xref: /linux/drivers/edac/igen6_edac.c (revision 4e73826089ce899357580bbf6e0afe4e6f9900b7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Driver for Intel client SoC with integrated memory controller using IBECC
4  *
5  * Copyright (C) 2020 Intel Corporation
6  *
7  * The In-Band ECC (IBECC) IP provides ECC protection to all or specific
8  * regions of the physical memory space. It's used for memory controllers
9  * that don't support the out-of-band ECC which often needs an additional
10  * storage device to each channel for storing ECC data.
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/slab.h>
17 #include <linux/irq_work.h>
18 #include <linux/llist.h>
19 #include <linux/genalloc.h>
20 #include <linux/edac.h>
21 #include <linux/bits.h>
22 #include <linux/io.h>
23 #include <asm/mach_traps.h>
24 #include <asm/nmi.h>
25 #include <asm/mce.h>
26 
27 #include "edac_mc.h"
28 #include "edac_module.h"
29 
30 #define IGEN6_REVISION	"v2.5.1"
31 
32 #define EDAC_MOD_STR	"igen6_edac"
33 #define IGEN6_NMI_NAME	"igen6_ibecc"
34 
35 /* Debug macros */
36 #define igen6_printk(level, fmt, arg...)		\
37 	edac_printk(level, "igen6", fmt, ##arg)
38 
39 #define igen6_mc_printk(mci, level, fmt, arg...)	\
40 	edac_mc_chipset_printk(mci, level, "igen6", fmt, ##arg)
41 
42 #define GET_BITFIELD(v, lo, hi) (((v) & GENMASK_ULL(hi, lo)) >> (lo))
43 
44 #define NUM_IMC				2 /* Max memory controllers */
45 #define NUM_CHANNELS			2 /* Max channels */
46 #define NUM_DIMMS			2 /* Max DIMMs per channel */
47 
48 #define _4GB				BIT_ULL(32)
49 
50 /* Size of physical memory */
51 #define TOM_OFFSET			0xa0
52 /* Top of low usable DRAM */
53 #define TOLUD_OFFSET			0xbc
54 /* Capability register C */
55 #define CAPID_C_OFFSET			0xec
56 #define CAPID_C_IBECC			BIT(15)
57 
58 /* Capability register E */
59 #define CAPID_E_OFFSET			0xf0
60 #define CAPID_E_IBECC			BIT(12)
61 #define CAPID_E_IBECC_BIT18		BIT(18)
62 
63 /* Error Status */
64 #define ERRSTS_OFFSET			0xc8
65 #define ERRSTS_CE			BIT_ULL(6)
66 #define ERRSTS_UE			BIT_ULL(7)
67 
68 /* Error Command */
69 #define ERRCMD_OFFSET			0xca
70 #define ERRCMD_CE			BIT_ULL(6)
71 #define ERRCMD_UE			BIT_ULL(7)
72 
73 /* IBECC MMIO base address */
74 #define IBECC_BASE			(res_cfg->ibecc_base)
75 #define IBECC_ACTIVATE_OFFSET		IBECC_BASE
76 #define IBECC_ACTIVATE_EN		BIT(0)
77 
78 /* IBECC error log */
79 #define ECC_ERROR_LOG_OFFSET		(IBECC_BASE + res_cfg->ibecc_error_log_offset)
80 #define ECC_ERROR_LOG_CE		BIT_ULL(62)
81 #define ECC_ERROR_LOG_UE		BIT_ULL(63)
82 #define ECC_ERROR_LOG_ADDR_SHIFT	5
83 #define ECC_ERROR_LOG_ADDR(v)		GET_BITFIELD(v, 5, 38)
84 #define ECC_ERROR_LOG_ADDR45(v)		GET_BITFIELD(v, 5, 45)
85 #define ECC_ERROR_LOG_SYND(v)		GET_BITFIELD(v, 46, 61)
86 
87 /* Host MMIO base address */
88 #define MCHBAR_OFFSET			0x48
89 #define MCHBAR_EN			BIT_ULL(0)
90 #define MCHBAR_BASE(v)			(GET_BITFIELD(v, 16, 38) << 16)
91 #define MCHBAR_SIZE			0x10000
92 
93 /* Parameters for the channel decode stage */
94 #define IMC_BASE			(res_cfg->imc_base)
95 #define MAD_INTER_CHANNEL_OFFSET	IMC_BASE
96 #define MAD_INTER_CHANNEL_DDR_TYPE(v)	GET_BITFIELD(v, 0, 2)
97 #define MAD_INTER_CHANNEL_ECHM(v)	GET_BITFIELD(v, 3, 3)
98 #define MAD_INTER_CHANNEL_CH_L_MAP(v)	GET_BITFIELD(v, 4, 4)
99 #define MAD_INTER_CHANNEL_CH_S_SIZE(v)	((u64)GET_BITFIELD(v, 12, 19) << 29)
100 
101 /* Parameters for DRAM decode stage */
102 #define MAD_INTRA_CH0_OFFSET		(IMC_BASE + 4)
103 #define MAD_INTRA_CH_DIMM_L_MAP(v)	GET_BITFIELD(v, 0, 0)
104 
105 /* DIMM characteristics */
106 #define MAD_DIMM_CH0_OFFSET		(IMC_BASE + 0xc)
107 #define MAD_DIMM_CH_DIMM_L_SIZE(v)	((u64)GET_BITFIELD(v, 0, 6) << 29)
108 #define MAD_DIMM_CH_DLW(v)		GET_BITFIELD(v, 7, 8)
109 #define MAD_DIMM_CH_DIMM_S_SIZE(v)	((u64)GET_BITFIELD(v, 16, 22) << 29)
110 #define MAD_DIMM_CH_DSW(v)		GET_BITFIELD(v, 24, 25)
111 
112 /* Hash for memory controller selection */
113 #define MAD_MC_HASH_OFFSET		(IMC_BASE + 0x1b8)
114 #define MAC_MC_HASH_LSB(v)		GET_BITFIELD(v, 1, 3)
115 
116 /* Hash for channel selection */
117 #define CHANNEL_HASH_OFFSET		(IMC_BASE + 0x24)
118 /* Hash for enhanced channel selection */
119 #define CHANNEL_EHASH_OFFSET		(IMC_BASE + 0x28)
120 #define CHANNEL_HASH_MASK(v)		(GET_BITFIELD(v, 6, 19) << 6)
121 #define CHANNEL_HASH_LSB_MASK_BIT(v)	GET_BITFIELD(v, 24, 26)
122 #define CHANNEL_HASH_MODE(v)		GET_BITFIELD(v, 28, 28)
123 
124 /* Parameters for memory slice decode stage */
125 #define MEM_SLICE_HASH_MASK(v)		(GET_BITFIELD(v, 6, 19) << 6)
126 #define MEM_SLICE_HASH_LSB_MASK_BIT(v)	GET_BITFIELD(v, 24, 26)
127 
128 static struct res_config {
129 	bool machine_check;
130 	int num_imc;
131 	u32 imc_base;
132 	u32 cmf_base;
133 	u32 cmf_size;
134 	u32 ms_hash_offset;
135 	u32 ibecc_base;
136 	u32 ibecc_error_log_offset;
137 	bool (*ibecc_available)(struct pci_dev *pdev);
138 	/* Extract error address logged in IBECC */
139 	u64 (*err_addr)(u64 ecclog);
140 	/* Convert error address logged in IBECC to system physical address */
141 	u64 (*err_addr_to_sys_addr)(u64 eaddr, int mc);
142 	/* Convert error address logged in IBECC to integrated memory controller address */
143 	u64 (*err_addr_to_imc_addr)(u64 eaddr, int mc);
144 } *res_cfg;
145 
146 struct igen6_imc {
147 	int mc;
148 	struct mem_ctl_info *mci;
149 	struct pci_dev *pdev;
150 	struct device dev;
151 	void __iomem *window;
152 	u64 size;
153 	u64 ch_s_size;
154 	int ch_l_map;
155 	u64 dimm_s_size[NUM_CHANNELS];
156 	u64 dimm_l_size[NUM_CHANNELS];
157 	int dimm_l_map[NUM_CHANNELS];
158 };
159 
160 static struct igen6_pvt {
161 	struct igen6_imc imc[NUM_IMC];
162 	u64 ms_hash;
163 	u64 ms_s_size;
164 	int ms_l_map;
165 } *igen6_pvt;
166 
167 /* The top of low usable DRAM */
168 static u32 igen6_tolud;
169 /* The size of physical memory */
170 static u64 igen6_tom;
171 
172 struct decoded_addr {
173 	int mc;
174 	u64 imc_addr;
175 	u64 sys_addr;
176 	int channel_idx;
177 	u64 channel_addr;
178 	int sub_channel_idx;
179 	u64 sub_channel_addr;
180 };
181 
182 struct ecclog_node {
183 	struct llist_node llnode;
184 	int mc;
185 	u64 ecclog;
186 };
187 
188 /*
189  * In the NMI handler, the driver uses the lock-less memory allocator
190  * to allocate memory to store the IBECC error logs and links the logs
191  * to the lock-less list. Delay printk() and the work of error reporting
192  * to EDAC core in a worker.
