xref: /linux/drivers/edac/igen6_edac.c (revision ae22a94997b8a03dcb3c922857c203246711f9d4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Driver for Intel client SoC with integrated memory controller using IBECC
4  *
5  * Copyright (C) 2020 Intel Corporation
6  *
7  * The In-Band ECC (IBECC) IP provides ECC protection to all or specific
8  * regions of the physical memory space. It's used for memory controllers
9  * that don't support the out-of-band ECC which often needs an additional
10  * storage device to each channel for storing ECC data.
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/slab.h>
17 #include <linux/irq_work.h>
18 #include <linux/llist.h>
19 #include <linux/genalloc.h>
20 #include <linux/edac.h>
21 #include <linux/bits.h>
22 #include <linux/io.h>
23 #include <asm/mach_traps.h>
24 #include <asm/nmi.h>
25 #include <asm/mce.h>
26 
27 #include "edac_mc.h"
28 #include "edac_module.h"
29 
30 #define IGEN6_REVISION	"v2.5.1"
31 
32 #define EDAC_MOD_STR	"igen6_edac"
33 #define IGEN6_NMI_NAME	"igen6_ibecc"
34 
35 /* Debug macros */
36 #define igen6_printk(level, fmt, arg...)		\
37 	edac_printk(level, "igen6", fmt, ##arg)
38 
39 #define igen6_mc_printk(mci, level, fmt, arg...)	\
40 	edac_mc_chipset_printk(mci, level, "igen6", fmt, ##arg)
41 
42 #define GET_BITFIELD(v, lo, hi) (((v) & GENMASK_ULL(hi, lo)) >> (lo))
43 
44 #define NUM_IMC				2 /* Max memory controllers */
45 #define NUM_CHANNELS			2 /* Max channels */
46 #define NUM_DIMMS			2 /* Max DIMMs per channel */
47 
48 #define _4GB				BIT_ULL(32)
49 
50 /* Size of physical memory */
51 #define TOM_OFFSET			0xa0
52 /* Top of low usable DRAM */
53 #define TOLUD_OFFSET			0xbc
54 /* Capability register C */
55 #define CAPID_C_OFFSET			0xec
56 #define CAPID_C_IBECC			BIT(15)
57 
58 /* Capability register E */
59 #define CAPID_E_OFFSET			0xf0
60 #define CAPID_E_IBECC			BIT(12)
61 #define CAPID_E_IBECC_BIT18		BIT(18)
62 
63 /* Error Status */
64 #define ERRSTS_OFFSET			0xc8
65 #define ERRSTS_CE			BIT_ULL(6)
66 #define ERRSTS_UE			BIT_ULL(7)
67 
68 /* Error Command */
69 #define ERRCMD_OFFSET			0xca
70 #define ERRCMD_CE			BIT_ULL(6)
71 #define ERRCMD_UE			BIT_ULL(7)
72 
73 /* IBECC MMIO base address */
74 #define IBECC_BASE			(res_cfg->ibecc_base)
75 #define IBECC_ACTIVATE_OFFSET		IBECC_BASE
76 #define IBECC_ACTIVATE_EN		BIT(0)
77 
78 /* IBECC error log */
79 #define ECC_ERROR_LOG_OFFSET		(IBECC_BASE + res_cfg->ibecc_error_log_offset)
80 #define ECC_ERROR_LOG_CE		BIT_ULL(62)
81 #define ECC_ERROR_LOG_UE		BIT_ULL(63)
82 #define ECC_ERROR_LOG_ADDR_SHIFT	5
83 #define ECC_ERROR_LOG_ADDR(v)		GET_BITFIELD(v, 5, 38)
84 #define ECC_ERROR_LOG_ADDR45(v)		GET_BITFIELD(v, 5, 45)
85 #define ECC_ERROR_LOG_SYND(v)		GET_BITFIELD(v, 46, 61)
86 
87 /* Host MMIO base address */
88 #define MCHBAR_OFFSET			0x48
89 #define MCHBAR_EN			BIT_ULL(0)
90 #define MCHBAR_BASE(v)			(GET_BITFIELD(v, 16, 38) << 16)
91 #define MCHBAR_SIZE			0x10000
92 
93 /* Parameters for the channel decode stage */
94 #define IMC_BASE			(res_cfg->imc_base)
95 #define MAD_INTER_CHANNEL_OFFSET	IMC_BASE
96 #define MAD_INTER_CHANNEL_DDR_TYPE(v)	GET_BITFIELD(v, 0, 2)
97 #define MAD_INTER_CHANNEL_ECHM(v)	GET_BITFIELD(v, 3, 3)
98 #define MAD_INTER_CHANNEL_CH_L_MAP(v)	GET_BITFIELD(v, 4, 4)
99 #define MAD_INTER_CHANNEL_CH_S_SIZE(v)	((u64)GET_BITFIELD(v, 12, 19) << 29)
100 
101 /* Parameters for DRAM decode stage */
102 #define MAD_INTRA_CH0_OFFSET		(IMC_BASE + 4)
103 #define MAD_INTRA_CH_DIMM_L_MAP(v)	GET_BITFIELD(v, 0, 0)
104 
105 /* DIMM characteristics */
106 #define MAD_DIMM_CH0_OFFSET		(IMC_BASE + 0xc)
107 #define MAD_DIMM_CH_DIMM_L_SIZE(v)	((u64)GET_BITFIELD(v, 0, 6) << 29)
108 #define MAD_DIMM_CH_DLW(v)		GET_BITFIELD(v, 7, 8)
109 #define MAD_DIMM_CH_DIMM_S_SIZE(v)	((u64)GET_BITFIELD(v, 16, 22) << 29)
110 #define MAD_DIMM_CH_DSW(v)		GET_BITFIELD(v, 24, 25)
111 
112 /* Hash for memory controller selection */
113 #define MAD_MC_HASH_OFFSET		(IMC_BASE + 0x1b8)
114 #define MAC_MC_HASH_LSB(v)		GET_BITFIELD(v, 1, 3)
115 
116 /* Hash for channel selection */
117 #define CHANNEL_HASH_OFFSET		(IMC_BASE + 0x24)
118 /* Hash for enhanced channel selection */
119 #define CHANNEL_EHASH_OFFSET		(IMC_BASE + 0x28)
120 #define CHANNEL_HASH_MASK(v)		(GET_BITFIELD(v, 6, 19) << 6)
121 #define CHANNEL_HASH_LSB_MASK_BIT(v)	GET_BITFIELD(v, 24, 26)
122 #define CHANNEL_HASH_MODE(v)		GET_BITFIELD(v, 28, 28)
123 
124 /* Parameters for memory slice decode stage */
125 #define MEM_SLICE_HASH_MASK(v)		(GET_BITFIELD(v, 6, 19) << 6)
126 #define MEM_SLICE_HASH_LSB_MASK_BIT(v)	GET_BITFIELD(v, 24, 26)
127 
128 static struct res_config {
129 	bool machine_check;
130 	int num_imc;
131 	u32 imc_base;
132 	u32 cmf_base;
133 	u32 cmf_size;
134 	u32 ms_hash_offset;
135 	u32 ibecc_base;
136 	u32 ibecc_error_log_offset;
137 	bool (*ibecc_available)(struct pci_dev *pdev);
138 	/* Extract error address logged in IBECC */
139 	u64 (*err_addr)(u64 ecclog);
140 	/* Convert error address logged in IBECC to system physical address */
141 	u64 (*err_addr_to_sys_addr)(u64 eaddr, int mc);
142 	/* Convert error address logged in IBECC to integrated memory controller address */
143 	u64 (*err_addr_to_imc_addr)(u64 eaddr, int mc);
144 } *res_cfg;
145 
146 struct igen6_imc {
147 	int mc;
148 	struct mem_ctl_info *mci;
149 	struct pci_dev *pdev;
150 	struct device dev;
151 	void __iomem *window;
152 	u64 size;
153 	u64 ch_s_size;
154 	int ch_l_map;
155 	u64 dimm_s_size[NUM_CHANNELS];
156 	u64 dimm_l_size[NUM_CHANNELS];
157 	int dimm_l_map[NUM_CHANNELS];
158 };
159 
160 static struct igen6_pvt {
161 	struct igen6_imc imc[NUM_IMC];
162 	u64 ms_hash;
163 	u64 ms_s_size;
164 	int ms_l_map;
165 } *igen6_pvt;
166 
167 /* The top of low usable DRAM */
168 static u32 igen6_tolud;
169 /* The size of physical memory */
170 static u64 igen6_tom;
171 
172 struct decoded_addr {
173 	int mc;
174 	u64 imc_addr;
175 	u64 sys_addr;
176 	int channel_idx;
177 	u64 channel_addr;
178 	int sub_channel_idx;
179 	u64 sub_channel_addr;
180 };
181 
182 struct ecclog_node {
183 	struct llist_node llnode;
184 	int mc;
185 	u64 ecclog;
186 };
187 
188 /*
189  * In the NMI handler, the driver uses the lock-less memory allocator
190  * to allocate memory to store the IBECC error logs and links the logs
191  * to the lock-less list. Delay printk() and the work of error reporting
192  * to EDAC core in a worker.
