_mchbar) ||
499 		RD_REG(&mot_base, b_cr_mot_out_base_mchbar) ||
500 		RD_REG(&mot_mask, b_cr_mot_out_mask_mchbar) ||
501 		RD_REG(&chash, b_cr_slice_channel_hash))
502 		return -ENODEV;
503 
504 	if (ops->get_registers())
505 		return -ENODEV;
506 
507 	if (ops->type == DNV) {
508 		/* PMI channel idx (always 0) for asymmetric region */
509 		asym0.slice0_asym_channel_select = 0;
510 		asym1.slice1_asym_channel_select = 0;
511 		/* PMI channel bitmap (always 1) for symmetric region */
512 		chash.sym_slice0_channel_enabled = 0x1;
513 		chash.sym_slice1_channel_enabled = 0x1;
514 	}
515 
516 	if (asym0.slice0_asym_enable)
517 		ops->mk_region("as0", &as0, &asym0);
518 
519 	if (asym1.slice1_asym_enable)
520 		ops->mk_region("as1", &as1, &asym1);
521 
522 	if (asym_2way.asym_2way_interleave_enable) {
523 		mk_region("as2way", &as2,
524 				  U64_LSHIFT(asym_2way.asym_2way_base, APL_ASYMSHIFT),
525 				  U64_LSHIFT(asym_2way.asym_2way_limit, APL_ASYMSHIFT) +
526 				  GENMASK_ULL(APL_ASYMSHIFT - 1, 0));
527 	}
528 
529 	if (mot_base.imr_en) {
530 		mk_region_mask("mot", &mot,
531 					   U64_LSHIFT(mot_base.mot_out_base, MOT_SHIFT),
532 					   U64_LSHIFT(mot_mask.mot_out_mask, MOT_SHIFT));
533 	}
534 
535 	top_lm = U64_LSHIFT(tolud.tolud, 20);
536 	top_hm = U64_LSHIFT(touud_hi.touud, 32) | U64_LSHIFT(touud_lo.touud, 20);
537 
538 	two_slices = !chash.slice_1_disabled &&
539 				 !chash.slice_0_mem_disabled &&
540 				 (chash.sym_slice0_channel_enabled != 0) &&
541 				 (chash.sym_slice1_channel_enabled != 0);
542 	two_channels = !chash.ch_1_disabled &&
543 				 !chash.enable_pmi_dual_data_mode &&
544 				 ((chash.sym_slice0_channel_enabled == 3) ||
545 				 (chash.sym_slice1_channel_enabled == 3));
546 
547 	sym_chan_mask = gen_sym_mask(&chash);
548 	asym_chan_mask = gen_asym_mask(&chash, &asym0, &asym1, &asym_2way);
549 	chan_mask = sym_chan_mask | asym_chan_mask;
550 
551 	if (two_slices && !two_channels) {
552 		if (chash.hvm_mode)
553 			slice_selector = 29;
554 		else
555 			slice_selector = intlv[chash.interleave_mode];
556 	} else if (!two_slices && two_channels) {
557 		if (chash.hvm_mode)
558 			chan_selector = 29;
559 		else
560 			chan_selector = intlv[chash.interleave_mode];
561 	} else if (two_slices && two_channels) {
562 		if (chash.hvm_mode) {
563 			slice_selector = 29;
564 			chan_selector = 30;
565 		} else {
566 			slice_selector = intlv[chash.interleave_mode];
567 			chan_selector = intlv[chash.interleave_mode] + 1;
568 		}
569 	}
570 
571 	if (two_slices) {
572 		if (!chash.hvm_mode)
573 			slice_hash_mask = chash.slice_hash_mask << SLICE_HASH_MASK_LSB;
574 		if (!two_channels)
575 			slice_hash_mask |= BIT_ULL(slice_selector);
576 	}
577 
578 	if (two_channels) {
579 		if (!chash.hvm_mode)
580 			chan_hash_mask = chash.ch_hash_mask << CH_HASH_MASK_LSB;
581 		if (!two_slices)
582 			chan_hash_mask |= BIT_ULL(chan_selector);
583 	}
584 
585 	return 0;
586 }
587 
588 /* Get a contiguous memory address (remove the MMIO gap) */
589 static u64 remove_mmio_gap(u64 sys)
590 {
591 	return (sys < SZ_4G) ? sys : sys - (SZ_4G - top_lm);
592 }
593 
594 /* Squeeze out one address bit, shift upper part down to fill gap */
595 static void remove_addr_bit(u64 *addr, int bitidx)
596 {
597 	u64	mask;
598 
599 	if (bitidx == -1)
600 		return;
601 
602 	mask = BIT_ULL(bitidx) - 1;
603 	*addr = ((*addr >> 1) & ~mask) | (*addr & mask);
604 }
605 
606 /* XOR all the bits from addr specified in mask */
607 static int hash_by_mask(u64 addr, u64 mask)
608 {
609 	u64 result = addr & mask;
610 
611 	result = (result >> 32) ^ result;
612 	result = (result >> 16) ^ result;
613 	result = (result >> 8) ^ result;
614 	result = (result >> 4) ^ result;
615 	result = (result >> 2) ^ result;
616 	result = (result >> 1) ^ result;
617 
618 	return (int)result & 1;
619 }
620 
621 /*
622  * First stage decode. Take the system address and figure out which
623  * second stage will deal with it based on interleave modes.
