xref: /linux/drivers/edac/igen6_edac.c (revision 221013afb459e5deb8bd08e29b37050af5586d1c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Driver for Intel client SoC with integrated memory controller using IBECC
4  *
5  * Copyright (C) 2020 Intel Corporation
6  *
7  * The In-Band ECC (IBECC) IP provides ECC protection to all or specific
8  * regions of the physical memory space. It's used for memory controllers
9  * that don't support the out-of-band ECC which often needs an additional
10  * storage device to each channel for storing ECC data.
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/slab.h>
17 #include <linux/irq_work.h>
18 #include <linux/llist.h>
19 #include <linux/genalloc.h>
20 #include <linux/edac.h>
21 #include <linux/bits.h>
22 #include <linux/io.h>
23 #include <asm/mach_traps.h>
24 #include <asm/nmi.h>
25 #include <asm/mce.h>
26 
27 #include "edac_mc.h"
28 #include "edac_module.h"
29 
30 #define IGEN6_REVISION	"v2.5.1"
31 
32 #define EDAC_MOD_STR	"igen6_edac"
33 #define IGEN6_NMI_NAME	"igen6_ibecc"
34 
35 /* Debug macros */
36 #define igen6_printk(level, fmt, arg...)		\
37 	edac_printk(level, "igen6", fmt, ##arg)
38 
39 #define igen6_mc_printk(mci, level, fmt, arg...)	\
40 	edac_mc_chipset_printk(mci, level, "igen6", fmt, ##arg)
41 
42 #define GET_BITFIELD(v, lo, hi) (((v) & GENMASK_ULL(hi, lo)) >> (lo))
43 
44 #define NUM_IMC				2 /* Max memory controllers */
45 #define NUM_CHANNELS			2 /* Max channels */
46 #define NUM_DIMMS			2 /* Max DIMMs per channel */
47 
48 #define _4GB				BIT_ULL(32)
49 
50 /* Size of physical memory */
51 #define TOM_OFFSET			0xa0
52 /* Top of low usable DRAM */
53 #define TOLUD_OFFSET			0xbc
54 /* Capability register C */
55 #define CAPID_C_OFFSET			0xec
56 #define CAPID_C_IBECC			BIT(15)
57 
58 /* Capability register E */
59 #define CAPID_E_OFFSET			0xf0
60 #define CAPID_E_IBECC			BIT(12)
61 #define CAPID_E_IBECC_BIT18		BIT(18)
62 
63 /* Error Status */
64 #define ERRSTS_OFFSET			0xc8
65 #define ERRSTS_CE			BIT_ULL(6)
66 #define ERRSTS_UE			BIT_ULL(7)
67 
68 /* Error Command */
69 #define ERRCMD_OFFSET			0xca
70 #define ERRCMD_CE			BIT_ULL(6)
71 #define ERRCMD_UE			BIT_ULL(7)
72 
73 /* IBECC MMIO base address */
74 #define IBECC_BASE			(res_cfg->ibecc_base)
75 #define IBECC_ACTIVATE_OFFSET		IBECC_BASE
76 #define IBECC_ACTIVATE_EN		BIT(0)
77 
78 /* IBECC error log */
79 #define ECC_ERROR_LOG_OFFSET		(IBECC_BASE + res_cfg->ibecc_error_log_offset)
80 #define ECC_ERROR_LOG_CE		BIT_ULL(62)
81 #define ECC_ERROR_LOG_UE		BIT_ULL(63)
82 #define ECC_ERROR_LOG_ADDR_SHIFT	5
83 #define ECC_ERROR_LOG_ADDR(v)		GET_BITFIELD(v, 5, 38)
84 #define ECC_ERROR_LOG_ADDR45(v)		GET_BITFIELD(v, 5, 45)
85 #define ECC_ERROR_LOG_SYND(v)		GET_BITFIELD(v, 46, 61)
86 
87 /* Host MMIO base address */
88 #define MCHBAR_OFFSET			0x48
89 #define MCHBAR_EN			BIT_ULL(0)
90 #define MCHBAR_BASE(v)			(GET_BITFIELD(v, 16, 38) << 16)
91 #define MCHBAR_SIZE			0x10000
92 
93 /* Parameters for the channel decode stage */
94 #define IMC_BASE			(res_cfg->imc_base)
95 #define MAD_INTER_CHANNEL_OFFSET	IMC_BASE
96 #define MAD_INTER_CHANNEL_DDR_TYPE(v)	GET_BITFIELD(v, 0, 2)
97 #define MAD_INTER_CHANNEL_ECHM(v)	GET_BITFIELD(v, 3, 3)
98 #define MAD_INTER_CHANNEL_CH_L_MAP(v)	GET_BITFIELD(v, 4, 4)
99 #define MAD_INTER_CHANNEL_CH_S_SIZE(v)	((u64)GET_BITFIELD(v, 12, 19) << 29)
100 
101 /* Parameters for DRAM decode stage */
102 #define MAD_INTRA_CH0_OFFSET		(IMC_BASE + 4)
103 #define MAD_INTRA_CH_DIMM_L_MAP(v)	GET_BITFIELD(v, 0, 0)
104 
105 /* DIMM characteristics */
106 #define MAD_DIMM_CH0_OFFSET		(IMC_BASE + 0xc)
107 #define MAD_DIMM_CH_DIMM_L_SIZE(v)	((u64)GET_BITFIELD(v, 0, 6) << 29)
108 #define MAD_DIMM_CH_DLW(v)		GET_BITFIELD(v, 7, 8)
109 #define MAD_DIMM_CH_DIMM_S_SIZE(v)	((u64)GET_BITFIELD(v, 16, 22) << 29)
110 #define MAD_DIMM_CH_DSW(v)		GET_BITFIELD(v, 24, 25)
111 
112 /* Hash for memory controller selection */
113 #define MAD_MC_HASH_OFFSET		(IMC_BASE + 0x1b8)
114 #define MAC_MC_HASH_LSB(v)		GET_BITFIELD(v, 1, 3)
115 
116 /* Hash for channel selection */
117 #define CHANNEL_HASH_OFFSET		(IMC_BASE + 0x24)
118 /* Hash for enhanced channel selection */
119 #define CHANNEL_EHASH_OFFSET		(IMC_BASE + 0x28)
120 #define CHANNEL_HASH_MASK(v)		(GET_BITFIELD(v, 6, 19) << 6)
121 #define CHANNEL_HASH_LSB_MASK_BIT(v)	GET_BITFIELD(v, 24, 26)
122 #define CHANNEL_HASH_MODE(v)		GET_BITFIELD(v, 28, 28)
123 
124 /* Parameters for memory slice decode stage */
125 #define MEM_SLICE_HASH_MASK(v)		(GET_BITFIELD(v, 6, 19) << 6)
126 #define MEM_SLICE_HASH_LSB_MASK_BIT(v)	GET_BITFIELD(v, 24, 26)
127 
128 static struct res_config {
129 	bool machine_check;
130 	int num_imc;
131 	u32 imc_base;
132 	u32 cmf_base;
133 	u32 cmf_size;
134 	u32 ms_hash_offset;
135 	u32 ibecc_base;
136 	u32 ibecc_error_log_offset;
137 	bool (*ibecc_available)(struct pci_dev *pdev);
138 	/* Extract error address logged in IBECC */
139 	u64 (*err_addr)(u64 ecclog);
140 	/* Convert error address logged in IBECC to system physical address */
141 	u64 (*err_addr_to_sys_addr)(u64 eaddr, int mc);
142 	/* Convert error address logged in IBECC to integrated memory controller address */
143 	u64 (*err_addr_to_imc_addr)(u64 eaddr, int mc);
144 } *res_cfg;
145 
146 struct igen6_imc {
147 	int mc;
148 	struct mem_ctl_info *mci;
149 	struct pci_dev *pdev;
150 	struct device dev;
151 	void __iomem *window;
152 	u64 size;
153 	u64 ch_s_size;
154 	int ch_l_map;
155 	u64 dimm_s_size[NUM_CHANNELS];
156 	u64 dimm_l_size[NUM_CHANNELS];
157 	int dimm_l_map[NUM_CHANNELS];
158 };
159 
160 static struct igen6_pvt {
161 	struct igen6_imc imc[NUM_IMC];
162 	u64 ms_hash;
163 	u64 ms_s_size;
164 	int ms_l_map;
165 } *igen6_pvt;
166 
167 /* The top of low usable DRAM */
168 static u32 igen6_tolud;
169 /* The size of physical memory */
170 static u64 igen6_tom;
171 
172 struct decoded_addr {
173 	int mc;
174 	u64 imc_addr;
175 	u64 sys_addr;
176 	int channel_idx;
177 	u64 channel_addr;
178 	int sub_channel_idx;
179 	u64 sub_channel_addr;
180 };
181 
182 struct ecclog_node {
183 	struct llist_node llnode;
184 	int mc;
185 	u64 ecclog;
186 };
187 
188 /*
189  * In the NMI handler, the driver uses the lock-less memory allocator
190  * to allocate memory to store the IBECC error logs and links the logs
191  * to the lock-less list. Delay printk() and the work of error reporting
192  * to EDAC core in a worker.