193  */
194 #define ECCLOG_POOL_SIZE	PAGE_SIZE
195 static LLIST_HEAD(ecclog_llist);
196 static struct gen_pool *ecclog_pool;
197 static char ecclog_buf[ECCLOG_POOL_SIZE];
198 static struct irq_work ecclog_irq_work;
199 static struct work_struct ecclog_work;
200 
201 /* Compute die IDs for Elkhart Lake with IBECC */
202 #define DID_EHL_SKU5	0x4514
203 #define DID_EHL_SKU6	0x4528
204 #define DID_EHL_SKU7	0x452a
205 #define DID_EHL_SKU8	0x4516
206 #define DID_EHL_SKU9	0x452c
207 #define DID_EHL_SKU10	0x452e
208 #define DID_EHL_SKU11	0x4532
209 #define DID_EHL_SKU12	0x4518
210 #define DID_EHL_SKU13	0x451a
211 #define DID_EHL_SKU14	0x4534
212 #define DID_EHL_SKU15	0x4536
213 
214 /* Compute die IDs for ICL-NNPI with IBECC */
215 #define DID_ICL_SKU8	0x4581
216 #define DID_ICL_SKU10	0x4585
217 #define DID_ICL_SKU11	0x4589
218 #define DID_ICL_SKU12	0x458d
219 
220 /* Compute die IDs for Tiger Lake with IBECC */
221 #define DID_TGL_SKU	0x9a14
222 
223 /* Compute die IDs for Alder Lake with IBECC */
224 #define DID_ADL_SKU1	0x4601
225 #define DID_ADL_SKU2	0x4602
226 #define DID_ADL_SKU3	0x4621
227 #define DID_ADL_SKU4	0x4641
228 
229 /* Compute die IDs for Alder Lake-N with IBECC */
230 #define DID_ADL_N_SKU1	0x4614
231 #define DID_ADL_N_SKU2	0x4617
232 #define DID_ADL_N_SKU3	0x461b
233 #define DID_ADL_N_SKU4	0x461c
234 #define DID_ADL_N_SKU5	0x4673
235 #define DID_ADL_N_SKU6	0x4674
236 #define DID_ADL_N_SKU7	0x4675
237 #define DID_ADL_N_SKU8	0x4677
238 #define DID_ADL_N_SKU9	0x4678
239 #define DID_ADL_N_SKU10	0x4679
240 #define DID_ADL_N_SKU11	0x467c
241 #define DID_ADL_N_SKU12	0x4632
242 
243 /* Compute die IDs for Raptor Lake-P with IBECC */
244 #define DID_RPL_P_SKU1	0xa706
245 #define DID_RPL_P_SKU2	0xa707
246 #define DID_RPL_P_SKU3	0xa708
247 #define DID_RPL_P_SKU4	0xa716
248 #define DID_RPL_P_SKU5	0xa718
249 
250 /* Compute die IDs for Meteor Lake-PS with IBECC */
251 #define DID_MTL_PS_SKU1	0x7d21
252 #define DID_MTL_PS_SKU2	0x7d22
253 #define DID_MTL_PS_SKU3	0x7d23
254 #define DID_MTL_PS_SKU4	0x7d24
255 
256 /* Compute die IDs for Meteor Lake-P with IBECC */
257 #define DID_MTL_P_SKU1	0x7d01
258 #define DID_MTL_P_SKU2	0x7d02
259 #define DID_MTL_P_SKU3	0x7d14
260 
261 static int get_mchbar(struct pci_dev *pdev, u64 *mchbar)
262 {
263 	union  {
264 		u64 v;
265 		struct {
266 			u32 v_lo;
267 			u32 v_hi;
268 		};
269 	} u;
270 
271 	if (pci_read_config_dword(pdev, MCHBAR_OFFSET, &u.v_lo)) {
272 		igen6_printk(KERN_ERR, "Failed to read lower MCHBAR\n");
273 		return -ENODEV;
274 	}
275 
276 	if (pci_read_config_dword(pdev, MCHBAR_OFFSET + 4, &u.v_hi)) {
277 		igen6_printk(KERN_ERR, "Failed to read upper MCHBAR\n");
278 		return -ENODEV;
279 	}
280 
281 	if (!(u.v & MCHBAR_EN)) {
282 		igen6_printk(KERN_ERR, "MCHBAR is disabled\n");
283 		return -ENODEV;
284 	}
285 
286 	*mchbar = MCHBAR_BASE(u.v);
287 
288 	return 0;
289 }
290 
291 static bool ehl_ibecc_available(struct pci_dev *pdev)
292 {
293 	u32 v;
294 
295 	if (pci_read_config_dword(pdev, CAPID_C_OFFSET, &v))
296 		return false;
297 
298 	return !!(CAPID_C_IBECC & v);
299 }
300 
301 static u64 ehl_err_addr_to_sys_addr(u64 eaddr, int mc)
302 {
303 	return eaddr;
304 }
305 
306 static u64 ehl_err_addr_to_imc_addr(u64 eaddr, int mc)
307 {
308 	if (eaddr < igen6_tolud)
309 		return eaddr;
310 
311 	if (igen6_tom <= _4GB)
312 		return eaddr + igen6_tolud - _4GB;
313 
314 	if (eaddr < _4GB)
315 		return eaddr + igen6_tolud - igen6_tom;
316 
317 	return eaddr;
318 }
319 
320 static bool icl_ibecc_available(struct pci_dev *pdev)
321 {
322 	u32 v;
323 
324 	if (pci_read_config_dword(pdev, CAPID_C_OFFSET, &v))
325 		return false;
326 
327 	return !(CAPID_C_IBECC & v) &&
328 		(boot_cpu_data.x86_stepping >= 1);
329 }
330 
331 static bool tgl_ibecc_available(struct pci_dev *pdev)
332 {
333 	u32 v;
334 
335 	if (pci_read_config_dword(pdev, CAPID_E_OFFSET, &v))
336 		return false;
337 
338 	return !(CAPID_E_IBECC & v);
339 }
340 
341 static bool mtl_p_ibecc_available(struct pci_dev *pdev)
342 {
343 	u32 v;
344 
345 	if (pci_read_config_dword(pdev, CAPID_E_OFFSET, &v))
346 		return false;
347 
348 	return !(CAPID_E_IBECC_BIT18 & v);
349 }
350 
351 static bool mtl_ps_ibecc_available(struct pci_dev *pdev)
352 {
353 #define MCHBAR_MEMSS_IBECCDIS	0x13c00
354 	void __iomem *window;
355 	u64 mchbar;
356 	u32 val;
357 
358 	if (get_mchbar(pdev, &mchbar))
359 		return false;
360 
361 	window = ioremap(mchbar, MCHBAR_SIZE * 2);
362 	if (!window) {
363 		igen6_printk(KERN_ERR, "Failed to ioremap 0x%llx\n", mchbar);
364 		return false;
365 	}
366 
367 	val = readl(window + MCHBAR_MEMSS_IBECCDIS);
368 	iounmap(window);
369 
370 	/* Bit6: 1 - IBECC is disabled, 0 - IBECC isn't disabled */
371 	return !GET_BITFIELD(val, 6, 6);
372 }
373 
374 static u64 mem_addr_to_sys_addr(u64 maddr)
375 {
376 	if (maddr < igen6_tolud)
377 		return maddr;
378 
379 	if (igen6_tom <= _4GB)
380 		return maddr - igen6_tolud + _4GB;
381 
382 	if (maddr < _4GB)
383 		return maddr - igen6_tolud + igen6_tom;
384 
385 	return maddr;
386 }
387 
388 static u64 mem_slice_hash(u64 addr, u64 mask, u64 hash_init, int intlv_bit)
389 {
390 	u64 hash_addr = addr & mask, hash = hash_init;
391 	u64 intlv = (addr >> intlv_bit) & 1;
392 	int i;
393 
394 	for (i = 6; i < 20; i++)
395 		hash ^= (hash_addr >> i) & 1;
396 
397 	return hash ^ intlv;
398 }
399 
400 static u64 tgl_err_addr_to_mem_addr(u64 eaddr, int mc)
401 {
402 	u64 maddr, hash, mask, ms_s_size;
403 	int intlv_bit;
404 	u32 ms_hash;
405 
406 	ms_s_size = igen6_pvt->ms_s_size;
407 	if (eaddr >= ms_s_size)
408 		return eaddr + ms_s_size;
409 
410 	ms_hash = igen6_pvt->ms_hash;