624  */
625 static int sys2pmi(const u64 addr, u32 *pmiidx, u64 *pmiaddr, char *msg)
626 {
627 	u64 contig_addr, contig_base, contig_offset, contig_base_adj;
628 	int mot_intlv_bit = two_slices ? MOT_CHAN_INTLV_BIT_2SLC_2CH :
629 						MOT_CHAN_INTLV_BIT_1SLC_2CH;
630 	int slice_intlv_bit_rm = SELECTOR_DISABLED;
631 	int chan_intlv_bit_rm = SELECTOR_DISABLED;
632 	/* Determine if address is in the MOT region. */
633 	bool mot_hit = in_region(&mot, addr);
634 	/* Calculate the number of symmetric regions enabled. */
635 	int sym_channels = hweight8(sym_chan_mask);
636 
637 	/*
638 	 * The amount we need to shift the asym base can be determined by the
639 	 * number of enabled symmetric channels.
640 	 * NOTE: This can only work because symmetric memory is not supposed
641 	 * to do a 3-way interleave.
642 	 */
643 	int sym_chan_shift = sym_channels >> 1;
644 
645 	/* Give up if address is out of range, or in MMIO gap */
646 	if (addr >= BIT(PND_MAX_PHYS_BIT) ||
647 	   (addr >= top_lm && addr < SZ_4G) || addr >= top_hm) {
648 		snprintf(msg, PND2_MSG_SIZE, "Error address 0x%llx is not DRAM", addr);
649 		return -EINVAL;
650 	}
651 
652 	/* Get a contiguous memory address (remove the MMIO gap) */
653 	contig_addr = remove_mmio_gap(addr);
654 
655 	if (in_region(&as0, addr)) {
656 		*pmiidx = asym0.slice0_asym_channel_select;
657 
658 		contig_base = remove_mmio_gap(as0.base);
659 		contig_offset = contig_addr - contig_base;
660 		contig_base_adj = (contig_base >> sym_chan_shift) *
661 						  ((chash.sym_slice0_channel_enabled >> (*pmiidx & 1)) & 1);
662 		contig_addr = contig_offset + ((sym_channels > 0) ? contig_base_adj : 0ull);
663 	} else if (in_region(&as1, addr)) {
664 		*pmiidx = 2u + asym1.slice1_asym_channel_select;
665 
666 		contig_base = remove_mmio_gap(as1.base);
667 		contig_offset = contig_addr - contig_base;
668 		contig_base_adj = (contig_base >> sym_chan_shift) *
669 						  ((chash.sym_slice1_channel_enabled >> (*pmiidx & 1)) & 1);
670 		contig_addr = contig_offset + ((sym_channels > 0) ? contig_base_adj : 0ull);
671 	} else if (in_region(&as2, addr) && (asym_2way.asym_2way_intlv_mode == 0x3ul)) {
672 		bool channel1;
673 
674 		mot_intlv_bit = MOT_CHAN_INTLV_BIT_1SLC_2CH;
675 		*pmiidx = (asym_2way.asym_2way_intlv_mode & 1) << 1;
676 		channel1 = mot_hit ? ((bool)((addr >> mot_intlv_bit) & 1)) :
677 			hash_by_mask(contig_addr, chan_hash_mask);
678 		*pmiidx |= (u32)channel1;
679 
680 		contig_base = remove_mmio_gap(as2.base);
681 		chan_intlv_bit_rm = mot_hit ? mot_intlv_bit : chan_selector;
682 		contig_offset = contig_addr - contig_base;
683 		remove_addr_bit(&contig_offset, chan_intlv_bit_rm);
684 		contig_addr = (contig_base >> sym_chan_shift) + contig_offset;
685 	} else {
686 		/* Otherwise we're in normal, boring symmetric mode. */
687 		*pmiidx = 0u;
688 
689 		if (two_slices) {
690 			bool slice1;
691 
692 			if (mot_hit) {
693 				slice_intlv_bit_rm = MOT_SLC_INTLV_BIT;
694 				slice1 = (addr >> MOT_SLC_INTLV_BIT) & 1;
695 			} else {
696 				slice_intlv_bit_rm = slice_selector;
697 				slice1 = hash_by_mask(addr, slice_hash_mask);
698 			}
699 
700 			*pmiidx = (u32)slice1 << 1;
701 		}
702 
703 		if (two_channels) {
704 			bool channel1;
705 
706 			mot_intlv_bit = two_slices ? MOT_CHAN_INTLV_BIT_2SLC_2CH :
707 							MOT_CHAN_INTLV_BIT_1SLC_2CH;
708 
709 			if (mot_hit) {
710 				chan_intlv_bit_rm = mot_intlv_bit;
711 				channel1 = (addr >> mot_intlv_bit) & 1;
712 			} else {
713 				chan_intlv_bit_rm = chan_selector;
714 				channel1 = hash_by_mask(contig_addr, chan_hash_mask);
715 			}
716 
717 			*pmiidx |= (u32)channel1;
718 		}
719 	}
720 
721 	/* Remove the chan_selector bit first */
722 	remove_addr_bit(&contig_addr, chan_intlv_bit_rm);
723 	/* Remove the slice bit (we remove it second because it must be lower */
724 	remove_addr_bit(&contig_addr, slice_intlv_bit_rm);
725 	*pmiaddr = contig_addr;
726 
727 	return 0;
728 }
729 
730 /* Translate PMI address to memory (rank, row, bank, column) */
731 #define C(n) (BIT(4) | (n))	/* column */
732 #define B(n) (BIT(5) | (n))	/* bank */
733 #define R(n) (BIT(6) | (n))	/* row */
734 #define RS   (BIT(7))		/* rank */
735 
736 /* addrdec values */
737 #define AMAP_1KB	0
738 #define AMAP_2KB	1
739 #define AMAP_4KB	2
740 #define AMAP_RSVD	3
741 
742 /* dden values */
743 #define DEN_4Gb		0
744 #define DEN_8Gb		2
745 
746 /* dwid values */
747 #define X8		0
748 #define X16		1
749 
750 static struct dimm_geometry {
751 	u8	addrdec;