193  */
194 #define ECCLOG_POOL_SIZE	PAGE_SIZE
195 static LLIST_HEAD(ecclog_llist);
196 static struct gen_pool *ecclog_pool;
197 static char ecclog_buf[ECCLOG_POOL_SIZE];
198 static struct irq_work ecclog_irq_work;
199 static struct work_struct ecclog_work;
200 
201 /* Compute die IDs for Elkhart Lake with IBECC */
202 #define DID_EHL_SKU5	0x4514
203 #define DID_EHL_SKU6	0x4528
204 #define DID_EHL_SKU7	0x452a
205 #define DID_EHL_SKU8	0x4516
206 #define DID_EHL_SKU9	0x452c
207 #define DID_EHL_SKU10	0x452e
208 #define DID_EHL_SKU11	0x4532
209 #define DID_EHL_SKU12	0x4518
210 #define DID_EHL_SKU13	0x451a
211 #define DID_EHL_SKU14	0x4534
212 #define DID_EHL_SKU15	0x4536
213 
214 /* Compute die IDs for ICL-NNPI with IBECC */
215 #define DID_ICL_SKU8	0x4581
216 #define DID_ICL_SKU10	0x4585
217 #define DID_ICL_SKU11	0x4589
218 #define DID_ICL_SKU12	0x458d
219 
220 /* Compute die IDs for Tiger Lake with IBECC */
221 #define DID_TGL_SKU	0x9a14
222 
223 /* Compute die IDs for Alder Lake with IBECC */
224 #define DID_ADL_SKU1	0x4601
225 #define DID_ADL_SKU2	0x4602
226 #define DID_ADL_SKU3	0x4621
227 #define DID_ADL_SKU4	0x4641
228 
229 /* Compute die IDs for Alder Lake-N with IBECC */
230 #define DID_ADL_N_SKU1	0x4614
231 #define DID_ADL_N_SKU2	0x4617
232 #define DID_ADL_N_SKU3	0x461b
233 #define DID_ADL_N_SKU4	0x461c
234 #define DID_ADL_N_SKU5	0x4673
235 #define DID_ADL_N_SKU6	0x4674
236 #define DID_ADL_N_SKU7	0x4675
237 #define DID_ADL_N_SKU8	0x4677
238 #define DID_ADL_N_SKU9	0x4678
239 #define DID_ADL_N_SKU10	0x4679
240 #define DID_ADL_N_SKU11	0x467c
241 #define DID_ADL_N_SKU12	0x4632
242 
243 /* Compute die IDs for Raptor Lake-P with IBECC */
244 #define DID_RPL_P_SKU1	0xa706
245 #define DID_RPL_P_SKU2	0xa707
246 #define DID_RPL_P_SKU3	0xa708
247 #define DID_RPL_P_SKU4	0xa716
248 #define DID_RPL_P_SKU5	0xa718
249 
250 /* Compute die IDs for Meteor Lake-PS with IBECC */
251 #define DID_MTL_PS_SKU1	0x7d21
252 #define DID_MTL_PS_SKU2	0x7d22
253 #define DID_MTL_PS_SKU3	0x7d23
254 #define DID_MTL_PS_SKU4	0x7d24
255 
256 /* Compute die IDs for Meteor Lake-P with IBECC */
257 #define DID_MTL_P_SKU1	0x7d01
258 #define DID_MTL_P_SKU2	0x7d02
259 #define DID_MTL_P_SKU3	0x7d14
260 
261 /* Compute die IDs for Arrow Lake-UH with IBECC */
262 #define DID_ARL_UH_SKU1	0x7d06
263 #define DID_ARL_UH_SKU2	0x7d20
264 #define DID_ARL_UH_SKU3	0x7d30
265 
266 static int get_mchbar(struct pci_dev *pdev, u64 *mchbar)
267 {
268 	union  {
269 		u64 v;
270 		struct {
271 			u32 v_lo;
272 			u32 v_hi;
273 		};
274 	} u;
275 
276 	if (pci_read_config_dword(pdev, MCHBAR_OFFSET, &u.v_lo)) {
277 		igen6_printk(KERN_ERR, "Failed to read lower MCHBAR\n");
278 		return -ENODEV;
279 	}
280 
281 	if (pci_read_config_dword(pdev, MCHBAR_OFFSET + 4, &u.v_hi)) {
282 		igen6_printk(KERN_ERR, "Failed to read upper MCHBAR\n");
283 		return -ENODEV;
284 	}
285 
286 	if (!(u.v & MCHBAR_EN)) {
287 		igen6_printk(KERN_ERR, "MCHBAR is disabled\n");
288 		return -ENODEV;
289 	}
290 
291 	*mchbar = MCHBAR_BASE(u.v);
292 
293 	return 0;
294 }
295 
296 static bool ehl_ibecc_available(struct pci_dev *pdev)
297 {
298 	u32 v;
299 
300 	if (pci_read_config_dword(pdev, CAPID_C_OFFSET, &v))
301 		return false;
302 
303 	return !!(CAPID_C_IBECC & v);
304 }
305 
306 static u64 ehl_err_addr_to_sys_addr(u64 eaddr, int mc)
307 {
308 	return eaddr;
309 }
310 
311 static u64 ehl_err_addr_to_imc_addr(u64 eaddr, int mc)
312 {
313 	if (eaddr < igen6_tolud)
314 		return eaddr;
315 
316 	if (igen6_tom <= _4GB)
317 		return eaddr + igen6_tolud - _4GB;
318 
319 	if (eaddr < _4GB)
320 		return eaddr + igen6_tolud - igen6_tom;
321 
322 	return eaddr;
323 }
324 
325 static bool icl_ibecc_available(struct pci_dev *pdev)
326 {
327 	u32 v;
328 
329 	if (pci_read_config_dword(pdev, CAPID_C_OFFSET, &v))
330 		return false;
331 
332 	return !(CAPID_C_IBECC & v) &&
333 		(boot_cpu_data.x86_stepping >= 1);
334 }
335 
336 static bool tgl_ibecc_available(struct pci_dev *pdev)
337 {
338 	u32 v;
339 
340 	if (pci_read_config_dword(pdev, CAPID_E_OFFSET, &v))
341 		return false;
342 
343 	return !(CAPID_E_IBECC & v);
344 }
345 
346 static bool mtl_p_ibecc_available(struct pci_dev *pdev)
347 {
348 	u32 v;
349 
350 	if (pci_read_config_dword(pdev, CAPID_E_OFFSET, &v))
351 		return false;
352 
353 	return !(CAPID_E_IBECC_BIT18 & v);
354 }
355 
356 static bool mtl_ps_ibecc_available(struct pci_dev *pdev)
357 {
358 #define MCHBAR_MEMSS_IBECCDIS	0x13c00
359 	void __iomem *window;
360 	u64 mchbar;
361 	u32 val;
362 
363 	if (get_mchbar(pdev, &mchbar))
364 		return false;
365 
366 	window = ioremap(mchbar, MCHBAR_SIZE * 2);
367 	if (!window) {
368 		igen6_printk(KERN_ERR, "Failed to ioremap 0x%llx\n", mchbar);
369 		return false;
370 	}
371 
372 	val = readl(window + MCHBAR_MEMSS_IBECCDIS);
373 	iounmap(window);
374 
375 	/* Bit6: 1 - IBECC is disabled, 0 - IBECC isn't disabled */
376 	return !GET_BITFIELD(val, 6, 6);
377 }
378 
379 static u64 mem_addr_to_sys_addr(u64 maddr)
380 {
381 	if (maddr < igen6_tolud)
382 		return maddr;
383 
384 	if (igen6_tom <= _4GB)
385 		return maddr - igen6_tolud + _4GB;
386 
387 	if (maddr < _4GB)
388 		return maddr - igen6_tolud + igen6_tom;
389 
390 	return maddr;
391 }
392 
393 static u64 mem_slice_hash(u64 addr, u64 mask, u64 hash_init, int intlv_bit)
394 {
395 	u64 hash_addr = addr & mask, hash = hash_init;
396 	u64 intlv = (addr >> intlv_bit) & 1;
397 	int i;
398 
399 	for (i = 6; i < 20; i++)
400 		hash ^= (hash_addr >> i) & 1;
401 
402 	return hash ^ intlv;
403 }
404 
405 static u64 tgl_err_addr_to_mem_addr(u64 eaddr, int mc)
406 {
407 	u64 maddr, hash, mask, ms_s_size;
408 	int intlv_bit;
409 	u32 ms_hash;
410 
411 	ms_s_size = igen6_pvt->ms_s_size;
412 	if (eaddr >= ms_s_size)
413 		return eaddr + ms_s_size;