411 
412 	mask = MEM_SLICE_HASH_MASK(ms_hash);
413 	intlv_bit = MEM_SLICE_HASH_LSB_MASK_BIT(ms_hash) + 6;
414 
415 	maddr = GET_BITFIELD(eaddr, intlv_bit, 63) << (intlv_bit + 1) |
416 		GET_BITFIELD(eaddr, 0, intlv_bit - 1);
417 
418 	hash = mem_slice_hash(maddr, mask, mc, intlv_bit);
419 
420 	return maddr | (hash << intlv_bit);
421 }
422 
423 static u64 tgl_err_addr_to_sys_addr(u64 eaddr, int mc)
424 {
425 	u64 maddr = tgl_err_addr_to_mem_addr(eaddr, mc);
426 
427 	return mem_addr_to_sys_addr(maddr);
428 }
429 
430 static u64 tgl_err_addr_to_imc_addr(u64 eaddr, int mc)
431 {
432 	return eaddr;
433 }
434 
435 static u64 adl_err_addr_to_sys_addr(u64 eaddr, int mc)
436 {
437 	return mem_addr_to_sys_addr(eaddr);
438 }
439 
440 static u64 adl_err_addr_to_imc_addr(u64 eaddr, int mc)
441 {
442 	u64 imc_addr, ms_s_size = igen6_pvt->ms_s_size;
443 	struct igen6_imc *imc = &igen6_pvt->imc[mc];
444 	int intlv_bit;
445 	u32 mc_hash;
446 
447 	if (eaddr >= 2 * ms_s_size)
448 		return eaddr - ms_s_size;
449 
450 	mc_hash = readl(imc->window + MAD_MC_HASH_OFFSET);
451 
452 	intlv_bit = MAC_MC_HASH_LSB(mc_hash) + 6;
453 
454 	imc_addr = GET_BITFIELD(eaddr, intlv_bit + 1, 63) << intlv_bit |
455 		   GET_BITFIELD(eaddr, 0, intlv_bit - 1);
456 
457 	return imc_addr;
458 }
459 
460 static u64 rpl_p_err_addr(u64 ecclog)
461 {
462 	return ECC_ERROR_LOG_ADDR45(ecclog);
463 }
464 
465 static struct res_config ehl_cfg = {
466 	.num_imc		= 1,
467 	.imc_base		= 0x5000,
468 	.ibecc_base		= 0xdc00,
469 	.ibecc_available	= ehl_ibecc_available,
470 	.ibecc_error_log_offset	= 0x170,
471 	.err_addr_to_sys_addr	= ehl_err_addr_to_sys_addr,
472 	.err_addr_to_imc_addr	= ehl_err_addr_to_imc_addr,
473 };
474 
475 static struct res_config icl_cfg = {
476 	.num_imc		= 1,
477 	.imc_base		= 0x5000,
478 	.ibecc_base		= 0xd800,
479 	.ibecc_error_log_offset	= 0x170,
480 	.ibecc_available	= icl_ibecc_available,
481 	.err_addr_to_sys_addr	= ehl_err_addr_to_sys_addr,
482 	.err_addr_to_imc_addr	= ehl_err_addr_to_imc_addr,
483 };
484 
485 static struct res_config tgl_cfg = {
486 	.machine_check		= true,
487 	.num_imc		= 2,
488 	.imc_base		= 0x5000,
489 	.cmf_base		= 0x11000,
490 	.cmf_size		= 0x800,
491 	.ms_hash_offset		= 0xac,
492 	.ibecc_base		= 0xd400,
493 	.ibecc_error_log_offset	= 0x170,
494 	.ibecc_available	= tgl_ibecc_available,
495 	.err_addr_to_sys_addr	= tgl_err_addr_to_sys_addr,
496 	.err_addr_to_imc_addr	= tgl_err_addr_to_imc_addr,
497 };
498 
499 static struct res_config adl_cfg = {
500 	.machine_check		= true,
501 	.num_imc		= 2,
502 	.imc_base		= 0xd800,
503 	.ibecc_base		= 0xd400,
504 	.ibecc_error_log_offset	= 0x68,
505 	.ibecc_available	= tgl_ibecc_available,
506 	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
507 	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
508 };
509 
510 static struct res_config adl_n_cfg = {
511 	.machine_check		= true,
512 	.num_imc		= 1,
513 	.imc_base		= 0xd800,
514 	.ibecc_base		= 0xd400,
515 	.ibecc_error_log_offset	= 0x68,
516 	.ibecc_available	= tgl_ibecc_available,
517 	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
518 	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
519 };
520 
521 static struct res_config rpl_p_cfg = {
522 	.machine_check		= true,
523 	.num_imc		= 2,
524 	.imc_base		= 0xd800,
525 	.ibecc_base		= 0xd400,
526 	.ibecc_error_log_offset	= 0x68,
527 	.ibecc_available	= tgl_ibecc_available,
528 	.err_addr		= rpl_p_err_addr,
529 	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
530 	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
531 };
532 
533 static struct res_config mtl_ps_cfg = {
534 	.machine_check		= true,
535 	.num_imc		= 2,
536 	.imc_base		= 0xd800,
537 	.ibecc_base		= 0xd400,
538 	.ibecc_error_log_offset	= 0x170,
539 	.ibecc_available	= mtl_ps_ibecc_available,
540 	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
541 	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
542 };
543 
544 static struct res_config mtl_p_cfg = {
545 	.machine_check		= true,
546 	.num_imc		= 2,
547 	.imc_base		= 0xd800,
548 	.ibecc_base		= 0xd400,
549 	.ibecc_error_log_offset	= 0x170,
550 	.ibecc_available	= mtl_p_ibecc_available,
551 	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
552 	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
553 };
554 
555 static const struct pci_device_id igen6_pci_tbl[] = {
556 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU5), (kernel_ulong_t)&ehl_cfg },
557 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU6), (kernel_ulong_t)&ehl_cfg },
558 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU7), (kernel_ulong_t)&ehl_cfg },
559 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU8), (kernel_ulong_t)&ehl_cfg },
560 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU9), (kernel_ulong_t)&ehl_cfg },
561 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU10), (kernel_ulong_t)&ehl_cfg },
562 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU11), (kernel_ulong_t)&ehl_cfg },
563 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU12), (kernel_ulong_t)&ehl_cfg },
564 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU13), (kernel_ulong_t)&ehl_cfg },
565 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU14), (kernel_ulong_t)&ehl_cfg },
566 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU15), (kernel_ulong_t)&ehl_cfg },
567 	{ PCI_VDEVICE(INTEL, DID_ICL_SKU8), (kernel_ulong_t)&icl_cfg },
568 	{ PCI_VDEVICE(INTEL, DID_ICL_SKU10), (kernel_ulong_t)&icl_cfg },
569 	{ PCI_VDEVICE(INTEL, DID_ICL_SKU11), (kernel_ulong_t)&icl_cfg },
570 	{ PCI_VDEVICE(INTEL, DID_ICL_SKU12), (kernel_ulong_t)&icl_cfg },
