xref: /linux/drivers/edac/i7core_edac.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /* Intel i7 core/Nehalem Memory Controller kernel module
2  *
3  * This driver supports the memory controllers found on the Intel
4  * processor families i7core, i7core 7xx/8xx, i5core, Xeon 35xx,
5  * Xeon 55xx and Xeon 56xx also known as Nehalem, Nehalem-EP, Lynnfield
6  * and Westmere-EP.
7  *
8  * This file may be distributed under the terms of the
9  * GNU General Public License version 2 only.
10  *
11  * Copyright (c) 2009-2010 by:
12  *	 Mauro Carvalho Chehab
13  *
14  * Red Hat Inc. http://www.redhat.com
15  *
16  * Forked and adapted from the i5400_edac driver
17  *
18  * Based on the following public Intel datasheets:
19  * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor
20  * Datasheet, Volume 2:
21  *	http://download.intel.com/design/processor/datashts/320835.pdf
22  * Intel Xeon Processor 5500 Series Datasheet Volume 2
23  *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
24  * also available at:
25  * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
26  */
27 
28 #include <linux/module.h>
29 #include <linux/init.h>
30 #include <linux/pci.h>
31 #include <linux/pci_ids.h>
32 #include <linux/slab.h>
33 #include <linux/delay.h>
34 #include <linux/dmi.h>
35 #include <linux/edac.h>
36 #include <linux/mmzone.h>
37 #include <linux/smp.h>
38 #include <asm/mce.h>
39 #include <asm/processor.h>
40 #include <asm/div64.h>
41 
42 #include "edac_module.h"
43 
44 /* Static vars */
45 static LIST_HEAD(i7core_edac_list);
46 static DEFINE_MUTEX(i7core_edac_lock);
47 static int probed;
48 
49 static int use_pci_fixup;
50 module_param(use_pci_fixup, int, 0444);
51 MODULE_PARM_DESC(use_pci_fixup, "Enable PCI fixup to seek for hidden devices");
52 /*
53  * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core
54  * registers start at bus 255, and are not reported by BIOS.
55  * We currently find devices with only 2 sockets. In order to support more QPI
56  * Quick Path Interconnect, just increment this number.
57  */
58 #define MAX_SOCKET_BUSES	2
59 
60 
61 /*
62  * Alter this version for the module when modifications are made
63  */
64 #define I7CORE_REVISION    " Ver: 1.0.0"
65 #define EDAC_MOD_STR      "i7core_edac"
66 
67 /*
68  * Debug macros
69  */
70 #define i7core_printk(level, fmt, arg...)			\
71 	edac_printk(level, "i7core", fmt, ##arg)
72 
73 #define i7core_mc_printk(mci, level, fmt, arg...)		\
74 	edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg)
75 
76 /*
77  * i7core Memory Controller Registers
78  */
79 
80 	/* OFFSETS for Device 0 Function 0 */
81 
82 #define MC_CFG_CONTROL	0x90
83   #define MC_CFG_UNLOCK		0x02
84   #define MC_CFG_LOCK		0x00
85 
86 	/* OFFSETS for Device 3 Function 0 */
87 
88 #define MC_CONTROL	0x48
89 #define MC_STATUS	0x4c
90 #define MC_MAX_DOD	0x64
91 
92 /*
93  * OFFSETS for Device 3 Function 4, as indicated on Xeon 5500 datasheet:
94  * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
95  */
96 
97 #define MC_TEST_ERR_RCV1	0x60
98   #define DIMM2_COR_ERR(r)			((r) & 0x7fff)
99 
100 #define MC_TEST_ERR_RCV0	0x64
101   #define DIMM1_COR_ERR(r)			(((r) >> 16) & 0x7fff)
102   #define DIMM0_COR_ERR(r)			((r) & 0x7fff)
103 
104 /* OFFSETS for Device 3 Function 2, as indicated on Xeon 5500 datasheet */
105 #define MC_SSRCONTROL		0x48
106   #define SSR_MODE_DISABLE	0x00
107   #define SSR_MODE_ENABLE	0x01
108   #define SSR_MODE_MASK		0x03
109 
110 #define MC_SCRUB_CONTROL	0x4c
111   #define STARTSCRUB		(1 << 24)
112   #define SCRUBINTERVAL_MASK    0xffffff
113 
114 #define MC_COR_ECC_CNT_0	0x80
115 #define MC_COR_ECC_CNT_1	0x84
116 #define MC_COR_ECC_CNT_2	0x88
117 #define MC_COR_ECC_CNT_3	0x8c
118 #define MC_COR_ECC_CNT_4	0x90
119 #define MC_COR_ECC_CNT_5	0x94
120 
121 #define DIMM_TOP_COR_ERR(r)			(((r) >> 16) & 0x7fff)
122 #define DIMM_BOT_COR_ERR(r)			((r) & 0x7fff)
123 
124 
125 	/* OFFSETS for Devices 4,5 and 6 Function 0 */
126 
127 #define MC_CHANNEL_DIMM_INIT_PARAMS 0x58
128   #define THREE_DIMMS_PRESENT		(1 << 24)
129   #define SINGLE_QUAD_RANK_PRESENT	(1 << 23)
130   #define QUAD_RANK_PRESENT		(1 << 22)
131   #define REGISTERED_DIMM		(1 << 15)
132 
133 #define MC_CHANNEL_MAPPER	0x60
134   #define RDLCH(r, ch)		((((r) >> (3 + (ch * 6))) & 0x07) - 1)
135   #define WRLCH(r, ch)		((((r) >> (ch * 6)) & 0x07) - 1)
136 
137 #define MC_CHANNEL_RANK_PRESENT 0x7c
138   #define RANK_PRESENT_MASK		0xffff
139 
140 #define MC_CHANNEL_ADDR_MATCH	0xf0
141 #define MC_CHANNEL_ERROR_MASK	0xf8
142 #define MC_CHANNEL_ERROR_INJECT	0xfc
143   #define INJECT_ADDR_PARITY	0x10
144   #define INJECT_ECC		0x08
145   #define MASK_CACHELINE	0x06
146   #define MASK_FULL_CACHELINE	0x06
147   #define MASK_MSB32_CACHELINE	0x04
148   #define MASK_LSB32_CACHELINE	0x02
149   #define NO_MASK_CACHELINE	0x00
150   #define REPEAT_EN		0x01
151 
152 	/* OFFSETS for Devices 4,5 and 6 Function 1 */
153 
154 #define MC_DOD_CH_DIMM0		0x48
155 #define MC_DOD_CH_DIMM1		0x4c
156 #define MC_DOD_CH_DIMM2		0x50
157   #define RANKOFFSET_MASK	((1 << 12) | (1 << 11) | (1 << 10))
158   #define RANKOFFSET(x)		((x & RANKOFFSET_MASK) >> 10)
159   #define DIMM_PRESENT_MASK	(1 << 9)
160   #define DIMM_PRESENT(x)	(((x) & DIMM_PRESENT_MASK) >> 9)
161   #define MC_DOD_NUMBANK_MASK		((1 << 8) | (1 << 7))
162   #define MC_DOD_NUMBANK(x)		(((x) & MC_DOD_NUMBANK_MASK) >> 7)
163   #define MC_DOD_NUMRANK_MASK		((1 << 6) | (1 << 5))
164   #define MC_DOD_NUMRANK(x)		(((x) & MC_DOD_NUMRANK_MASK) >> 5)
165   #define MC_DOD_NUMROW_MASK		((1 << 4) | (1 << 3) | (1 << 2))
166   #define MC_DOD_NUMROW(x)		(((x) & MC_DOD_NUMROW_MASK) >> 2)
167   #define MC_DOD_NUMCOL_MASK		3
168   #define MC_DOD_NUMCOL(x)		((x) & MC_DOD_NUMCOL_MASK)
169 
170 #define MC_RANK_PRESENT		0x7c
171 
172 #define MC_SAG_CH_0	0x80
173 #define MC_SAG_CH_1	0x84
174 #define MC_SAG_CH_2	0x88
175 #define MC_SAG_CH_3	0x8c
176 #define MC_SAG_CH_4	0x90
177 #define MC_SAG_CH_5	0x94
178 #define MC_SAG_CH_6	0x98
179 #define MC_SAG_CH_7	0x9c
180 
181 #define MC_RIR_LIMIT_CH_0	0x40
182 #define MC_RIR_LIMIT_CH_1	0x44
183 #define MC_RIR_LIMIT_CH_2	0x48
184 #define MC_RIR_LIMIT_CH_3	0x4C
185 #define MC_RIR_LIMIT_CH_4	0x50
186 #define MC_RIR_LIMIT_CH_5	0x54
187 #define MC_RIR_LIMIT_CH_6	0x58
188 #define MC_RIR_LIMIT_CH_7	0x5C
189 #define MC_RIR_LIMIT_MASK	((1 << 10) - 1)
190 
191 #define MC_RIR_WAY_CH		0x80
192   #define MC_RIR_WAY_OFFSET_MASK	(((1 << 14) - 1) & ~0x7)
193   #define MC_RIR_WAY_RANK_MASK		0x7
194 
195 /*
196  * i7core structs
197  */
198 
199 #define NUM_CHANS 3
200 #define MAX_DIMMS 3		/* Max DIMMS per channel */
201 #define MAX_MCR_FUNC  4
202 #define MAX_CHAN_FUNC 3
203 
204 struct i7core_info {
205 	u32	mc_control;
206 	u32	mc_status;
207 	u32	max_dod;
208 	u32	ch_map;
209 };
210 
211 
212 struct i7core_inject {
213 	int	enable;
214 
215 	u32	section;
216 	u32	type;
217 	u32	eccmask;
218 
219 	/* Error address mask */
220 	int channel, dimm, rank, bank, page, col;
221 };
222 
223 struct i7core_channel {
224 	bool		is_3dimms_present;
225 	bool		is_single_4rank;
226 	bool		has_4rank;
227 	u32		dimms;
228 };
229 
230 struct pci_id_descr {
231 	int			dev;
232 	int			func;
233 	int 			dev_id;
234 	int			optional;
235 };
236 
237 struct pci_id_table {
238 	const struct pci_id_descr	*descr;