414 
415 	ms_hash = igen6_pvt->ms_hash;
416 
417 	mask = MEM_SLICE_HASH_MASK(ms_hash);
418 	intlv_bit = MEM_SLICE_HASH_LSB_MASK_BIT(ms_hash) + 6;
419 
420 	maddr = GET_BITFIELD(eaddr, intlv_bit, 63) << (intlv_bit + 1) |
421 		GET_BITFIELD(eaddr, 0, intlv_bit - 1);
422 
423 	hash = mem_slice_hash(maddr, mask, mc, intlv_bit);
424 
425 	return maddr | (hash << intlv_bit);
426 }
427 
428 static u64 tgl_err_addr_to_sys_addr(u64 eaddr, int mc)
429 {
430 	u64 maddr = tgl_err_addr_to_mem_addr(eaddr, mc);
431 
432 	return mem_addr_to_sys_addr(maddr);
433 }
434 
435 static u64 tgl_err_addr_to_imc_addr(u64 eaddr, int mc)
436 {
437 	return eaddr;
438 }
439 
440 static u64 adl_err_addr_to_sys_addr(u64 eaddr, int mc)
441 {
442 	return mem_addr_to_sys_addr(eaddr);
443 }
444 
445 static u64 adl_err_addr_to_imc_addr(u64 eaddr, int mc)
446 {
447 	u64 imc_addr, ms_s_size = igen6_pvt->ms_s_size;
448 	struct igen6_imc *imc = &igen6_pvt->imc[mc];
449 	int intlv_bit;
450 	u32 mc_hash;
451 
452 	if (eaddr >= 2 * ms_s_size)
453 		return eaddr - ms_s_size;
454 
455 	mc_hash = readl(imc->window + MAD_MC_HASH_OFFSET);
456 
457 	intlv_bit = MAC_MC_HASH_LSB(mc_hash) + 6;
458 
459 	imc_addr = GET_BITFIELD(eaddr, intlv_bit + 1, 63) << intlv_bit |
460 		   GET_BITFIELD(eaddr, 0, intlv_bit - 1);
461 
462 	return imc_addr;
463 }
464 
465 static u64 rpl_p_err_addr(u64 ecclog)
466 {
467 	return ECC_ERROR_LOG_ADDR45(ecclog);
468 }
469 
470 static struct res_config ehl_cfg = {
471 	.num_imc		= 1,
472 	.imc_base		= 0x5000,
473 	.ibecc_base		= 0xdc00,
474 	.ibecc_available	= ehl_ibecc_available,
475 	.ibecc_error_log_offset	= 0x170,
476 	.err_addr_to_sys_addr	= ehl_err_addr_to_sys_addr,
477 	.err_addr_to_imc_addr	= ehl_err_addr_to_imc_addr,
478 };
479 
480 static struct res_config icl_cfg = {
481 	.num_imc		= 1,
482 	.imc_base		= 0x5000,
483 	.ibecc_base		= 0xd800,
484 	.ibecc_error_log_offset	= 0x170,
485 	.ibecc_available	= icl_ibecc_available,
486 	.err_addr_to_sys_addr	= ehl_err_addr_to_sys_addr,
487 	.err_addr_to_imc_addr	= ehl_err_addr_to_imc_addr,
488 };
489 
490 static struct res_config tgl_cfg = {
491 	.machine_check		= true,
492 	.num_imc		= 2,
493 	.imc_base		= 0x5000,
494 	.cmf_base		= 0x11000,
495 	.cmf_size		= 0x800,
496 	.ms_hash_offset		= 0xac,
497 	.ibecc_base		= 0xd400,
498 	.ibecc_error_log_offset	= 0x170,
499 	.ibecc_available	= tgl_ibecc_available,
500 	.err_addr_to_sys_addr	= tgl_err_addr_to_sys_addr,
501 	.err_addr_to_imc_addr	= tgl_err_addr_to_imc_addr,
502 };
503 
504 static struct res_config adl_cfg = {
505 	.machine_check		= true,
506 	.num_imc		= 2,
507 	.imc_base		= 0xd800,
508 	.ibecc_base		= 0xd400,
509 	.ibecc_error_log_offset	= 0x68,
510 	.ibecc_available	= tgl_ibecc_available,
511 	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
512 	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
513 };
514 
515 static struct res_config adl_n_cfg = {
516 	.machine_check		= true,
517 	.num_imc		= 1,
518 	.imc_base		= 0xd800,
519 	.ibecc_base		= 0xd400,
520 	.ibecc_error_log_offset	= 0x68,
521 	.ibecc_available	= tgl_ibecc_available,
522 	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
523 	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
524 };
525 
526 static struct res_config rpl_p_cfg = {
527 	.machine_check		= true,
528 	.num_imc		= 2,
529 	.imc_base		= 0xd800,
530 	.ibecc_base		= 0xd400,
531 	.ibecc_error_log_offset	= 0x68,
532 	.ibecc_available	= tgl_ibecc_available,
533 	.err_addr		= rpl_p_err_addr,
534 	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
535 	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
536 };
537 
538 static struct res_config mtl_ps_cfg = {
539 	.machine_check		= true,
540 	.num_imc		= 2,
541 	.imc_base		= 0xd800,
542 	.ibecc_base		= 0xd400,
543 	.ibecc_error_log_offset	= 0x170,
544 	.ibecc_available	= mtl_ps_ibecc_available,
545 	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
546 	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
547 };
548 
549 static struct res_config mtl_p_cfg = {
550 	.machine_check		= true,
551 	.num_imc		= 2,
552 	.imc_base		= 0xd800,
553 	.ibecc_base		= 0xd400,
554 	.ibecc_error_log_offset	= 0x170,
555 	.ibecc_available	= mtl_p_ibecc_available,
556 	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
557 	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
558 };
559 
560 static const struct pci_device_id igen6_pci_tbl[] = {
561 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU5), (kernel_ulong_t)&ehl_cfg },
562 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU6), (kernel_ulong_t)&ehl_cfg },
563 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU7), (kernel_ulong_t)&ehl_cfg },
564 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU8), (kernel_ulong_t)&ehl_cfg },
565 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU9), (kernel_ulong_t)&ehl_cfg },
566 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU10), (kernel_ulong_t)&ehl_cfg },
567 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU11), (kernel_ulong_t)&ehl_cfg },
568 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU12), (kernel_ulong_t)&ehl_cfg },
569 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU13), (kernel_ulong_t)&ehl_cfg },
570 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU14), (kernel_ulong_t)&ehl_cfg },
571 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU15), (kernel_ulong_t)&ehl_cfg },
572 	{ PCI_VDEVICE(INTEL, DID_ICL_SKU8), (kernel_ulong_t)&icl_cfg },
573 	{ PCI_VDEVICE(INTEL, DID_ICL_SKU10), (kernel_ulong_t)&icl_cfg },
574 	{ PCI_VDEVICE(INTEL, DID_ICL_SKU11), (kernel_ulong_t)&icl_cfg },
575 	{ PCI_VDEVICE(INTEL, DID_ICL_SKU12), (kernel_ulong_t)&icl_cfg },
576 	{ PCI_VDEVICE(INTEL, DID_TGL_SKU), (kernel_ulong_t)&tgl_cfg },