752 	u8	dden;
753 	u8	dwid;
754 	u8	rowbits, colbits;
755 	u16	bits[PMI_ADDRESS_WIDTH];
756 } dimms[] = {
757 	{
758 		.addrdec = AMAP_1KB, .dden = DEN_4Gb, .dwid = X16,
759 		.rowbits = 15, .colbits = 10,
760 		.bits = {
761 			C(2),  C(3),  C(4),  C(5),  C(6),  B(0),  B(1),  B(2),  R(0),
762 			R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),  R(9),
763 			R(10), C(7),  C(8),  C(9),  R(11), RS,    R(12), R(13), R(14),
764 			0,     0,     0,     0
765 		}
766 	},
767 	{
768 		.addrdec = AMAP_1KB, .dden = DEN_4Gb, .dwid = X8,
769 		.rowbits = 16, .colbits = 10,
770 		.bits = {
771 			C(2),  C(3),  C(4),  C(5),  C(6),  B(0),  B(1),  B(2),  R(0),
772 			R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),  R(9),
773 			R(10), C(7),  C(8),  C(9),  R(11), RS,    R(12), R(13), R(14),
774 			R(15), 0,     0,     0
775 		}
776 	},
777 	{
778 		.addrdec = AMAP_1KB, .dden = DEN_8Gb, .dwid = X16,
779 		.rowbits = 16, .colbits = 10,
780 		.bits = {
781 			C(2),  C(3),  C(4),  C(5),  C(6),  B(0),  B(1),  B(2),  R(0),
782 			R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),  R(9),
783 			R(10), C(7),  C(8),  C(9),  R(11), RS,    R(12), R(13), R(14),
784 			R(15), 0,     0,     0
785 		}
786 	},
787 	{
788 		.addrdec = AMAP_1KB, .dden = DEN_8Gb, .dwid = X8,
789 		.rowbits = 16, .colbits = 11,
790 		.bits = {
791 			C(2),  C(3),  C(4),  C(5),  C(6),  B(0),  B(1),  B(2),  R(0),
792 			R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),  R(9),
793 			R(10), C(7),  C(8),  C(9),  R(11), RS,    C(11), R(12), R(13),
794 			R(14), R(15), 0,     0
795 		}
796 	},
797 	{
798 		.addrdec = AMAP_2KB, .dden = DEN_4Gb, .dwid = X16,
799 		.rowbits = 15, .colbits = 10,
800 		.bits = {
801 			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  B(0),  B(1),  B(2),
802 			R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),
803 			R(9),  R(10), C(8),  C(9),  R(11), RS,    R(12), R(13), R(14),
804 			0,     0,     0,     0
805 		}
806 	},
807 	{
808 		.addrdec = AMAP_2KB, .dden = DEN_4Gb, .dwid = X8,
809 		.rowbits = 16, .colbits = 10,
810 		.bits = {
811 			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  B(0),  B(1),  B(2),
812 			R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),
813 			R(9),  R(10), C(8),  C(9),  R(11), RS,    R(12), R(13), R(14),
814 			R(15), 0,     0,     0
815 		}
816 	},
817 	{
818 		.addrdec = AMAP_2KB, .dden = DEN_8Gb, .dwid = X16,
819 		.rowbits = 16, .colbits = 10,
820 		.bits = {
821 			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  B(0),  B(1),  B(2),
822 			R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),
823 			R(9),  R(10), C(8),  C(9),  R(11), RS,    R(12), R(13), R(14),
824 			R(15), 0,     0,     0
825 		}
826 	},
827 	{
828 		.addrdec = AMAP_2KB, .dden = DEN_8Gb, .dwid = X8,
829 		.rowbits = 16, .colbits = 11,
830 		.bits = {
831 			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  B(0),  B(1),  B(2),
832 			R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),
833 			R(9),  R(10), C(8),  C(9),  R(11), RS,    C(11), R(12), R(13),
834 			R(14), R(15), 0,     0
835 		}
836 	},
837 	{
838 		.addrdec = AMAP_4KB, .dden = DEN_4Gb, .dwid = X16,
839 		.rowbits = 15, .colbits = 10,
840 		.bits = {
841 			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  C(8),  B(0),  B(1),
842 			B(2),  R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),
843 			R(8),  R(9),  R(10), C(9),  R(11), RS,    R(12), R(13), R(14),
844 			0,     0,     0,     0
845 		}
846 	},
847 	{
848 		.addrdec = AMAP_4KB, .dden = DEN_4Gb, .dwid = X8,
849 		.rowbits = 16, .colbits = 10,
850 		.bits = {
851 			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  C(8),  B(0),  B(1),
852 			B(2),  R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),
853 			R(8),  R(9),  R(10), C(9),  R(11), RS,    R(12), R(13), R(14),
854 			R(15), 0,     0,     0
855 		}
856 	},
857 	{
858 		.addrdec = AMAP_4KB, .dden = DEN_8Gb, .dwid = X16,
859 		.rowbits = 16, .colbits = 10,
860 		.bits = {
861 			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  C(8),  B(0),  B(1),
862 			B(2),  R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),
863 			R(8),  R(9),  R(10), C(9),  R(11), RS,    R(12), R(13), R(14),
864 			R(15), 0,     0,     0
865 		}
866 	},
867 	{
868 		.addrdec = AMAP_4KB, .dden = DEN_8Gb, .dwid = X8,
869 		.rowbits = 16, .colbits = 11,
870 		.bits = {
871 			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  C(8),  B(0),  B(1),
872 			B(2),  R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),