239 	int				n_devs;
240 };
241 
242 struct i7core_dev {
243 	struct list_head	list;
244 	u8			socket;
245 	struct pci_dev		**pdev;
246 	int			n_devs;
247 	struct mem_ctl_info	*mci;
248 };
249 
250 struct i7core_pvt {
251 	struct device *addrmatch_dev, *chancounts_dev;
252 
253 	struct pci_dev	*pci_noncore;
254 	struct pci_dev	*pci_mcr[MAX_MCR_FUNC + 1];
255 	struct pci_dev	*pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1];
256 
257 	struct i7core_dev *i7core_dev;
258 
259 	struct i7core_info	info;
260 	struct i7core_inject	inject;
261 	struct i7core_channel	channel[NUM_CHANS];
262 
263 	int		ce_count_available;
264 
265 			/* ECC corrected errors counts per udimm */
266 	unsigned long	udimm_ce_count[MAX_DIMMS];
267 	int		udimm_last_ce_count[MAX_DIMMS];
268 			/* ECC corrected errors counts per rdimm */
269 	unsigned long	rdimm_ce_count[NUM_CHANS][MAX_DIMMS];
270 	int		rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS];
271 
272 	bool		is_registered, enable_scrub;
273 
274 	/* DCLK Frequency used for computing scrub rate */
275 	int			dclk_freq;
276 
277 	/* Struct to control EDAC polling */
278 	struct edac_pci_ctl_info *i7core_pci;
279 };
280 
281 #define PCI_DESCR(device, function, device_id)	\
282 	.dev = (device),			\
283 	.func = (function),			\
284 	.dev_id = (device_id)
285 
286 static const struct pci_id_descr pci_dev_descr_i7core_nehalem[] = {
287 		/* Memory controller */
288 	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR)     },
289 	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD)  },
290 			/* Exists only for RDIMM */
291 	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1  },
292 	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) },
293 
294 		/* Channel 0 */
295 	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) },
296 	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) },
297 	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) },
298 	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC)   },
299 
300 		/* Channel 1 */
301 	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) },
302 	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) },
303 	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) },
304 	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC)   },
305 
306 		/* Channel 2 */
307 	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) },
308 	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) },
309 	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) },
310 	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC)   },
311 
312 		/* Generic Non-core registers */
313 	/*
314 	 * This is the PCI device on i7core and on Xeon 35xx (8086:2c41)
315 	 * On Xeon 55xx, however, it has a different id (8086:2c40). So,
316 	 * the probing code needs to test for the other address in case of
317 	 * failure of this one
318 	 */
319 	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NONCORE)  },
320 
321 };
322 
323 static const struct pci_id_descr pci_dev_descr_lynnfield[] = {
324 	{ PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR)         },
325 	{ PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD)      },
326 	{ PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST)     },
327 
328 	{ PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) },
329 	{ PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) },
330 	{ PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) },
331 	{ PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC)   },
332 
333 	{ PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) },
334 	{ PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) },
335 	{ PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) },
336 	{ PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC)   },
337 
338 	/*
339 	 * This is the PCI device has an alternate address on some
340 	 * processors like Core i7 860
341 	 */
342 	{ PCI_DESCR( 0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE)     },
343 };
344 
345 static const struct pci_id_descr pci_dev_descr_i7core_westmere[] = {
346 		/* Memory controller */
347 	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR_REV2)     },
348 	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD_REV2)  },
349 			/* Exists only for RDIMM */
350 	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_RAS_REV2), .optional = 1  },
351 	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST_REV2) },
352 
353 		/* Channel 0 */
354 	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL_REV2) },
355 	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR_REV2) },
356 	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK_REV2) },
357 	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC_REV2)   },
358 
359 		/* Channel 1 */
360 	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL_REV2) },
361 	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR_REV2) },
362 	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK_REV2) },
363 	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC_REV2)   },
364 
365 		/* Channel 2 */
366 	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_CTRL_REV2) },
367 	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_ADDR_REV2) },
368 	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_RANK_REV2) },
369 	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_TC_REV2)   },
370 
371 		/* Generic Non-core registers */
372 	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2)  },
373 
374 };
375 
376 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
377 static const struct pci_id_table pci_dev_table[] = {
378 	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_nehalem),
379 	PCI_ID_TABLE_ENTRY(pci_dev_descr_lynnfield),
380 	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_westmere),
381 	{0,}			/* 0 terminated list. */
382 };
383 
384 /*
385  *	pci_device_id	table for which devices we are looking for
386  */
387 static const struct pci_device_id i7core_pci_tbl[] = {
388 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)},
389 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)},
390 	{0,}			/* 0 terminated list. */
391 };
392 
393 /****************************************************************************
394 			Ancillary status routines
395  ****************************************************************************/
396 
397 	/* MC_CONTROL bits */
398 #define CH_ACTIVE(pvt, ch)	((pvt)->info.mc_control & (1 << (8 + ch)))
399 #define ECCx8(pvt)		((pvt)->info.mc_control & (1 << 1))
400 
401 	/* MC_STATUS bits */
402 #define ECC_ENABLED(pvt)	((pvt)->info.mc_status & (1 << 4))
403 #define CH_DISABLED(pvt, ch)	((pvt)->info.mc_status & (1 << ch))
404 
405 	/* MC_MAX_DOD read functions */
406 static inline int numdimms(u32 dimms)
407 {
408 	return (dimms & 0x3) + 1;
409 }
410 
411 static inline int numrank(u32 rank)
412 {
413 	static const int ranks[] = { 1, 2, 4, -EINVAL };
414 
415 	return ranks[rank & 0x3];
416 }
417 
418 static inline int numbank(u32 bank)
419 {
420 	static const int banks[] = { 4, 8, 16, -EINVAL };
421 
422 	return banks[bank & 0x3];
423 }
424 
425 static inline int numrow(u32 row)
426 {
427 	static const int rows[] = {
428 		1 << 12, 1 << 13, 1 << 14, 1 << 15,
429 		1 << 16, -EINVAL, -EINVAL, -EINVAL,
430 	};
431 