571 	{ PCI_VDEVICE(INTEL, DID_TGL_SKU), (kernel_ulong_t)&tgl_cfg },
572 	{ PCI_VDEVICE(INTEL, DID_ADL_SKU1), (kernel_ulong_t)&adl_cfg },
573 	{ PCI_VDEVICE(INTEL, DID_ADL_SKU2), (kernel_ulong_t)&adl_cfg },
574 	{ PCI_VDEVICE(INTEL, DID_ADL_SKU3), (kernel_ulong_t)&adl_cfg },
575 	{ PCI_VDEVICE(INTEL, DID_ADL_SKU4), (kernel_ulong_t)&adl_cfg },
576 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU1), (kernel_ulong_t)&adl_n_cfg },
577 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU2), (kernel_ulong_t)&adl_n_cfg },
578 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU3), (kernel_ulong_t)&adl_n_cfg },
579 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU4), (kernel_ulong_t)&adl_n_cfg },
580 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU5), (kernel_ulong_t)&adl_n_cfg },
581 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU6), (kernel_ulong_t)&adl_n_cfg },
582 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU7), (kernel_ulong_t)&adl_n_cfg },
583 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU8), (kernel_ulong_t)&adl_n_cfg },
584 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU9), (kernel_ulong_t)&adl_n_cfg },
585 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU10), (kernel_ulong_t)&adl_n_cfg },
586 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU11), (kernel_ulong_t)&adl_n_cfg },
587 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU12), (kernel_ulong_t)&adl_n_cfg },
588 	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU1), (kernel_ulong_t)&rpl_p_cfg },
589 	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU2), (kernel_ulong_t)&rpl_p_cfg },
590 	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU3), (kernel_ulong_t)&rpl_p_cfg },
591 	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU4), (kernel_ulong_t)&rpl_p_cfg },
592 	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU5), (kernel_ulong_t)&rpl_p_cfg },
593 	{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU1), (kernel_ulong_t)&mtl_ps_cfg },
594 	{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU2), (kernel_ulong_t)&mtl_ps_cfg },
595 	{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU3), (kernel_ulong_t)&mtl_ps_cfg },
596 	{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU4), (kernel_ulong_t)&mtl_ps_cfg },
597 	{ PCI_VDEVICE(INTEL, DID_MTL_P_SKU1), (kernel_ulong_t)&mtl_p_cfg },
598 	{ PCI_VDEVICE(INTEL, DID_MTL_P_SKU2), (kernel_ulong_t)&mtl_p_cfg },
599 	{ PCI_VDEVICE(INTEL, DID_MTL_P_SKU3), (kernel_ulong_t)&mtl_p_cfg },
600 	{ },
601 };
602 MODULE_DEVICE_TABLE(pci, igen6_pci_tbl);
603 
604 static enum dev_type get_width(int dimm_l, u32 mad_dimm)
605 {
606 	u32 w = dimm_l ? MAD_DIMM_CH_DLW(mad_dimm) :
607 			 MAD_DIMM_CH_DSW(mad_dimm);
608 
609 	switch (w) {
610 	case 0:
611 		return DEV_X8;
612 	case 1:
613 		return DEV_X16;
614 	case 2:
615 		return DEV_X32;
616 	default:
617 		return DEV_UNKNOWN;
618 	}
619 }
620 
621 static enum mem_type get_memory_type(u32 mad_inter)
622 {
623 	u32 t = MAD_INTER_CHANNEL_DDR_TYPE(mad_inter);
624 
625 	switch (t) {
626 	case 0:
627 		return MEM_DDR4;
628 	case 1:
629 		return MEM_DDR3;
630 	case 2:
631 		return MEM_LPDDR3;
632 	case 3:
633 		return MEM_LPDDR4;
634 	case 4:
635 		return MEM_WIO2;
636 	default:
637 		return MEM_UNKNOWN;
638 	}
639 }
640 
641 static int decode_chan_idx(u64 addr, u64 mask, int intlv_bit)
642 {
643 	u64 hash_addr = addr & mask, hash = 0;
644 	u64 intlv = (addr >> intlv_bit) & 1;
645 	int i;
646 
647 	for (i = 6; i < 20; i++)
648 		hash ^= (hash_addr >> i) & 1;
649 
650 	return (int)hash ^ intlv;
651 }
652 
653 static u64 decode_channel_addr(u64 addr, int intlv_bit)
654 {
655 	u64 channel_addr;
656 
657 	/* Remove the interleave bit and shift upper part down to fill gap */
658 	channel_addr  = GET_BITFIELD(addr, intlv_bit + 1, 63) << intlv_bit;
659 	channel_addr |= GET_BITFIELD(addr, 0, intlv_bit - 1);
660 
661 	return channel_addr;
662 }
663 
664 static void decode_addr(u64 addr, u32 hash, u64 s_size, int l_map,
665 			int *idx, u64 *sub_addr)
666 {
667 	int intlv_bit = CHANNEL_HASH_LSB_MASK_BIT(hash) + 6;
668 
669 	if (addr > 2 * s_size) {
670 		*sub_addr = addr - s_size;
671 		*idx = l_map;
672 		return;
673 	}
674 
675 	if (CHANNEL_HASH_MODE(hash)) {
676 		*sub_addr = decode_channel_addr(addr, intlv_bit);
677 		*idx = decode_chan_idx(addr, CHANNEL_HASH_MASK(hash), intlv_bit);
678 	} else {
679 		*sub_addr = decode_channel_addr(addr, 6);
680 		*idx = GET_BITFIELD(addr, 6, 6);
681 	}
682 }
683 
684 static int igen6_decode(struct decoded_addr *res)
685 {
686 	struct igen6_imc *imc = &igen6_pvt->imc[res->mc];
687 	u64 addr = res->imc_addr, sub_addr, s_size;
688 	int idx, l_map;
689 	u32 hash;
690 
691 	if (addr >= igen6_tom) {
692 		edac_dbg(0, "Address 0x%llx out of range\n", addr);
693 		return -EINVAL;
694 	}
695 
696 	/* Decode channel */
697 	hash   = readl(imc->window + CHANNEL_HASH_OFFSET);
698 	s_size = imc->ch_s_size;
699 	l_map  = imc->ch_l_map;
700 	decode_addr(addr, hash, s_size, l_map, &idx, &sub_addr);
701 	res->channel_idx  = idx;
702 	res->channel_addr = sub_addr;
703 
704 	/* Decode sub-channel/DIMM */
705 	hash   = readl(imc->window + CHANNEL_EHASH_OFFSET);
706 	s_size = imc->dimm_s_size[idx];
707 	l_map  = imc->dimm_l_map[idx];
708 	decode_addr(res->channel_addr, hash, s_size, l_map, &idx, &sub_addr);
709 	res->sub_channel_idx  = idx;
710 	res->sub_channel_addr = sub_addr;
711 
712 	return 0;
713 }
714 
715 static void igen6_output_error(struct decoded_addr *res,
716 			       struct mem_ctl_info *mci, u64 ecclog)
717 {
718 	enum hw_event_mc_err_type type = ecclog & ECC_ERROR_LOG_UE ?
