1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Driver for Intel client SoC with integrated memory controller using IBECC 4 * 5 * Copyright (C) 2020 Intel Corporation 6 * 7 * The In-Band ECC (IBECC) IP provides ECC protection to all or specific 8 * regions of the physical memory space. It's used for memory controllers 9 * that don't support the out-of-band ECC which often needs an additional 10 * storage device to each channel for storing ECC data. 11 */ 12 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/pci.h> 16 #include <linux/slab.h> 17 #include <linux/irq_work.h> 18 #include <linux/llist.h> 19 #include <linux/genalloc.h> 20 #include <linux/edac.h> 21 #include <linux/bits.h> 22 #include <linux/io.h> 23 #include <asm/mach_traps.h> 24 #include <asm/nmi.h> 25 #include <asm/mce.h> 26 27 #include "edac_mc.h" 28 #include "edac_module.h" 29 30 #define IGEN6_REVISION "v2.5.1" 31 32 #define EDAC_MOD_STR "igen6_edac" 33 #define IGEN6_NMI_NAME "igen6_ibecc" 34 35 /* Debug macros */ 36 #define igen6_printk(level, fmt, arg...) \ 37 edac_printk(level, "igen6", fmt, ##arg) 38 39 #define igen6_mc_printk(mci, level, fmt, arg...) \ 40 edac_mc_chipset_printk(mci, level, "igen6", fmt, ##arg) 41 42 #define GET_BITFIELD(v, lo, hi) (((v) & GENMASK_ULL(hi, lo)) >> (lo)) 43 44 #define NUM_IMC 2 /* Max memory controllers */ 45 #define NUM_CHANNELS 2 /* Max channels */ 46 #define NUM_DIMMS 2 /* Max DIMMs per channel */ 47 48 #define _4GB BIT_ULL(32) 49 50 /* Size of physical memory */ 51 #define TOM_OFFSET 0xa0 52 /* Top of low usable DRAM */ 53 #define TOLUD_OFFSET 0xbc 54 /* Capability register C */ 55 #define CAPID_C_OFFSET 0xec 56 #define CAPID_C_IBECC BIT(15) 57 58 /* Capability register E */ 59 #define CAPID_E_OFFSET 0xf0 60 #define CAPID_E_IBECC BIT(12) 61 #define CAPID_E_IBECC_BIT18 BIT(18) 62 63 /* Error Status */ 64 #define ERRSTS_OFFSET 0xc8 65 #define ERRSTS_CE BIT_ULL(6) 66 #define ERRSTS_UE BIT_ULL(7) 67 68 /* Error Command */ 69 #define ERRCMD_OFFSET 0xca 70 #define ERRCMD_CE BIT_ULL(6) 71 #define ERRCMD_UE BIT_ULL(7) 72 73 /* IBECC MMIO base address */ 74 #define IBECC_BASE (res_cfg->ibecc_base) 75 #define IBECC_ACTIVATE_OFFSET IBECC_BASE 76 #define IBECC_ACTIVATE_EN BIT(0) 77 78 /* IBECC error log */ 79 #define ECC_ERROR_LOG_OFFSET (IBECC_BASE + res_cfg->ibecc_error_log_offset) 80 #define ECC_ERROR_LOG_CE BIT_ULL(62) 81 #define ECC_ERROR_LOG_UE BIT_ULL(63) 82 #define ECC_ERROR_LOG_ADDR_SHIFT 5 83 #define ECC_ERROR_LOG_ADDR(v) GET_BITFIELD(v, 5, 38) 84 #define ECC_ERROR_LOG_ADDR45(v) GET_BITFIELD(v, 5, 45) 85 #define ECC_ERROR_LOG_SYND(v) GET_BITFIELD(v, 46, 61) 86 87 /* Host MMIO base address */ 88 #define MCHBAR_OFFSET 0x48 89 #define MCHBAR_EN BIT_ULL(0) 90 #define MCHBAR_BASE(v) (GET_BITFIELD(v, 16, 38) << 16) 91 #define MCHBAR_SIZE 0x10000 92 93 /* Parameters for the channel decode stage */ 94 #define IMC_BASE (res_cfg->imc_base) 95 #define MAD_INTER_CHANNEL_OFFSET IMC_BASE 96 #define MAD_INTER_CHANNEL_DDR_TYPE(v) GET_BITFIELD(v, 0, 2) 97 #define MAD_INTER_CHANNEL_ECHM(v) GET_BITFIELD(v, 3, 3) 98 #define MAD_INTER_CHANNEL_CH_L_MAP(v) GET_BITFIELD(v, 4, 4) 99 #define MAD_INTER_CHANNEL_CH_S_SIZE(v) ((u64)GET_BITFIELD(v, 12, 19) << 29) 100 101 /* Parameters for DRAM decode stage */ 102 #define MAD_INTRA_CH0_OFFSET (IMC_BASE + 4) 103 #define MAD_INTRA_CH_DIMM_L_MAP(v) GET_BITFIELD(v, 0, 0) 104 105 /* DIMM characteristics */ 106 #define MAD_DIMM_CH0_OFFSET (IMC_BASE + 0xc) 107 #define MAD_DIMM_CH_DIMM_L_SIZE(v) ((u64)GET_BITFIELD(v, 0, 6) << 29) 108 #define MAD_DIMM_CH_DLW(v) GET_BITFIELD(v, 7, 8) 109 #define MAD_DIMM_CH_DIMM_S_SIZE(v) ((u64)GET_BITFIELD(v, 16, 22) << 29) 110 #define MAD_DIMM_CH_DSW(v) GET_BITFIELD(v, 24, 25) 111 112 /* Hash for memory controller selection */ 113 #define MAD_MC_HASH_OFFSET (IMC_BASE + 0x1b8) 114 #define MAC_MC_HASH_LSB(v) GET_BITFIELD(v, 1, 3) 115 116 /* Hash for channel selection */ 117 #define CHANNEL_HASH_OFFSET (IMC_BASE + 0x24) 118 /* Hash for enhanced channel selection */ 119 #define CHANNEL_EHASH_OFFSET (IMC_BASE + 0x28) 120 #define CHANNEL_HASH_MASK(v) (GET_BITFIELD(v, 6, 19) << 6) 121 #define CHANNEL_HASH_LSB_MASK_BIT(v) GET_BITFIELD(v, 24, 26) 122 #define CHANNEL_HASH_MODE(v) GET_BITFIELD(v, 28, 28) 123 124 /* Parameters for memory slice decode stage */ 125 #define MEM_SLICE_HASH_MASK(v) (GET_BITFIELD(v, 6, 19) << 6) 126 #define MEM_SLICE_HASH_LSB_MASK_BIT(v) GET_BITFIELD(v, 24, 26) 127 128 static struct res_config { 129 bool machine_check; 130 int num_imc; 131 u32 imc_base; 132 u32 cmf_base; 133 u32 cmf_size; 134 u32 ms_hash_offset; 135 u32 ibecc_base; 136 u32 ibecc_error_log_offset; 137 bool (*ibecc_available)(struct pci_dev *pdev); 138 /* Extract error address logged in IBECC */ 139 u64 (*err_addr)(u64 ecclog); 140 /* Convert error address logged in IBECC to system physical address */ 141 u64 (*err_addr_to_sys_addr)(u64 eaddr, int mc); 142 /* Convert error address logged in IBECC to integrated memory controller address */ 143 u64 (*err_addr_to_imc_addr)(u64 eaddr, int mc); 144 } *res_cfg; 145 146 struct igen6_imc { 147 int mc; 148 struct mem_ctl_info *mci; 149 struct pci_dev *pdev; 150 struct device dev; 151 void __iomem *window; 152 u64 size; 153 