432 	return rows[row & 0x7];
433 }
434 
435 static inline int numcol(u32 col)
436 {
437 	static const int cols[] = {
438 		1 << 10, 1 << 11, 1 << 12, -EINVAL,
439 	};
440 	return cols[col & 0x3];
441 }
442 
443 static struct i7core_dev *get_i7core_dev(u8 socket)
444 {
445 	struct i7core_dev *i7core_dev;
446 
447 	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
448 		if (i7core_dev->socket == socket)
449 			return i7core_dev;
450 	}
451 
452 	return NULL;
453 }
454 
455 static struct i7core_dev *alloc_i7core_dev(u8 socket,
456 					   const struct pci_id_table *table)
457 {
458 	struct i7core_dev *i7core_dev;
459 
460 	i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL);
461 	if (!i7core_dev)
462 		return NULL;
463 
464 	i7core_dev->pdev = kzalloc(sizeof(*i7core_dev->pdev) * table->n_devs,
465 				   GFP_KERNEL);
466 	if (!i7core_dev->pdev) {
467 		kfree(i7core_dev);
468 		return NULL;
469 	}
470 
471 	i7core_dev->socket = socket;
472 	i7core_dev->n_devs = table->n_devs;
473 	list_add_tail(&i7core_dev->list, &i7core_edac_list);
474 
475 	return i7core_dev;
476 }
477 
478 static void free_i7core_dev(struct i7core_dev *i7core_dev)
479 {
480 	list_del(&i7core_dev->list);
481 	kfree(i7core_dev->pdev);
482 	kfree(i7core_dev);
483 }
484 
485 /****************************************************************************
486 			Memory check routines
487  ****************************************************************************/
488 
489 static int get_dimm_config(struct mem_ctl_info *mci)
490 {
491 	struct i7core_pvt *pvt = mci->pvt_info;
492 	struct pci_dev *pdev;
493 	int i, j;
494 	enum edac_type mode;
495 	enum mem_type mtype;
496 	struct dimm_info *dimm;
497 
498 	/* Get data from the MC register, function 0 */
499 	pdev = pvt->pci_mcr[0];
500 	if (!pdev)
501 		return -ENODEV;
502 
503 	/* Device 3 function 0 reads */
504 	pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control);
505 	pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status);
506 	pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod);
507 	pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map);
508 
509 	edac_dbg(0, "QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n",
510 		 pvt->i7core_dev->socket, pvt->info.mc_control,
511 		 pvt->info.mc_status, pvt->info.max_dod, pvt->info.ch_map);
512 
513 	if (ECC_ENABLED(pvt)) {
514 		edac_dbg(0, "ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4);
515 		if (ECCx8(pvt))
516 			mode = EDAC_S8ECD8ED;
517 		else
518 			mode = EDAC_S4ECD4ED;
519 	} else {
520 		edac_dbg(0, "ECC disabled\n");
521 		mode = EDAC_NONE;
522 	}
523 
524 	/* FIXME: need to handle the error codes */
525 	edac_dbg(0, "DOD Max limits: DIMMS: %d, %d-ranked, %d-banked x%x x 0x%x\n",
526 		 numdimms(pvt->info.max_dod),
527 		 numrank(pvt->info.max_dod >> 2),
528 		 numbank(pvt->info.max_dod >> 4),
529 		 numrow(pvt->info.max_dod >> 6),
530 		 numcol(pvt->info.max_dod >> 9));
531 
532 	for (i = 0; i < NUM_CHANS; i++) {
533 		u32 data, dimm_dod[3], value[8];
534 
535 		if (!pvt->pci_ch[i][0])
536 			continue;
537 
538 		if (!CH_ACTIVE(pvt, i)) {
539 			edac_dbg(0, "Channel %i is not active\n", i);
540 			continue;
541 		}
542 		if (CH_DISABLED(pvt, i)) {
543 			edac_dbg(0, "Channel %i is disabled\n", i);
544 			continue;
545 		}
546 
547 		/* Devices 4-6 function 0 */
548 		pci_read_config_dword(pvt->pci_ch[i][0],
549 				MC_CHANNEL_DIMM_INIT_PARAMS, &data);
550 
551 
552 		if (data & THREE_DIMMS_PRESENT)
553 			pvt->channel[i].is_3dimms_present = true;
554 
555 		if (data & SINGLE_QUAD_RANK_PRESENT)
556 			pvt->channel[i].is_single_4rank = true;
557 
558 		if (data & QUAD_RANK_PRESENT)
559 			pvt->channel[i].has_4rank = true;
560 
561 		if (data & REGISTERED_DIMM)
562 			mtype = MEM_RDDR3;
563 		else
564 			mtype = MEM_DDR3;
565 
566 		/* Devices 4-6 function 1 */
567 		pci_read_config_dword(pvt->pci_ch[i][1],
568 				MC_DOD_CH_DIMM0, &dimm_dod[0]);
569 		pci_read_config_dword(pvt->pci_ch[i][1],
570 				MC_DOD_CH_DIMM1, &dimm_dod[1]);
571 		pci_read_config_dword(pvt->pci_ch[i][1],
572 				MC_DOD_CH_DIMM2, &dimm_dod[2]);
573 
574 		edac_dbg(0, "Ch%d phy rd%d, wr%d (0x%08x): %s%s%s%cDIMMs\n",
575 			 i,
576 			 RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i),
577 			 data,
578 			 pvt->channel[i].is_3dimms_present ? "3DIMMS " : "",
579 			 pvt->channel[i].is_3dimms_present ? "SINGLE_4R " : "",
580 			 pvt->channel[i].has_4rank ? "HAS_4R " : "",
581 			 (data & REGISTERED_DIMM) ? 'R' : 'U');
582 
583 		for (j = 0; j < 3; j++) {
584 			u32 banks, ranks, rows, cols;
585 			u32 size, npages;
586 
587 			if (!DIMM_PRESENT(dimm_dod[j]))
588 				continue;
589 
590 			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
591 				       i, j, 0);
592 			banks = numbank(MC_DOD_NUMBANK(dimm_dod[j]));
593 			ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j]));
594 			rows = numrow(MC_DOD_NUMROW(dimm_dod[j]));
595 			cols = numcol(MC_DOD_NUMCOL(dimm_dod[j]));
596 
597 			/* DDR3 has 8 I/O banks */
598 			size = (rows * cols * banks * ranks) >> (20 - 3);
599 
600 			edac_dbg(0, "\tdimm %d %d Mb offset: %x, bank: %d, rank: %d, row: %#x, col: %#x\n",
601 				 j, size,
602 				 RANKOFFSET(dimm_dod[j]),
603 				 banks, ranks, rows, cols);
604 
605 			npages = MiB_TO_PAGES(size);
606 
607 			dimm->nr_pages = npages;
608 
609 			switch (banks) {
610 			case 4:
611 				dimm->dtype = DEV_X4;
612 				break;
613 			case 8:
614 				dimm->dtype = DEV_X8;
615 				break;
616 			case 16:
617 				dimm->dtype = DEV_X16;
618 				break;
619 			default:
620 				dimm->dtype = DEV_UNKNOWN;
621 			}
622 
623 			snprintf(dimm->label, sizeof(dimm->label),
624 				 "CPU#%uChannel#%u_DIMM#%u",
625 				 pvt->i7core_dev->socket, i, j);
626 			dimm->grain = 8;
627 			dimm->edac_mode = mode;
628 			dimm->mtype = mtype;
629 		}
630 
631 		pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]);
632 		pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]);
633 		pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]);
634 		pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]);
635 		pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]);
636 		pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]);
637 		pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]);
638 		pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]);
639 		edac_dbg(1, "\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i);
640 		for (j = 0; j < 8; j++)
641 			edac_dbg(1, "\t\t%#x\t%#x\t%#x\n",
642 				 (value[j] >> 27) & 0x1,
643 				 (value[j] >> 24) & 0x7,
644 				 (value[j] & ((1 << 24) - 1)));
645 	}
646 
647 	return 0;
648 }
649 
650 /****************************************************************************
651 			Error insertion routines
652  ****************************************************************************/
653 
654 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
655 
656 /* The i7core has independent error injection features per channel.
657    However, to have a simpler code, we don't allow enabling error injection
658    on more than one channel.
659    Also, since a change at an inject parameter will be applied only at enable,
660    we're disabling error injection on all write calls to the sysfs nodes that
661    controls the error code injection.