719 					 HW_EVENT_ERR_UNCORRECTED :
720 					 HW_EVENT_ERR_CORRECTED;
721 
722 	edac_mc_handle_error(type, mci, 1,
723 			     res->sys_addr >> PAGE_SHIFT,
724 			     res->sys_addr & ~PAGE_MASK,
725 			     ECC_ERROR_LOG_SYND(ecclog),
726 			     res->channel_idx, res->sub_channel_idx,
727 			     -1, "", "");
728 }
729 
730 static struct gen_pool *ecclog_gen_pool_create(void)
731 {
732 	struct gen_pool *pool;
733 
734 	pool = gen_pool_create(ilog2(sizeof(struct ecclog_node)), -1);
735 	if (!pool)
736 		return NULL;
737 
738 	if (gen_pool_add(pool, (unsigned long)ecclog_buf, ECCLOG_POOL_SIZE, -1)) {
739 		gen_pool_destroy(pool);
740 		return NULL;
741 	}
742 
743 	return pool;
744 }
745 
746 static int ecclog_gen_pool_add(int mc, u64 ecclog)
747 {
748 	struct ecclog_node *node;
749 
750 	node = (void *)gen_pool_alloc(ecclog_pool, sizeof(*node));
751 	if (!node)
752 		return -ENOMEM;
753 
754 	node->mc = mc;
755 	node->ecclog = ecclog;
756 	llist_add(&node->llnode, &ecclog_llist);
757 
758 	return 0;
759 }
760 
761 /*
762  * Either the memory-mapped I/O status register ECC_ERROR_LOG or the PCI
763  * configuration space status register ERRSTS can indicate whether a
764  * correctable error or an uncorrectable error occurred. We only use the
765  * ECC_ERROR_LOG register to check error type, but need to clear both
766  * registers to enable future error events.
767  */
768 static u64 ecclog_read_and_clear(struct igen6_imc *imc)
769 {
770 	u64 ecclog = readq(imc->window + ECC_ERROR_LOG_OFFSET);
771 
772 	if (ecclog & (ECC_ERROR_LOG_CE | ECC_ERROR_LOG_UE)) {
773 		/* Clear CE/UE bits by writing 1s */
774 		writeq(ecclog, imc->window + ECC_ERROR_LOG_OFFSET);
775 		return ecclog;
776 	}
777 
778 	return 0;
779 }
780 
781 static void errsts_clear(struct igen6_imc *imc)
782 {
783 	u16 errsts;
784 
785 	if (pci_read_config_word(imc->pdev, ERRSTS_OFFSET, &errsts)) {
786 		igen6_printk(KERN_ERR, "Failed to read ERRSTS\n");
787 		return;
788 	}
789 
790 	/* Clear CE/UE bits by writing 1s */
791 	if (errsts & (ERRSTS_CE | ERRSTS_UE))
792 		pci_write_config_word(imc->pdev, ERRSTS_OFFSET, errsts);
793 }
794 
795 static int errcmd_enable_error_reporting(bool enable)
796 {
797 	struct igen6_imc *imc = &igen6_pvt->imc[0];
798 	u16 errcmd;
799 	int rc;
800 
801 	rc = pci_read_config_word(imc->pdev, ERRCMD_OFFSET, &errcmd);
802 	if (rc)
803 		return rc;
804 
805 	if (enable)
806 		errcmd |= ERRCMD_CE | ERRSTS_UE;
807 	else
808 		errcmd &= ~(ERRCMD_CE | ERRSTS_UE);
809 
810 	rc = pci_write_config_word(imc->pdev, ERRCMD_OFFSET, errcmd);
811 	if (rc)
812 		return rc;
813 
814 	return 0;
815 }
816 
817 static int ecclog_handler(void)
818 {
819 	struct igen6_imc *imc;
820 	int i, n = 0;
821 	u64 ecclog;
822 
823 	for (i = 0; i < res_cfg->num_imc; i++) {
824 		imc = &igen6_pvt->imc[i];
825 
826 		/* errsts_clear() isn't NMI-safe. Delay it in the IRQ context */
827 
828 		ecclog = ecclog_read_and_clear(imc);
829 		if (!ecclog)
830 			continue;
831 
832 		if (!ecclog_gen_pool_add(i, ecclog))
833 			irq_work_queue(&ecclog_irq_work);
834 
835 		n++;
836 	}
837 
838 	return n;
839 }
840 
841 static void ecclog_work_cb(struct work_struct *work)
842 {
843 	struct ecclog_node *node, *tmp;
844 	struct mem_ctl_info *mci;
845 	struct llist_node *head;
846 	struct decoded_addr res;
847 	u64 eaddr;
848 
849 	head = llist_del_all(&ecclog_llist);
850 	if (!head)
851 		return;
852 
853 	llist_for_each_entry_safe(node, tmp, head, llnode) {
854 		memset(&res, 0, sizeof(res));
855 		if (res_cfg->err_addr)
856 			eaddr = res_cfg->err_addr(node->ecclog);
857 		else
858 			eaddr = ECC_ERROR_LOG_ADDR(node->ecclog) <<
859 				ECC_ERROR_LOG_ADDR_SHIFT;
860 		res.mc	     = node->mc;
861 		res.sys_addr = res_cfg->err_addr_to_sys_addr(eaddr, res.mc);
862 		res.imc_addr = res_cfg->err_addr_to_imc_addr(eaddr, res.mc);
863 
864 		mci = igen6_pvt->imc[res.mc].mci;
865 
866 		edac_dbg(2, "MC %d, ecclog = 0x%llx\n", node->mc, node->ecclog);
867 		igen6_mc_printk(mci, KERN_DEBUG, "HANDLING IBECC MEMORY ERROR\n");
868 		igen6_mc_printk(mci, KERN_DEBUG, "ADDR 0x%llx ", res.sys_addr);
869 
870 		if (!igen6_decode(&res))
871 			igen6_output_error(&res, mci, node->ecclog);
872 
873 		gen_pool_free(ecclog_pool, (unsigned long)node, sizeof(*node));
874 	}
875 }
876 
877 static void ecclog_irq_work_cb(struct irq_work *irq_work)
878 {
879 	int i;
880 
881 	for (i = 0; i < res_cfg->num_imc; i++)
882 		errsts_clear(&igen6_pvt->imc[i]);
883 
884 	if (!llist_empty(&ecclog_llist))
885 		schedule_work(&ecclog_work);
886 }
887 
888 static int ecclog_nmi_handler(unsigned int cmd, struct pt_regs *regs)
889 {
890 	unsigned char reason;
891 
892 	if (!ecclog_handler())
893 		return NMI_DONE;
894 
895 	/*
896 	 * Both In-Band ECC correctable error and uncorrectable error are
897 	 * reported by SERR# NMI. The NMI generic code (see pci_serr_error())
898 	 * doesn't clear the bit NMI_REASON_CLEAR_SERR (in port 0x61) to
899 	 * re-enable the SERR# NMI after NMI handling. So clear this bit here
900 	 * to re-enable SERR# NMI for receiving future In-Band ECC errors.