873 			R(8),  R(9),  R(10), C(9),  R(11), RS,    C(11), R(12), R(13),
874 			R(14), R(15), 0,     0
875 		}
876 	}
877 };
878 
879 static int bank_hash(u64 pmiaddr, int idx, int shft)
880 {
881 	int bhash = 0;
882 
883 	switch (idx) {
884 	case 0:
885 		bhash ^= ((pmiaddr >> (12 + shft)) ^ (pmiaddr >> (9 + shft))) & 1;
886 		break;
887 	case 1:
888 		bhash ^= (((pmiaddr >> (10 + shft)) ^ (pmiaddr >> (8 + shft))) & 1) << 1;
889 		bhash ^= ((pmiaddr >> 22) & 1) << 1;
890 		break;
891 	case 2:
892 		bhash ^= (((pmiaddr >> (13 + shft)) ^ (pmiaddr >> (11 + shft))) & 1) << 2;
893 		break;
894 	}
895 
896 	return bhash;
897 }
898 
899 static int rank_hash(u64 pmiaddr)
900 {
901 	return ((pmiaddr >> 16) ^ (pmiaddr >> 10)) & 1;
902 }
903 
904 /* Second stage decode. Compute rank, bank, row & column. */
905 static int apl_pmi2mem(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx,
906 		       struct dram_addr *daddr, char *msg)
907 {
908 	struct d_cr_drp0 *cr_drp0 = &drp0[pmiidx];
909 	struct pnd2_pvt *pvt = mci->pvt_info;
910 	int g = pvt->dimm_geom[pmiidx];
911 	struct dimm_geometry *d = &dimms[g];
912 	int column = 0, bank = 0, row = 0, rank = 0;
913 	int i, idx, type, skiprs = 0;
914 
915 	for (i = 0; i < PMI_ADDRESS_WIDTH; i++) {
916 		int	bit = (pmiaddr >> i) & 1;
917 
918 		if (i + skiprs >= PMI_ADDRESS_WIDTH) {
919 			snprintf(msg, PND2_MSG_SIZE, "Bad dimm_geometry[] table\n");
920 			return -EINVAL;
921 		}
922 
923 		type = d->bits[i + skiprs] & ~0xf;
924 		idx = d->bits[i + skiprs] & 0xf;
925 
926 		/*
927 		 * On single rank DIMMs ignore the rank select bit
928 		 * and shift remainder of "bits[]" down one place.
929 		 */
930 		if (type == RS && (cr_drp0->rken0 + cr_drp0->rken1) == 1) {
931 			skiprs = 1;
932 			type = d->bits[i + skiprs] & ~0xf;
933 			idx = d->bits[i + skiprs] & 0xf;
934 		}
935 
936 		switch (type) {
937 		case C(0):
938 			column |= (bit << idx);
939 			break;
940 		case B(0):
941 			bank |= (bit << idx);
942 			if (cr_drp0->bahen)
943 				bank ^= bank_hash(pmiaddr, idx, d->addrdec);
944 			break;
945 		case R(0):
946 			row |= (bit << idx);
947 			break;
948 		case RS:
949 			rank = bit;
950 			if (cr_drp0->rsien)
951 				rank ^= rank_hash(pmiaddr);
952 			break;
953 		default:
954 			if (bit) {
955 				snprintf(msg, PND2_MSG_SIZE, "Bad translation\n");
956 				return -EINVAL;
957 			}
958 			goto done;
959 		}
960 	}
961 
962 done:
963 	daddr->col = column;
964 	daddr->bank = bank;
965 	daddr->row = row;
966 	daddr->rank = rank;
967 	daddr->dimm = 0;
968 
969 	return 0;
970 }
971 
972 /* Pluck bit "in" from pmiaddr and return value shifted to bit "out" */
973 #define dnv_get_bit(pmi, in, out) ((int)(((pmi) >> (in)) & 1u) << (out))
974 
975 static int dnv_pmi2mem(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx,
976 					   struct dram_addr *daddr, char *msg)
977 {
978 	/* Rank 0 or 1 */
979 	daddr->rank = dnv_get_bit(pmiaddr, dmap[pmiidx].rs0 + 13, 0);
980 	/* Rank 2 or 3 */
981 	daddr->rank |= dnv_get_bit(pmiaddr, dmap[pmiidx].rs1 + 13, 1);
982 
983 	/*
984 	 * Normally ranks 0,1 are DIMM0, and 2,3 are DIMM1, but we
985 	 * flip them if DIMM1 is larger than DIMM0.
986 	 */
987 	daddr->dimm = (daddr->rank >= 2) ^ drp[pmiidx].dimmflip;
988 
989 	daddr->bank = dnv_get_bit(pmiaddr, dmap[pmiidx].ba0 + 6, 0);
990 	daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].ba1 + 6, 1);
991 	daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].bg0 + 6, 2);
992 	if (dsch.ddr4en)
993 		daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].bg1 + 6, 3);
994 	if (dmap1[pmiidx].bxor) {
995 		if (dsch.ddr4en) {
996 			daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 0);
997 			daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row7 + 6, 1);
998 			if (dsch.chan_width == 0)
999 				/* 64/72 bit dram channel width */
1000 				daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 2);
1001 			else
1002 				/* 32/40 bit dram channel width */
1003 				daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 2);
1004 			daddr->bank ^= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 3);
1005 		} else {
1006 			daddr->bank ^= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 0);
1007 			daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 1);
1008 			if (dsch.chan_width == 0)
1009 				daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 2);
1010 			else
1011 				daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 2);
1012 		}
1013 	}