662  */
663 static int disable_inject(const struct mem_ctl_info *mci)
664 {
665 	struct i7core_pvt *pvt = mci->pvt_info;
666 
667 	pvt->inject.enable = 0;
668 
669 	if (!pvt->pci_ch[pvt->inject.channel][0])
670 		return -ENODEV;
671 
672 	pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0],
673 				MC_CHANNEL_ERROR_INJECT, 0);
674 
675 	return 0;
676 }
677 
678 /*
679  * i7core inject inject.section
680  *
681  *	accept and store error injection inject.section value
682  *	bit 0 - refers to the lower 32-byte half cacheline
683  *	bit 1 - refers to the upper 32-byte half cacheline
684  */
685 static ssize_t i7core_inject_section_store(struct device *dev,
686 					   struct device_attribute *mattr,
687 					   const char *data, size_t count)
688 {
689 	struct mem_ctl_info *mci = to_mci(dev);
690 	struct i7core_pvt *pvt = mci->pvt_info;
691 	unsigned long value;
692 	int rc;
693 
694 	if (pvt->inject.enable)
695 		disable_inject(mci);
696 
697 	rc = kstrtoul(data, 10, &value);
698 	if ((rc < 0) || (value > 3))
699 		return -EIO;
700 
701 	pvt->inject.section = (u32) value;
702 	return count;
703 }
704 
705 static ssize_t i7core_inject_section_show(struct device *dev,
706 					  struct device_attribute *mattr,
707 					  char *data)
708 {
709 	struct mem_ctl_info *mci = to_mci(dev);
710 	struct i7core_pvt *pvt = mci->pvt_info;
711 	return sprintf(data, "0x%08x\n", pvt->inject.section);
712 }
713 
714 /*
715  * i7core inject.type
716  *
717  *	accept and store error injection inject.section value
718  *	bit 0 - repeat enable - Enable error repetition
719  *	bit 1 - inject ECC error
720  *	bit 2 - inject parity error
721  */
722 static ssize_t i7core_inject_type_store(struct device *dev,
723 					struct device_attribute *mattr,
724 					const char *data, size_t count)
725 {
726 	struct mem_ctl_info *mci = to_mci(dev);
727 struct i7core_pvt *pvt = mci->pvt_info;
728 	unsigned long value;
729 	int rc;
730 
731 	if (pvt->inject.enable)
732 		disable_inject(mci);
733 
734 	rc = kstrtoul(data, 10, &value);
735 	if ((rc < 0) || (value > 7))
736 		return -EIO;
737 
738 	pvt->inject.type = (u32) value;
739 	return count;
740 }
741 
742 static ssize_t i7core_inject_type_show(struct device *dev,
743 				       struct device_attribute *mattr,
744 				       char *data)
745 {
746 	struct mem_ctl_info *mci = to_mci(dev);
747 	struct i7core_pvt *pvt = mci->pvt_info;
748 
749 	return sprintf(data, "0x%08x\n", pvt->inject.type);
750 }
751 
752 /*
753  * i7core_inject_inject.eccmask_store
754  *
755  * The type of error (UE/CE) will depend on the inject.eccmask value:
756  *   Any bits set to a 1 will flip the corresponding ECC bit
757  *   Correctable errors can be injected by flipping 1 bit or the bits within
758  *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
759  *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
760  *   uncorrectable error to be injected.
761  */
762 static ssize_t i7core_inject_eccmask_store(struct device *dev,
763 					   struct device_attribute *mattr,
764 					   const char *data, size_t count)
765 {
766 	struct mem_ctl_info *mci = to_mci(dev);
767 	struct i7core_pvt *pvt = mci->pvt_info;
768 	unsigned long value;
769 	int rc;
770 
771 	if (pvt->inject.enable)
772 		disable_inject(mci);
773 
774 	rc = kstrtoul(data, 10, &value);
775 	if (rc < 0)
776 		return -EIO;
777 
778 	pvt->inject.eccmask = (u32) value;
779 	return count;
780 }
781 
782 static ssize_t i7core_inject_eccmask_show(struct device *dev,
783 					  struct device_attribute *mattr,
784 					  char *data)
785 {
786 	struct mem_ctl_info *mci = to_mci(dev);
787 	struct i7core_pvt *pvt = mci->pvt_info;
788 
789 	return sprintf(data, "0x%08x\n", pvt->inject.eccmask);
790 }
791 
792 /*
793  * i7core_addrmatch
794  *
795  * The type of error (UE/CE) will depend on the inject.eccmask value:
796  *   Any bits set to a 1 will flip the corresponding ECC bit
797  *   Correctable errors can be injected by flipping 1 bit or the bits within
798  *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
799  *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
800  *   uncorrectable error to be injected.
801  */
802 
803 #define DECLARE_ADDR_MATCH(param, limit)			\
804 static ssize_t i7core_inject_store_##param(			\
805 	struct device *dev,					\
806 	struct device_attribute *mattr,				\
807 	const char *data, size_t count)				\
808 {								\
809 	struct mem_ctl_info *mci = dev_get_drvdata(dev);	\
810 	struct i7core_pvt *pvt;					\
811 	long value;						\
812 	int rc;							\
813 								\
814 	edac_dbg(1, "\n");					\
815 	pvt = mci->pvt_info;					\
816 								\
817 	if (pvt->inject.enable)					\
818 		disable_inject(mci);				\
819 								\
820 	if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\
821 		value = -1;					\
822 	else {							\
823 		rc = kstrtoul(data, 10, &value);		\
824 		if ((rc < 0) || (value >= limit))		\
825 			return -EIO;				\
826 	}							\
827 								\
828 	pvt->inject.param = value;				\
829 								\
830 	return count;						\
831 }								\
832 								\
833 static ssize_t i7core_inject_show_##param(			\
834 	struct device *dev,					\
835 	struct device_attribute *mattr,				\
836 	char *data)						\
837 {								\
838 	struct mem_ctl_info *mci = dev_get_drvdata(dev);	\
839 	struct i7core_pvt *pvt;					\
840 								\
841 	pvt = mci->pvt_info;					\
842 	edac_dbg(1, "pvt=%p\n", pvt);				\
843 	if (pvt->inject.param < 0)				\
844 		return sprintf(data, "any\n");			\
845 	else							\
846 		return sprintf(data, "%d\n", pvt->inject.param);\
847 }
848 
849 #define ATTR_ADDR_MATCH(param)					\
850 	static DEVICE_ATTR(param, S_IRUGO | S_IWUSR,		\
851 		    i7core_inject_show_##param,			\
852 		    i7core_inject_store_##param)
853 
854 DECLARE_ADDR_MATCH(channel, 3);
855 DECLARE_ADDR_MATCH(dimm, 3);
856 DECLARE_ADDR_MATCH(rank, 4);
857 DECLARE_ADDR_MATCH(bank, 32);
858 DECLARE_ADDR_MATCH(page, 0x10000);
859 DECLARE_ADDR_MATCH(col, 0x4000);
860 
861 ATTR_ADDR_MATCH(channel);
862 ATTR_ADDR_MATCH(dimm);
863 ATTR_ADDR_MATCH(rank);
864 ATTR_ADDR_MATCH(bank);
865 ATTR_ADDR_MATCH(page);
866 ATTR_ADDR_MATCH(col);
867 
868 static int write_and_test(struct pci_dev *dev, const int where, const u32 val)
869 {
870 	u32 read;
871 	int count;
872 
873 	edac_dbg(0, "setting pci %02x:%02x.%x reg=%02x value=%08x\n",
874 		 dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
875 		 where, val);
876 
877 	for (count = 0; count < 10; count++) {
878 		if (count)
879 			msleep(100);
880 		pci_write_config_dword(dev, where, val);
881 		pci_read_config_dword(dev, where, &read);
882 
883 		if (read == val)
884 			return 0;
885 	}
886 
887 	i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x "
888 		"write=%08x. Read=%08x\n",
889 		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
890 		where, val, read);
891 
892 	return -EINVAL;
893 }
894 
895 /*
896  * This routine prepares the Memory Controller for error injection.
897  * The error will be injected when some process tries to write to the
898  * memory that matches the given criteria.
899  * The criteria can be set in terms of a mask where dimm, rank, bank, page
900  * and col can be specified.
901  * A -1 value for any of the mask items will make the MCU to ignore
902  * that matching criteria for error injection.
903  *
904  * It should be noticed that the error will only happen after a write operation
905  * on a memory that matches the condition. if REPEAT_EN is not enabled at
906  * inject mask, then it will produce just one error. Otherwise, it will repeat
907  * until the injectmask would be cleaned.
908  *
909  * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD
910  *    is reliable enough to check if the MC is using the
911  *    three channels. However, this is not clear at the datasheet.