577 	{ PCI_VDEVICE(INTEL, DID_ADL_SKU1), (kernel_ulong_t)&adl_cfg },
578 	{ PCI_VDEVICE(INTEL, DID_ADL_SKU2), (kernel_ulong_t)&adl_cfg },
579 	{ PCI_VDEVICE(INTEL, DID_ADL_SKU3), (kernel_ulong_t)&adl_cfg },
580 	{ PCI_VDEVICE(INTEL, DID_ADL_SKU4), (kernel_ulong_t)&adl_cfg },
581 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU1), (kernel_ulong_t)&adl_n_cfg },
582 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU2), (kernel_ulong_t)&adl_n_cfg },
583 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU3), (kernel_ulong_t)&adl_n_cfg },
584 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU4), (kernel_ulong_t)&adl_n_cfg },
585 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU5), (kernel_ulong_t)&adl_n_cfg },
586 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU6), (kernel_ulong_t)&adl_n_cfg },
587 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU7), (kernel_ulong_t)&adl_n_cfg },
588 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU8), (kernel_ulong_t)&adl_n_cfg },
589 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU9), (kernel_ulong_t)&adl_n_cfg },
590 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU10), (kernel_ulong_t)&adl_n_cfg },
591 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU11), (kernel_ulong_t)&adl_n_cfg },
592 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU12), (kernel_ulong_t)&adl_n_cfg },
593 	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU1), (kernel_ulong_t)&rpl_p_cfg },
594 	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU2), (kernel_ulong_t)&rpl_p_cfg },
595 	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU3), (kernel_ulong_t)&rpl_p_cfg },
596 	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU4), (kernel_ulong_t)&rpl_p_cfg },
597 	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU5), (kernel_ulong_t)&rpl_p_cfg },
598 	{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU1), (kernel_ulong_t)&mtl_ps_cfg },
599 	{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU2), (kernel_ulong_t)&mtl_ps_cfg },
600 	{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU3), (kernel_ulong_t)&mtl_ps_cfg },
601 	{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU4), (kernel_ulong_t)&mtl_ps_cfg },
602 	{ PCI_VDEVICE(INTEL, DID_MTL_P_SKU1), (kernel_ulong_t)&mtl_p_cfg },
603 	{ PCI_VDEVICE(INTEL, DID_MTL_P_SKU2), (kernel_ulong_t)&mtl_p_cfg },
604 	{ PCI_VDEVICE(INTEL, DID_MTL_P_SKU3), (kernel_ulong_t)&mtl_p_cfg },
605 	{ PCI_VDEVICE(INTEL, DID_ARL_UH_SKU1), (kernel_ulong_t)&mtl_p_cfg },
606 	{ PCI_VDEVICE(INTEL, DID_ARL_UH_SKU2), (kernel_ulong_t)&mtl_p_cfg },
607 	{ PCI_VDEVICE(INTEL, DID_ARL_UH_SKU3), (kernel_ulong_t)&mtl_p_cfg },
608 	{ },
609 };
610 MODULE_DEVICE_TABLE(pci, igen6_pci_tbl);
611 
612 static enum dev_type get_width(int dimm_l, u32 mad_dimm)
613 {
614 	u32 w = dimm_l ? MAD_DIMM_CH_DLW(mad_dimm) :
615 			 MAD_DIMM_CH_DSW(mad_dimm);
616 
617 	switch (w) {
618 	case 0:
619 		return DEV_X8;
620 	case 1:
621 		return DEV_X16;
622 	case 2:
623 		return DEV_X32;
624 	default:
625 		return DEV_UNKNOWN;
626 	}
627 }
628 
629 static enum mem_type get_memory_type(u32 mad_inter)
630 {
631 	u32 t = MAD_INTER_CHANNEL_DDR_TYPE(mad_inter);
632 
633 	switch (t) {
634 	case 0:
635 		return MEM_DDR4;
636 	case 1:
637 		return MEM_DDR3;
638 	case 2:
639 		return MEM_LPDDR3;
640 	case 3:
641 		return MEM_LPDDR4;
642 	case 4:
643 		return MEM_WIO2;
644 	default:
645 		return MEM_UNKNOWN;
646 	}
647 }
648 
649 static int decode_chan_idx(u64 addr, u64 mask, int intlv_bit)
650 {
651 	u64 hash_addr = addr & mask, hash = 0;
652 	u64 intlv = (addr >> intlv_bit) & 1;
653 	int i;
654 
655 	for (i = 6; i < 20; i++)
656 		hash ^= (hash_addr >> i) & 1;
657 
658 	return (int)hash ^ intlv;
659 }
660 
661 static u64 decode_channel_addr(u64 addr, int intlv_bit)
662 {
663 	u64 channel_addr;
664 
665 	/* Remove the interleave bit and shift upper part down to fill gap */
666 	channel_addr  = GET_BITFIELD(addr, intlv_bit + 1, 63) << intlv_bit;
667 	channel_addr |= GET_BITFIELD(addr, 0, intlv_bit - 1);
668 
669 	return channel_addr;
670 }
671 
672 static void decode_addr(u64 addr, u32 hash, u64 s_size, int l_map,
673 			int *idx, u64 *sub_addr)
674 {
675 	int intlv_bit = CHANNEL_HASH_LSB_MASK_BIT(hash) + 6;
676 
677 	if (addr > 2 * s_size) {
678 		*sub_addr = addr - s_size;
679 		*idx = l_map;
680 		return;
681 	}
682 
683 	if (CHANNEL_HASH_MODE(hash)) {
684 		*sub_addr = decode_channel_addr(addr, intlv_bit);
685 		*idx = decode_chan_idx(addr, CHANNEL_HASH_MASK(hash), intlv_bit);
686 	} else {
687 		*sub_addr = decode_channel_addr(addr, 6);
688 		*idx = GET_BITFIELD(addr, 6, 6);
689 	}
690 }
691 
692 static int igen6_decode(struct decoded_addr *res)
693 {
694 	struct igen6_imc *imc = &igen6_pvt->imc[res->mc];
695 	u64 addr = res->imc_addr, sub_addr, s_size;
696 	int idx, l_map;
697 	u32 hash;
698 
699 	if (addr >= igen6_tom) {
700 		edac_dbg(0, "Address 0x%llx out of range\n", addr);
701 		return -EINVAL;
702 	}
703 
704 	/* Decode channel */
705 	hash   = readl(imc->window + CHANNEL_HASH_OFFSET);
706 	s_size = imc->ch_s_size;
707 	l_map  = imc->ch_l_map;
708 	decode_addr(addr, hash, s_size, l_map, &idx, &sub_addr);
709 	res->channel_idx  = idx;
710 	res->channel_addr = sub_addr;
711 
712 	/* Decode sub-channel/DIMM */
713 	hash   = readl(imc->window + CHANNEL_EHASH_OFFSET);
714 	s_size = imc->dimm_s_size[idx];
715 	l_map  = imc->dimm_l_map[idx];
716 	decode_addr(res->channel_addr, hash, s_size, l_map, &idx, &sub_addr);
717 	res->sub_channel_idx  = idx;
718 	res->sub_channel_addr = sub_addr;
719 
720 	return 0;
721 }
722 
723 static void igen6_output_error(struct decoded_addr *res,
724 			       struct mem_ctl_info *mci, u64 ecclog)
725 {
726 	enum hw_event_mc_err_type type = ecclog & ECC_ERROR_LOG_UE ?