193  */
194 #define ECCLOG_POOL_SIZE	PAGE_SIZE
195 static LLIST_HEAD(ecclog_llist);
196 static struct gen_pool *ecclog_pool;
197 static char ecclog_buf[ECCLOG_POOL_SIZE];
198 static struct irq_work ecclog_irq_work;
199 static struct work_struct ecclog_work;
200 
201 /* Compute die IDs for Elkhart Lake with IBECC */
202 #define DID_EHL_SKU5	0x4514
203 #define DID_EHL_SKU6	0x4528
204 #define DID_EHL_SKU7	0x452a
205 #define DID_EHL_SKU8	0x4516
206 #define DID_EHL_SKU9	0x452c
207 #define DID_EHL_SKU10	0x452e
208 #define DID_EHL_SKU11	0x4532
209 #define DID_EHL_SKU12	0x4518
210 #define DID_EHL_SKU13	0x451a
211 #define DID_EHL_SKU14	0x4534
212 #define DID_EHL_SKU15	0x4536
213 
214 /* Compute die IDs for ICL-NNPI with IBECC */
215 #define DID_ICL_SKU8	0x4581
216 #define DID_ICL_SKU10	0x4585
217 #define DID_ICL_SKU11	0x4589
218 #define DID_ICL_SKU12	0x458d
219 
220 /* Compute die IDs for Tiger Lake with IBECC */
221 #define DID_TGL_SKU	0x9a14
222 
223 /* Compute die IDs for Alder Lake with IBECC */
224 #define DID_ADL_SKU1	0x4601
225 #define DID_ADL_SKU2	0x4602
226 #define DID_ADL_SKU3	0x4621
227 #define DID_ADL_SKU4	0x4641
228 
229 /* Compute die IDs for Alder Lake-N with IBECC */
230 #define DID_ADL_N_SKU1	0x4614
231 #define DID_ADL_N_SKU2	0x4617
232 #define DID_ADL_N_SKU3	0x461b
233 #define DID_ADL_N_SKU4	0x461c
234 #define DID_ADL_N_SKU5	0x4673
235 #define DID_ADL_N_SKU6	0x4674
236 #define DID_ADL_N_SKU7	0x4675
237 #define DID_ADL_N_SKU8	0x4677
238 #define DID_ADL_N_SKU9	0x4678
239 #define DID_ADL_N_SKU10	0x4679
240 #define DID_ADL_N_SKU11	0x467c
241 
242 /* Compute die IDs for Raptor Lake-P with IBECC */
243 #define DID_RPL_P_SKU1	0xa706
244 #define DID_RPL_P_SKU2	0xa707
245 #define DID_RPL_P_SKU3	0xa708
246 #define DID_RPL_P_SKU4	0xa716
247 #define DID_RPL_P_SKU5	0xa718
248 
249 /* Compute die IDs for Meteor Lake-PS with IBECC */
250 #define DID_MTL_PS_SKU1	0x7d21
251 #define DID_MTL_PS_SKU2	0x7d22
252 #define DID_MTL_PS_SKU3	0x7d23
253 #define DID_MTL_PS_SKU4	0x7d24
254 
255 /* Compute die IDs for Meteor Lake-P with IBECC */
256 #define DID_MTL_P_SKU1	0x7d01
257 #define DID_MTL_P_SKU2	0x7d02
258 #define DID_MTL_P_SKU3	0x7d14
259 
260 static int get_mchbar(struct pci_dev *pdev, u64 *mchbar)
261 {
262 	union  {
263 		u64 v;
264 		struct {
265 			u32 v_lo;
266 			u32 v_hi;
267 		};
268 	} u;
269 
270 	if (pci_read_config_dword(pdev, MCHBAR_OFFSET, &u.v_lo)) {
271 		igen6_printk(KERN_ERR, "Failed to read lower MCHBAR\n");
272 		return -ENODEV;
273 	}
274 
275 	if (pci_read_config_dword(pdev, MCHBAR_OFFSET + 4, &u.v_hi)) {
276 		igen6_printk(KERN_ERR, "Failed to read upper MCHBAR\n");
277 		return -ENODEV;
278 	}
279 
280 	if (!(u.v & MCHBAR_EN)) {
281 		igen6_printk(KERN_ERR, "MCHBAR is disabled\n");
282 		return -ENODEV;
283 	}
284 
285 	*mchbar = MCHBAR_BASE(u.v);
286 
287 	return 0;
288 }
289 
290 static bool ehl_ibecc_available(struct pci_dev *pdev)
291 {
292 	u32 v;
293 
294 	if (pci_read_config_dword(pdev, CAPID_C_OFFSET, &v))
295 		return false;
296 
297 	return !!(CAPID_C_IBECC & v);
298 }
299 
300 static u64 ehl_err_addr_to_sys_addr(u64 eaddr, int mc)
301 {
302 	return eaddr;
303 }
304 
305 static u64 ehl_err_addr_to_imc_addr(u64 eaddr, int mc)
306 {
307 	if (eaddr < igen6_tolud)
308 		return eaddr;
309 
310 	if (igen6_tom <= _4GB)
311 		return eaddr + igen6_tolud - _4GB;
312 
313 	if (eaddr < _4GB)
314 		return eaddr + igen6_tolud - igen6_tom;
315 
316 	return eaddr;
317 }
318 
319 static bool icl_ibecc_available(struct pci_dev *pdev)
320 {
321 	u32 v;
322 
323 	if (pci_read_config_dword(pdev, CAPID_C_OFFSET, &v))
324 		return false;
325 
326 	return !(CAPID_C_IBECC & v) &&
327 		(boot_cpu_data.x86_stepping >= 1);
328 }
329 
330 static bool tgl_ibecc_available(struct pci_dev *pdev)
331 {
332 	u32 v;
333 
334 	if (pci_read_config_dword(pdev, CAPID_E_OFFSET, &v))
335 		return false;
336 
337 	return !(CAPID_E_IBECC & v);
338 }
339 
340 static bool mtl_p_ibecc_available(struct pci_dev *pdev)
341 {
342 	u32 v;
343 
344 	if (pci_read_config_dword(pdev, CAPID_E_OFFSET, &v))
345 		return false;
346 
347 	return !(CAPID_E_IBECC_BIT18 & v);
348 }
349 
350 static bool mtl_ps_ibecc_available(struct pci_dev *pdev)
351 {
352 #define MCHBAR_MEMSS_IBECCDIS	0x13c00
353 	void __iomem *window;
354 	u64 mchbar;
355 	u32 val;
356 
357 	if (get_mchbar(pdev, &mchbar))
358 		return false;
359 
360 	window = ioremap(mchbar, MCHBAR_SIZE * 2);
361 	if (!window) {
362 		igen6_printk(KERN_ERR, "Failed to ioremap 0x%llx\n", mchbar);
363 		return false;
364 	}
365 
366 	val = readl(window + MCHBAR_MEMSS_IBECCDIS);
367 	iounmap(window);
368 
369 	/* Bit6: 1 - IBECC is disabled, 0 - IBECC isn't disabled */
370 	return !GET_BITFIELD(val, 6, 6);
371 }
372 
373 static u64 mem_addr_to_sys_addr(u64 maddr)
374 {
375 	if (maddr < igen6_tolud)
376 		return maddr;
377 
378 	if (igen6_tom <= _4GB)
379 		return maddr - igen6_tolud + _4GB;
380 
381 	if (maddr < _4GB)
382 		return maddr - igen6_tolud + igen6_tom;
383 
384 	return maddr;
385 }
386 
387 static u64 mem_slice_hash(u64 addr, u64 mask, u64 hash_init, int intlv_bit)
388 {
389 	u64 hash_addr = addr & mask, hash = hash_init;
390 	u64 intlv = (addr >> intlv_bit) & 1;
391 	int i;
392 
393 	for (i = 6; i < 20; i++)
394 		hash ^= (hash_addr >> i) & 1;
395 
396 	return hash ^ intlv;
397 }
398 
399 static u64 tgl_err_addr_to_mem_addr(u64 eaddr, int mc)
400 {
401 	u64 maddr, hash, mask, ms_s_size;
402 	int intlv_bit;
403 	u32 ms_hash;
404 
405 	ms_s_size = igen6_pvt->ms_s_size;
406 	if (eaddr >= ms_s_size)
407 		return eaddr + ms_s_size;
408 
409 	ms_hash = igen6_pvt->ms_hash;