u64 ch_s_size; 154 int ch_l_map; 155 u64 dimm_s_size[NUM_CHANNELS]; 156 u64 dimm_l_size[NUM_CHANNELS]; 157 int dimm_l_map[NUM_CHANNELS]; 158 }; 159 160 static struct igen6_pvt { 161 struct igen6_imc imc[NUM_IMC]; 162 u64 ms_hash; 163 u64 ms_s_size; 164 int ms_l_map; 165 } *igen6_pvt; 166 167 /* The top of low usable DRAM */ 168 static u32 igen6_tolud; 169 /* The size of physical memory */ 170 static u64 igen6_tom; 171 172 struct decoded_addr { 173 int mc; 174 u64 imc_addr; 175 u64 sys_addr; 176 int channel_idx; 177 u64 channel_addr; 178 int sub_channel_idx; 179 u64 sub_channel_addr; 180 }; 181 182 struct ecclog_node { 183 struct llist_node llnode; 184 int mc; 185 u64 ecclog; 186 }; 187 188 /* 189 * In the NMI handler, the driver uses the lock-less memory allocator 190 * to allocate memory to store the IBECC error logs and links the logs 191 * to the lock-less list. Delay printk() and the work of error reporting 192 * to EDAC core in a worker. 193 */ 194 #define ECCLOG_POOL_SIZE PAGE_SIZE 195 static LLIST_HEAD(ecclog_llist); 196 static struct gen_pool *ecclog_pool; 197 static char ecclog_buf[ECCLOG_POOL_SIZE]; 198 static struct irq_work ecclog_irq_work; 199 static struct work_struct ecclog_work; 200 201 /* Compute die IDs for Elkhart Lake with IBECC */ 202 #define DID_EHL_SKU5 0x4514 203 #define DID_EHL_SKU6 0x4528 204 #define DID_EHL_SKU7 0x452a 205 #define DID_EHL_SKU8 0x4516 206 #define DID_EHL_SKU9 0x452c 207 #define DID_EHL_SKU10 0x452e 208 #define DID_EHL_SKU11 0x4532 209 #define DID_EHL_SKU12 0x4518 210 #define DID_EHL_SKU13 0x451a 211 #define DID_EHL_SKU14 0x4534 212 #define DID_EHL_SKU15 0x4536 213 214 /* Compute die IDs for ICL-NNPI with IBECC */ 215 #define DID_ICL_SKU8 0x4581 216 #define DID_ICL_SKU10 0x4585 217 #define DID_ICL_SKU11 0x4589 218 #define DID_ICL_SKU12 0x458d 219 220 /* Compute die IDs for Tiger Lake with IBECC */ 221 #define DID_TGL_SKU 0x9a14 222 223 /* Compute die IDs for Alder Lake with IBECC */ 224 #define DID_ADL_SKU1 0x4601 225 #define DID_ADL_SKU2 0x4602 226 #define DID_ADL_SKU3 0x4621 227 #define DID_ADL_SKU4 0x4641 228 229 /* Compute die IDs for Alder Lake-N with IBECC */ 230 #define DID_ADL_N_SKU1 0x4614 231 #define DID_ADL_N_SKU2 0x4617 232 #define DID_ADL_N_SKU3 0x461b 233 #define DID_ADL_N_SKU4 0x461c 234 #define DID_ADL_N_SKU5 0x4673 235 #define DID_ADL_N_SKU6 0x4674 236 #define DID_ADL_N_SKU7 0x4675 237 #define DID_ADL_N_SKU8 0x4677 238 #define DID_ADL_N_SKU9 0x4678 239 #define DID_ADL_N_SKU10 0x4679 240 #define DID_ADL_N_SKU11 0x467c 241 #define DID_ADL_N_SKU12 0x4632 242 243 /* Compute die IDs for Raptor Lake-P with IBECC */ 244 #define DID_RPL_P_SKU1 0xa706 245 #define DID_RPL_P_SKU2 0xa707 246 #define DID_RPL_P_SKU3 0xa708 247 #define DID_RPL_P_SKU4 0xa716 248 #define DID_RPL_P_SKU5 0xa718 249 250 /* Compute die IDs for Meteor Lake-PS with IBECC */ 251 #define DID_MTL_PS_SKU1 0x7d21 252 #define DID_MTL_PS_SKU2 0x7d22 253 #define DID_MTL_PS_SKU3 0x7d23 254 #define DID_MTL_PS_SKU4 0x7d24 255 256 /* Compute die IDs for Meteor Lake-P with IBECC */ 257 #define DID_MTL_P_SKU1 0x7d01 258 #define DID_MTL_P_SKU2 0x7d02 259 #define DID_MTL_P_SKU3 0x7d14 260 261 static int get_mchbar(struct pci_dev *pdev, u64 *mchbar) 262 { 263 union { 264 u64 v; 265 struct { 266 u32 v_lo; 267 u32 v_hi; 268 }; 269 } u; 270 271 if (pci_read_config_dword(pdev, MCHBAR_OFFSET, &u.v_lo)) { 272 igen6_printk(KERN_ERR, "Failed to read lower MCHBAR\n"); 273 return -ENODEV; 274 } 275 276 if (pci_read_config_dword(pdev, MCHBAR_OFFSET + 4, &u.v_hi)) { 277 igen6_printk(KERN_ERR, "Failed to read upper MCHBAR\n"); 278 return -ENODEV; 279 } 280 281 if (!(u.v & MCHBAR_EN)) { 282 igen6_printk(KERN_ERR, "MCHBAR is disabled\n"); 283 return -ENODEV; 284 } 285 286 *mchbar = MCHBAR_BASE(u.v); 287 288 return 0; 289 } 290 291 static bool ehl_ibecc_available(struct pci_dev *pdev) 292 { 293 u32 v; 294 295 if (pci_read_config_dword(pdev, CAPID_C_OFFSET, &v)) 296 return false; 297 298 return !!(CAPID_C_IBECC & v); 299 } 300 301 static u64 ehl_err_addr_to_sys_addr(u64 eaddr, int mc) 302 { 303 return eaddr; 304 } 305 306 static u64 ehl_err_addr_to_imc_addr(u64 eaddr, int mc) 307 { 308 if (eaddr < igen6_tolud) 309 return eaddr; 310 311 if (igen6_tom <= _4GB) 312 return eaddr + igen6_tolud - _4GB; 313 314 if (eaddr < _4GB) 315 return eaddr + igen6_tolud - igen6_tom; 316 317 return eaddr; 318 } 319 320 static bool icl_ibecc_available(struct pci_dev *pdev) 321 { 322 u32 v; 323 324 if (pci_read_config_dword(pdev, CAPID_C_OFFSET, &v)) 325 return false; 326 327 return !(CAPID_C_IBECC & v) && 328 (boot_cpu_data.x86_stepping >= 1); 329 } 330 331 static bool tgl_ibecc_available(struct pci_dev *pdev) 332 { 333 u32 v; 334 335 if (pci_read_config_dword(pdev, CAPID_E_OFFSET, &v)) 336 return false; 337 338 return !(CAPID_E_IBECC & v); 339 } 340 341 static bool mtl_p_ibecc_available(struct pci_dev *pdev) 342 { 343 u32 v; 344 345 if (pci_read_config_dword(pdev, CAPID_E_OFFSET, &v)) 346 return false; 347 348 return !