912  */
913 static ssize_t i7core_inject_enable_store(struct device *dev,
914 					  struct device_attribute *mattr,
915 					  const char *data, size_t count)
916 {
917 	struct mem_ctl_info *mci = to_mci(dev);
918 	struct i7core_pvt *pvt = mci->pvt_info;
919 	u32 injectmask;
920 	u64 mask = 0;
921 	int  rc;
922 	long enable;
923 
924 	if (!pvt->pci_ch[pvt->inject.channel][0])
925 		return 0;
926 
927 	rc = kstrtoul(data, 10, &enable);
928 	if ((rc < 0))
929 		return 0;
930 
931 	if (enable) {
932 		pvt->inject.enable = 1;
933 	} else {
934 		disable_inject(mci);
935 		return count;
936 	}
937 
938 	/* Sets pvt->inject.dimm mask */
939 	if (pvt->inject.dimm < 0)
940 		mask |= 1LL << 41;
941 	else {
942 		if (pvt->channel[pvt->inject.channel].dimms > 2)
943 			mask |= (pvt->inject.dimm & 0x3LL) << 35;
944 		else
945 			mask |= (pvt->inject.dimm & 0x1LL) << 36;
946 	}
947 
948 	/* Sets pvt->inject.rank mask */
949 	if (pvt->inject.rank < 0)
950 		mask |= 1LL << 40;
951 	else {
952 		if (pvt->channel[pvt->inject.channel].dimms > 2)
953 			mask |= (pvt->inject.rank & 0x1LL) << 34;
954 		else
955 			mask |= (pvt->inject.rank & 0x3LL) << 34;
956 	}
957 
958 	/* Sets pvt->inject.bank mask */
959 	if (pvt->inject.bank < 0)
960 		mask |= 1LL << 39;
961 	else
962 		mask |= (pvt->inject.bank & 0x15LL) << 30;
963 
964 	/* Sets pvt->inject.page mask */
965 	if (pvt->inject.page < 0)
966 		mask |= 1LL << 38;
967 	else
968 		mask |= (pvt->inject.page & 0xffff) << 14;
969 
970 	/* Sets pvt->inject.column mask */
971 	if (pvt->inject.col < 0)
972 		mask |= 1LL << 37;
973 	else
974 		mask |= (pvt->inject.col & 0x3fff);
975 
976 	/*
977 	 * bit    0: REPEAT_EN
978 	 * bits 1-2: MASK_HALF_CACHELINE
979 	 * bit    3: INJECT_ECC
980 	 * bit    4: INJECT_ADDR_PARITY
981 	 */
982 
983 	injectmask = (pvt->inject.type & 1) |
984 		     (pvt->inject.section & 0x3) << 1 |
985 		     (pvt->inject.type & 0x6) << (3 - 1);
986 
987 	/* Unlock writes to registers - this register is write only */
988 	pci_write_config_dword(pvt->pci_noncore,
989 			       MC_CFG_CONTROL, 0x2);
990 
991 	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
992 			       MC_CHANNEL_ADDR_MATCH, mask);
993 	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
994 			       MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L);
995 
996 	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
997 			       MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask);
998 
999 	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1000 			       MC_CHANNEL_ERROR_INJECT, injectmask);
1001 
1002 	/*
1003 	 * This is something undocumented, based on my tests
1004 	 * Without writing 8 to this register, errors aren't injected. Not sure
1005 	 * why.
1006 	 */
1007 	pci_write_config_dword(pvt->pci_noncore,
1008 			       MC_CFG_CONTROL, 8);
1009 
1010 	edac_dbg(0, "Error inject addr match 0x%016llx, ecc 0x%08x, inject 0x%08x\n",
1011 		 mask, pvt->inject.eccmask, injectmask);
1012 
1013 
1014 	return count;
1015 }
1016 
1017 static ssize_t i7core_inject_enable_show(struct device *dev,
1018 					 struct device_attribute *mattr,
1019 					 char *data)
1020 {
1021 	struct mem_ctl_info *mci = to_mci(dev);
1022 	struct i7core_pvt *pvt = mci->pvt_info;
1023 	u32 injectmask;
1024 
1025 	if (!pvt->pci_ch[pvt->inject.channel][0])
1026 		return 0;
1027 
1028 	pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0],
1029 			       MC_CHANNEL_ERROR_INJECT, &injectmask);
1030 
1031 	edac_dbg(0, "Inject error read: 0x%018x\n", injectmask);
1032 
1033 	if (injectmask & 0x0c)
1034 		pvt->inject.enable = 1;
1035 
1036 	return sprintf(data, "%d\n", pvt->inject.enable);
1037 }
1038 
1039 #define DECLARE_COUNTER(param)					\
1040 static ssize_t i7core_show_counter_##param(			\
1041 	struct device *dev,					\
1042 	struct device_attribute *mattr,				\
1043 	char *data)						\
1044 {								\
1045 	struct mem_ctl_info *mci = dev_get_drvdata(dev);	\
1046 	struct i7core_pvt *pvt = mci->pvt_info;			\
1047 								\
1048 	edac_dbg(1, "\n");					\
1049 	if (!pvt->ce_count_available || (pvt->is_registered))	\
1050 		return sprintf(data, "data unavailable\n");	\
1051 	return sprintf(data, "%lu\n",				\
1052 			pvt->udimm_ce_count[param]);		\
1053 }
1054 
1055 #define ATTR_COUNTER(param)					\
1056 	static DEVICE_ATTR(udimm##param, S_IRUGO | S_IWUSR,	\
1057 		    i7core_show_counter_##param,		\
1058 		    NULL)
1059 
1060 DECLARE_COUNTER(0);
1061 DECLARE_COUNTER(1);
1062 DECLARE_COUNTER(2);
1063 
1064 ATTR_COUNTER(0);
1065 ATTR_COUNTER(1);
1066 ATTR_COUNTER(2);
1067 
1068 /*
1069  * inject_addrmatch device sysfs struct
1070  */
1071 
1072 static struct attribute *i7core_addrmatch_attrs[] = {
1073 	&dev_attr_channel.attr,
1074 	&dev_attr_dimm.attr,
1075 	&dev_attr_rank.attr,
1076 	&dev_attr_bank.attr,
1077 	&dev_attr_page.attr,
1078 	&dev_attr_col.attr,
1079 	NULL
1080 };
1081 
1082 static struct attribute_group addrmatch_grp = {
1083 	.attrs	= i7core_addrmatch_attrs,
1084 };
1085 
1086 static const struct attribute_group *addrmatch_groups[] = {
1087 	&addrmatch_grp,
1088 	NULL
1089 };
1090 
1091 static void addrmatch_release(struct device *device)
1092 {
1093 	edac_dbg(1, "Releasing device %s\n", dev_name(device));
1094 	kfree(device);
1095 }
1096 
1097 static struct device_type addrmatch_type = {
1098 	.groups		= addrmatch_groups,
1099 	.release	= addrmatch_release,
1100 };
1101 
1102 /*
1103  * all_channel_counts sysfs struct
1104  */
1105 
1106 static struct attribute *i7core_udimm_counters_attrs[] = {
1107 	&dev_attr_udimm0.attr,
1108 	&dev_attr_udimm1.attr,
1109 	&dev_attr_udimm2.attr,
1110 	NULL
1111 };
1112 
1113 static struct attribute_group all_channel_counts_grp = {
1114 	.attrs	= i7core_udimm_counters_attrs,
1115 };
1116 
1117 static const struct attribute_group *all_channel_counts_groups[] = {
1118 	&all_channel_counts_grp,
1119 	NULL
1120 };
1121 
1122 static void all_channel_counts_release(struct device *device)
1123 {
1124 	edac_dbg(1, "Releasing device %s\n", dev_name(device));
1125 	kfree(device);
1126 }
1127 
1128 static struct device_type all_channel_counts_type = {
1129 	.groups		= all_channel_counts_groups,
1130 	.release	= all_channel_counts_release,
1131 };
1132 
1133 /*
1134  * inject sysfs attributes
1135  */
1136 
1137 static DEVICE_ATTR(inject_section, S_IRUGO | S_IWUSR,
1138 		   i7core_inject_section_show, i7core_inject_section_store);
1139 
1140 static DEVICE_ATTR(inject_type, S_IRUGO | S_IWUSR,
1141 		   i7core_inject_type_show, i7core_inject_type_store);
1142 
1143 
1144 static DEVICE_ATTR(inject_eccmask, S_IRUGO | S_IWUSR,
1145 		   i7core_inject_eccmask_show, i7core_inject_eccmask_store);
1146 
1147 static DEVICE_ATTR(inject_enable, S_IRUGO | S_IWUSR,
1148 		   i7core_inject_enable_show, i7core_inject_enable_store);
1149 
1150 static struct attribute *i7core_dev_attrs[] = {
1151 	&dev_attr_inject_section.attr,
1152 	&dev_attr_inject_type.attr,
1153 	&dev_attr_inject_eccmask.attr,
1154 	&dev_attr_inject_enable.attr,
1155 	NULL
1156 };
1157 
1158 ATTRIBUTE_GROUPS(i7core_dev);
1159 
1160 static int i7core_create_sysfs_devices(struct mem_ctl_info *mci)
1161 {
1162 	struct i7core_pvt *pvt = mci->pvt_info;
1163 	int rc;
1164 
1165 	pvt->addrmatch_dev = kzalloc(sizeof(*pvt->addrmatch_dev), GFP_KERNEL);
1166 	if (!pvt->addrmatch_dev)
1167 		return -ENOMEM;
1168 
1169 	pvt->addrmatch_dev->type = &addrmatch_type;
1170 	pvt->addrmatch_dev->bus = mci->dev.bus;
1171 	device_initialize(pvt->addrmatch_dev);
1172 	pvt->addrmatch_dev->parent = &mci->dev;
1173 	dev_set_name(pvt->addrmatch_dev, "inject_addrmatch");
1174 	dev_set_drvdata(pvt->addrmatch_dev, mci);
1175 
1176 	edac_dbg(1, "creating %s\n", dev_name(pvt->addrmatch_dev));
1177 
1178 	rc = device_add(pvt->addrmatch_dev);
1179 	if (rc < 0)
1180 		return rc;
1181 