410 
411 	mask = MEM_SLICE_HASH_MASK(ms_hash);
412 	intlv_bit = MEM_SLICE_HASH_LSB_MASK_BIT(ms_hash) + 6;
413 
414 	maddr = GET_BITFIELD(eaddr, intlv_bit, 63) << (intlv_bit + 1) |
415 		GET_BITFIELD(eaddr, 0, intlv_bit - 1);
416 
417 	hash = mem_slice_hash(maddr, mask, mc, intlv_bit);
418 
419 	return maddr | (hash << intlv_bit);
420 }
421 
422 static u64 tgl_err_addr_to_sys_addr(u64 eaddr, int mc)
423 {
424 	u64 maddr = tgl_err_addr_to_mem_addr(eaddr, mc);
425 
426 	return mem_addr_to_sys_addr(maddr);
427 }
428 
429 static u64 tgl_err_addr_to_imc_addr(u64 eaddr, int mc)
430 {
431 	return eaddr;
432 }
433 
434 static u64 adl_err_addr_to_sys_addr(u64 eaddr, int mc)
435 {
436 	return mem_addr_to_sys_addr(eaddr);
437 }
438 
439 static u64 adl_err_addr_to_imc_addr(u64 eaddr, int mc)
440 {
441 	u64 imc_addr, ms_s_size = igen6_pvt->ms_s_size;
442 	struct igen6_imc *imc = &igen6_pvt->imc[mc];
443 	int intlv_bit;
444 	u32 mc_hash;
445 
446 	if (eaddr >= 2 * ms_s_size)
447 		return eaddr - ms_s_size;
448 
449 	mc_hash = readl(imc->window + MAD_MC_HASH_OFFSET);
450 
451 	intlv_bit = MAC_MC_HASH_LSB(mc_hash) + 6;
452 
453 	imc_addr = GET_BITFIELD(eaddr, intlv_bit + 1, 63) << intlv_bit |
454 		   GET_BITFIELD(eaddr, 0, intlv_bit - 1);
455 
456 	return imc_addr;
457 }
458 
459 static u64 rpl_p_err_addr(u64 ecclog)
460 {
461 	return ECC_ERROR_LOG_ADDR45(ecclog);
462 }
463 
464 static struct res_config ehl_cfg = {
465 	.num_imc		= 1,
466 	.imc_base		= 0x5000,
467 	.ibecc_base		= 0xdc00,
468 	.ibecc_available	= ehl_ibecc_available,
469 	.ibecc_error_log_offset	= 0x170,
470 	.err_addr_to_sys_addr	= ehl_err_addr_to_sys_addr,
471 	.err_addr_to_imc_addr	= ehl_err_addr_to_imc_addr,
472 };
473 
474 static struct res_config icl_cfg = {
475 	.num_imc		= 1,
476 	.imc_base		= 0x5000,
477 	.ibecc_base		= 0xd800,
478 	.ibecc_error_log_offset	= 0x170,
479 	.ibecc_available	= icl_ibecc_available,
480 	.err_addr_to_sys_addr	= ehl_err_addr_to_sys_addr,
481 	.err_addr_to_imc_addr	= ehl_err_addr_to_imc_addr,
482 };
483 
484 static struct res_config tgl_cfg = {
485 	.machine_check		= true,
486 	.num_imc		= 2,
487 	.imc_base		= 0x5000,
488 	.cmf_base		= 0x11000,
489 	.cmf_size		= 0x800,
490 	.ms_hash_offset		= 0xac,
491 	.ibecc_base		= 0xd400,
492 	.ibecc_error_log_offset	= 0x170,
493 	.ibecc_available	= tgl_ibecc_available,
494 	.err_addr_to_sys_addr	= tgl_err_addr_to_sys_addr,
495 	.err_addr_to_imc_addr	= tgl_err_addr_to_imc_addr,
496 };
497 
498 static struct res_config adl_cfg = {
499 	.machine_check		= true,
500 	.num_imc		= 2,
501 	.imc_base		= 0xd800,
502 	.ibecc_base		= 0xd400,
503 	.ibecc_error_log_offset	= 0x68,
504 	.ibecc_available	= tgl_ibecc_available,
505 	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
506 	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
507 };
508 
509 static struct res_config adl_n_cfg = {
510 	.machine_check		= true,
511 	.num_imc		= 1,
512 	.imc_base		= 0xd800,
513 	.ibecc_base		= 0xd400,
514 	.ibecc_error_log_offset	= 0x68,
515 	.ibecc_available	= tgl_ibecc_available,
516 	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
517 	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
518 };
519 
520 static struct res_config rpl_p_cfg = {
521 	.machine_check		= true,
522 	.num_imc		= 2,
523 	.imc_base		= 0xd800,
524 	.ibecc_base		= 0xd400,
525 	.ibecc_error_log_offset	= 0x68,
526 	.ibecc_available	= tgl_ibecc_available,
527 	.err_addr		= rpl_p_err_addr,
528 	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
529 	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
530 };
531 
532 static struct res_config mtl_ps_cfg = {
533 	.machine_check		= true,
534 	.num_imc		= 2,
535 	.imc_base		= 0xd800,
536 	.ibecc_base		= 0xd400,
537 	.ibecc_error_log_offset	= 0x170,
538 	.ibecc_available	= mtl_ps_ibecc_available,
539 	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
540 	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
541 };
542 
543 static struct res_config mtl_p_cfg = {
544 	.machine_check		= true,
545 	.num_imc		= 2,
546 	.imc_base		= 0xd800,
547 	.ibecc_base		= 0xd400,
548 	.ibecc_error_log_offset	= 0x170,
549 	.ibecc_available	= mtl_p_ibecc_available,
550 	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
551 	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
552 };
553 
554 static const struct pci_device_id igen6_pci_tbl[] = {
555 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU5), (kernel_ulong_t)&ehl_cfg },
556 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU6), (kernel_ulong_t)&ehl_cfg },
557 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU7), (kernel_ulong_t)&ehl_cfg },
558 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU8), (kernel_ulong_t)&ehl_cfg },
559 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU9), (kernel_ulong_t)&ehl_cfg },
560 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU10), (kernel_ulong_t)&ehl_cfg },
561 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU11), (kernel_ulong_t)&ehl_cfg },
562 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU12), (kernel_ulong_t)&ehl_cfg },
563 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU13), (kernel_ulong_t)&ehl_cfg },
564 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU14), (kernel_ulong_t)&ehl_cfg },
565 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU15), (kernel_ulong_t)&ehl_cfg },
566 	{ PCI_VDEVICE(INTEL, DID_ICL_SKU8), (kernel_ulong_t)&icl_cfg },
567 	{ PCI_VDEVICE(INTEL, DID_ICL_SKU10), (kernel_ulong_t)&icl_cfg },
568 	{ PCI_VDEVICE(INTEL, DID_ICL_SKU11), (kernel_ulong_t)&icl_cfg },