901 	 */
902 	reason  = x86_platform.get_nmi_reason() & NMI_REASON_CLEAR_MASK;
903 	reason |= NMI_REASON_CLEAR_SERR;
904 	outb(reason, NMI_REASON_PORT);
905 	reason &= ~NMI_REASON_CLEAR_SERR;
906 	outb(reason, NMI_REASON_PORT);
907 
908 	return NMI_HANDLED;
909 }
910 
911 static int ecclog_mce_handler(struct notifier_block *nb, unsigned long val,
912 			      void *data)
913 {
914 	struct mce *mce = (struct mce *)data;
915 	char *type;
916 
917 	if (mce->kflags & MCE_HANDLED_CEC)
918 		return NOTIFY_DONE;
919 
920 	/*
921 	 * Ignore unless this is a memory related error.
922 	 * We don't check the bit MCI_STATUS_ADDRV of MCi_STATUS here,
923 	 * since this bit isn't set on some CPU (e.g., Tiger Lake UP3).
924 	 */
925 	if ((mce->status & 0xefff) >> 7 != 1)
926 		return NOTIFY_DONE;
927 
928 	if (mce->mcgstatus & MCG_STATUS_MCIP)
929 		type = "Exception";
930 	else
931 		type = "Event";
932 
933 	edac_dbg(0, "CPU %d: Machine Check %s: 0x%llx Bank %d: 0x%llx\n",
934 		 mce->extcpu, type, mce->mcgstatus,
935 		 mce->bank, mce->status);
936 	edac_dbg(0, "TSC 0x%llx\n", mce->tsc);
937 	edac_dbg(0, "ADDR 0x%llx\n", mce->addr);
938 	edac_dbg(0, "MISC 0x%llx\n", mce->misc);
939 	edac_dbg(0, "PROCESSOR %u:0x%x TIME %llu SOCKET %u APIC 0x%x\n",
940 		 mce->cpuvendor, mce->cpuid, mce->time,
941 		 mce->socketid, mce->apicid);
942 	/*
943 	 * We just use the Machine Check for the memory error notification.
944 	 * Each memory controller is associated with an IBECC instance.
945 	 * Directly read and clear the error information(error address and
946 	 * error type) on all the IBECC instances so that we know on which
947 	 * memory controller the memory error(s) occurred.
948 	 */
949 	if (!ecclog_handler())
950 		return NOTIFY_DONE;
951 
952 	mce->kflags |= MCE_HANDLED_EDAC;
953 
954 	return NOTIFY_DONE;
955 }
956 
957 static struct notifier_block ecclog_mce_dec = {
958 	.notifier_call	= ecclog_mce_handler,
959 	.priority	= MCE_PRIO_EDAC,
960 };
961 
962 static bool igen6_check_ecc(struct igen6_imc *imc)
963 {
964 	u32 activate = readl(imc->window + IBECC_ACTIVATE_OFFSET);
965 
966 	return !!(activate & IBECC_ACTIVATE_EN);
967 }
968 
969 static int igen6_get_dimm_config(struct mem_ctl_info *mci)
970 {
971 	struct igen6_imc *imc = mci->pvt_info;
972 	u32 mad_inter, mad_intra, mad_dimm;
973 	int i, j, ndimms, mc = imc->mc;
974 	struct dimm_info *dimm;
975 	enum mem_type mtype;
976 	enum dev_type dtype;
977 	u64 dsize;
978 	bool ecc;
979 
980 	edac_dbg(2, "\n");
981 
982 	mad_inter = readl(imc->window + MAD_INTER_CHANNEL_OFFSET);
983 	mtype = get_memory_type(mad_inter);
984 	ecc = igen6_check_ecc(imc);
985 	imc->ch_s_size = MAD_INTER_CHANNEL_CH_S_SIZE(mad_inter);
986 	imc->ch_l_map  = MAD_INTER_CHANNEL_CH_L_MAP(mad_inter);
987 
988 	for (i = 0; i < NUM_CHANNELS; i++) {
989 		mad_intra = readl(imc->window + MAD_INTRA_CH0_OFFSET + i * 4);
990 		mad_dimm  = readl(imc->window + MAD_DIMM_CH0_OFFSET + i * 4);
991 
992 		imc->dimm_l_size[i] = MAD_DIMM_CH_DIMM_L_SIZE(mad_dimm);
993 		imc->dimm_s_size[i] = MAD_DIMM_CH_DIMM_S_SIZE(mad_dimm);
994 		imc->dimm_l_map[i]  = MAD_INTRA_CH_DIMM_L_MAP(mad_intra);
995 		imc->size += imc->dimm_s_size[i];
996 		imc->size += imc->dimm_l_size[i];
997 		ndimms = 0;
998 
999 		for (j = 0; j < NUM_DIMMS; j++) {
1000 			dimm = edac_get_dimm(mci, i, j, 0);
1001 
1002 			if (j ^ imc->dimm_l_map[i]) {
1003 				dtype = get_width(0, mad_dimm);
1004 				dsize = imc->dimm_s_size[i];
1005 			} else {
1006 				dtype = get_width(1, mad_dimm);
1007 				dsize = imc->dimm_l_size[i];
1008 			}
1009 
1010 			if (!dsize)
1011 				continue;
1012 
1013 			dimm->grain = 64;
1014 			dimm->mtype = mtype;
1015 			dimm->dtype = dtype;
1016 			dimm->nr_pages  = MiB_TO_PAGES(dsize >> 20);
1017 			dimm->edac_mode = EDAC_SECDED;
1018 			snprintf(dimm->label, sizeof(dimm->label),
1019 				 "MC#%d_Chan#%d_DIMM#%d", mc, i, j);
1020 			edac_dbg(0, "MC %d, Channel %d, DIMM %d, Size %llu MiB (%u pages)\n",
1021 				 mc, i, j, dsize >> 20, dimm->nr_pages);
1022 
1023 			ndimms++;
1024 		}
1025 
1026 		if (ndimms && !ecc) {
1027 			igen6_printk(KERN_ERR, "MC%d In-Band ECC is disabled\n", mc);
1028 			return -ENODEV;
1029 		}
1030 	}
1031 
1032 	edac_dbg(0, "MC %d, total size %llu MiB\n", mc, imc->size >> 20);
1033 
1034 	return 0;
1035 }
1036 
1037 #ifdef CONFIG_EDAC_DEBUG
1038 /* Top of upper usable DRAM */
1039 static u64 igen6_touud;
1040 #define TOUUD_OFFSET	0xa8
1041 
1042 static void igen6_reg_dump(struct igen6_imc *imc)
1043 {
1044 	int i;
1045 
1046 	edac_dbg(2, "CHANNEL_HASH     : 0x%x\n",
1047 		 readl(imc->window + CHANNEL_HASH_OFFSET));
1048 	edac_dbg(2, "CHANNEL_EHASH    : 0x%x\n",
1049 		 readl(imc->window + CHANNEL_EHASH_OFFSET));
1050 	edac_dbg(2, "MAD_INTER_CHANNEL: 0x%x\n",
1051 		 readl(imc->window + MAD_INTER_CHANNEL_OFFSET));
1052 	edac_dbg(2, "ECC_ERROR_LOG    : 0x%llx\n",
1053 		 readq(imc->window + ECC_ERROR_LOG_OFFSET));