(CAPID_E_IBECC_BIT18 & v); 349 } 350 351 static bool mtl_ps_ibecc_available(struct pci_dev *pdev) 352 { 353 #define MCHBAR_MEMSS_IBECCDIS 0x13c00 354 void __iomem *window; 355 u64 mchbar; 356 u32 val; 357 358 if (get_mchbar(pdev, &mchbar)) 359 return false; 360 361 window = ioremap(mchbar, MCHBAR_SIZE * 2); 362 if (!window) { 363 igen6_printk(KERN_ERR, "Failed to ioremap 0x%llx\n", mchbar); 364 return false; 365 } 366 367 val = readl(window + MCHBAR_MEMSS_IBECCDIS); 368 iounmap(window); 369 370 /* Bit6: 1 - IBECC is disabled, 0 - IBECC isn't disabled */ 371 return !GET_BITFIELD(val, 6, 6); 372 } 373 374 static u64 mem_addr_to_sys_addr(u64 maddr) 375 { 376 if (maddr < igen6_tolud) 377 return maddr; 378 379 if (igen6_tom <= _4GB) 380 return maddr - igen6_tolud + _4GB; 381 382 if (maddr < _4GB) 383 return maddr - igen6_tolud + igen6_tom; 384 385 return maddr; 386 } 387 388 static u64 mem_slice_hash(u64 addr, u64 mask, u64 hash_init, int intlv_bit) 389 { 390 u64 hash_addr = addr & mask, hash = hash_init; 391 u64 intlv = (addr >> intlv_bit) & 1; 392 int i; 393 394 for (i = 6; i < 20; i++) 395 hash ^= (hash_addr >> i) & 1; 396 397 return hash ^ intlv; 398 } 399 400 static u64 tgl_err_addr_to_mem_addr(u64 eaddr, int mc) 401 { 402 u64 maddr, hash, mask, ms_s_size; 403 int intlv_bit; 404 u32 ms_hash; 405 406 ms_s_size = igen6_pvt->ms_s_size; 407 if (eaddr >= ms_s_size) 408 return eaddr + ms_s_size; 409 410 ms_hash = igen6_pvt->ms_hash; 411 412 mask = MEM_SLICE_HASH_MASK(ms_hash); 413 intlv_bit = MEM_SLICE_HASH_LSB_MASK_BIT(ms_hash) + 6; 414 415 maddr = GET_BITFIELD(eaddr, intlv_bit, 63) << (intlv_bit + 1) | 416 GET_BITFIELD(eaddr, 0, intlv_bit - 1); 417 418 hash = mem_slice_hash(maddr, mask, mc, intlv_bit); 419 420 return maddr | (hash << intlv_bit); 421 } 422 423 static u64 tgl_err_addr_to_sys_addr(u64 eaddr, int mc) 424 { 425 u64 maddr = tgl_err_addr_to_mem_addr(eaddr, mc); 426 427 return mem_addr_to_sys_addr(maddr); 428 } 429 430 static u64 tgl_err_addr_to_imc_addr(u64 eaddr, int mc) 431 { 432 return eaddr; 433 } 434 435 static u64 adl_err_addr_to_sys_addr(u64 eaddr, int mc) 436 { 437 return mem_addr_to_sys_addr(eaddr); 438 } 439 440 static u64 adl_err_addr_to_imc_addr(u64 eaddr, int mc) 441 { 442 u64 imc_addr, ms_s_size = igen6_pvt->ms_s_size; 443 struct igen6_imc *imc = &igen6_pvt->imc[mc]; 444 int intlv_bit; 445 u32 mc_hash; 446 447 if (eaddr >= 2 * ms_s_size) 448 return eaddr - ms_s_size; 449 450 mc_hash = readl(imc->window + MAD_MC_HASH_OFFSET); 451 452 intlv_bit = MAC_MC_HASH_LSB(mc_hash) + 6; 453 454 imc_addr = GET_BITFIELD(eaddr, intlv_bit + 1, 63) << intlv_bit | 455 GET_BITFIELD(eaddr, 0, intlv_bit - 1); 456 457 return imc_addr; 458 } 459 460 static u64 rpl_p_err_addr(u64 ecclog) 461 { 462 return ECC_ERROR_LOG_ADDR45(ecclog); 463 } 464 465 static struct res_config ehl_cfg = { 466 .num_imc = 1, 467 .imc_base = 0x5000, 468 .ibecc_base = 0xdc00, 469 .ibecc_available = ehl_ibecc_available, 470 .ibecc_error_log_offset = 0x170, 471 .err_addr_to_sys_addr = ehl_err_addr_to_sys_addr, 472 .err_addr_to_imc_addr = ehl_err_addr_to_imc_addr, 473 }; 474 475 static struct res_config icl_cfg = { 476 .num_imc = 1, 477 .imc_base = 0x5000, 478 .ibecc_base = 0xd800, 479 .ibecc_error_log_offset = 0x170, 480 .ibecc_available = icl_ibecc_available, 481 .err_addr_to_sys_addr = ehl_err_addr_to_sys_addr, 482 .err_addr_to_imc_addr = ehl_err_addr_to_imc_addr, 483 }; 484 485 static struct res_config tgl_cfg = { 486 .machine_check = true, 487 .num_imc = 2, 488 .imc_base = 0x5000, 489 .cmf_base = 0x11000, 490 .cmf_size = 0x800, 491 .ms_hash_offset = 0xac, 492 .ibecc_base = 0xd400, 493 .ibecc_error_log_offset = 0x170, 494 .ibecc_available = tgl_ibecc_available, 495 .err_addr_to_sys_addr = tgl_err_addr_to_sys_addr, 496 .err_addr_to_imc_addr = tgl_err_addr_to_imc_addr, 497 }; 498 499 static struct res_config adl_cfg = { 500 .machine_check = true, 501 .num_imc = 2, 502 .imc_base = 0xd800, 503 .ibecc_base = 0xd400, 504 .ibecc_error_log_offset = 0x68, 505 .ibecc_available = tgl_ibecc_available, 506 .err_addr_to_sys_addr = adl_err_addr_to_sys_addr, 507 .err_addr_to_imc_addr = adl_err_addr_to_imc_addr, 508 }; 509 510 static struct res_config adl_n_cfg = { 511 .machine_check = true, 512 .num_imc = 1, 513 .imc_base = 0xd800, 514 .ibecc_base = 0xd400, 515 .ibecc_error_log_offset = 0x68, 516 .ibecc_available = tgl_ibecc_available, 517 .err_addr_to_sys_addr = adl_err_addr_to_sys_addr, 518 .err_addr_to_imc_addr = adl_err_addr_to_imc_addr, 519 }; 520 521 static struct res_config rpl_p_cfg = { 522 .machine_check = true, 523 .num_imc = 2, 524 .imc_base = 0xd800, 525 .ibecc_base = 0xd400, 526 .ibecc_error_log_offset = 0x68, 527 .ibecc_available = tgl_ibecc_available, 528 .err_addr = rpl_p_err_addr, 529 .err_addr_to_sys_addr = adl_err_addr_to_sys_addr, 530 .err_addr_to_imc_addr = adl_err_addr_to_imc_addr, 531 }; 532 533 static struct res_config mtl_ps_cfg = { 534 .machine_check = true, 535 .num_imc = 2, 536 .imc_base = 0xd800, 537 .ibecc_base = 0xd400, 538 .ibecc_error_log_offset = 0x170, 539 .ibecc_available = mtl_ps_ibecc_available, 540 .err_addr_to_sys_addr = adl_err_addr_to_sys_addr, 541 .err_addr_to_imc_addr = adl_err_addr_to_imc_addr, 542 }; 543 544 static struct res_config mtl_p_cfg = { 545 .machine_check = true, 546 .num_imc = 2, 547 .imc_base = 0xd800, 548 .ibecc_base = 0xd400, 549 .ibecc_error_log_offset = 0x170, 550 .ibecc_available = mtl_p_ibecc_available, 