569 	{ PCI_VDEVICE(INTEL, DID_ICL_SKU12), (kernel_ulong_t)&icl_cfg },
570 	{ PCI_VDEVICE(INTEL, DID_TGL_SKU), (kernel_ulong_t)&tgl_cfg },
571 	{ PCI_VDEVICE(INTEL, DID_ADL_SKU1), (kernel_ulong_t)&adl_cfg },
572 	{ PCI_VDEVICE(INTEL, DID_ADL_SKU2), (kernel_ulong_t)&adl_cfg },
573 	{ PCI_VDEVICE(INTEL, DID_ADL_SKU3), (kernel_ulong_t)&adl_cfg },
574 	{ PCI_VDEVICE(INTEL, DID_ADL_SKU4), (kernel_ulong_t)&adl_cfg },
575 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU1), (kernel_ulong_t)&adl_n_cfg },
576 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU2), (kernel_ulong_t)&adl_n_cfg },
577 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU3), (kernel_ulong_t)&adl_n_cfg },
578 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU4), (kernel_ulong_t)&adl_n_cfg },
579 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU5), (kernel_ulong_t)&adl_n_cfg },
580 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU6), (kernel_ulong_t)&adl_n_cfg },
581 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU7), (kernel_ulong_t)&adl_n_cfg },
582 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU8), (kernel_ulong_t)&adl_n_cfg },
583 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU9), (kernel_ulong_t)&adl_n_cfg },
584 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU10), (kernel_ulong_t)&adl_n_cfg },
585 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU11), (kernel_ulong_t)&adl_n_cfg },
586 	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU1), (kernel_ulong_t)&rpl_p_cfg },
587 	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU2), (kernel_ulong_t)&rpl_p_cfg },
588 	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU3), (kernel_ulong_t)&rpl_p_cfg },
589 	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU4), (kernel_ulong_t)&rpl_p_cfg },
590 	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU5), (kernel_ulong_t)&rpl_p_cfg },
591 	{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU1), (kernel_ulong_t)&mtl_ps_cfg },
592 	{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU2), (kernel_ulong_t)&mtl_ps_cfg },
593 	{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU3), (kernel_ulong_t)&mtl_ps_cfg },
594 	{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU4), (kernel_ulong_t)&mtl_ps_cfg },
595 	{ PCI_VDEVICE(INTEL, DID_MTL_P_SKU1), (kernel_ulong_t)&mtl_p_cfg },
596 	{ PCI_VDEVICE(INTEL, DID_MTL_P_SKU2), (kernel_ulong_t)&mtl_p_cfg },
597 	{ PCI_VDEVICE(INTEL, DID_MTL_P_SKU3), (kernel_ulong_t)&mtl_p_cfg },
598 	{ },
599 };
600 MODULE_DEVICE_TABLE(pci, igen6_pci_tbl);
601 
602 static enum dev_type get_width(int dimm_l, u32 mad_dimm)
603 {
604 	u32 w = dimm_l ? MAD_DIMM_CH_DLW(mad_dimm) :
605 			 MAD_DIMM_CH_DSW(mad_dimm);
606 
607 	switch (w) {
608 	case 0:
609 		return DEV_X8;
610 	case 1:
611 		return DEV_X16;
612 	case 2:
613 		return DEV_X32;
614 	default:
615 		return DEV_UNKNOWN;
616 	}
617 }
618 
619 static enum mem_type get_memory_type(u32 mad_inter)
620 {
621 	u32 t = MAD_INTER_CHANNEL_DDR_TYPE(mad_inter);
622 
623 	switch (t) {
624 	case 0:
625 		return MEM_DDR4;
626 	case 1:
627 		return MEM_DDR3;
628 	case 2:
629 		return MEM_LPDDR3;
630 	case 3:
631 		return MEM_LPDDR4;
632 	case 4:
633 		return MEM_WIO2;
634 	default:
635 		return MEM_UNKNOWN;
636 	}
637 }
638 
639 static int decode_chan_idx(u64 addr, u64 mask, int intlv_bit)
640 {
641 	u64 hash_addr = addr & mask, hash = 0;
642 	u64 intlv = (addr >> intlv_bit) & 1;
643 	int i;
644 
645 	for (i = 6; i < 20; i++)
646 		hash ^= (hash_addr >> i) & 1;
647 
648 	return (int)hash ^ intlv;
649 }
650 
651 static u64 decode_channel_addr(u64 addr, int intlv_bit)
652 {
653 	u64 channel_addr;
654 
655 	/* Remove the interleave bit and shift upper part down to fill gap */
656 	channel_addr  = GET_BITFIELD(addr, intlv_bit + 1, 63) << intlv_bit;
657 	channel_addr |= GET_BITFIELD(addr, 0, intlv_bit - 1);
658 
659 	return channel_addr;
660 }
661 
662 static void decode_addr(u64 addr, u32 hash, u64 s_size, int l_map,
663 			int *idx, u64 *sub_addr)
664 {
665 	int intlv_bit = CHANNEL_HASH_LSB_MASK_BIT(hash) + 6;
666 
667 	if (addr > 2 * s_size) {
668 		*sub_addr = addr - s_size;
669 		*idx = l_map;
670 		return;
671 	}
672 
673 	if (CHANNEL_HASH_MODE(hash)) {
674 		*sub_addr = decode_channel_addr(addr, intlv_bit);
675 		*idx = decode_chan_idx(addr, CHANNEL_HASH_MASK(hash), intlv_bit);
676 	} else {
677 		*sub_addr = decode_channel_addr(addr, 6);
678 		*idx = GET_BITFIELD(addr, 6, 6);
679 	}
680 }
681 
682 static int igen6_decode(struct decoded_addr *res)
683 {
684 	struct igen6_imc *imc = &igen6_pvt->imc[res->mc];
685 	u64 addr = res->imc_addr, sub_addr, s_size;
686 	int idx, l_map;
687 	u32 hash;
688 
689 	if (addr >= igen6_tom) {
690 		edac_dbg(0, "Address 0x%llx out of range\n", addr);
691 		return -EINVAL;
692 	}
693 
694 	/* Decode channel */
695 	hash   = readl(imc->window + CHANNEL_HASH_OFFSET);
696 	s_size = imc->ch_s_size;
697 	l_map  = imc->ch_l_map;
698 	decode_addr(addr, hash, s_size, l_map, &idx, &sub_addr);
699 	res->channel_idx  = idx;
700 	res->channel_addr = sub_addr;
701 
702 	/* Decode sub-channel/DIMM */
703 	hash   = readl(imc->window + CHANNEL_EHASH_OFFSET);
704 	s_size = imc->dimm_s_size[idx];
705 	l_map  = imc->dimm_l_map[idx];
706 	decode_addr(res->channel_addr, hash, s_size, l_map, &idx, &sub_addr);
707 	res->sub_channel_idx  = idx;
708 	res->sub_channel_addr = sub_addr;
709 
710 	return 0;
711 }
712 
713 static void igen6_output_error(struct decoded_addr *res,
714 			       struct mem_ctl_info *mci, u64 ecclog)
715 {
716 	enum hw_event_mc_err_type type = ecclog & ECC_ERROR_LOG_UE ?