727 					 HW_EVENT_ERR_UNCORRECTED :
728 					 HW_EVENT_ERR_CORRECTED;
729 
730 	edac_mc_handle_error(type, mci, 1,
731 			     res->sys_addr >> PAGE_SHIFT,
732 			     res->sys_addr & ~PAGE_MASK,
733 			     ECC_ERROR_LOG_SYND(ecclog),
734 			     res->channel_idx, res->sub_channel_idx,
735 			     -1, "", "");
736 }
737 
738 static struct gen_pool *ecclog_gen_pool_create(void)
739 {
740 	struct gen_pool *pool;
741 
742 	pool = gen_pool_create(ilog2(sizeof(struct ecclog_node)), -1);
743 	if (!pool)
744 		return NULL;
745 
746 	if (gen_pool_add(pool, (unsigned long)ecclog_buf, ECCLOG_POOL_SIZE, -1)) {
747 		gen_pool_destroy(pool);
748 		return NULL;
749 	}
750 
751 	return pool;
752 }
753 
754 static int ecclog_gen_pool_add(int mc, u64 ecclog)
755 {
756 	struct ecclog_node *node;
757 
758 	node = (void *)gen_pool_alloc(ecclog_pool, sizeof(*node));
759 	if (!node)
760 		return -ENOMEM;
761 
762 	node->mc = mc;
763 	node->ecclog = ecclog;
764 	llist_add(&node->llnode, &ecclog_llist);
765 
766 	return 0;
767 }
768 
769 /*
770  * Either the memory-mapped I/O status register ECC_ERROR_LOG or the PCI
771  * configuration space status register ERRSTS can indicate whether a
772  * correctable error or an uncorrectable error occurred. We only use the
773  * ECC_ERROR_LOG register to check error type, but need to clear both
774  * registers to enable future error events.
775  */
776 static u64 ecclog_read_and_clear(struct igen6_imc *imc)
777 {
778 	u64 ecclog = readq(imc->window + ECC_ERROR_LOG_OFFSET);
779 
780 	if (ecclog & (ECC_ERROR_LOG_CE | ECC_ERROR_LOG_UE)) {
781 		/* Clear CE/UE bits by writing 1s */
782 		writeq(ecclog, imc->window + ECC_ERROR_LOG_OFFSET);
783 		return ecclog;
784 	}
785 
786 	return 0;
787 }
788 
789 static void errsts_clear(struct igen6_imc *imc)
790 {
791 	u16 errsts;
792 
793 	if (pci_read_config_word(imc->pdev, ERRSTS_OFFSET, &errsts)) {
794 		igen6_printk(KERN_ERR, "Failed to read ERRSTS\n");
795 		return;
796 	}
797 
798 	/* Clear CE/UE bits by writing 1s */
799 	if (errsts & (ERRSTS_CE | ERRSTS_UE))
800 		pci_write_config_word(imc->pdev, ERRSTS_OFFSET, errsts);
801 }
802 
803 static int errcmd_enable_error_reporting(bool enable)
804 {
805 	struct igen6_imc *imc = &igen6_pvt->imc[0];
806 	u16 errcmd;
807 	int rc;
808 
809 	rc = pci_read_config_word(imc->pdev, ERRCMD_OFFSET, &errcmd);
810 	if (rc)
811 		return pcibios_err_to_errno(rc);
812 
813 	if (enable)
814 		errcmd |= ERRCMD_CE | ERRSTS_UE;
815 	else
816 		errcmd &= ~(ERRCMD_CE | ERRSTS_UE);
817 
818 	rc = pci_write_config_word(imc->pdev, ERRCMD_OFFSET, errcmd);
819 	if (rc)
820 		return pcibios_err_to_errno(rc);
821 
822 	return 0;
823 }
824 
825 static int ecclog_handler(void)
826 {
827 	struct igen6_imc *imc;
828 	int i, n = 0;
829 	u64 ecclog;
830 
831 	for (i = 0; i < res_cfg->num_imc; i++) {
832 		imc = &igen6_pvt->imc[i];
833 
834 		/* errsts_clear() isn't NMI-safe. Delay it in the IRQ context */
835 
836 		ecclog = ecclog_read_and_clear(imc);
837 		if (!ecclog)
838 			continue;
839 
840 		if (!ecclog_gen_pool_add(i, ecclog))
841 			irq_work_queue(&ecclog_irq_work);
842 
843 		n++;
844 	}
845 
846 	return n;
847 }
848 
849 static void ecclog_work_cb(struct work_struct *work)
850 {
851 	struct ecclog_node *node, *tmp;
852 	struct mem_ctl_info *mci;
853 	struct llist_node *head;
854 	struct decoded_addr res;
855 	u64 eaddr;
856 
857 	head = llist_del_all(&ecclog_llist);
858 	if (!head)
859 		return;
860 
861 	llist_for_each_entry_safe(node, tmp, head, llnode) {
862 		memset(&res, 0, sizeof(res));
863 		if (res_cfg->err_addr)
864 			eaddr = res_cfg->err_addr(node->ecclog);
865 		else
866 			eaddr = ECC_ERROR_LOG_ADDR(node->ecclog) <<
867 				ECC_ERROR_LOG_ADDR_SHIFT;
868 		res.mc	     = node->mc;
869 		res.sys_addr = res_cfg->err_addr_to_sys_addr(eaddr, res.mc);
870 		res.imc_addr = res_cfg->err_addr_to_imc_addr(eaddr, res.mc);
871 
872 		mci = igen6_pvt->imc[res.mc].mci;
873 
874 		edac_dbg(2, "MC %d, ecclog = 0x%llx\n", node->mc, node->ecclog);
875 		igen6_mc_printk(mci, KERN_DEBUG, "HANDLING IBECC MEMORY ERROR\n");
876 		igen6_mc_printk(mci, KERN_DEBUG, "ADDR 0x%llx ", res.sys_addr);
877 
878 		if (!igen6_decode(&res))
879 			igen6_output_error(&res, mci, node->ecclog);
880 
881 		gen_pool_free(ecclog_pool, (unsigned long)node, sizeof(*node));
882 	}
883 }
884 
885 static void ecclog_irq_work_cb(struct irq_work *irq_work)
886 {
887 	int i;
888 
889 	for (i = 0; i < res_cfg->num_imc; i++)
890 		errsts_clear(&igen6_pvt->imc[i]);
891 
892 	if (!llist_empty(&ecclog_llist))
893 		schedule_work(&ecclog_work);
894 }
895 
896 static int ecclog_nmi_handler(unsigned int cmd, struct pt_regs *regs)
897 {
898 	unsigned char reason;
899 
900 	if (!ecclog_handler())
901 		return NMI_DONE;
902 
903 	/*
904 	 * Both In-Band ECC correctable error and uncorrectable error are
905 	 * reported by SERR# NMI. The NMI generic code (see pci_serr_error())
906 	 * doesn't clear the bit NMI_REASON_CLEAR_SERR (in port 0x61) to
907 	 * re-enable the SERR# NMI after NMI handling. So clear this bit here
908 	 * to re-enable SERR# NMI for receiving future In-Band ECC errors.