551 .err_addr_to_sys_addr = adl_err_addr_to_sys_addr, 552 .err_addr_to_imc_addr = adl_err_addr_to_imc_addr, 553 }; 554 555 static const struct pci_device_id igen6_pci_tbl[] = { 556 { PCI_VDEVICE(INTEL, DID_EHL_SKU5), (kernel_ulong_t)&ehl_cfg }, 557 { PCI_VDEVICE(INTEL, DID_EHL_SKU6), (kernel_ulong_t)&ehl_cfg }, 558 { PCI_VDEVICE(INTEL, DID_EHL_SKU7), (kernel_ulong_t)&ehl_cfg }, 559 { PCI_VDEVICE(INTEL, DID_EHL_SKU8), (kernel_ulong_t)&ehl_cfg }, 560 { PCI_VDEVICE(INTEL, DID_EHL_SKU9), (kernel_ulong_t)&ehl_cfg }, 561 { PCI_VDEVICE(INTEL, DID_EHL_SKU10), (kernel_ulong_t)&ehl_cfg }, 562 { PCI_VDEVICE(INTEL, DID_EHL_SKU11), (kernel_ulong_t)&ehl_cfg }, 563 { PCI_VDEVICE(INTEL, DID_EHL_SKU12), (kernel_ulong_t)&ehl_cfg }, 564 { PCI_VDEVICE(INTEL, DID_EHL_SKU13), (kernel_ulong_t)&ehl_cfg }, 565 { PCI_VDEVICE(INTEL, DID_EHL_SKU14), (kernel_ulong_t)&ehl_cfg }, 566 { PCI_VDEVICE(INTEL, DID_EHL_SKU15), (kernel_ulong_t)&ehl_cfg }, 567 { PCI_VDEVICE(INTEL, DID_ICL_SKU8), (kernel_ulong_t)&icl_cfg }, 568 { PCI_VDEVICE(INTEL, DID_ICL_SKU10), (kernel_ulong_t)&icl_cfg }, 569 { PCI_VDEVICE(INTEL, DID_ICL_SKU11), (kernel_ulong_t)&icl_cfg }, 570 { PCI_VDEVICE(INTEL, DID_ICL_SKU12), (kernel_ulong_t)&icl_cfg }, 571 { PCI_VDEVICE(INTEL, DID_TGL_SKU), (kernel_ulong_t)&tgl_cfg }, 572 { PCI_VDEVICE(INTEL, DID_ADL_SKU1), (kernel_ulong_t)&adl_cfg }, 573 { PCI_VDEVICE(INTEL, DID_ADL_SKU2), (kernel_ulong_t)&adl_cfg }, 574 { PCI_VDEVICE(INTEL, DID_ADL_SKU3), (kernel_ulong_t)&adl_cfg }, 575 { PCI_VDEVICE(INTEL, DID_ADL_SKU4), (kernel_ulong_t)&adl_cfg }, 576 { PCI_VDEVICE(INTEL, DID_ADL_N_SKU1), (kernel_ulong_t)&adl_n_cfg }, 577 { PCI_VDEVICE(INTEL, DID_ADL_N_SKU2), (kernel_ulong_t)&adl_n_cfg }, 578 { PCI_VDEVICE(INTEL, DID_ADL_N_SKU3), (kernel_ulong_t)&adl_n_cfg }, 579 { PCI_VDEVICE(INTEL, DID_ADL_N_SKU4), (kernel_ulong_t)&adl_n_cfg }, 580 { PCI_VDEVICE(INTEL, DID_ADL_N_SKU5), (kernel_ulong_t)&adl_n_cfg }, 581 { PCI_VDEVICE(INTEL, DID_ADL_N_SKU6), (kernel_ulong_t)&adl_n_cfg }, 582 { PCI_VDEVICE(INTEL, DID_ADL_N_SKU7), (kernel_ulong_t)&adl_n_cfg }, 583 { PCI_VDEVICE(INTEL, DID_ADL_N_SKU8), (kernel_ulong_t)&adl_n_cfg }, 584 { PCI_VDEVICE(INTEL, DID_ADL_N_SKU9), (kernel_ulong_t)&adl_n_cfg }, 585 { PCI_VDEVICE(INTEL, DID_ADL_N_SKU10), (kernel_ulong_t)&adl_n_cfg }, 586 { PCI_VDEVICE(INTEL, DID_ADL_N_SKU11), (kernel_ulong_t)&adl_n_cfg }, 587 { PCI_VDEVICE(INTEL, DID_ADL_N_SKU12), (kernel_ulong_t)&adl_n_cfg }, 588 { PCI_VDEVICE(INTEL, DID_RPL_P_SKU1), (kernel_ulong_t)&rpl_p_cfg }, 589 { PCI_VDEVICE(INTEL, DID_RPL_P_SKU2), (kernel_ulong_t)&rpl_p_cfg }, 590 { PCI_VDEVICE(INTEL, DID_RPL_P_SKU3), (kernel_ulong_t)&rpl_p_cfg }, 591 { PCI_VDEVICE(INTEL, DID_RPL_P_SKU4), (kernel_ulong_t)&rpl_p_cfg }, 592 { PCI_VDEVICE(INTEL, DID_RPL_P_SKU5), (kernel_ulong_t)&rpl_p_cfg }, 593 { PCI_VDEVICE(INTEL, DID_MTL_PS_SKU1), (kernel_ulong_t)&mtl_ps_cfg }, 594 { PCI_VDEVICE(INTEL, DID_MTL_PS_SKU2), (kernel_ulong_t)&mtl_ps_cfg }, 595 { PCI_VDEVICE(INTEL, DID_MTL_PS_SKU3), (kernel_ulong_t)&mtl_ps_cfg }, 596 { PCI_VDEVICE(INTEL, DID_MTL_PS_SKU4), (kernel_ulong_t)&mtl_ps_cfg }, 597 { PCI_VDEVICE(INTEL, DID_MTL_P_SKU1), (kernel_ulong_t)&mtl_p_cfg }, 598 { PCI_VDEVICE(INTEL, DID_MTL_P_SKU2), (kernel_ulong_t)&mtl_p_cfg }, 599 { PCI_VDEVICE(INTEL, DID_MTL_P_SKU3), (kernel_ulong_t)&mtl_p_cfg }, 600 { }, 601 }; 602 MODULE_DEVICE_TABLE(pci, igen6_pci_tbl); 603 604 static enum dev_type get_width(int dimm_l, u32 mad_dimm) 605 { 606 u32 w = dimm_l ? MAD_DIMM_CH_DLW(mad_dimm) : 607 MAD_DIMM_CH_DSW(mad_dimm); 608 609 switch (w) { 610 case 0: 611 return DEV_X8; 612 case 1: 613 return DEV_X16; 614 case 2: 615 return DEV_X32; 616 default: 617 return DEV_UNKNOWN; 618 } 619 } 620 621 static enum mem_type get_memory_type(u32 mad_inter) 622 { 623 u32 t = MAD_INTER_CHANNEL_DDR_TYPE(mad_inter); 624 625 switch (t) { 626 case 0: 627 return MEM_DDR4; 628 case 1: 629 return MEM_DDR3; 630 case 2: 631 return MEM_LPDDR3; 632 case 3: 633 return MEM_LPDDR4; 634 case 4: 635 return MEM_WIO2; 636 default: 637 return MEM_UNKNOWN; 638 } 639 } 640 641 static int decode_chan_idx(u64 addr, u64 mask, int intlv_bit) 642 { 643 u64 hash_addr = addr & mask, hash = 0; 644 u64 intlv = (addr >> intlv_bit) & 1; 645 int i; 646 647 for (i = 6; i < 20; i++) 648 hash ^= (hash_addr >> i) & 1; 649 650 return (int)hash ^ intlv; 651 } 652 653 static u64 decode_channel_addr(u64 addr, int intlv_bit) 654 { 655 u64 channel_addr; 656 657 /* Remove the interleave bit and shift upper part down to fill gap */ 658 channel_addr = GET_BITFIELD(addr, intlv_bit + 1, 63) << intlv_bit; 659 channel_addr |= GET_BITFIELD(addr, 0, intlv_bit - 1); 660 661 return channel_addr; 662 } 663 664 static void decode_addr(u64 addr, u32 hash, u64 s_size, int l_map, 665 int *idx, u64 *sub_addr) 666 { 667 int intlv_bit = CHANNEL_HASH_LSB_MASK_BIT(hash) + 6; 668 669 if (addr > 2 * s_size) { 670 *sub_addr = addr - s_size; 671 *idx = l_map; 672 return; 673 } 674 675 if (CHANNEL_HASH_MODE(hash)) { 676 *sub_addr = decode_channel_addr(addr, intlv_bit); 677 *idx = decode_chan_idx(addr, CHANNEL_HASH_MASK(hash), intlv_bit); 678 } else { 679 *sub_addr = decode_channel_addr(addr, 6); 680 *idx = GET_BITFIELD(addr, 6, 6); 681 } 682 } 683 684 static int