717 					 HW_EVENT_ERR_UNCORRECTED :
718 					 HW_EVENT_ERR_CORRECTED;
719 
720 	edac_mc_handle_error(type, mci, 1,
721 			     res->sys_addr >> PAGE_SHIFT,
722 			     res->sys_addr & ~PAGE_MASK,
723 			     ECC_ERROR_LOG_SYND(ecclog),
724 			     res->channel_idx, res->sub_channel_idx,
725 			     -1, "", "");
726 }
727 
728 static struct gen_pool *ecclog_gen_pool_create(void)
729 {
730 	struct gen_pool *pool;
731 
732 	pool = gen_pool_create(ilog2(sizeof(struct ecclog_node)), -1);
733 	if (!pool)
734 		return NULL;
735 
736 	if (gen_pool_add(pool, (unsigned long)ecclog_buf, ECCLOG_POOL_SIZE, -1)) {
737 		gen_pool_destroy(pool);
738 		return NULL;
739 	}
740 
741 	return pool;
742 }
743 
744 static int ecclog_gen_pool_add(int mc, u64 ecclog)
745 {
746 	struct ecclog_node *node;
747 
748 	node = (void *)gen_pool_alloc(ecclog_pool, sizeof(*node));
749 	if (!node)
750 		return -ENOMEM;
751 
752 	node->mc = mc;
753 	node->ecclog = ecclog;
754 	llist_add(&node->llnode, &ecclog_llist);
755 
756 	return 0;
757 }
758 
759 /*
760  * Either the memory-mapped I/O status register ECC_ERROR_LOG or the PCI
761  * configuration space status register ERRSTS can indicate whether a
762  * correctable error or an uncorrectable error occurred. We only use the
763  * ECC_ERROR_LOG register to check error type, but need to clear both
764  * registers to enable future error events.
765  */
766 static u64 ecclog_read_and_clear(struct igen6_imc *imc)
767 {
768 	u64 ecclog = readq(imc->window + ECC_ERROR_LOG_OFFSET);
769 
770 	if (ecclog & (ECC_ERROR_LOG_CE | ECC_ERROR_LOG_UE)) {
771 		/* Clear CE/UE bits by writing 1s */
772 		writeq(ecclog, imc->window + ECC_ERROR_LOG_OFFSET);
773 		return ecclog;
774 	}
775 
776 	return 0;
777 }
778 
779 static void errsts_clear(struct igen6_imc *imc)
780 {
781 	u16 errsts;
782 
783 	if (pci_read_config_word(imc->pdev, ERRSTS_OFFSET, &errsts)) {
784 		igen6_printk(KERN_ERR, "Failed to read ERRSTS\n");
785 		return;
786 	}
787 
788 	/* Clear CE/UE bits by writing 1s */
789 	if (errsts & (ERRSTS_CE | ERRSTS_UE))
790 		pci_write_config_word(imc->pdev, ERRSTS_OFFSET, errsts);
791 }
792 
793 static int errcmd_enable_error_reporting(bool enable)
794 {
795 	struct igen6_imc *imc = &igen6_pvt->imc[0];
796 	u16 errcmd;
797 	int rc;
798 
799 	rc = pci_read_config_word(imc->pdev, ERRCMD_OFFSET, &errcmd);
800 	if (rc)
801 		return rc;
802 
803 	if (enable)
804 		errcmd |= ERRCMD_CE | ERRSTS_UE;
805 	else
806 		errcmd &= ~(ERRCMD_CE | ERRSTS_UE);
807 
808 	rc = pci_write_config_word(imc->pdev, ERRCMD_OFFSET, errcmd);
809 	if (rc)
810 		return rc;
811 
812 	return 0;
813 }
814 
815 static int ecclog_handler(void)
816 {
817 	struct igen6_imc *imc;
818 	int i, n = 0;
819 	u64 ecclog;
820 
821 	for (i = 0; i < res_cfg->num_imc; i++) {
822 		imc = &igen6_pvt->imc[i];
823 
824 		/* errsts_clear() isn't NMI-safe. Delay it in the IRQ context */
825 
826 		ecclog = ecclog_read_and_clear(imc);
827 		if (!ecclog)
828 			continue;
829 
830 		if (!ecclog_gen_pool_add(i, ecclog))
831 			irq_work_queue(&ecclog_irq_work);
832 
833 		n++;
834 	}
835 
836 	return n;
837 }
838 
839 static void ecclog_work_cb(struct work_struct *work)
840 {
841 	struct ecclog_node *node, *tmp;
842 	struct mem_ctl_info *mci;
843 	struct llist_node *head;
844 	struct decoded_addr res;
845 	u64 eaddr;
846 
847 	head = llist_del_all(&ecclog_llist);
848 	if (!head)
849 		return;
850 
851 	llist_for_each_entry_safe(node, tmp, head, llnode) {
852 		memset(&res, 0, sizeof(res));
853 		if (res_cfg->err_addr)
854 			eaddr = res_cfg->err_addr(node->ecclog);
855 		else
856 			eaddr = ECC_ERROR_LOG_ADDR(node->ecclog) <<
857 				ECC_ERROR_LOG_ADDR_SHIFT;
858 		res.mc	     = node->mc;
859 		res.sys_addr = res_cfg->err_addr_to_sys_addr(eaddr, res.mc);
860 		res.imc_addr = res_cfg->err_addr_to_imc_addr(eaddr, res.mc);
861 
862 		mci = igen6_pvt->imc[res.mc].mci;
863 
864 		edac_dbg(2, "MC %d, ecclog = 0x%llx\n", node->mc, node->ecclog);
865 		igen6_mc_printk(mci, KERN_DEBUG, "HANDLING IBECC MEMORY ERROR\n");
866 		igen6_mc_printk(mci, KERN_DEBUG, "ADDR 0x%llx ", res.sys_addr);
867 
868 		if (!igen6_decode(&res))
869 			igen6_output_error(&res, mci, node->ecclog);
870 
871 		gen_pool_free(ecclog_pool, (unsigned long)node, sizeof(*node));
872 	}
873 }
874 
875 static void ecclog_irq_work_cb(struct irq_work *irq_work)
876 {
877 	int i;
878 
879 	for (i = 0; i < res_cfg->num_imc; i++)
880 		errsts_clear(&igen6_pvt->imc[i]);
881 
882 	if (!llist_empty(&ecclog_llist))
883 		schedule_work(&ecclog_work);
884 }
885 
886 static int ecclog_nmi_handler(unsigned int cmd, struct pt_regs *regs)
887 {
888 	unsigned char reason;
889 
890 	if (!ecclog_handler())
891 		return NMI_DONE;
892 
893 	/*
894 	 * Both In-Band ECC correctable error and uncorrectable error are
895 	 * reported by SERR# NMI. The NMI generic code (see pci_serr_error())
896 	 * doesn't clear the bit NMI_REASON_CLEAR_SERR (in port 0x61) to
897 	 * re-enable the SERR# NMI after NMI handling. So clear this bit here
898 	 * to re-enable SERR# NMI for receiving future In-Band ECC errors.