909 	 */
910 	reason  = x86_platform.get_nmi_reason() & NMI_REASON_CLEAR_MASK;
911 	reason |= NMI_REASON_CLEAR_SERR;
912 	outb(reason, NMI_REASON_PORT);
913 	reason &= ~NMI_REASON_CLEAR_SERR;
914 	outb(reason, NMI_REASON_PORT);
915 
916 	return NMI_HANDLED;
917 }
918 
919 static int ecclog_mce_handler(struct notifier_block *nb, unsigned long val,
920 			      void *data)
921 {
922 	struct mce *mce = (struct mce *)data;
923 	char *type;
924 
925 	if (mce->kflags & MCE_HANDLED_CEC)
926 		return NOTIFY_DONE;
927 
928 	/*
929 	 * Ignore unless this is a memory related error.
930 	 * We don't check the bit MCI_STATUS_ADDRV of MCi_STATUS here,
931 	 * since this bit isn't set on some CPU (e.g., Tiger Lake UP3).
932 	 */
933 	if ((mce->status & 0xefff) >> 7 != 1)
934 		return NOTIFY_DONE;
935 
936 	if (mce->mcgstatus & MCG_STATUS_MCIP)
937 		type = "Exception";
938 	else
939 		type = "Event";
940 
941 	edac_dbg(0, "CPU %d: Machine Check %s: 0x%llx Bank %d: 0x%llx\n",
942 		 mce->extcpu, type, mce->mcgstatus,
943 		 mce->bank, mce->status);
944 	edac_dbg(0, "TSC 0x%llx\n", mce->tsc);
945 	edac_dbg(0, "ADDR 0x%llx\n", mce->addr);
946 	edac_dbg(0, "MISC 0x%llx\n", mce->misc);
947 	edac_dbg(0, "PROCESSOR %u:0x%x TIME %llu SOCKET %u APIC 0x%x\n",
948 		 mce->cpuvendor, mce->cpuid, mce->time,
949 		 mce->socketid, mce->apicid);
950 	/*
951 	 * We just use the Machine Check for the memory error notification.
952 	 * Each memory controller is associated with an IBECC instance.
953 	 * Directly read and clear the error information(error address and
954 	 * error type) on all the IBECC instances so that we know on which
955 	 * memory controller the memory error(s) occurred.
956 	 */
957 	if (!ecclog_handler())
958 		return NOTIFY_DONE;
959 
960 	mce->kflags |= MCE_HANDLED_EDAC;
961 
962 	return NOTIFY_DONE;
963 }
964 
965 static struct notifier_block ecclog_mce_dec = {
966 	.notifier_call	= ecclog_mce_handler,
967 	.priority	= MCE_PRIO_EDAC,
968 };
969 
970 static bool igen6_check_ecc(struct igen6_imc *imc)
971 {
972 	u32 activate = readl(imc->window + IBECC_ACTIVATE_OFFSET);
973 
974 	return !!(activate & IBECC_ACTIVATE_EN);
975 }
976 
977 static int igen6_get_dimm_config(struct mem_ctl_info *mci)
978 {
979 	struct igen6_imc *imc = mci->pvt_info;
980 	u32 mad_inter, mad_intra, mad_dimm;
981 	int i, j, ndimms, mc = imc->mc;
982 	struct dimm_info *dimm;
983 	enum mem_type mtype;
984 	enum dev_type dtype;
985 	u64 dsize;
986 	bool ecc;
987 
988 	edac_dbg(2, "\n");
989 
990 	mad_inter = readl(imc->window + MAD_INTER_CHANNEL_OFFSET);
991 	mtype = get_memory_type(mad_inter);
992 	ecc = igen6_check_ecc(imc);
993 	imc->ch_s_size = MAD_INTER_CHANNEL_CH_S_SIZE(mad_inter);
994 	imc->ch_l_map  = MAD_INTER_CHANNEL_CH_L_MAP(mad_inter);
995 
996 	for (i = 0; i < NUM_CHANNELS; i++) {
997 		mad_intra = readl(imc->window + MAD_INTRA_CH0_OFFSET + i * 4);
998 		mad_dimm  = readl(imc->window + MAD_DIMM_CH0_OFFSET + i * 4);
999 
1000 		imc->dimm_l_size[i] = MAD_DIMM_CH_DIMM_L_SIZE(mad_dimm);
1001 		imc->dimm_s_size[i] = MAD_DIMM_CH_DIMM_S_SIZE(mad_dimm);
1002 		imc->dimm_l_map[i]  = MAD_INTRA_CH_DIMM_L_MAP(mad_intra);
1003 		imc->size += imc->dimm_s_size[i];
1004 		imc->size += imc->dimm_l_size[i];
1005 		ndimms = 0;
1006 
1007 		for (j = 0; j < NUM_DIMMS; j++) {
1008 			dimm = edac_get_dimm(mci, i, j, 0);
1009 
1010 			if (j ^ imc->dimm_l_map[i]) {
1011 				dtype = get_width(0, mad_dimm);
1012 				dsize = imc->dimm_s_size[i];
1013 			} else {
1014 				dtype = get_width(1, mad_dimm);
1015 				dsize = imc->dimm_l_size[i];
1016 			}
1017 
1018 			if (!dsize)
1019 				continue;
1020 
1021 			dimm->grain = 64;
1022 			dimm->mtype = mtype;
1023 			dimm->dtype = dtype;
1024 			dimm->nr_pages  = MiB_TO_PAGES(dsize >> 20);
1025 			dimm->edac_mode = EDAC_SECDED;
1026 			snprintf(dimm->label, sizeof(dimm->label),
1027 				 "MC#%d_Chan#%d_DIMM#%d", mc, i, j);
1028 			edac_dbg(0, "MC %d, Channel %d, DIMM %d, Size %llu MiB (%u pages)\n",
1029 				 mc, i, j, dsize >> 20, dimm->nr_pages);
1030 
1031 			ndimms++;
1032 		}
1033 
1034 		if (ndimms && !ecc) {
1035 			igen6_printk(KERN_ERR, "MC%d In-Band ECC is disabled\n", mc);
1036 			return -ENODEV;
1037 		}
1038 	}
1039 
1040 	edac_dbg(0, "MC %d, total size %llu MiB\n", mc, imc->size >> 20);
1041 
1042 	return 0;
1043 }
1044 
1045 #ifdef CONFIG_EDAC_DEBUG
1046 /* Top of upper usable DRAM */
1047 static u64 igen6_touud;
1048 #define TOUUD_OFFSET	0xa8
1049 
1050 static void igen6_reg_dump(struct igen6_imc *imc)
1051 {
1052 	int i;
1053 
1054 	edac_dbg(2, "CHANNEL_HASH     : 0x%x\n",
1055 		 readl(imc->window + CHANNEL_HASH_OFFSET));
1056 	edac_dbg(2, "CHANNEL_EHASH    : 0x%x\n",
1057 		 readl(imc->window + CHANNEL_EHASH_OFFSET));
1058 	edac_dbg(2, "MAD_INTER_CHANNEL: 0x%x\n",
1059 		 readl(imc->window + MAD_INTER_CHANNEL_OFFSET));
1060 	edac_dbg(2, "ECC_ERROR_LOG    : 0x%llx\n",
1061 		 readq(imc->window + ECC_ERROR_LOG_OFFSET));