1182 	if (!pvt->is_registered) {
1183 		pvt->chancounts_dev = kzalloc(sizeof(*pvt->chancounts_dev),
1184 					      GFP_KERNEL);
1185 		if (!pvt->chancounts_dev) {
1186 			put_device(pvt->addrmatch_dev);
1187 			device_del(pvt->addrmatch_dev);
1188 			return -ENOMEM;
1189 		}
1190 
1191 		pvt->chancounts_dev->type = &all_channel_counts_type;
1192 		pvt->chancounts_dev->bus = mci->dev.bus;
1193 		device_initialize(pvt->chancounts_dev);
1194 		pvt->chancounts_dev->parent = &mci->dev;
1195 		dev_set_name(pvt->chancounts_dev, "all_channel_counts");
1196 		dev_set_drvdata(pvt->chancounts_dev, mci);
1197 
1198 		edac_dbg(1, "creating %s\n", dev_name(pvt->chancounts_dev));
1199 
1200 		rc = device_add(pvt->chancounts_dev);
1201 		if (rc < 0)
1202 			return rc;
1203 	}
1204 	return 0;
1205 }
1206 
1207 static void i7core_delete_sysfs_devices(struct mem_ctl_info *mci)
1208 {
1209 	struct i7core_pvt *pvt = mci->pvt_info;
1210 
1211 	edac_dbg(1, "\n");
1212 
1213 	if (!pvt->is_registered) {
1214 		put_device(pvt->chancounts_dev);
1215 		device_del(pvt->chancounts_dev);
1216 	}
1217 	put_device(pvt->addrmatch_dev);
1218 	device_del(pvt->addrmatch_dev);
1219 }
1220 
1221 /****************************************************************************
1222 	Device initialization routines: put/get, init/exit
1223  ****************************************************************************/
1224 
1225 /*
1226  *	i7core_put_all_devices	'put' all the devices that we have
1227  *				reserved via 'get'
1228  */
1229 static void i7core_put_devices(struct i7core_dev *i7core_dev)
1230 {
1231 	int i;
1232 
1233 	edac_dbg(0, "\n");
1234 	for (i = 0; i < i7core_dev->n_devs; i++) {
1235 		struct pci_dev *pdev = i7core_dev->pdev[i];
1236 		if (!pdev)
1237 			continue;
1238 		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
1239 			 pdev->bus->number,
1240 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1241 		pci_dev_put(pdev);
1242 	}
1243 }
1244 
1245 static void i7core_put_all_devices(void)
1246 {
1247 	struct i7core_dev *i7core_dev, *tmp;
1248 
1249 	list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) {
1250 		i7core_put_devices(i7core_dev);
1251 		free_i7core_dev(i7core_dev);
1252 	}
1253 }
1254 
1255 static void __init i7core_xeon_pci_fixup(const struct pci_id_table *table)
1256 {
1257 	struct pci_dev *pdev = NULL;
1258 	int i;
1259 
1260 	/*
1261 	 * On Xeon 55xx, the Intel Quick Path Arch Generic Non-core pci buses
1262 	 * aren't announced by acpi. So, we need to use a legacy scan probing
1263 	 * to detect them
1264 	 */
1265 	while (table && table->descr) {
1266 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, table->descr[0].dev_id, NULL);
1267 		if (unlikely(!pdev)) {
1268 			for (i = 0; i < MAX_SOCKET_BUSES; i++)
1269 				pcibios_scan_specific_bus(255-i);
1270 		}
1271 		pci_dev_put(pdev);
1272 		table++;
1273 	}
1274 }
1275 
1276 static unsigned i7core_pci_lastbus(void)
1277 {
1278 	int last_bus = 0, bus;
1279 	struct pci_bus *b = NULL;
1280 
1281 	while ((b = pci_find_next_bus(b)) != NULL) {
1282 		bus = b->number;
1283 		edac_dbg(0, "Found bus %d\n", bus);
1284 		if (bus > last_bus)
1285 			last_bus = bus;
1286 	}
1287 
1288 	edac_dbg(0, "Last bus %d\n", last_bus);
1289 
1290 	return last_bus;
1291 }
1292 
1293 /*
1294  *	i7core_get_all_devices	Find and perform 'get' operation on the MCH's
1295  *			device/functions we want to reference for this driver
1296  *
1297  *			Need to 'get' device 16 func 1 and func 2
1298  */
1299 static int i7core_get_onedevice(struct pci_dev **prev,
1300 				const struct pci_id_table *table,
1301 				const unsigned devno,
1302 				const unsigned last_bus)
1303 {
1304 	struct i7core_dev *i7core_dev;
1305 	const struct pci_id_descr *dev_descr = &table->descr[devno];
1306 
1307 	struct pci_dev *pdev = NULL;
1308 	u8 bus = 0;
1309 	u8 socket = 0;
1310 
1311 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1312 			      dev_descr->dev_id, *prev);
1313 
1314 	/*
1315 	 * On Xeon 55xx, the Intel QuickPath Arch Generic Non-core regs
1316 	 * is at addr 8086:2c40, instead of 8086:2c41. So, we need
1317 	 * to probe for the alternate address in case of failure
1318 	 */
1319 	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_I7_NONCORE && !pdev) {
1320 		pci_dev_get(*prev);	/* pci_get_device will put it */
1321 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1322 				      PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT, *prev);
1323 	}
1324 
1325 	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE &&
1326 	    !pdev) {
1327 		pci_dev_get(*prev);	/* pci_get_device will put it */
1328 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1329 				      PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT,
1330 				      *prev);
1331 	}
1332 
1333 	if (!pdev) {
1334 		if (*prev) {
1335 			*prev = pdev;
1336 			return 0;
1337 		}
1338 
1339 		if (dev_descr->optional)
1340 			return 0;
1341 
1342 		if (devno == 0)
1343 			return -ENODEV;
1344 
1345 		i7core_printk(KERN_INFO,
1346 			"Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1347 			dev_descr->dev, dev_descr->func,
1348 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1349 
1350 		/* End of list, leave */
1351 		return -ENODEV;
1352 	}
1353 	bus = pdev->bus->number;
1354 
1355 	socket = last_bus - bus;
1356 
1357 	i7core_dev = get_i7core_dev(socket);
1358 	if (!i7core_dev) {
1359 		i7core_dev = alloc_i7core_dev(socket, table);
1360 		if (!i7core_dev) {
1361 			pci_dev_put(pdev);
1362 			return -ENOMEM;
1363 		}
1364 	}
1365 
1366 	if (i7core_dev->pdev[devno]) {
1367 		i7core_printk(KERN_ERR,
1368 			"Duplicated device for "
1369 			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1370 			bus, dev_descr->dev, dev_descr->func,
1371 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1372 		pci_dev_put(pdev);
1373 		return -ENODEV;
1374 	}
1375 
1376 	i7core_dev->pdev[devno] = pdev;
1377 
1378 	/* Sanity check */
1379 	if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
1380 			PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1381 		i7core_printk(KERN_ERR,
1382 			"Device PCI ID %04x:%04x "
1383 			"has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n",
1384 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1385 			bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1386 			bus, dev_descr->dev, dev_descr->func);
1387 		return -ENODEV;
1388 	}
1389 
1390 	/* Be sure that the device is enabled */
1391 	if (unlikely(pci_enable_device(pdev) < 0)) {
1392 		i7core_printk(KERN_ERR,
1393 			"Couldn't enable "
1394 			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1395 			bus, dev_descr->dev, dev_descr->func,
1396 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1397 		return -ENODEV;
1398 	}
1399 
1400 	edac_dbg(0, "Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n",
1401 		 socket, bus, dev_descr->dev,
1402 		 dev_descr->func,
1403 		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1404 
1405 	/*
1406 	 * As stated on drivers/pci/search.c, the reference count for
1407 	 * @from is always decremented if it is not %NULL. So, as we need
1408 	 * to get all devices up to null, we need to do a get for the device
1409 	 */
1410 	pci_dev_get(pdev);
1411 
1412 	*prev = pdev;
1413 
1414 	return 0;
1415 }
1416 
1417 static int i7core_get_all_devices(void)
1418 {
1419 	int i, rc, last_bus;
1420 	struct pci_dev *pdev = NULL;
1421 	const struct pci_id_table *table = pci_dev_table;
1422 
1423 	last_bus = i7core_pci_lastbus();
1424 
1425 	while (table && table->descr) {
1426 		for (i = 0; i < table->n_devs; i++) {
1427 			pdev = NULL;
1428 			do {
1429 				rc = i7core_get_onedevice(&pdev, table, i,
1430 							  last_bus);
1431 				if (rc < 0) {
1432 					if (i == 0) {
1433 						i = table->n_devs;
1434 						break;
1435 					}