1014 
1015 	daddr->row = dnv_get_bit(pmiaddr, dmap2[pmiidx].row0 + 6, 0);
1016 	daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row1 + 6, 1);
1017 	daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 2);
1018 	daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row3 + 6, 3);
1019 	daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row4 + 6, 4);
1020 	daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row5 + 6, 5);
1021 	daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 6);
1022 	daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row7 + 6, 7);
1023 	daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row8 + 6, 8);
1024 	daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row9 + 6, 9);
1025 	daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row10 + 6, 10);
1026 	daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row11 + 6, 11);
1027 	daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row12 + 6, 12);
1028 	daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row13 + 6, 13);
1029 	if (dmap4[pmiidx].row14 != 31)
1030 		daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row14 + 6, 14);
1031 	if (dmap4[pmiidx].row15 != 31)
1032 		daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row15 + 6, 15);
1033 	if (dmap4[pmiidx].row16 != 31)
1034 		daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row16 + 6, 16);
1035 	if (dmap4[pmiidx].row17 != 31)
1036 		daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row17 + 6, 17);
1037 
1038 	daddr->col = dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 3);
1039 	daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 4);
1040 	daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca5 + 6, 5);
1041 	daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca6 + 6, 6);
1042 	daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca7 + 6, 7);
1043 	daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca8 + 6, 8);
1044 	daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca9 + 6, 9);
1045 	if (!dsch.ddr4en && dmap1[pmiidx].ca11 != 0x3f)
1046 		daddr->col |= dnv_get_bit(pmiaddr, dmap1[pmiidx].ca11 + 13, 11);
1047 
1048 	return 0;
1049 }
1050 
1051 static int check_channel(int ch)
1052 {
1053 	if (drp0[ch].dramtype != 0) {
1054 		pnd2_printk(KERN_INFO, "Unsupported DIMM in channel %d\n", ch);
1055 		return 1;
1056 	} else if (drp0[ch].eccen == 0) {
1057 		pnd2_printk(KERN_INFO, "ECC disabled on channel %d\n", ch);
1058 		return 1;
1059 	}
1060 	return 0;
1061 }
1062 
1063 static int apl_check_ecc_active(void)
1064 {
1065 	int	i, ret = 0;
1066 
1067 	/* Check dramtype and ECC mode for each present DIMM */
1068 	for_each_set_bit(i, &chan_mask, APL_NUM_CHANNELS)
1069 		ret += check_channel(i);
1070 
1071 	return ret ? -EINVAL : 0;
1072 }
1073 
1074 #define DIMMS_PRESENT(d) ((d)->rken0 + (d)->rken1 + (d)->rken2 + (d)->rken3)
1075 
1076 static int check_unit(int ch)
1077 {
1078 	struct d_cr_drp *d = &drp[ch];
1079 
1080 	if (DIMMS_PRESENT(d) && !ecc_ctrl[ch].eccen) {
1081 		pnd2_printk(KERN_INFO, "ECC disabled on channel %d\n", ch);
1082 		return 1;
1083 	}
1084 	return 0;
1085 }
1086 
1087 static int dnv_check_ecc_active(void)
1088 {
1089 	int	i, ret = 0;
1090 
1091 	for (i = 0; i < DNV_NUM_CHANNELS; i++)
1092 		ret += check_unit(i);
1093 	return ret ? -EINVAL : 0;
1094 }
1095 
1096 static int get_memory_error_data(struct mem_ctl_info *mci, u64 addr,
1097 								 struct dram_addr *daddr, char *msg)
1098 {
1099 	u64	pmiaddr;
1100 	u32	pmiidx;
1101 	int	ret;
1102 
1103 	ret = sys2pmi(addr, &pmiidx, &pmiaddr, msg);
1104 	if (ret)
1105 		return ret;
1106 
1107 	pmiaddr >>= ops->pmiaddr_shift;
1108 	/* pmi channel idx to dimm channel idx */
1109 	pmiidx >>= ops->pmiidx_shift;
1110 	daddr->chan = pmiidx;
1111 
1112 	ret = ops->pmi2mem(mci, pmiaddr, pmiidx, daddr, msg);
1113 	if (ret)
1114 		return ret;
1115 
1116 	edac_dbg(0, "SysAddr=%llx PmiAddr=%llx Channel=%d DIMM=%d Rank=%d Bank=%d Row=%d Column=%d\n",
1117 			 addr, pmiaddr, daddr->chan, daddr->dimm, daddr->rank, daddr->bank, daddr->row, daddr->col);
1118 
1119 	return 0;
1120 }
1121 
1122 static void pnd2_mce_output_error(struct mem_ctl_info *mci, const struct mce *m,
1123 				  struct dram_addr *daddr)
1124 {
1125 	enum hw_event_mc_err_type tp_event;
1126 	char *optype, msg[PND2_MSG_SIZE];
1127 	bool ripv = m->mcgstatus & MCG_STATUS_RIPV;
1128 	bool overflow = m->status & MCI_STATUS_OVER;
1129 	bool uc_err = m->status & MCI_STATUS_UC;
1130 	bool recov = m->status & MCI_STATUS_S;