1062 
1063 	for (i = 0; i < NUM_CHANNELS; i++) {
1064 		edac_dbg(2, "MAD_INTRA_CH%d    : 0x%x\n", i,
1065 			 readl(imc->window + MAD_INTRA_CH0_OFFSET + i * 4));
1066 		edac_dbg(2, "MAD_DIMM_CH%d     : 0x%x\n", i,
1067 			 readl(imc->window + MAD_DIMM_CH0_OFFSET + i * 4));
1068 	}
1069 	edac_dbg(2, "TOLUD            : 0x%x", igen6_tolud);
1070 	edac_dbg(2, "TOUUD            : 0x%llx", igen6_touud);
1071 	edac_dbg(2, "TOM              : 0x%llx", igen6_tom);
1072 }
1073 
1074 static struct dentry *igen6_test;
1075 
1076 static int debugfs_u64_set(void *data, u64 val)
1077 {
1078 	u64 ecclog;
1079 
1080 	if ((val >= igen6_tolud && val < _4GB) || val >= igen6_touud) {
1081 		edac_dbg(0, "Address 0x%llx out of range\n", val);
1082 		return 0;
1083 	}
1084 
1085 	pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val);
1086 
1087 	val  >>= ECC_ERROR_LOG_ADDR_SHIFT;
1088 	ecclog = (val << ECC_ERROR_LOG_ADDR_SHIFT) | ECC_ERROR_LOG_CE;
1089 
1090 	if (!ecclog_gen_pool_add(0, ecclog))
1091 		irq_work_queue(&ecclog_irq_work);
1092 
1093 	return 0;
1094 }
1095 DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
1096 
1097 static void igen6_debug_setup(void)
1098 {
1099 	igen6_test = edac_debugfs_create_dir("igen6_test");
1100 	if (!igen6_test)
1101 		return;
1102 
1103 	if (!edac_debugfs_create_file("addr", 0200, igen6_test,
1104 				      NULL, &fops_u64_wo)) {
1105 		debugfs_remove(igen6_test);
1106 		igen6_test = NULL;
1107 	}
1108 }
1109 
1110 static void igen6_debug_teardown(void)
1111 {
1112 	debugfs_remove_recursive(igen6_test);
1113 }
1114 #else
1115 static void igen6_reg_dump(struct igen6_imc *imc) {}
1116 static void igen6_debug_setup(void) {}
1117 static void igen6_debug_teardown(void) {}
1118 #endif
1119 
1120 static int igen6_pci_setup(struct pci_dev *pdev, u64 *mchbar)
1121 {
1122 	union  {
1123 		u64 v;
1124 		struct {
1125 			u32 v_lo;
1126 			u32 v_hi;
1127 		};
1128 	} u;
1129 
1130 	edac_dbg(2, "\n");
1131 
1132 	if (!res_cfg->ibecc_available(pdev)) {
1133 		edac_dbg(2, "No In-Band ECC IP\n");
1134 		goto fail;
1135 	}
1136 
1137 	if (pci_read_config_dword(pdev, TOLUD_OFFSET, &igen6_tolud)) {
1138 		igen6_printk(KERN_ERR, "Failed to read TOLUD\n");
1139 		goto fail;
1140 	}
1141 
1142 	igen6_tolud &= GENMASK(31, 20);
1143 
1144 	if (pci_read_config_dword(pdev, TOM_OFFSET, &u.v_lo)) {
1145 		igen6_printk(KERN_ERR, "Failed to read lower TOM\n");
1146 		goto fail;
1147 	}
1148 
1149 	if (pci_read_config_dword(pdev, TOM_OFFSET + 4, &u.v_hi)) {
1150 		igen6_printk(KERN_ERR, "Failed to read upper TOM\n");
1151 		goto fail;
1152 	}
1153 
1154 	igen6_tom = u.v & GENMASK_ULL(38, 20);
1155 
1156 	if (get_mchbar(pdev, mchbar))
1157 		goto fail;
1158 
1159 #ifdef CONFIG_EDAC_DEBUG
1160 	if (pci_read_config_dword(pdev, TOUUD_OFFSET, &u.v_lo))
1161 		edac_dbg(2, "Failed to read lower TOUUD\n");
1162 	else if (pci_read_config_dword(pdev, TOUUD_OFFSET + 4, &u.v_hi))
1163 		edac_dbg(2, "Failed to read upper TOUUD\n");
1164 	else
1165 		igen6_touud = u.v & GENMASK_ULL(38, 20);
1166 #endif
1167 
1168 	return 0;
1169 fail:
1170 	return -ENODEV;
1171 }
1172 
1173 static int igen6_register_mci(int mc, u64 mchbar, struct pci_dev *pdev)
1174 {
1175 	struct edac_mc_layer layers[2];
1176 	struct mem_ctl_info *mci;
1177 	struct igen6_imc *imc;
1178 	void __iomem *window;
1179 	int rc;
1180 
1181 	edac_dbg(2, "\n");
1182 
1183 	mchbar += mc * MCHBAR_SIZE;
1184 	window = ioremap(mchbar, MCHBAR_SIZE);
1185 	if (!window) {
1186 		igen6_printk(KERN_ERR, "Failed to ioremap 0x%llx\n", mchbar);
1187 		return -ENODEV;
1188 	}
1189 
1190 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
1191 	layers[0].size = NUM_CHANNELS;
1192 	layers[0].is_virt_csrow = false;
1193 	layers[1].type = EDAC_MC_LAYER_SLOT;
1194 	layers[1].size = NUM_DIMMS;
1195 	layers[1].is_virt_csrow = true;
1196 
1197 	mci = edac_mc_alloc(mc, ARRAY_SIZE(layers), layers, 0);
1198 	if (!mci) {
1199 		rc = -ENOMEM;
1200 		goto fail;
1201 	}
1202 
1203 	mci->ctl_name = kasprintf(GFP_KERNEL, "Intel_client_SoC MC#%d", mc);
1204 	if (!mci->ctl_name) {
1205 		rc = -ENOMEM;
1206 		goto fail2;
1207 	}
1208 
1209 	mci->mtype_cap = MEM_FLAG_LPDDR4 | MEM_FLAG_DDR4;
1210 	mci->edac_ctl_cap = EDAC_FLAG_SECDED;
1211 	mci->edac_cap = EDAC_FLAG_SECDED;
1212 	mci->mod_name = EDAC_MOD_STR;
1213 	mci->dev_name = pci_name(pdev);
1214 	mci->pvt_info = &igen6_pvt->imc[mc];
1215 
1216 	imc = mci->pvt_info;
1217 	device_initialize(&imc->dev);
1218 	/*
1219 	 * EDAC core uses mci->pdev(pointer of structure device) as
1220 	 * memory controller ID. The client SoCs attach one or more
1221 	 * memory controllers to single pci_dev (single pci_dev->dev
1222 	 * can be for multiple memory controllers).
1223 	 *
1224 	 * To make mci->pdev unique, assign pci_dev->dev to mci->pdev
1225 	 * for the first memory controller and assign a unique imc->dev
1226 	 * to mci->pdev for each non-first memory controller.