1436 					i7core_put_all_devices();
1437 					return -ENODEV;
1438 				}
1439 			} while (pdev);
1440 		}
1441 		table++;
1442 	}
1443 
1444 	return 0;
1445 }
1446 
1447 static int mci_bind_devs(struct mem_ctl_info *mci,
1448 			 struct i7core_dev *i7core_dev)
1449 {
1450 	struct i7core_pvt *pvt = mci->pvt_info;
1451 	struct pci_dev *pdev;
1452 	int i, func, slot;
1453 	char *family;
1454 
1455 	pvt->is_registered = false;
1456 	pvt->enable_scrub  = false;
1457 	for (i = 0; i < i7core_dev->n_devs; i++) {
1458 		pdev = i7core_dev->pdev[i];
1459 		if (!pdev)
1460 			continue;
1461 
1462 		func = PCI_FUNC(pdev->devfn);
1463 		slot = PCI_SLOT(pdev->devfn);
1464 		if (slot == 3) {
1465 			if (unlikely(func > MAX_MCR_FUNC))
1466 				goto error;
1467 			pvt->pci_mcr[func] = pdev;
1468 		} else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) {
1469 			if (unlikely(func > MAX_CHAN_FUNC))
1470 				goto error;
1471 			pvt->pci_ch[slot - 4][func] = pdev;
1472 		} else if (!slot && !func) {
1473 			pvt->pci_noncore = pdev;
1474 
1475 			/* Detect the processor family */
1476 			switch (pdev->device) {
1477 			case PCI_DEVICE_ID_INTEL_I7_NONCORE:
1478 				family = "Xeon 35xx/ i7core";
1479 				pvt->enable_scrub = false;
1480 				break;
1481 			case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT:
1482 				family = "i7-800/i5-700";
1483 				pvt->enable_scrub = false;
1484 				break;
1485 			case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE:
1486 				family = "Xeon 34xx";
1487 				pvt->enable_scrub = false;
1488 				break;
1489 			case PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT:
1490 				family = "Xeon 55xx";
1491 				pvt->enable_scrub = true;
1492 				break;
1493 			case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2:
1494 				family = "Xeon 56xx / i7-900";
1495 				pvt->enable_scrub = true;
1496 				break;
1497 			default:
1498 				family = "unknown";
1499 				pvt->enable_scrub = false;
1500 			}
1501 			edac_dbg(0, "Detected a processor type %s\n", family);
1502 		} else
1503 			goto error;
1504 
1505 		edac_dbg(0, "Associated fn %d.%d, dev = %p, socket %d\n",
1506 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1507 			 pdev, i7core_dev->socket);
1508 
1509 		if (PCI_SLOT(pdev->devfn) == 3 &&
1510 			PCI_FUNC(pdev->devfn) == 2)
1511 			pvt->is_registered = true;
1512 	}
1513 
1514 	return 0;
1515 
1516 error:
1517 	i7core_printk(KERN_ERR, "Device %d, function %d "
1518 		      "is out of the expected range\n",
1519 		      slot, func);
1520 	return -EINVAL;
1521 }
1522 
1523 /****************************************************************************
1524 			Error check routines
1525  ****************************************************************************/
1526 
1527 static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci,
1528 					 const int chan,
1529 					 const int new0,
1530 					 const int new1,
1531 					 const int new2)
1532 {
1533 	struct i7core_pvt *pvt = mci->pvt_info;
1534 	int add0 = 0, add1 = 0, add2 = 0;
1535 	/* Updates CE counters if it is not the first time here */
1536 	if (pvt->ce_count_available) {
1537 		/* Updates CE counters */
1538 
1539 		add2 = new2 - pvt->rdimm_last_ce_count[chan][2];
1540 		add1 = new1 - pvt->rdimm_last_ce_count[chan][1];
1541 		add0 = new0 - pvt->rdimm_last_ce_count[chan][0];
1542 
1543 		if (add2 < 0)
1544 			add2 += 0x7fff;
1545 		pvt->rdimm_ce_count[chan][2] += add2;
1546 
1547 		if (add1 < 0)
1548 			add1 += 0x7fff;
1549 		pvt->rdimm_ce_count[chan][1] += add1;
1550 
1551 		if (add0 < 0)
1552 			add0 += 0x7fff;
1553 		pvt->rdimm_ce_count[chan][0] += add0;
1554 	} else
1555 		pvt->ce_count_available = 1;
1556 
1557 	/* Store the new values */
1558 	pvt->rdimm_last_ce_count[chan][2] = new2;
1559 	pvt->rdimm_last_ce_count[chan][1] = new1;
1560 	pvt->rdimm_last_ce_count[chan][0] = new0;
1561 
1562 	/*updated the edac core */
1563 	if (add0 != 0)
1564 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add0,
1565 				     0, 0, 0,
1566 				     chan, 0, -1, "error", "");
1567 	if (add1 != 0)
1568 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add1,
1569 				     0, 0, 0,
1570 				     chan, 1, -1, "error", "");
1571 	if (add2 != 0)
1572 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add2,
1573 				     0, 0, 0,
1574 				     chan, 2, -1, "error", "");
1575 }
1576 
1577 static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1578 {
1579 	struct i7core_pvt *pvt = mci->pvt_info;
1580 	u32 rcv[3][2];
1581 	int i, new0, new1, new2;
1582 
1583 	/*Read DEV 3: FUN 2:  MC_COR_ECC_CNT regs directly*/
1584 	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0,
1585 								&rcv[0][0]);
1586 	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1,
1587 								&rcv[0][1]);
1588 	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2,
1589 								&rcv[1][0]);
1590 	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3,
1591 								&rcv[1][1]);
1592 	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4,
1593 								&rcv[2][0]);
1594 	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5,
1595 								&rcv[2][1]);
1596 	for (i = 0 ; i < 3; i++) {
1597 		edac_dbg(3, "MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n",
1598 			 (i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]);
1599 		/*if the channel has 3 dimms*/
1600 		if (pvt->channel[i].dimms > 2) {
1601 			new0 = DIMM_BOT_COR_ERR(rcv[i][0]);
1602 			new1 = DIMM_TOP_COR_ERR(rcv[i][0]);
1603 			new2 = DIMM_BOT_COR_ERR(rcv[i][1]);
1604 		} else {
1605 			new0 = DIMM_TOP_COR_ERR(rcv[i][0]) +
1606 					DIMM_BOT_COR_ERR(rcv[i][0]);
1607 			new1 = DIMM_TOP_COR_ERR(rcv[i][1]) +
1608 					DIMM_BOT_COR_ERR(rcv[i][1]);
1609 			new2 = 0;
1610 		}
1611 
1612 		i7core_rdimm_update_ce_count(mci, i, new0, new1, new2);
1613 	}
1614 }
1615 
1616 /* This function is based on the device 3 function 4 registers as described on:
1617  * Intel Xeon Processor 5500 Series Datasheet Volume 2
1618  *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
1619  * also available at:
1620  * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
1621  */
1622 static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1623 {
1624 	struct i7core_pvt *pvt = mci->pvt_info;
1625 	u32 rcv1, rcv0;
1626 	int new0, new1, new2;
1627 
1628 	if (!pvt->pci_mcr[4]) {
1629 		edac_dbg(0, "MCR registers not found\n");
1630 		return;
1631 	}
1632 
1633 	/* Corrected test errors */
1634 	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1);
1635 	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0);
1636 
1637 	/* Store the new values */
1638 	new2 = DIMM2_COR_ERR(rcv1);
1639 	new1 = DIMM1_COR_ERR(rcv0);
1640 	new0 = DIMM0_COR_ERR(rcv0);
1641 
1642 	/* Updates CE counters if it is not the first time here */
1643 	if (pvt->ce_count_available) {
1644 		/* Updates CE counters */
1645 		int add0, add1, add2;
1646 
1647 		add2 = new2 - pvt->udimm_last_ce_count[2];
1648 		add1 = new1 - pvt->udimm_last_ce_count[1];
1649 		add0 = new0 - pvt->udimm_last_ce_count[0];
1650 
1651 		if (add2 < 0)
1652 			add2 += 0x7fff;
1653 		pvt->udimm_ce_count[2] += add2;
1654 
1655 		if (add1 < 0)
1656 			add1 += 0x7fff;
1657 		pvt->udimm_ce_count[1] += add1;
1658 
1659 		if (add0 < 0)
1660 			add0 += 0x7fff;
1661 		pvt->udimm_ce_count[0] += add0;
1662 
1663 		if (add0 | add1 | add2)
1664 			i7core_printk(KERN_ERR, "New Corrected error(s): "
1665 				      "dimm0: +%d, dimm1: +%d, dimm2 +%d\n",
1666 				      add0, add1, add2);
1667 	} else
1668 		pvt->ce_count_available = 1;
1669 
1670 	/* Store the new values */
1671 	pvt->udimm_last_ce_count[2] = new2;
1672 	pvt->udimm_last_ce_count[1] = new1;
1673 	pvt->udimm_last_ce_count[0] = new0;
1674 }
1675 
1676 /*
1677  * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32
1678  * Architectures Software Developer’s Manual Volume 3B.