1131 	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
1132 	u32 mscod = GET_BITFIELD(m->status, 16, 31);
1133 	u32 errcode = GET_BITFIELD(m->status, 0, 15);
1134 	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
1135 	int rc;
1136 
1137 	tp_event = uc_err ? (ripv ? HW_EVENT_ERR_UNCORRECTED : HW_EVENT_ERR_FATAL) :
1138 						 HW_EVENT_ERR_CORRECTED;
1139 
1140 	/*
1141 	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
1142 	 * memory errors should fit in this mask:
1143 	 *	000f 0000 1mmm cccc (binary)
1144 	 * where:
1145 	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
1146 	 *	    won't be shown
1147 	 *	mmm = error type
1148 	 *	cccc = channel
1149 	 * If the mask doesn't match, report an error to the parsing logic
1150 	 */
1151 	if (!((errcode & 0xef80) == 0x80)) {
1152 		optype = "Can't parse: it is not a mem";
1153 	} else {
1154 		switch (optypenum) {
1155 		case 0:
1156 			optype = "generic undef request error";
1157 			break;
1158 		case 1:
1159 			optype = "memory read error";
1160 			break;
1161 		case 2:
1162 			optype = "memory write error";
1163 			break;
1164 		case 3:
1165 			optype = "addr/cmd error";
1166 			break;
1167 		case 4:
1168 			optype = "memory scrubbing error";
1169 			break;
1170 		default:
1171 			optype = "reserved";
1172 			break;
1173 		}
1174 	}
1175 
1176 	/* Only decode errors with an valid address (ADDRV) */
1177 	if (!(m->status & MCI_STATUS_ADDRV))
1178 		return;
1179 
1180 	rc = get_memory_error_data(mci, m->addr, daddr, msg);
1181 	if (rc)
1182 		goto address_error;
1183 
1184 	snprintf(msg, sizeof(msg),
1185 		 "%s%s err_code:%04x:%04x channel:%d DIMM:%d rank:%d row:%d bank:%d col:%d",
1186 		 overflow ? " OVERFLOW" : "", (uc_err && recov) ? " recoverable" : "", mscod,
1187 		 errcode, daddr->chan, daddr->dimm, daddr->rank, daddr->row, daddr->bank, daddr->col);
1188 
1189 	edac_dbg(0, "%s\n", msg);
1190 
1191 	/* Call the helper to output message */
1192 	edac_mc_handle_error(tp_event, mci, core_err_cnt, m->addr >> PAGE_SHIFT,
1193 						 m->addr & ~PAGE_MASK, 0, daddr->chan, daddr->dimm, -1, optype, msg);
1194 
1195 	return;
1196 
1197 address_error:
1198 	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0, -1, -1, -1, msg, "");
1199 }
1200 
1201 static void apl_get_dimm_config(struct mem_ctl_info *mci)
1202 {
1203 	struct pnd2_pvt	*pvt = mci->pvt_info;
1204 	struct dimm_info *dimm;
1205 	struct d_cr_drp0 *d;
1206 	u64	capacity;
1207 	int	i, g;
1208 
1209 	for_each_set_bit(i, &chan_mask, APL_NUM_CHANNELS) {
1210 		dimm = edac_get_dimm(mci, i, 0, 0);
1211 		if (!dimm) {
1212 			edac_dbg(0, "No allocated DIMM for channel %d\n", i);
1213 			continue;
1214 		}
1215 
1216 		d = &drp0[i];
1217 		for (g = 0; g < ARRAY_SIZE(dimms); g++)
1218 			if (dimms[g].addrdec == d->addrdec &&
1219 			    dimms[g].dden == d->dden &&
1220 			    dimms[g].dwid == d->dwid)
1221 				break;
1222 
1223 		if (g == ARRAY_SIZE(dimms)) {
1224 			edac_dbg(0, "Channel %d: unrecognized DIMM\n", i);
1225 			continue;
1226 		}
1227 
1228 		pvt->dimm_geom[i] = g;
1229 		capacity = (d->rken0 + d->rken1) * 8 * BIT(dimms[g].rowbits + dimms[g].colbits);
1230 		edac_dbg(0, "Channel %d: %lld MByte DIMM\n", i, capacity >> (20 - 3));
1231 		dimm->nr_pages = MiB_TO_PAGES(capacity >> (20 - 3));
1232 		dimm->grain = 32;
1233 		dimm->dtype = (d->dwid == 0) ? DEV_X8 : DEV_X16;
1234 		dimm->mtype = MEM_DDR3;
1235 		dimm->edac_mode = EDAC_SECDED;
1236 		snprintf(dimm->label, sizeof(dimm->label), "Slice#%d_Chan#%d", i / 2, i % 2);
1237 	}
1238 }
1239 
1240 static const int dnv_dtypes[] = {
1241 	DEV_X8, DEV_X4, DEV_X16, DEV_UNKNOWN
1242 };
1243 
1244 static void dnv_get_dimm_config(struct mem_ctl_info *mci)
1245 {
1246 	int	i, j, ranks_of_dimm[DNV_MAX_DIMMS], banks, rowbits, colbits, memtype;
1247 	struct dimm_info *dimm;
1248 	struct d_cr_drp *d;
1249 	u64	capacity;
1250 
1251 	if (dsch.ddr4en) {
1252 		memtype = MEM_DDR4;
1253 		banks = 16;
1254 		colbits = 10;
1255 	} else {
1256 		memtype = MEM_DDR3;
1257 		banks = 8;
1258 	}
1259 
1260 	for (i = 0; i < DNV_NUM_CHANNELS; i++) {
1261 		if (dmap4[i].row14 == 31)
1262 			rowbits = 14;
1263 		else if (dmap4[i].row15 == 31)
1264 			rowbits = 15;
1265 		else if (dmap4[i].row16 == 31)
1266 			rowbits = 16;
1267 		else if (dmap4[i].row17 == 31)
1268 			rowbits = 17;
1269 		else
1270 			rowbits = 18;
1271 
1272 		if (memtype == MEM_DDR3) {
1273 			if (dmap1[i].ca11 != 0x3f)
1274 				colbits = 12;
1275 			else
1276 				colbits = 10;