igen6_decode(struct decoded_addr *res) 685 { 686 struct igen6_imc *imc = &igen6_pvt->imc[res->mc]; 687 u64 addr = res->imc_addr, sub_addr, s_size; 688 int idx, l_map; 689 u32 hash; 690 691 if (addr >= igen6_tom) { 692 edac_dbg(0, "Address 0x%llx out of range\n", addr); 693 return -EINVAL; 694 } 695 696 /* Decode channel */ 697 hash = readl(imc->window + CHANNEL_HASH_OFFSET); 698 s_size = imc->ch_s_size; 699 l_map = imc->ch_l_map; 700 decode_addr(addr, hash, s_size, l_map, &idx, &sub_addr); 701 res->channel_idx = idx; 702 res->channel_addr = sub_addr; 703 704 /* Decode sub-channel/DIMM */ 705 hash = readl(imc->window + CHANNEL_EHASH_OFFSET); 706 s_size = imc->dimm_s_size[idx]; 707 l_map = imc->dimm_l_map[idx]; 708 decode_addr(res->channel_addr, hash, s_size, l_map, &idx, &sub_addr); 709 res->sub_channel_idx = idx; 710 res->sub_channel_addr = sub_addr; 711 712 return 0; 713 } 714 715 static void igen6_output_error(struct decoded_addr *res, 716 struct mem_ctl_info *mci, u64 ecclog) 717 { 718 enum hw_event_mc_err_type type = ecclog & ECC_ERROR_LOG_UE ? 719 HW_EVENT_ERR_UNCORRECTED : 720 HW_EVENT_ERR_CORRECTED; 721 722 edac_mc_handle_error(type, mci, 1, 723 res->sys_addr >> PAGE_SHIFT, 724 res->sys_addr & ~PAGE_MASK, 725 ECC_ERROR_LOG_SYND(ecclog), 726 res->channel_idx, res->sub_channel_idx, 727 -1, "", ""); 728 } 729 730 static struct gen_pool *ecclog_gen_pool_create(void) 731 { 732 struct gen_pool *pool; 733 734 pool = gen_pool_create(ilog2(sizeof(struct ecclog_node)), -1); 735 if (!pool) 736 return NULL; 737 738 if (gen_pool_add(pool, (unsigned long)ecclog_buf, ECCLOG_POOL_SIZE, -1)) { 739 gen_pool_destroy(pool); 740 return NULL; 741 } 742 743 return pool; 744 } 745 746 static int ecclog_gen_pool_add(int mc, u64 ecclog) 747 { 748 struct ecclog_node *node; 749 750 node = (void *)gen_pool_alloc(ecclog_pool, sizeof(*node)); 751 if (!node) 752 return -ENOMEM; 753 754 node->mc = mc; 755 node->ecclog = ecclog; 756 llist_add(&node->llnode, &ecclog_llist); 757 758 return 0; 759 } 760 761 /* 762 * Either the memory-mapped I/O status register ECC_ERROR_LOG or the PCI 763 * configuration space status register ERRSTS can indicate whether a 764 * correctable error or an uncorrectable error occurred. We only use the 765 * ECC_ERROR_LOG register to check error type, but need to clear both 766 * registers to enable future error events. 767 */ 768 static u64 ecclog_read_and_clear(struct igen6_imc *imc) 769 { 770 u64 ecclog = readq(imc->window + ECC_ERROR_LOG_OFFSET); 771 772 if (ecclog & (ECC_ERROR_LOG_CE | ECC_ERROR_LOG_UE)) { 773 /* Clear CE/UE bits by writing 1s */ 774 writeq(ecclog, imc->window + ECC_ERROR_LOG_OFFSET); 775 return ecclog; 776 } 777 778 return 0; 779 } 780 781 static void errsts_clear(struct igen6_imc *imc) 782 { 783 u16 errsts; 784 785 if (pci_read_config_word(imc->pdev, ERRSTS_OFFSET, &errsts)) { 786 igen6_printk(KERN_ERR, "Failed to read ERRSTS\n"); 787 return; 788 } 789 790 /* Clear CE/UE bits by writing 1s */ 791 if (errsts & (ERRSTS_CE | ERRSTS_UE)) 792 pci_write_config_word(imc->pdev, ERRSTS_OFFSET, errsts); 793 } 794 795 static int errcmd_enable_error_reporting(bool enable) 796 { 797 struct igen6_imc *imc = &igen6_pvt->imc[0]; 798 u16 errcmd; 799 int rc; 800 801 rc = pci_read_config_word(imc->pdev, ERRCMD_OFFSET, &errcmd); 802 if (rc) 803 return pcibios_err_to_errno(rc); 804 805 if (enable) 806 errcmd |= ERRCMD_CE | ERRSTS_UE; 807 else 808 errcmd &= ~(ERRCMD_CE | ERRSTS_UE); 809 810 rc = pci_write_config_word(imc->pdev, ERRCMD_OFFSET, errcmd); 811 if (rc) 812 return pcibios_err_to_errno(rc); 813 814 return 0; 815 } 816 817 static int ecclog_handler(void) 818 { 819 struct igen6_imc *imc; 820 int i, n = 0; 821 u64 ecclog; 822 823 for (i = 0; i < res_cfg->num_imc; i++) { 824 imc = &igen6_pvt->imc[i]; 825 826 /* errsts_clear() isn't NMI-safe. Delay it in the IRQ context */ 827 828 ecclog = ecclog_read_and_clear(imc); 829 if (!ecclog) 830 continue; 831 832 if (!ecclog_gen_pool_add(i, ecclog)) 833 irq_work_queue(&ecclog_irq_work); 834 835 n++; 836 } 837 838 return n; 839 } 840 841 static void ecclog_work_cb(struct work_struct *work) 842 { 843 struct ecclog_node *node, *tmp; 844 struct mem_ctl_info *mci; 845 struct llist_node *head; 846 struct decoded_addr res; 847 u64 eaddr; 848 849 head = llist_del_all(&ecclog_llist); 850 if (!head) 851 return; 852 853 llist_for_each_entry_safe(node, tmp, head, llnode) { 854 memset(&res, 0, sizeof(res)); 855 if (res_cfg->err_addr) 856 eaddr = res_cfg->err_addr(node->ecclog); 857 else 858 eaddr = ECC_ERROR_LOG_ADDR(node->ecclog) << 859 ECC_ERROR_LOG_ADDR_SHIFT; 860 res.mc = node->mc; 861 res.sys_addr = res_cfg->err_addr_to_sys_addr(eaddr, res.mc); 862 res.imc_addr = res_cfg->err_addr_to_imc_addr(eaddr, res.mc); 863 864 mci = igen6_pvt->imc[res.mc].mci; 865 866 edac_dbg(2, "MC %d, ecclog = 0x%llx\n", node->mc, node->ecclog); 867 igen6_mc_printk(mci, KERN_DEBUG, "HANDLING IBECC MEMORY ERROR\n"); 868 igen6_mc_printk(mci, KERN_DEBUG, "ADDR 0x%llx ", res.sys_addr); 869 870 if (!igen6_decode(&res)) 871 igen6_output_error(&res, mci, node->ecclog); 872 873 gen_pool_free(ecclog_pool, (unsigned long)node, sizeof(*node)); 874 } 875 } 876 877 static void ecclog_irq_work_cb(struct irq_work *irq_work) 878 { 879 int i; 880 881 for (i = 0; i < res_cfg->num_imc; i++) 882 errsts_clear(&igen6_pvt->imc[i]); 883 884 if (!llist_empty(&ecclog_llist)) 885 schedule_work(&ecclog_work); 886 } 887 888 static int ecclog_nmi_handler(unsigned int cmd, struct pt_regs *regs) 889 { 890 unsigned char reason; 891 892 if (!ecclog_handler()) 893 return NMI_DONE; 894 895 /* 896 * Both In-Band ECC correctable error and uncorrectable error are 897 * reported by SERR# NMI. The NMI generic code (see pci_serr_error()) 898 * doesn't clear the bit NMI_REASON_CLEAR_SERR (in port 0x61) to 899 * re-enable the SERR# NMI after NMI handling. So clear this bit here 900 * to re-enable SERR# NMI for receiving future In-Band ECC errors. 