899 	 */
900 	reason  = x86_platform.get_nmi_reason() & NMI_REASON_CLEAR_MASK;
901 	reason |= NMI_REASON_CLEAR_SERR;
902 	outb(reason, NMI_REASON_PORT);
903 	reason &= ~NMI_REASON_CLEAR_SERR;
904 	outb(reason, NMI_REASON_PORT);
905 
906 	return NMI_HANDLED;
907 }
908 
909 static int ecclog_mce_handler(struct notifier_block *nb, unsigned long val,
910 			      void *data)
911 {
912 	struct mce *mce = (struct mce *)data;
913 	char *type;
914 
915 	if (mce->kflags & MCE_HANDLED_CEC)
916 		return NOTIFY_DONE;
917 
918 	/*
919 	 * Ignore unless this is a memory related error.
920 	 * We don't check the bit MCI_STATUS_ADDRV of MCi_STATUS here,
921 	 * since this bit isn't set on some CPU (e.g., Tiger Lake UP3).
922 	 */
923 	if ((mce->status & 0xefff) >> 7 != 1)
924 		return NOTIFY_DONE;
925 
926 	if (mce->mcgstatus & MCG_STATUS_MCIP)
927 		type = "Exception";
928 	else
929 		type = "Event";
930 
931 	edac_dbg(0, "CPU %d: Machine Check %s: 0x%llx Bank %d: 0x%llx\n",
932 		 mce->extcpu, type, mce->mcgstatus,
933 		 mce->bank, mce->status);
934 	edac_dbg(0, "TSC 0x%llx\n", mce->tsc);
935 	edac_dbg(0, "ADDR 0x%llx\n", mce->addr);
936 	edac_dbg(0, "MISC 0x%llx\n", mce->misc);
937 	edac_dbg(0, "PROCESSOR %u:0x%x TIME %llu SOCKET %u APIC 0x%x\n",
938 		 mce->cpuvendor, mce->cpuid, mce->time,
939 		 mce->socketid, mce->apicid);
940 	/*
941 	 * We just use the Machine Check for the memory error notification.
942 	 * Each memory controller is associated with an IBECC instance.
943 	 * Directly read and clear the error information(error address and
944 	 * error type) on all the IBECC instances so that we know on which
945 	 * memory controller the memory error(s) occurred.
946 	 */
947 	if (!ecclog_handler())
948 		return NOTIFY_DONE;
949 
950 	mce->kflags |= MCE_HANDLED_EDAC;
951 
952 	return NOTIFY_DONE;
953 }
954 
955 static struct notifier_block ecclog_mce_dec = {
956 	.notifier_call	= ecclog_mce_handler,
957 	.priority	= MCE_PRIO_EDAC,
958 };
959 
960 static bool igen6_check_ecc(struct igen6_imc *imc)
961 {
962 	u32 activate = readl(imc->window + IBECC_ACTIVATE_OFFSET);
963 
964 	return !!(activate & IBECC_ACTIVATE_EN);
965 }
966 
967 static int igen6_get_dimm_config(struct mem_ctl_info *mci)
968 {
969 	struct igen6_imc *imc = mci->pvt_info;
970 	u32 mad_inter, mad_intra, mad_dimm;
971 	int i, j, ndimms, mc = imc->mc;
972 	struct dimm_info *dimm;
973 	enum mem_type mtype;
974 	enum dev_type dtype;
975 	u64 dsize;
976 	bool ecc;
977 
978 	edac_dbg(2, "\n");
979 
980 	mad_inter = readl(imc->window + MAD_INTER_CHANNEL_OFFSET);
981 	mtype = get_memory_type(mad_inter);
982 	ecc = igen6_check_ecc(imc);
983 	imc->ch_s_size = MAD_INTER_CHANNEL_CH_S_SIZE(mad_inter);
984 	imc->ch_l_map  = MAD_INTER_CHANNEL_CH_L_MAP(mad_inter);
985 
986 	for (i = 0; i < NUM_CHANNELS; i++) {
987 		mad_intra = readl(imc->window + MAD_INTRA_CH0_OFFSET + i * 4);
988 		mad_dimm  = readl(imc->window + MAD_DIMM_CH0_OFFSET + i * 4);
989 
990 		imc->dimm_l_size[i] = MAD_DIMM_CH_DIMM_L_SIZE(mad_dimm);
991 		imc->dimm_s_size[i] = MAD_DIMM_CH_DIMM_S_SIZE(mad_dimm);
992 		imc->dimm_l_map[i]  = MAD_INTRA_CH_DIMM_L_MAP(mad_intra);
993 		imc->size += imc->dimm_s_size[i];
994 		imc->size += imc->dimm_l_size[i];
995 		ndimms = 0;
996 
997 		for (j = 0; j < NUM_DIMMS; j++) {
998 			dimm = edac_get_dimm(mci, i, j, 0);
999 
1000 			if (j ^ imc->dimm_l_map[i]) {
1001 				dtype = get_width(0, mad_dimm);
1002 				dsize = imc->dimm_s_size[i];
1003 			} else {
1004 				dtype = get_width(1, mad_dimm);
1005 				dsize = imc->dimm_l_size[i];
1006 			}
1007 
1008 			if (!dsize)
1009 				continue;
1010 
1011 			dimm->grain = 64;
1012 			dimm->mtype = mtype;
1013 			dimm->dtype = dtype;
1014 			dimm->nr_pages  = MiB_TO_PAGES(dsize >> 20);
1015 			dimm->edac_mode = EDAC_SECDED;
1016 			snprintf(dimm->label, sizeof(dimm->label),
1017 				 "MC#%d_Chan#%d_DIMM#%d", mc, i, j);
1018 			edac_dbg(0, "MC %d, Channel %d, DIMM %d, Size %llu MiB (%u pages)\n",
1019 				 mc, i, j, dsize >> 20, dimm->nr_pages);
1020 
1021 			ndimms++;
1022 		}
1023 
1024 		if (ndimms && !ecc) {
1025 			igen6_printk(KERN_ERR, "MC%d In-Band ECC is disabled\n", mc);
1026 			return -ENODEV;
1027 		}
1028 	}
1029 
1030 	edac_dbg(0, "MC %d, total size %llu MiB\n", mc, imc->size >> 20);
1031 
1032 	return 0;
1033 }
1034 
1035 #ifdef CONFIG_EDAC_DEBUG
1036 /* Top of upper usable DRAM */
1037 static u64 igen6_touud;
1038 #define TOUUD_OFFSET	0xa8
1039 
1040 static void igen6_reg_dump(struct igen6_imc *imc)
1041 {
1042 	int i;
1043 
1044 	edac_dbg(2, "CHANNEL_HASH     : 0x%x\n",
1045 		 readl(imc->window + CHANNEL_HASH_OFFSET));
1046 	edac_dbg(2, "CHANNEL_EHASH    : 0x%x\n",
1047 		 readl(imc->window + CHANNEL_EHASH_OFFSET));
1048 	edac_dbg(2, "MAD_INTER_CHANNEL: 0x%x\n",
1049 		 readl(imc->window + MAD_INTER_CHANNEL_OFFSET));
1050 	edac_dbg(2, "ECC_ERROR_LOG    : 0x%llx\n",
1051 		 readq(imc->window + ECC_ERROR_LOG_OFFSET));