1277 		}
1278 
1279 		d = &drp[i];
1280 		/* DIMM0 is present if rank0 and/or rank1 is enabled */
1281 		ranks_of_dimm[0] = d->rken0 + d->rken1;
1282 		/* DIMM1 is present if rank2 and/or rank3 is enabled */
1283 		ranks_of_dimm[1] = d->rken2 + d->rken3;
1284 
1285 		for (j = 0; j < DNV_MAX_DIMMS; j++) {
1286 			if (!ranks_of_dimm[j])
1287 				continue;
1288 
1289 			dimm = edac_get_dimm(mci, i, j, 0);
1290 			if (!dimm) {
1291 				edac_dbg(0, "No allocated DIMM for channel %d DIMM %d\n", i, j);
1292 				continue;
1293 			}
1294 
1295 			capacity = ranks_of_dimm[j] * banks * BIT(rowbits + colbits);
1296 			edac_dbg(0, "Channel %d DIMM %d: %lld MByte DIMM\n", i, j, capacity >> (20 - 3));
1297 			dimm->nr_pages = MiB_TO_PAGES(capacity >> (20 - 3));
1298 			dimm->grain = 32;
1299 			dimm->dtype = dnv_dtypes[j ? d->dimmdwid0 : d->dimmdwid1];
1300 			dimm->mtype = memtype;
1301 			dimm->edac_mode = EDAC_SECDED;
1302 			snprintf(dimm->label, sizeof(dimm->label), "Chan#%d_DIMM#%d", i, j);
1303 		}
1304 	}
1305 }
1306 
1307 static int pnd2_register_mci(struct mem_ctl_info **ppmci)
1308 {
1309 	struct edac_mc_layer layers[2];
1310 	struct mem_ctl_info *mci;
1311 	struct pnd2_pvt *pvt;
1312 	int rc;
1313 
1314 	rc = ops->check_ecc();
1315 	if (rc < 0)
1316 		return rc;
1317 
1318 	/* Allocate a new MC control structure */
1319 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
1320 	layers[0].size = ops->channels;
1321 	layers[0].is_virt_csrow = false;
1322 	layers[1].type = EDAC_MC_LAYER_SLOT;
1323 	layers[1].size = ops->dimms_per_channel;
1324 	layers[1].is_virt_csrow = true;
1325 	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
1326 	if (!mci)
1327 		return -ENOMEM;
1328 
1329 	pvt = mci->pvt_info;
1330 	memset(pvt, 0, sizeof(*pvt));
1331 
1332 	mci->mod_name = EDAC_MOD_STR;
1333 	mci->dev_name = ops->name;
1334 	mci->ctl_name = "Pondicherry2";
1335 
1336 	/* Get dimm basic config and the memory layout */
1337 	ops->get_dimm_config(mci);
1338 
1339 	if (edac_mc_add_mc(mci)) {
1340 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
1341 		edac_mc_free(mci);
1342 		return -EINVAL;
1343 	}
1344 
1345 	*ppmci = mci;
1346 
1347 	return 0;
1348 }
1349 
1350 static void pnd2_unregister_mci(struct mem_ctl_info *mci)
1351 {
1352 	if (unlikely(!mci || !mci->pvt_info)) {
1353 		pnd2_printk(KERN_ERR, "Couldn't find mci handler\n");
1354 		return;
1355 	}
1356 
1357 	/* Remove MC sysfs nodes */
1358 	edac_mc_del_mc(NULL);
1359 	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
1360 	edac_mc_free(mci);
1361 }
1362 
1363 /*
1364  * Callback function registered with core kernel mce code.
1365  * Called once for each logged error.
1366  */
1367 static int pnd2_mce_check_error(struct notifier_block *nb, unsigned long val, void *data)
1368 {
1369 	struct mce *mce = (struct mce *)data;
1370 	struct mem_ctl_info *mci;
1371 	struct dram_addr daddr;
1372 	char *type;
1373 
1374 	mci = pnd2_mci;
1375 	if (!mci || (mce->kflags & MCE_HANDLED_CEC))
1376 		return NOTIFY_DONE;
1377 
1378 	/*
1379 	 * Just let mcelog handle it if the error is
1380 	 * outside the memory controller. A memory error
1381 	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
1382 	 * bit 12 has an special meaning.
1383 	 */
1384 	if ((mce->status & 0xefff) >> 7 != 1)
1385 		return NOTIFY_DONE;
1386 
1387 	if (mce->mcgstatus & MCG_STATUS_MCIP)
1388 		type = "Exception";
1389 	else
1390 		type = "Event";
1391 
1392 	pnd2_mc_printk(mci, KERN_INFO, "HANDLING MCE MEMORY ERROR\n");
1393 	pnd2_mc_printk(mci, KERN_INFO, "CPU %u: Machine Check %s: %llx Bank %u: %llx\n",
1394 				   mce->extcpu, type, mce->mcgstatus, mce->bank, mce->status);
1395 	pnd2_mc_printk(mci, KERN_INFO, "TSC %llx ", mce->tsc);
1396 	pnd2_mc_printk(mci, KERN_INFO, "ADDR %llx ", mce->addr);
1397 	pnd2_mc_printk(mci, KERN_INFO, "MISC %llx ", mce->misc);
1398 	pnd2_mc_printk(mci, KERN_INFO, "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
1399 				   mce->cpuvendor, mce->cpuid, mce->time, mce->socketid, mce->apicid);
1400 
1401 	pnd2_mce_output_error(mci, mce, &daddr);
1402 
1403 	/* Advice mcelog that the error were handled */
1404 	mce->kflags |= MCE_HANDLED_EDAC;
1405 	return NOTIFY_OK;
1406 }
1407 
1408 static struct notifier_block pnd2_mce_dec = {
1409 	.notifier_call	= pnd2_mce_check_error,
1410 	.priority	= MCE_PRIO_EDAC,
1411 };
1412 
1413 #ifdef CONFIG_EDAC_DEBUG
1414 /*
1415  * Write an address to this file to exercise the address decode
1416  * logic in this driver.