1227 	 */
1228 	mci->pdev = mc ? &imc->dev : &pdev->dev;
1229 	imc->mc	= mc;
1230 	imc->pdev = pdev;
1231 	imc->window = window;
1232 
1233 	igen6_reg_dump(imc);
1234 
1235 	rc = igen6_get_dimm_config(mci);
1236 	if (rc)
1237 		goto fail3;
1238 
1239 	rc = edac_mc_add_mc(mci);
1240 	if (rc) {
1241 		igen6_printk(KERN_ERR, "Failed to register mci#%d\n", mc);
1242 		goto fail3;
1243 	}
1244 
1245 	imc->mci = mci;
1246 	return 0;
1247 fail3:
1248 	kfree(mci->ctl_name);
1249 fail2:
1250 	edac_mc_free(mci);
1251 fail:
1252 	iounmap(window);
1253 	return rc;
1254 }
1255 
1256 static void igen6_unregister_mcis(void)
1257 {
1258 	struct mem_ctl_info *mci;
1259 	struct igen6_imc *imc;
1260 	int i;
1261 
1262 	edac_dbg(2, "\n");
1263 
1264 	for (i = 0; i < res_cfg->num_imc; i++) {
1265 		imc = &igen6_pvt->imc[i];
1266 		mci = imc->mci;
1267 		if (!mci)
1268 			continue;
1269 
1270 		edac_mc_del_mc(mci->pdev);
1271 		kfree(mci->ctl_name);
1272 		edac_mc_free(mci);
1273 		iounmap(imc->window);
1274 	}
1275 }
1276 
1277 static int igen6_mem_slice_setup(u64 mchbar)
1278 {
1279 	struct igen6_imc *imc = &igen6_pvt->imc[0];
1280 	u64 base = mchbar + res_cfg->cmf_base;
1281 	u32 offset = res_cfg->ms_hash_offset;
1282 	u32 size = res_cfg->cmf_size;
1283 	u64 ms_s_size, ms_hash;
1284 	void __iomem *cmf;
1285 	int ms_l_map;
1286 
1287 	edac_dbg(2, "\n");
1288 
1289 	if (imc[0].size < imc[1].size) {
1290 		ms_s_size = imc[0].size;
1291 		ms_l_map  = 1;
1292 	} else {
1293 		ms_s_size = imc[1].size;
1294 		ms_l_map  = 0;
1295 	}
1296 
1297 	igen6_pvt->ms_s_size = ms_s_size;
1298 	igen6_pvt->ms_l_map  = ms_l_map;
1299 
1300 	edac_dbg(0, "ms_s_size: %llu MiB, ms_l_map %d\n",
1301 		 ms_s_size >> 20, ms_l_map);
1302 
1303 	if (!size)
1304 		return 0;
1305 
1306 	cmf = ioremap(base, size);
1307 	if (!cmf) {
1308 		igen6_printk(KERN_ERR, "Failed to ioremap cmf 0x%llx\n", base);
1309 		return -ENODEV;
1310 	}
1311 
1312 	ms_hash = readq(cmf + offset);
1313 	igen6_pvt->ms_hash = ms_hash;
1314 
1315 	edac_dbg(0, "MEM_SLICE_HASH: 0x%llx\n", ms_hash);
1316 
1317 	iounmap(cmf);
1318 
1319 	return 0;
1320 }
1321 
1322 static int register_err_handler(void)
1323 {
1324 	int rc;
1325 
1326 	if (res_cfg->machine_check) {
1327 		mce_register_decode_chain(&ecclog_mce_dec);
1328 		return 0;
1329 	}
1330 
1331 	rc = register_nmi_handler(NMI_SERR, ecclog_nmi_handler,
1332 				  0, IGEN6_NMI_NAME);
1333 	if (rc) {
1334 		igen6_printk(KERN_ERR, "Failed to register NMI handler\n");
1335 		return rc;
1336 	}
1337 
1338 	return 0;
1339 }
1340 
1341 static void unregister_err_handler(void)
1342 {
1343 	if (res_cfg->machine_check) {
1344 		mce_unregister_decode_chain(&ecclog_mce_dec);
1345 		return;
1346 	}
1347 
1348 	unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME);
1349 }
1350 
1351 static int igen6_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1352 {
1353 	u64 mchbar;
1354 	int i, rc;
1355 
1356 	edac_dbg(2, "\n");
1357 
1358 	igen6_pvt = kzalloc(sizeof(*igen6_pvt), GFP_KERNEL);
1359 	if (!igen6_pvt)
1360 		return -ENOMEM;
1361 
1362 	res_cfg = (struct res_config *)ent->driver_data;
1363 
1364 	rc = igen6_pci_setup(pdev, &mchbar);
1365 	if (rc)
1366 		goto fail;
1367 
1368 	for (i = 0; i < res_cfg->num_imc; i++) {
1369 		rc = igen6_register_mci(i, mchbar, pdev);
1370 		if (rc)
1371 			goto fail2;
1372 	}
1373 
1374 	if (res_cfg->num_imc > 1) {
1375 		rc = igen6_mem_slice_setup(mchbar);
1376 		if (rc)
1377 			goto fail2;
1378 	}
1379 
1380 	ecclog_pool = ecclog_gen_pool_create();
1381 	if (!ecclog_pool) {
1382 		rc = -ENOMEM;
1383 		goto fail2;
1384 	}
1385 
1386 	INIT_WORK(&ecclog_work, ecclog_work_cb);
1387 	init_irq_work(&ecclog_irq_work, ecclog_irq_work_cb);
1388 
1389 	rc = register_err_handler();
1390 	if (rc)
1391 		goto fail3;
1392 
1393 	/* Enable error reporting */
1394 	rc = errcmd_enable_error_reporting(true);
1395 	if (rc) {
1396 		igen6_printk(KERN_ERR, "Failed to enable error reporting\n");
1397 		goto fail4;
1398 	}
1399 
1400 	/* Check if any pending errors before/during the registration of the error handler */
1401 	ecclog_handler();
1402 
1403 	igen6_debug_setup();
1404 	return 0;
1405 fail4:
1406 	unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME);
1407 fail3:
1408 	gen_pool_destroy(ecclog_pool);
1409 fail2:
1410 	igen6_unregister_mcis();
1411 fail:
1412 	kfree(igen6_pvt);
1413 	return rc;
1414 }
1415 
1416 static void igen6_remove(struct pci_dev *pdev)
1417 {
1418 	edac_dbg(2, "\n");
1419 
1420 	igen6_debug_teardown();
1421 	errcmd_enable_error_reporting(false);
1422 	unregister_err_handler();
1423 	irq_work_sync(&ecclog_irq_work);
1424 	flush_work(&ecclog_work);
1425 	gen_pool_destroy(ecclog_pool);
1426 	igen6_unregister_mcis();
1427 	kfree(igen6_pvt);
1428 }
1429 
1430 static struct pci_driver igen6_driver = {
1431 	.name     = EDAC_MOD_STR,
1432 	.probe    = igen6_probe,
1433 	.remove   = igen6_remove,
1434 	.id_table = igen6_pci_tbl,
1435 };
1436 
1437 static int __init igen6_init(void)
1438 {
1439 	const char *owner;
1440 	int rc;
1441 
1442 	edac_dbg(2, "\n");
1443 
1444 	if (ghes_get_devices())
1445 		return -EBUSY;
1446 
1447 	owner = edac_get_owner();
1448 	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
1449 		return -EBUSY;
1450 
1451 	edac_op_state = EDAC_OPSTATE_NMI;
1452 
1453 	rc = pci_register_driver(&igen6_driver);
1454 	if (rc)
1455 		return rc;
1456 
1457 	igen6_printk(KERN_INFO, "%s\n", IGEN6_REVISION);
1458 
1459 	return 0;
1460 }
1461 
1462 static void __exit igen6_exit(void)
1463 {
1464 	edac_dbg(2, "\n");
1465 
1466 	pci_unregister_driver(&igen6_driver);
1467 }
1468 
1469 module_init(igen6_init);
1470 module_exit(igen6_exit);
1471 
1472 MODULE_LICENSE("GPL v2");
1473 MODULE_AUTHOR("Qiuxu Zhuo");
1474 MODULE_DESCRIPTION("MC Driver for Intel client SoC using In-Band ECC");
1475