901 */ 902 reason = x86_platform.get_nmi_reason() & NMI_REASON_CLEAR_MASK; 903 reason |= NMI_REASON_CLEAR_SERR; 904 outb(reason, NMI_REASON_PORT); 905 reason &= ~NMI_REASON_CLEAR_SERR; 906 outb(reason, NMI_REASON_PORT); 907 908 return NMI_HANDLED; 909 } 910 911 static int ecclog_mce_handler(struct notifier_block *nb, unsigned long val, 912 void *data) 913 { 914 struct mce *mce = (struct mce *)data; 915 char *type; 916 917 if (mce->kflags & MCE_HANDLED_CEC) 918 return NOTIFY_DONE; 919 920 /* 921 * Ignore unless this is a memory related error. 922 * We don't check the bit MCI_STATUS_ADDRV of MCi_STATUS here, 923 * since this bit isn't set on some CPU (e.g., Tiger Lake UP3). 924 */ 925 if ((mce->status & 0xefff) >> 7 != 1) 926 return NOTIFY_DONE; 927 928 if (mce->mcgstatus & MCG_STATUS_MCIP) 929 type = "Exception"; 930 else 931 type = "Event"; 932 933 edac_dbg(0, "CPU %d: Machine Check %s: 0x%llx Bank %d: 0x%llx\n", 934 mce->extcpu, type, mce->mcgstatus, 935 mce->bank, mce->status); 936 edac_dbg(0, "TSC 0x%llx\n", mce->tsc); 937 edac_dbg(0, "ADDR 0x%llx\n", mce->addr); 938 edac_dbg(0, "MISC 0x%llx\n", mce->misc); 939 edac_dbg(0, "PROCESSOR %u:0x%x TIME %llu SOCKET %u APIC 0x%x\n", 940 mce->cpuvendor, mce->cpuid, mce->time, 941 mce->socketid, mce->apicid); 942 /* 943 * We just use the Machine Check for the memory error notification. 944 * Each memory controller is associated with an IBECC instance. 945 * Directly read and clear the error information(error address and 946 * error type) on all the IBECC instances so that we know on which 947 * memory controller the memory error(s) occurred. 948 */ 949 if (!ecclog_handler()) 950 return NOTIFY_DONE; 951 952 mce->kflags |= MCE_HANDLED_EDAC; 953 954 return NOTIFY_DONE; 955 } 956 957 static struct notifier_block ecclog_mce_dec = { 958 .notifier_call = ecclog_mce_handler, 959 .priority = MCE_PRIO_EDAC, 960 }; 961 962 static bool igen6_check_ecc(struct igen6_imc *imc) 963 { 964 u32 activate = readl(imc->window + IBECC_ACTIVATE_OFFSET); 965 966 return !!(activate & IBECC_ACTIVATE_EN); 967 } 968 969 static int igen6_get_dimm_config(struct mem_ctl_info *mci) 970 { 971 struct igen6_imc *imc = mci->pvt_info; 972 u32 mad_inter, mad_intra, mad_dimm; 973 int i, j, ndimms, mc = imc->mc; 974 struct dimm_info *dimm; 975 enum mem_type mtype; 976 enum dev_type dtype; 977 u64 dsize; 978 bool ecc; 979 980 edac_dbg(2, "\n"); 981 982 mad_inter = readl(imc->window + MAD_INTER_CHANNEL_OFFSET); 983 mtype = get_memory_type(mad_inter); 984 ecc = igen6_check_ecc(imc); 985 imc->ch_s_size = MAD_INTER_CHANNEL_CH_S_SIZE(mad_inter); 986 imc->ch_l_map = MAD_INTER_CHANNEL_CH_L_MAP(mad_inter); 987 988 for (i = 0; i < NUM_CHANNELS; i++) { 989 mad_intra = readl(imc->window + MAD_INTRA_CH0_OFFSET + i * 4); 990 mad_dimm = readl(imc->window + MAD_DIMM_CH0_OFFSET + i * 4); 991 992 imc->dimm_l_size[i] = MAD_DIMM_CH_DIMM_L_SIZE(mad_dimm); 993 imc->dimm_s_size[i] = MAD_DIMM_CH_DIMM_S_SIZE(mad_dimm); 994 imc->dimm_l_map[i] = MAD_INTRA_CH_DIMM_L_MAP(mad_intra); 995 imc->size += imc->dimm_s_size[i]; 996 imc->size += imc->dimm_l_size[i]; 997 ndimms = 0; 998 999 for (j = 0; j < NUM_DIMMS; j++) { 1000 dimm = edac_get_dimm(mci, i, j, 0); 1001 1002 if (j ^ imc->dimm_l_map[i]) { 1003 dtype = get_width(0, mad_dimm); 1004 dsize = imc->dimm_s_size[i]; 1005 } else { 1006 dtype = get_width(1, mad_dimm); 1007 dsize = imc->dimm_l_size[i]; 1008 } 1009 1010 if (!dsize) 1011 continue; 1012 1013 dimm->grain = 64; 1014 dimm->mtype = mtype; 1015 dimm->dtype = dtype; 1016 dimm->nr_pages = MiB_TO_PAGES(dsize >> 20); 1017 dimm->edac_mode = EDAC_SECDED; 1018 snprintf(dimm->label, sizeof(dimm->label), 1019 "MC#%d_Chan#%d_DIMM#%d", mc, i, j); 1020 edac_dbg(0, "MC %d, Channel %d, DIMM %d, Size %llu MiB (%u pages)\n", 1021 mc, i, j, dsize >> 20, dimm->nr_pages); 1022 1023 ndimms++; 1024 } 1025 1026 if (ndimms && !ecc) { 1027 igen6_printk(KERN_ERR, "MC%d In-Band ECC is disabled\n", mc); 1028 return -ENODEV; 1029 } 1030 } 1031 1032 edac_dbg(0, "MC %d, total size %llu MiB\n", mc, imc->size >> 20); 1033 1034 return 0; 1035 } 1036 1037 #ifdef CONFIG_EDAC_DEBUG 1038 /* Top of upper usable DRAM */ 1039 static u64 igen6_touud; 1040 #define TOUUD_OFFSET 0xa8 1041 1042 static void igen6_reg_dump(struct igen6_imc *imc) 1043 { 1044 int i; 1045 1046 edac_dbg(2, "CHANNEL_HASH : 0x%x\n", 1047 readl(imc->window + CHANNEL_HASH_OFFSET)); 1048 edac_dbg(2, "CHANNEL_EHASH : 0x%x\n", 1049 readl(imc->window + CHANNEL_EHASH_OFFSET)); 1050 