1054 
1055 	for (i = 0; i < NUM_CHANNELS; i++) {
1056 		edac_dbg(2, "MAD_INTRA_CH%d    : 0x%x\n", i,
1057 			 readl(imc->window + MAD_INTRA_CH0_OFFSET + i * 4));
1058 		edac_dbg(2, "MAD_DIMM_CH%d     : 0x%x\n", i,
1059 			 readl(imc->window + MAD_DIMM_CH0_OFFSET + i * 4));
1060 	}
1061 	edac_dbg(2, "TOLUD            : 0x%x", igen6_tolud);
1062 	edac_dbg(2, "TOUUD            : 0x%llx", igen6_touud);
1063 	edac_dbg(2, "TOM              : 0x%llx", igen6_tom);
1064 }
1065 
1066 static struct dentry *igen6_test;
1067 
1068 static int debugfs_u64_set(void *data, u64 val)
1069 {
1070 	u64 ecclog;
1071 
1072 	if ((val >= igen6_tolud && val < _4GB) || val >= igen6_touud) {
1073 		edac_dbg(0, "Address 0x%llx out of range\n", val);
1074 		return 0;
1075 	}
1076 
1077 	pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val);
1078 
1079 	val  >>= ECC_ERROR_LOG_ADDR_SHIFT;
1080 	ecclog = (val << ECC_ERROR_LOG_ADDR_SHIFT) | ECC_ERROR_LOG_CE;
1081 
1082 	if (!ecclog_gen_pool_add(0, ecclog))
1083 		irq_work_queue(&ecclog_irq_work);
1084 
1085 	return 0;
1086 }
1087 DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
1088 
1089 static void igen6_debug_setup(void)
1090 {
1091 	igen6_test = edac_debugfs_create_dir("igen6_test");
1092 	if (!igen6_test)
1093 		return;
1094 
1095 	if (!edac_debugfs_create_file("addr", 0200, igen6_test,
1096 				      NULL, &fops_u64_wo)) {
1097 		debugfs_remove(igen6_test);
1098 		igen6_test = NULL;
1099 	}
1100 }
1101 
1102 static void igen6_debug_teardown(void)
1103 {
1104 	debugfs_remove_recursive(igen6_test);
1105 }
1106 #else
1107 static void igen6_reg_dump(struct igen6_imc *imc) {}
1108 static void igen6_debug_setup(void) {}
1109 static void igen6_debug_teardown(void) {}
1110 #endif
1111 
1112 static int igen6_pci_setup(struct pci_dev *pdev, u64 *mchbar)
1113 {
1114 	union  {
1115 		u64 v;
1116 		struct {
1117 			u32 v_lo;
1118 			u32 v_hi;
1119 		};
1120 	} u;
1121 
1122 	edac_dbg(2, "\n");
1123 
1124 	if (!res_cfg->ibecc_available(pdev)) {
1125 		edac_dbg(2, "No In-Band ECC IP\n");
1126 		goto fail;
1127 	}
1128 
1129 	if (pci_read_config_dword(pdev, TOLUD_OFFSET, &igen6_tolud)) {
1130 		igen6_printk(KERN_ERR, "Failed to read TOLUD\n");
1131 		goto fail;
1132 	}
1133 
1134 	igen6_tolud &= GENMASK(31, 20);
1135 
1136 	if (pci_read_config_dword(pdev, TOM_OFFSET, &u.v_lo)) {
1137 		igen6_printk(KERN_ERR, "Failed to read lower TOM\n");
1138 		goto fail;
1139 	}
1140 
1141 	if (pci_read_config_dword(pdev, TOM_OFFSET + 4, &u.v_hi)) {
1142 		igen6_printk(KERN_ERR, "Failed to read upper TOM\n");
1143 		goto fail;
1144 	}
1145 
1146 	igen6_tom = u.v & GENMASK_ULL(38, 20);
1147 
1148 	if (get_mchbar(pdev, mchbar))
1149 		goto fail;
1150 
1151 #ifdef CONFIG_EDAC_DEBUG
1152 	if (pci_read_config_dword(pdev, TOUUD_OFFSET, &u.v_lo))
1153 		edac_dbg(2, "Failed to read lower TOUUD\n");
1154 	else if (pci_read_config_dword(pdev, TOUUD_OFFSET + 4, &u.v_hi))
1155 		edac_dbg(2, "Failed to read upper TOUUD\n");
1156 	else
1157 		igen6_touud = u.v & GENMASK_ULL(38, 20);
1158 #endif
1159 
1160 	return 0;
1161 fail:
1162 	return -ENODEV;
1163 }
1164 
1165 static int igen6_register_mci(int mc, u64 mchbar, struct pci_dev *pdev)
1166 {
1167 	struct edac_mc_layer layers[2];
1168 	struct mem_ctl_info *mci;
1169 	struct igen6_imc *imc;
1170 	void __iomem *window;
1171 	int rc;
1172 
1173 	edac_dbg(2, "\n");
1174 
1175 	mchbar += mc * MCHBAR_SIZE;
1176 	window = ioremap(mchbar, MCHBAR_SIZE);
1177 	if (!window) {
1178 		igen6_printk(KERN_ERR, "Failed to ioremap 0x%llx\n", mchbar);
1179 		return -ENODEV;
1180 	}
1181 
1182 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
1183 	layers[0].size = NUM_CHANNELS;
1184 	layers[0].is_virt_csrow = false;
1185 	layers[1].type = EDAC_MC_LAYER_SLOT;
1186 	layers[1].size = NUM_DIMMS;
1187 	layers[1].is_virt_csrow = true;
1188 
1189 	mci = edac_mc_alloc(mc, ARRAY_SIZE(layers), layers, 0);
1190 	if (!mci) {
1191 		rc = -ENOMEM;
1192 		goto fail;
1193 	}
1194 
1195 	mci->ctl_name = kasprintf(GFP_KERNEL, "Intel_client_SoC MC#%d", mc);
1196 	if (!mci->ctl_name) {
1197 		rc = -ENOMEM;
1198 		goto fail2;
1199 	}
1200 
1201 	mci->mtype_cap = MEM_FLAG_LPDDR4 | MEM_FLAG_DDR4;
1202 	mci->edac_ctl_cap = EDAC_FLAG_SECDED;
1203 	mci->edac_cap = EDAC_FLAG_SECDED;
1204 	mci->mod_name = EDAC_MOD_STR;
1205 	mci->dev_name = pci_name(pdev);
1206 	mci->pvt_info = &igen6_pvt->imc[mc];
1207 
1208 	imc = mci->pvt_info;
1209 	device_initialize(&imc->dev);
1210 	/*
1211 	 * EDAC core uses mci->pdev(pointer of structure device) as
1212 	 * memory controller ID. The client SoCs attach one or more
1213 	 * memory controllers to single pci_dev (single pci_dev->dev
1214 	 * can be for multiple memory controllers).
1215 	 *
1216 	 * To make mci->pdev unique, assign pci_dev->dev to mci->pdev
1217 	 * for the first memory controller and assign a unique imc->dev
1218 	 * to mci->pdev for each non-first memory controller.