1417  */
1418 static u64 pnd2_fake_addr;
1419 #define PND2_BLOB_SIZE 1024
1420 static char pnd2_result[PND2_BLOB_SIZE];
1421 static struct dentry *pnd2_test;
1422 static struct debugfs_blob_wrapper pnd2_blob = {
1423 	.data = pnd2_result,
1424 	.size = 0
1425 };
1426 
1427 static int debugfs_u64_set(void *data, u64 val)
1428 {
1429 	struct dram_addr daddr;
1430 	struct mce m;
1431 
1432 	*(u64 *)data = val;
1433 	m.mcgstatus = 0;
1434 	/* ADDRV + MemRd + Unknown channel */
1435 	m.status = MCI_STATUS_ADDRV + 0x9f;
1436 	m.addr = val;
1437 	pnd2_mce_output_error(pnd2_mci, &m, &daddr);
1438 	snprintf(pnd2_blob.data, PND2_BLOB_SIZE,
1439 			 "SysAddr=%llx Channel=%d DIMM=%d Rank=%d Bank=%d Row=%d Column=%d\n",
1440 			 m.addr, daddr.chan, daddr.dimm, daddr.rank, daddr.bank, daddr.row, daddr.col);
1441 	pnd2_blob.size = strlen(pnd2_blob.data);
1442 
1443 	return 0;
1444 }
1445 DEFINE_DEBUGFS_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
1446 
1447 static void setup_pnd2_debug(void)
1448 {
1449 	pnd2_test = edac_debugfs_create_dir("pnd2_test");
1450 	edac_debugfs_create_file("pnd2_debug_addr", 0200, pnd2_test,
1451 							 &pnd2_fake_addr, &fops_u64_wo);
1452 	debugfs_create_blob("pnd2_debug_results", 0400, pnd2_test, &pnd2_blob);
1453 }
1454 
1455 static void teardown_pnd2_debug(void)
1456 {
1457 	debugfs_remove_recursive(pnd2_test);
1458 }
1459 #else
1460 static void setup_pnd2_debug(void)	{}
1461 static void teardown_pnd2_debug(void)	{}
1462 #endif /* CONFIG_EDAC_DEBUG */
1463 
1464 
1465 static int pnd2_probe(void)
1466 {
1467 	int rc;
1468 
1469 	edac_dbg(2, "\n");
1470 	rc = get_registers();
1471 	if (rc)
1472 		return rc;
1473 
1474 	return pnd2_register_mci(&pnd2_mci);
1475 }
1476 
1477 static void pnd2_remove(void)
1478 {
1479 	edac_dbg(0, "\n");
1480 	pnd2_unregister_mci(pnd2_mci);
1481 }
1482 
1483 static struct dunit_ops apl_ops = {
1484 		.name			= "pnd2/apl",
1485 		.type			= APL,
1486 		.pmiaddr_shift		= LOG2_PMI_ADDR_GRANULARITY,
1487 		.pmiidx_shift		= 0,
1488 		.channels		= APL_NUM_CHANNELS,
1489 		.dimms_per_channel	= 1,
1490 		.rd_reg			= apl_rd_reg,
1491 		.get_registers		= apl_get_registers,
1492 		.check_ecc		= apl_check_ecc_active,
1493 		.mk_region		= apl_mk_region,
1494 		.get_dimm_config	= apl_get_dimm_config,
1495 		.pmi2mem		= apl_pmi2mem,
1496 };
1497 
1498 static struct dunit_ops dnv_ops = {
1499 		.name			= "pnd2/dnv",
1500 		.type			= DNV,
1501 		.pmiaddr_shift		= 0,
1502 		.pmiidx_shift		= 1,
1503 		.channels		= DNV_NUM_CHANNELS,
1504 		.dimms_per_channel	= 2,
1505 		.rd_reg			= dnv_rd_reg,
1506 		.get_registers		= dnv_get_registers,
1507 		.check_ecc		= dnv_check_ecc_active,
1508 		.mk_region		= dnv_mk_region,
1509 		.get_dimm_config	= dnv_get_dimm_config,
1510 		.pmi2mem		= dnv_pmi2mem,
1511 };
1512 
1513 static const struct x86_cpu_id pnd2_cpuids[] = {
1514 	X86_MATCH_VFM(INTEL_ATOM_GOLDMONT,	&apl_ops),
1515 	X86_MATCH_VFM(INTEL_ATOM_GOLDMONT_D,	&dnv_ops),
1516 	{ }
1517 };
1518 MODULE_DEVICE_TABLE(x86cpu, pnd2_cpuids);
1519 
1520 static int __init pnd2_init(void)
1521 {
1522 	const struct x86_cpu_id *id;
1523 	const char *owner;
1524 	int rc;
1525 
1526 	edac_dbg(2, "\n");
1527 
1528 	if (ghes_get_devices())
1529 		return -EBUSY;
1530 
1531 	owner = edac_get_owner();
1532 	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
1533 		return -EBUSY;
1534 
1535 	if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR))
1536 		return -ENODEV;
1537 
1538 	id = x86_match_cpu(pnd2_cpuids);
1539 	if (!id)
1540 		return -ENODEV;
1541 
1542 	ops = (struct dunit_ops *)id->driver_data;
1543 
1544 	if (ops->type == APL) {
1545 		p2sb_bus = pci_find_bus(0, 0);
1546 		if (!p2sb_bus)
1547 			return -ENODEV;
1548 	}
1549 
1550 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
1551 	opstate_init();
1552 
1553 	rc = pnd2_probe();
1554 	if (rc < 0) {
1555 		pnd2_printk(KERN_ERR, "Failed to register device with error %d.\n", rc);
1556 		return rc;
1557 	}
1558 
1559 	if (!pnd2_mci)
1560 		return -ENODEV;
1561 
1562 	mce_register_decode_chain(&pnd2_mce_dec);
1563 	setup_pnd2_debug();
1564 
1565 	return 0;
1566 }
1567 
1568 static void __exit pnd2_exit(void)
1569 {
1570 	edac_dbg(2, "\n");
1571 	teardown_pnd2_debug();
1572 	mce_unregister_decode_chain(&pnd2_mce_dec);
1573 	pnd2_remove();
1574 }
1575 
1576 module_init(pnd2_init);
1577 module_exit(pnd2_exit);
1578 
1579 module_param(edac_op_state, int, 0444);
1580 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1581 
1582 MODULE_LICENSE("GPL v2");
1583 MODULE_AUTHOR("Tony Luck");
1584 MODULE_DESCRIPTION("MC Driver for Intel SoC using Pondicherry memory controller");
1585