1052 
1053 	for (i = 0; i < NUM_CHANNELS; i++) {
1054 		edac_dbg(2, "MAD_INTRA_CH%d    : 0x%x\n", i,
1055 			 readl(imc->window + MAD_INTRA_CH0_OFFSET + i * 4));
1056 		edac_dbg(2, "MAD_DIMM_CH%d     : 0x%x\n", i,
1057 			 readl(imc->window + MAD_DIMM_CH0_OFFSET + i * 4));
1058 	}
1059 	edac_dbg(2, "TOLUD            : 0x%x", igen6_tolud);
1060 	edac_dbg(2, "TOUUD            : 0x%llx", igen6_touud);
1061 	edac_dbg(2, "TOM              : 0x%llx", igen6_tom);
1062 }
1063 
1064 static struct dentry *igen6_test;
1065 
1066 static int debugfs_u64_set(void *data, u64 val)
1067 {
1068 	u64 ecclog;
1069 
1070 	if ((val >= igen6_tolud && val < _4GB) || val >= igen6_touud) {
1071 		edac_dbg(0, "Address 0x%llx out of range\n", val);
1072 		return 0;
1073 	}
1074 
1075 	pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val);
1076 
1077 	val  >>= ECC_ERROR_LOG_ADDR_SHIFT;
1078 	ecclog = (val << ECC_ERROR_LOG_ADDR_SHIFT) | ECC_ERROR_LOG_CE;
1079 
1080 	if (!ecclog_gen_pool_add(0, ecclog))
1081 		irq_work_queue(&ecclog_irq_work);
1082 
1083 	return 0;
1084 }
1085 DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
1086 
1087 static void igen6_debug_setup(void)
1088 {
1089 	igen6_test = edac_debugfs_create_dir("igen6_test");
1090 	if (!igen6_test)
1091 		return;
1092 
1093 	if (!edac_debugfs_create_file("addr", 0200, igen6_test,
1094 				      NULL, &fops_u64_wo)) {
1095 		debugfs_remove(igen6_test);
1096 		igen6_test = NULL;
1097 	}
1098 }
1099 
1100 static void igen6_debug_teardown(void)
1101 {
1102 	debugfs_remove_recursive(igen6_test);
1103 }
1104 #else
1105 static void igen6_reg_dump(struct igen6_imc *imc) {}
1106 static void igen6_debug_setup(void) {}
1107 static void igen6_debug_teardown(void) {}
1108 #endif
1109 
1110 static int igen6_pci_setup(struct pci_dev *pdev, u64 *mchbar)
1111 {
1112 	union  {
1113 		u64 v;
1114 		struct {
1115 			u32 v_lo;
1116 			u32 v_hi;
1117 		};
1118 	} u;
1119 
1120 	edac_dbg(2, "\n");
1121 
1122 	if (!res_cfg->ibecc_available(pdev)) {
1123 		edac_dbg(2, "No In-Band ECC IP\n");
1124 		goto fail;
1125 	}
1126 
1127 	if (pci_read_config_dword(pdev, TOLUD_OFFSET, &igen6_tolud)) {
1128 		igen6_printk(KERN_ERR, "Failed to read TOLUD\n");
1129 		goto fail;
1130 	}
1131 
1132 	igen6_tolud &= GENMASK(31, 20);
1133 
1134 	if (pci_read_config_dword(pdev, TOM_OFFSET, &u.v_lo)) {
1135 		igen6_printk(KERN_ERR, "Failed to read lower TOM\n");
1136 		goto fail;
1137 	}
1138 
1139 	if (pci_read_config_dword(pdev, TOM_OFFSET + 4, &u.v_hi)) {
1140 		igen6_printk(KERN_ERR, "Failed to read upper TOM\n");
1141 		goto fail;
1142 	}
1143 
1144 	igen6_tom = u.v & GENMASK_ULL(38, 20);
1145 
1146 	if (get_mchbar(pdev, mchbar))
1147 		goto fail;
1148 
1149 #ifdef CONFIG_EDAC_DEBUG
1150 	if (pci_read_config_dword(pdev, TOUUD_OFFSET, &u.v_lo))
1151 		edac_dbg(2, "Failed to read lower TOUUD\n");
1152 	else if (pci_read_config_dword(pdev, TOUUD_OFFSET + 4, &u.v_hi))
1153 		edac_dbg(2, "Failed to read upper TOUUD\n");
1154 	else
1155 		igen6_touud = u.v & GENMASK_ULL(38, 20);
1156 #endif
1157 
1158 	return 0;
1159 fail:
1160 	return -ENODEV;
1161 }
1162 
1163 static int igen6_register_mci(int mc, u64 mchbar, struct pci_dev *pdev)
1164 {
1165 	struct edac_mc_layer layers[2];
1166 	struct mem_ctl_info *mci;
1167 	struct igen6_imc *imc;
1168 	void __iomem *window;
1169 	int rc;
1170 
1171 	edac_dbg(2, "\n");
1172 
1173 	mchbar += mc * MCHBAR_SIZE;
1174 	window = ioremap(mchbar, MCHBAR_SIZE);
1175 	if (!window) {
1176 		igen6_printk(KERN_ERR, "Failed to ioremap 0x%llx\n", mchbar);
1177 		return -ENODEV;
1178 	}
1179 
1180 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
1181 	layers[0].size = NUM_CHANNELS;
1182 	layers[0].is_virt_csrow = false;
1183 	layers[1].type = EDAC_MC_LAYER_SLOT;
1184 	layers[1].size = NUM_DIMMS;
1185 	layers[1].is_virt_csrow = true;
1186 
1187 	mci = edac_mc_alloc(mc, ARRAY_SIZE(layers), layers, 0);
1188 	if (!mci) {
1189 		rc = -ENOMEM;
1190 		goto fail;
1191 	}
1192 
1193 	mci->ctl_name = kasprintf(GFP_KERNEL, "Intel_client_SoC MC#%d", mc);
1194 	if (!mci->ctl_name) {
1195 		rc = -ENOMEM;
1196 		goto fail2;
1197 	}
1198 
1199 	mci->mtype_cap = MEM_FLAG_LPDDR4 | MEM_FLAG_DDR4;
1200 	mci->edac_ctl_cap = EDAC_FLAG_SECDED;
1201 	mci->edac_cap = EDAC_FLAG_SECDED;
1202 	mci->mod_name = EDAC_MOD_STR;
1203 	mci->dev_name = pci_name(pdev);
1204 	mci->pvt_info = &igen6_pvt->imc[mc];
1205 
1206 	imc = mci->pvt_info;
1207 	device_initialize(&imc->dev);
1208 	/*
1209 	 * EDAC core uses mci->pdev(pointer of structure device) as
1210 	 * memory controller ID. The client SoCs attach one or more
1211 	 * memory controllers to single pci_dev (single pci_dev->dev
1212 	 * can be for multiple memory controllers).
1213 	 *
1214 	 * To make mci->pdev unique, assign pci_dev->dev to mci->pdev
1215 	 * for the first memory controller and assign a unique imc->dev
1216 	 * to mci->pdev for each non-first memory controller.