1219 	 */
1220 	mci->pdev = mc ? &imc->dev : &pdev->dev;
1221 	imc->mc	= mc;
1222 	imc->pdev = pdev;
1223 	imc->window = window;
1224 
1225 	igen6_reg_dump(imc);
1226 
1227 	rc = igen6_get_dimm_config(mci);
1228 	if (rc)
1229 		goto fail3;
1230 
1231 	rc = edac_mc_add_mc(mci);
1232 	if (rc) {
1233 		igen6_printk(KERN_ERR, "Failed to register mci#%d\n", mc);
1234 		goto fail3;
1235 	}
1236 
1237 	imc->mci = mci;
1238 	return 0;
1239 fail3:
1240 	kfree(mci->ctl_name);
1241 fail2:
1242 	edac_mc_free(mci);
1243 fail:
1244 	iounmap(window);
1245 	return rc;
1246 }
1247 
1248 static void igen6_unregister_mcis(void)
1249 {
1250 	struct mem_ctl_info *mci;
1251 	struct igen6_imc *imc;
1252 	int i;
1253 
1254 	edac_dbg(2, "\n");
1255 
1256 	for (i = 0; i < res_cfg->num_imc; i++) {
1257 		imc = &igen6_pvt->imc[i];
1258 		mci = imc->mci;
1259 		if (!mci)
1260 			continue;
1261 
1262 		edac_mc_del_mc(mci->pdev);
1263 		kfree(mci->ctl_name);
1264 		edac_mc_free(mci);
1265 		iounmap(imc->window);
1266 	}
1267 }
1268 
1269 static int igen6_mem_slice_setup(u64 mchbar)
1270 {
1271 	struct igen6_imc *imc = &igen6_pvt->imc[0];
1272 	u64 base = mchbar + res_cfg->cmf_base;
1273 	u32 offset = res_cfg->ms_hash_offset;
1274 	u32 size = res_cfg->cmf_size;
1275 	u64 ms_s_size, ms_hash;
1276 	void __iomem *cmf;
1277 	int ms_l_map;
1278 
1279 	edac_dbg(2, "\n");
1280 
1281 	if (imc[0].size < imc[1].size) {
1282 		ms_s_size = imc[0].size;
1283 		ms_l_map  = 1;
1284 	} else {
1285 		ms_s_size = imc[1].size;
1286 		ms_l_map  = 0;
1287 	}
1288 
1289 	igen6_pvt->ms_s_size = ms_s_size;
1290 	igen6_pvt->ms_l_map  = ms_l_map;
1291 
1292 	edac_dbg(0, "ms_s_size: %llu MiB, ms_l_map %d\n",
1293 		 ms_s_size >> 20, ms_l_map);
1294 
1295 	if (!size)
1296 		return 0;
1297 
1298 	cmf = ioremap(base, size);
1299 	if (!cmf) {
1300 		igen6_printk(KERN_ERR, "Failed to ioremap cmf 0x%llx\n", base);
1301 		return -ENODEV;
1302 	}
1303 
1304 	ms_hash = readq(cmf + offset);
1305 	igen6_pvt->ms_hash = ms_hash;
1306 
1307 	edac_dbg(0, "MEM_SLICE_HASH: 0x%llx\n", ms_hash);
1308 
1309 	iounmap(cmf);
1310 
1311 	return 0;
1312 }
1313 
1314 static int register_err_handler(void)
1315 {
1316 	int rc;
1317 
1318 	if (res_cfg->machine_check) {
1319 		mce_register_decode_chain(&ecclog_mce_dec);
1320 		return 0;
1321 	}
1322 
1323 	rc = register_nmi_handler(NMI_SERR, ecclog_nmi_handler,
1324 				  0, IGEN6_NMI_NAME);
1325 	if (rc) {
1326 		igen6_printk(KERN_ERR, "Failed to register NMI handler\n");
1327 		return rc;
1328 	}
1329 
1330 	return 0;
1331 }
1332 
1333 static void unregister_err_handler(void)
1334 {
1335 	if (res_cfg->machine_check) {
1336 		mce_unregister_decode_chain(&ecclog_mce_dec);
1337 		return;
1338 	}
1339 
1340 	unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME);
1341 }
1342 
1343 static int igen6_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1344 {
1345 	u64 mchbar;
1346 	int i, rc;
1347 
1348 	edac_dbg(2, "\n");
1349 
1350 	igen6_pvt = kzalloc(sizeof(*igen6_pvt), GFP_KERNEL);
1351 	if (!igen6_pvt)
1352 		return -ENOMEM;
1353 
1354 	res_cfg = (struct res_config *)ent->driver_data;
1355 
1356 	rc = igen6_pci_setup(pdev, &mchbar);
1357 	if (rc)
1358 		goto fail;
1359 
1360 	for (i = 0; i < res_cfg->num_imc; i++) {
1361 		rc = igen6_register_mci(i, mchbar, pdev);
1362 		if (rc)
1363 			goto fail2;
1364 	}
1365 
1366 	if (res_cfg->num_imc > 1) {
1367 		rc = igen6_mem_slice_setup(mchbar);
1368 		if (rc)
1369 			goto fail2;
1370 	}
1371 
1372 	ecclog_pool = ecclog_gen_pool_create();
1373 	if (!ecclog_pool) {
1374 		rc = -ENOMEM;
1375 		goto fail2;
1376 	}
1377 
1378 	INIT_WORK(&ecclog_work, ecclog_work_cb);
1379 	init_irq_work(&ecclog_irq_work, ecclog_irq_work_cb);
1380 
1381 	rc = register_err_handler();
1382 	if (rc)
1383 		goto fail3;
1384 
1385 	/* Enable error reporting */
1386 	rc = errcmd_enable_error_reporting(true);
1387 	if (rc) {
1388 		igen6_printk(KERN_ERR, "Failed to enable error reporting\n");
1389 		goto fail4;
1390 	}
1391 
1392 	/* Check if any pending errors before/during the registration of the error handler */
1393 	ecclog_handler();
1394 
1395 	igen6_debug_setup();
1396 	return 0;
1397 fail4:
1398 	unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME);
1399 fail3:
1400 	gen_pool_destroy(ecclog_pool);
1401 fail2:
1402 	igen6_unregister_mcis();
1403 fail:
1404 	kfree(igen6_pvt);
1405 	return rc;
1406 }
1407 
1408 static void igen6_remove(struct pci_dev *pdev)
1409 {
1410 	edac_dbg(2, "\n");
1411 
1412 	igen6_debug_teardown();
1413 	errcmd_enable_error_reporting(false);
1414 	unregister_err_handler();
1415 	irq_work_sync(&ecclog_irq_work);
1416 	flush_work(&ecclog_work);
1417 	gen_pool_destroy(ecclog_pool);
1418 	igen6_unregister_mcis();
1419 	kfree(igen6_pvt);
1420 }
1421 
1422 static struct pci_driver igen6_driver = {
1423 	.name     = EDAC_MOD_STR,
1424 	.probe    = igen6_probe,
1425 	.remove   = igen6_remove,
1426 	.id_table = igen6_pci_tbl,
1427 };
1428 
1429 static int __init igen6_init(void)
1430 {
1431 	const char *owner;
1432 	int rc;
1433 
1434 	edac_dbg(2, "\n");
1435 
1436 	if (ghes_get_devices())
1437 		return -EBUSY;
1438 
1439 	owner = edac_get_owner();
1440 	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
1441 		return -EBUSY;
1442 
1443 	edac_op_state = EDAC_OPSTATE_NMI;
1444 
1445 	rc = pci_register_driver(&igen6_driver);
1446 	if (rc)
1447 		return rc;
1448 
1449 	igen6_printk(KERN_INFO, "%s\n", IGEN6_REVISION);
1450 
1451 	return 0;
1452 }
1453 
1454 static void __exit igen6_exit(void)
1455 {
1456 	edac_dbg(2, "\n");
1457 
1458 	pci_unregister_driver(&igen6_driver);
1459 }
1460 
1461 module_init(igen6_init);
1462 module_exit(igen6_exit);
1463 
1464 MODULE_LICENSE("GPL v2");
1465 MODULE_AUTHOR("Qiuxu Zhuo");
1466 MODULE_DESCRIPTION("MC Driver for Intel client SoC using In-Band ECC");
1467