edac_dbg(2, "MAD_INTER_CHANNEL: 0x%x\n", 1051 readl(imc->window + MAD_INTER_CHANNEL_OFFSET)); 1052 edac_dbg(2, "ECC_ERROR_LOG : 0x%llx\n", 1053 readq(imc->window + ECC_ERROR_LOG_OFFSET)); 1054 1055 for (i = 0; i < NUM_CHANNELS; i++) { 1056 edac_dbg(2, "MAD_INTRA_CH%d : 0x%x\n", i, 1057 readl(imc->window + MAD_INTRA_CH0_OFFSET + i * 4)); 1058 edac_dbg(2, "MAD_DIMM_CH%d : 0x%x\n", i, 1059 readl(imc->window + MAD_DIMM_CH0_OFFSET + i * 4)); 1060 } 1061 edac_dbg(2, "TOLUD : 0x%x", igen6_tolud); 1062 edac_dbg(2, "TOUUD : 0x%llx", igen6_touud); 1063 edac_dbg(2, "TOM : 0x%llx", igen6_tom); 1064 } 1065 1066 static struct dentry *igen6_test; 1067 1068 static int debugfs_u64_set(void *data, u64 val) 1069 { 1070 u64 ecclog; 1071 1072 if ((val >= igen6_tolud && val < _4GB) || val >= igen6_touud) { 1073 edac_dbg(0, "Address 0x%llx out of range\n", val); 1074 return 0; 1075 } 1076 1077 pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val); 1078 1079 val >>= ECC_ERROR_LOG_ADDR_SHIFT; 1080 ecclog = (val << ECC_ERROR_LOG_ADDR_SHIFT) | ECC_ERROR_LOG_CE; 1081 1082 if (!ecclog_gen_pool_add(0, ecclog)) 1083 irq_work_queue(&ecclog_irq_work); 1084 1085 return 0; 1086 } 1087 DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n"); 1088 1089 static void igen6_debug_setup(void) 1090 { 1091 igen6_test = edac_debugfs_create_dir("igen6_test"); 1092 if (!igen6_test) 1093 return; 1094 1095 if (!edac_debugfs_create_file("addr", 0200, igen6_test, 1096 NULL, &fops_u64_wo)) { 1097 debugfs_remove(igen6_test); 1098 igen6_test = NULL; 1099 } 1100 } 1101 1102 static void igen6_debug_teardown(void) 1103 { 1104 debugfs_remove_recursive(igen6_test); 1105 } 1106 #else 1107 static void igen6_reg_dump(struct igen6_imc *imc) {} 1108 static void igen6_debug_setup(void) {} 1109 static void igen6_debug_teardown(void) {} 1110 #endif 1111 1112 static int igen6_pci_setup(struct pci_dev *pdev, u64 *mchbar) 1113 { 1114 union { 1115 u64 v; 1116 struct { 1117 u32 v_lo; 1118 u32 v_hi; 1119 }; 1120 } u; 1121 1122 edac_dbg(2, "\n"); 1123 1124 if (!res_cfg->ibecc_available(pdev)) { 1125 edac_dbg(2, "No In-Band ECC IP\n"); 1126 goto fail; 1127 } 1128 1129 if (pci_read_config_dword(pdev, TOLUD_OFFSET, &igen6_tolud)) { 1130 igen6_printk(KERN_ERR, "Failed to read TOLUD\n"); 1131 goto fail; 1132 } 1133 1134 igen6_tolud &= GENMASK(31, 20); 1135 1136 if (pci_read_config_dword(pdev, TOM_OFFSET, &u.v_lo)) { 1137 igen6_printk(KERN_ERR, "Failed to read lower TOM\n"); 1138 goto fail; 1139 } 1140 1141 if (pci_read_config_dword(pdev, TOM_OFFSET + 4, &u.v_hi)) { 1142 igen6_printk(KERN_ERR, "Failed to read upper TOM\n"); 1143 goto fail; 1144 } 1145 1146 igen6_tom = u.v & GENMASK_ULL(38, 20); 1147 1148 if (get_mchbar(pdev, mchbar)) 1149 goto fail; 1150 1151 #ifdef CONFIG_EDAC_DEBUG 1152 if (pci_read_config_dword(pdev, TOUUD_OFFSET, &u.v_lo)) 1153 edac_dbg(2, "Failed to read lower TOUUD\n"); 1154 else if (pci_read_config_dword(pdev, TOUUD_OFFSET + 4, &u.v_hi)) 1155 edac_dbg(2, "Failed to read upper TOUUD\n"); 1156 else 1157 igen6_touud = u.v & GENMASK_ULL(38, 20); 1158 #endif 1159 1160 return 0; 1161 fail: 1162 return -ENODEV; 1163 } 1164 1165 static int igen6_register_mci(int mc, u64 mchbar, struct pci_dev *pdev) 1166 { 1167 struct edac_mc_layer layers[2]; 1168 struct mem_ctl_info *mci; 1169 struct igen6_imc *imc; 1170 void __iomem *window; 1171 int rc; 1172 1173 edac_dbg(2, "\n"); 1174 1175 mchbar += mc * MCHBAR_SIZE; 1176 window = ioremap(mchbar, MCHBAR_SIZE); 1177 if (!window) { 1178 igen6_printk(KERN_ERR, "Failed to ioremap 0x%llx\n", mchbar); 1179 return -ENODEV; 1180 } 1181 1182 layers[0].type = EDAC_MC_LAYER_CHANNEL; 1183 layers[0].size = NUM_CHANNELS; 1184 layers[0].is_virt_csrow = false; 1185 layers[1].type = EDAC_MC_LAYER_SLOT; 1186 layers[1].size = NUM_DIMMS; 1187 layers[1].is_virt_csrow = true; 1188 1189 mci = edac_mc_alloc(mc, ARRAY_SIZE(layers), layers, 0); 1190 if (!mci) { 1191 rc = -ENOMEM; 1192 goto fail; 1193 } 1194 1195 mci->ctl_name = kasprintf(GFP_KERNEL, "Intel_client_SoC MC#%d", mc); 1196 if (!mci->ctl_name) { 1197 rc = -ENOMEM; 1198 goto fail2; 1199 } 1200 1201 mci->mtype_cap = MEM_FLAG_LPDDR4 | MEM_FLAG_DDR4; 1202 mci->edac_ctl_cap = EDAC_FLAG_SECDED; 1203 mci->edac_cap = EDAC_FLAG_SECDED; 1204 mci->mod_name = EDAC_MOD_STR; 1205 mci->dev_name = pci_name(pdev); 1206 mci->pvt_info = &igen6_pvt->imc[mc]; 1207 1208 imc = mci->pvt_info; 1209 device_initialize(&imc->dev); 1210 /* 1211 * EDAC core uses mci->pdev(pointer of structure device) as 1212 * memory controller ID. The client SoCs attach one or more 1213 * memory controllers to single pci_dev (single pci_dev->dev 1214 * can be for multiple memory controllers). 1215 * 1216 * To make mci->pdev unique, assign pci_dev->dev to mci->pdev 1217 * for the first memory controller and assign a unique imc->dev 1218 * to mci->pdev for each non-first memory controller. 