1217 	 */
1218 	mci->pdev = mc ? &imc->dev : &pdev->dev;
1219 	imc->mc	= mc;
1220 	imc->pdev = pdev;
1221 	imc->window = window;
1222 
1223 	igen6_reg_dump(imc);
1224 
1225 	rc = igen6_get_dimm_config(mci);
1226 	if (rc)
1227 		goto fail3;
1228 
1229 	rc = edac_mc_add_mc(mci);
1230 	if (rc) {
1231 		igen6_printk(KERN_ERR, "Failed to register mci#%d\n", mc);
1232 		goto fail3;
1233 	}
1234 
1235 	imc->mci = mci;
1236 	return 0;
1237 fail3:
1238 	kfree(mci->ctl_name);
1239 fail2:
1240 	edac_mc_free(mci);
1241 fail:
1242 	iounmap(window);
1243 	return rc;
1244 }
1245 
1246 static void igen6_unregister_mcis(void)
1247 {
1248 	struct mem_ctl_info *mci;
1249 	struct igen6_imc *imc;
1250 	int i;
1251 
1252 	edac_dbg(2, "\n");
1253 
1254 	for (i = 0; i < res_cfg->num_imc; i++) {
1255 		imc = &igen6_pvt->imc[i];
1256 		mci = imc->mci;
1257 		if (!mci)
1258 			continue;
1259 
1260 		edac_mc_del_mc(mci->pdev);
1261 		kfree(mci->ctl_name);
1262 		edac_mc_free(mci);
1263 		iounmap(imc->window);
1264 	}
1265 }
1266 
1267 static int igen6_mem_slice_setup(u64 mchbar)
1268 {
1269 	struct igen6_imc *imc = &igen6_pvt->imc[0];
1270 	u64 base = mchbar + res_cfg->cmf_base;
1271 	u32 offset = res_cfg->ms_hash_offset;
1272 	u32 size = res_cfg->cmf_size;
1273 	u64 ms_s_size, ms_hash;
1274 	void __iomem *cmf;
1275 	int ms_l_map;
1276 
1277 	edac_dbg(2, "\n");
1278 
1279 	if (imc[0].size < imc[1].size) {
1280 		ms_s_size = imc[0].size;
1281 		ms_l_map  = 1;
1282 	} else {
1283 		ms_s_size = imc[1].size;
1284 		ms_l_map  = 0;
1285 	}
1286 
1287 	igen6_pvt->ms_s_size = ms_s_size;
1288 	igen6_pvt->ms_l_map  = ms_l_map;
1289 
1290 	edac_dbg(0, "ms_s_size: %llu MiB, ms_l_map %d\n",
1291 		 ms_s_size >> 20, ms_l_map);
1292 
1293 	if (!size)
1294 		return 0;
1295 
1296 	cmf = ioremap(base, size);
1297 	if (!cmf) {
1298 		igen6_printk(KERN_ERR, "Failed to ioremap cmf 0x%llx\n", base);
1299 		return -ENODEV;
1300 	}
1301 
1302 	ms_hash = readq(cmf + offset);
1303 	igen6_pvt->ms_hash = ms_hash;
1304 
1305 	edac_dbg(0, "MEM_SLICE_HASH: 0x%llx\n", ms_hash);
1306 
1307 	iounmap(cmf);
1308 
1309 	return 0;
1310 }
1311 
1312 static int register_err_handler(void)
1313 {
1314 	int rc;
1315 
1316 	if (res_cfg->machine_check) {
1317 		mce_register_decode_chain(&ecclog_mce_dec);
1318 		return 0;
1319 	}
1320 
1321 	rc = register_nmi_handler(NMI_SERR, ecclog_nmi_handler,
1322 				  0, IGEN6_NMI_NAME);
1323 	if (rc) {
1324 		igen6_printk(KERN_ERR, "Failed to register NMI handler\n");
1325 		return rc;
1326 	}
1327 
1328 	return 0;
1329 }
1330 
1331 static void unregister_err_handler(void)
1332 {
1333 	if (res_cfg->machine_check) {
1334 		mce_unregister_decode_chain(&ecclog_mce_dec);
1335 		return;
1336 	}
1337 
1338 	unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME);
1339 }
1340 
1341 static int igen6_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1342 {
1343 	u64 mchbar;
1344 	int i, rc;
1345 
1346 	edac_dbg(2, "\n");
1347 
1348 	igen6_pvt = kzalloc(sizeof(*igen6_pvt), GFP_KERNEL);
1349 	if (!igen6_pvt)
1350 		return -ENOMEM;
1351 
1352 	res_cfg = (struct res_config *)ent->driver_data;
1353 
1354 	rc = igen6_pci_setup(pdev, &mchbar);
1355 	if (rc)
1356 		goto fail;
1357 
1358 	for (i = 0; i < res_cfg->num_imc; i++) {
1359 		rc = igen6_register_mci(i, mchbar, pdev);
1360 		if (rc)
1361 			goto fail2;
1362 	}
1363 
1364 	if (res_cfg->num_imc > 1) {
1365 		rc = igen6_mem_slice_setup(mchbar);
1366 		if (rc)
1367 			goto fail2;
1368 	}
1369 
1370 	ecclog_pool = ecclog_gen_pool_create();
1371 	if (!ecclog_pool) {
1372 		rc = -ENOMEM;
1373 		goto fail2;
1374 	}
1375 
1376 	INIT_WORK(&ecclog_work, ecclog_work_cb);
1377 	init_irq_work(&ecclog_irq_work, ecclog_irq_work_cb);
1378 
1379 	rc = register_err_handler();
1380 	if (rc)
1381 		goto fail3;
1382 
1383 	/* Enable error reporting */
1384 	rc = errcmd_enable_error_reporting(true);
1385 	if (rc) {
1386 		igen6_printk(KERN_ERR, "Failed to enable error reporting\n");
1387 		goto fail4;
1388 	}
1389 
1390 	/* Check if any pending errors before/during the registration of the error handler */
1391 	ecclog_handler();
1392 
1393 	igen6_debug_setup();
1394 	return 0;
1395 fail4:
1396 	unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME);
1397 fail3:
1398 	gen_pool_destroy(ecclog_pool);
1399 fail2:
1400 	igen6_unregister_mcis();
1401 fail:
1402 	kfree(igen6_pvt);
1403 	return rc;
1404 }
1405 
1406 static void igen6_remove(struct pci_dev *pdev)
1407 {
1408 	edac_dbg(2, "\n");
1409 
1410 	igen6_debug_teardown();
1411 	errcmd_enable_error_reporting(false);
1412 	unregister_err_handler();
1413 	irq_work_sync(&ecclog_irq_work);
1414 	flush_work(&ecclog_work);
1415 	gen_pool_destroy(ecclog_pool);
1416 	igen6_unregister_mcis();
1417 	kfree(igen6_pvt);
1418 }
1419 
1420 static struct pci_driver igen6_driver = {
1421 	.name     = EDAC_MOD_STR,
1422 	.probe    = igen6_probe,
1423 	.remove   = igen6_remove,
1424 	.id_table = igen6_pci_tbl,
1425 };
1426 
1427 static int __init igen6_init(void)
1428 {
1429 	const char *owner;
1430 	int rc;
1431 
1432 	edac_dbg(2, "\n");
1433 
1434 	if (ghes_get_devices())
1435 		return -EBUSY;
1436 
1437 	owner = edac_get_owner();
1438 	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
1439 		return -EBUSY;
1440 
1441 	edac_op_state = EDAC_OPSTATE_NMI;
1442 
1443 	rc = pci_register_driver(&igen6_driver);
1444 	if (rc)
1445 		return rc;
1446 
1447 	igen6_printk(KERN_INFO, "%s\n", IGEN6_REVISION);
1448 
1449 	return 0;
1450 }
1451 
1452 static void __exit igen6_exit(void)
1453 {
1454 	edac_dbg(2, "\n");
1455 
1456 	pci_unregister_driver(&igen6_driver);
1457 }
1458 
1459 module_init(igen6_init);
1460 module_exit(igen6_exit);
1461 
1462 MODULE_LICENSE("GPL v2");
1463 MODULE_AUTHOR("Qiuxu Zhuo");
1464 MODULE_DESCRIPTION("MC Driver for Intel client SoC using In-Band ECC");
1465