1219 */ 1220 mci->pdev = mc ? &imc->dev : &pdev->dev; 1221 imc->mc = mc; 1222 imc->pdev = pdev; 1223 imc->window = window; 1224 1225 igen6_reg_dump(imc); 1226 1227 rc = igen6_get_dimm_config(mci); 1228 if (rc) 1229 goto fail3; 1230 1231 rc = edac_mc_add_mc(mci); 1232 if (rc) { 1233 igen6_printk(KERN_ERR, "Failed to register mci#%d\n", mc); 1234 goto fail3; 1235 } 1236 1237 imc->mci = mci; 1238 return 0; 1239 fail3: 1240 kfree(mci->ctl_name); 1241 fail2: 1242 edac_mc_free(mci); 1243 fail: 1244 iounmap(window); 1245 return rc; 1246 } 1247 1248 static void igen6_unregister_mcis(void) 1249 { 1250 struct mem_ctl_info *mci; 1251 struct igen6_imc *imc; 1252 int i; 1253 1254 edac_dbg(2, "\n"); 1255 1256 for (i = 0; i < res_cfg->num_imc; i++) { 1257 imc = &igen6_pvt->imc[i]; 1258 mci = imc->mci; 1259 if (!mci) 1260 continue; 1261 1262 edac_mc_del_mc(mci->pdev); 1263 kfree(mci->ctl_name); 1264 edac_mc_free(mci); 1265 iounmap(imc->window); 1266 } 1267 } 1268 1269 static int igen6_mem_slice_setup(u64 mchbar) 1270 { 1271 struct igen6_imc *imc = &igen6_pvt->imc[0]; 1272 u64 base = mchbar + res_cfg->cmf_base; 1273 u32 offset = res_cfg->ms_hash_offset; 1274 u32 size = res_cfg->cmf_size; 1275 u64 ms_s_size, ms_hash; 1276 void __iomem *cmf; 1277 int ms_l_map; 1278 1279 edac_dbg(2, "\n"); 1280 1281 if (imc[0].size < imc[1].size) { 1282 ms_s_size = imc[0].size; 1283 ms_l_map = 1; 1284 } else { 1285 ms_s_size = imc[1].size; 1286 ms_l_map = 0; 1287 } 1288 1289 igen6_pvt->ms_s_size = ms_s_size; 1290 igen6_pvt->ms_l_map = ms_l_map; 1291 1292 edac_dbg(0, "ms_s_size: %llu MiB, ms_l_map %d\n", 1293 ms_s_size >> 20, ms_l_map); 1294 1295 if (!size) 1296 return 0; 1297 1298 cmf = ioremap(base, size); 1299 if (!cmf) { 1300 igen6_printk(KERN_ERR, "Failed to ioremap cmf 0x%llx\n", base); 1301 return -ENODEV; 1302 } 1303 1304 ms_hash = readq(cmf + offset); 1305 igen6_pvt->ms_hash = ms_hash; 1306 1307 edac_dbg(0, "MEM_SLICE_HASH: 0x%llx\n", ms_hash); 1308 1309 iounmap(cmf); 1310 1311 return 0; 1312 } 1313 1314 static int register_err_handler(void) 1315 { 1316 int rc; 1317 1318 if (res_cfg->machine_check) { 1319 mce_register_decode_chain(&ecclog_mce_dec); 1320 return 0; 1321 } 1322 1323 rc = register_nmi_handler(NMI_SERR, ecclog_nmi_handler, 1324 0, IGEN6_NMI_NAME); 1325 if (rc) { 1326 igen6_printk(KERN_ERR, "Failed to register NMI handler\n"); 1327 return rc; 1328 } 1329 1330 return 0; 1331 } 1332 1333 static void unregister_err_handler(void) 1334 { 1335 if (res_cfg->machine_check) { 1336 mce_unregister_decode_chain(&ecclog_mce_dec); 1337 return; 1338 } 1339 1340 unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME); 1341 } 1342 1343 static int igen6_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 1344 { 1345 u64 mchbar; 1346 int i, rc; 1347 1348 edac_dbg(2, "\n"); 1349 1350 igen6_pvt = kzalloc(sizeof(*igen6_pvt), GFP_KERNEL); 1351 if (!igen6_pvt) 1352 return -ENOMEM; 1353 1354 res_cfg = (struct res_config *)ent->driver_data; 1355 1356 rc = igen6_pci_setup(pdev, &mchbar); 1357 if (rc) 1358 goto fail; 1359 1360 for (i = 0; i < res_cfg->num_imc; i++) { 1361 rc = igen6_register_mci(i, mchbar, pdev); 1362 if (rc) 1363 goto fail2; 1364 } 1365 1366 if (res_cfg->num_imc > 1) { 1367 rc = igen6_mem_slice_setup(mchbar); 1368 if (rc) 1369 goto fail2; 1370 } 1371 1372 ecclog_pool = ecclog_gen_pool_create(); 1373 if (!ecclog_pool) { 1374 rc = -ENOMEM; 1375 goto fail2; 1376 } 1377 1378 INIT_WORK(&ecclog_work, ecclog_work_cb); 1379 init_irq_work(&ecclog_irq_work, ecclog_irq_work_cb); 1380 1381 rc = register_err_handler(); 1382 if (rc) 1383 goto fail3; 1384 1385 /* Enable error reporting */ 1386 rc = errcmd_enable_error_reporting(true); 1387 if (rc) { 1388 igen6_printk(KERN_ERR, "Failed to enable error reporting\n"); 1389 goto fail4; 1390 } 1391 1392 /* Check if any pending errors before/during the registration of the error handler */ 1393 ecclog_handler(); 1394 1395 igen6_debug_setup(); 1396 return 0; 1397 fail4: 1398 unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME); 1399 fail3: 1400 gen_pool_destroy(ecclog_pool); 1401 fail2: 1402 igen6_unregister_mcis(); 1403 fail: 1404 kfree(igen6_pvt); 1405 return rc; 1406 } 1407 1408 static void igen6_remove(struct pci_dev *pdev) 1409 { 1410 edac_dbg(2, "\n"); 1411 1412 igen6_debug_teardown(); 1413 errcmd_enable_error_reporting(false); 1414 unregister_err_handler(); 1415 irq_work_sync(&ecclog_irq_work); 1416 flush_work(&ecclog_work); 1417 gen_pool_destroy(ecclog_pool); 1418 igen6_unregister_mcis(); 1419 kfree(igen6_pvt); 1420 } 1421 1422 static struct pci_driver igen6_driver = { 1423 .name = EDAC_MOD_STR, 1424 .probe = igen6_probe, 1425 .remove = igen6_remove, 1426 .id_table = igen6_pci_tbl, 1427 }; 1428 1429 static int __init igen6_init(void) 1430 { 1431 const char *owner; 1432 int rc; 1433 1434 edac_dbg(2, "\n"); 1435 1436 if (ghes_get_devices()) 1437 return -EBUSY; 1438 1439 owner = edac_get_owner(); 1440 if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR))) 1441 return -EBUSY; 1442 1443 edac_op_state = EDAC_OPSTATE_NMI; 1444 1445 rc = pci_register_driver(&igen6_driver); 1446 if (rc) 1447 return rc; 1448 1449 igen6_printk(KERN_INFO, "%s\n", IGEN6_REVISION); 1450 1451 return 0; 1452 } 1453 1454 static void __exit igen6_exit(void) 1455 { 1456 edac_dbg(2, "\n"); 1457 1458 pci_unregister_driver(&igen6_driver); 1459 } 1460 1461 module_init(igen6_init); 1462 module_exit(igen6_exit); 1463 1464 MODULE_LICENSE("GPL v2"); 1465 MODULE_AUTHOR("Qiuxu Zhuo"); 1466 MODULE_DESCRIPTION("MC Driver for Intel client SoC using In-Band ECC"); 1467