1679  * Nehalem are defined as family 0x06, model 0x1a
1680  *
1681  * The MCA registers used here are the following ones:
1682  *     struct mce field	MCA Register
1683  *     m->status	MSR_IA32_MC8_STATUS
1684  *     m->addr		MSR_IA32_MC8_ADDR
1685  *     m->misc		MSR_IA32_MC8_MISC
1686  * In the case of Nehalem, the error information is masked at .status and .misc
1687  * fields
1688  */
1689 static void i7core_mce_output_error(struct mem_ctl_info *mci,
1690 				    const struct mce *m)
1691 {
1692 	struct i7core_pvt *pvt = mci->pvt_info;
1693 	char *optype, *err;
1694 	enum hw_event_mc_err_type tp_event;
1695 	unsigned long error = m->status & 0x1ff0000l;
1696 	bool uncorrected_error = m->mcgstatus & 1ll << 61;
1697 	bool ripv = m->mcgstatus & 1;
1698 	u32 optypenum = (m->status >> 4) & 0x07;
1699 	u32 core_err_cnt = (m->status >> 38) & 0x7fff;
1700 	u32 dimm = (m->misc >> 16) & 0x3;
1701 	u32 channel = (m->misc >> 18) & 0x3;
1702 	u32 syndrome = m->misc >> 32;
1703 	u32 errnum = find_first_bit(&error, 32);
1704 
1705 	if (uncorrected_error) {
1706 		if (ripv)
1707 			tp_event = HW_EVENT_ERR_FATAL;
1708 		else
1709 			tp_event = HW_EVENT_ERR_UNCORRECTED;
1710 	} else {
1711 		tp_event = HW_EVENT_ERR_CORRECTED;
1712 	}
1713 
1714 	switch (optypenum) {
1715 	case 0:
1716 		optype = "generic undef request";
1717 		break;
1718 	case 1:
1719 		optype = "read error";
1720 		break;
1721 	case 2:
1722 		optype = "write error";
1723 		break;
1724 	case 3:
1725 		optype = "addr/cmd error";
1726 		break;
1727 	case 4:
1728 		optype = "scrubbing error";
1729 		break;
1730 	default:
1731 		optype = "reserved";
1732 		break;
1733 	}
1734 
1735 	switch (errnum) {
1736 	case 16:
1737 		err = "read ECC error";
1738 		break;
1739 	case 17:
1740 		err = "RAS ECC error";
1741 		break;
1742 	case 18:
1743 		err = "write parity error";
1744 		break;
1745 	case 19:
1746 		err = "redundacy loss";
1747 		break;
1748 	case 20:
1749 		err = "reserved";
1750 		break;
1751 	case 21:
1752 		err = "memory range error";
1753 		break;
1754 	case 22:
1755 		err = "RTID out of range";
1756 		break;
1757 	case 23:
1758 		err = "address parity error";
1759 		break;
1760 	case 24:
1761 		err = "byte enable parity error";
1762 		break;
1763 	default:
1764 		err = "unknown";
1765 	}
1766 
1767 	/*
1768 	 * Call the helper to output message
1769 	 * FIXME: what to do if core_err_cnt > 1? Currently, it generates
1770 	 * only one event
1771 	 */
1772 	if (uncorrected_error || !pvt->is_registered)
1773 		edac_mc_handle_error(tp_event, mci, core_err_cnt,
1774 				     m->addr >> PAGE_SHIFT,
1775 				     m->addr & ~PAGE_MASK,
1776 				     syndrome,
1777 				     channel, dimm, -1,
1778 				     err, optype);
1779 }
1780 
1781 /*
1782  *	i7core_check_error	Retrieve and process errors reported by the
1783  *				hardware. Called by the Core module.
1784  */
1785 static void i7core_check_error(struct mem_ctl_info *mci, struct mce *m)
1786 {
1787 	struct i7core_pvt *pvt = mci->pvt_info;
1788 
1789 	i7core_mce_output_error(mci, m);
1790 
1791 	/*
1792 	 * Now, let's increment CE error counts
1793 	 */
1794 	if (!pvt->is_registered)
1795 		i7core_udimm_check_mc_ecc_err(mci);
1796 	else
1797 		i7core_rdimm_check_mc_ecc_err(mci);
1798 }
1799 
1800 /*
1801  * Check that logging is enabled and that this is the right type
1802  * of error for us to handle.
1803  */
1804 static int i7core_mce_check_error(struct notifier_block *nb, unsigned long val,
1805 				  void *data)
1806 {
1807 	struct mce *mce = (struct mce *)data;
1808 	struct i7core_dev *i7_dev;
1809 	struct mem_ctl_info *mci;
1810 	struct i7core_pvt *pvt;
1811 
1812 	i7_dev = get_i7core_dev(mce->socketid);
1813 	if (!i7_dev)
1814 		return NOTIFY_DONE;
1815 
1816 	mci = i7_dev->mci;
1817 	pvt = mci->pvt_info;
1818 
1819 	/*
1820 	 * Just let mcelog handle it if the error is
1821 	 * outside the memory controller
1822 	 */
1823 	if (((mce->status & 0xffff) >> 7) != 1)
1824 		return NOTIFY_DONE;
1825 
1826 	/* Bank 8 registers are the only ones that we know how to handle */
1827 	if (mce->bank != 8)
1828 		return NOTIFY_DONE;
1829 
1830 	i7core_check_error(mci, mce);
1831 
1832 	/* Advise mcelog that the errors were handled */
1833 	return NOTIFY_STOP;
1834 }
1835 
1836 static struct notifier_block i7_mce_dec = {
1837 	.notifier_call	= i7core_mce_check_error,
1838 	.priority	= MCE_PRIO_EDAC,
1839 };
1840 
1841 struct memdev_dmi_entry {
1842 	u8 type;
1843 	u8 length;
1844 	u16 handle;
1845 	u16 phys_mem_array_handle;
1846 	u16 mem_err_info_handle;
1847 	u16 total_width;
1848 	u16 data_width;
1849 	u16 size;
1850 	u8 form;
1851 	u8 device_set;
1852 	u8 device_locator;
1853 	u8 bank_locator;
1854 	u8 memory_type;
1855 	u16 type_detail;
1856 	u16 speed;
1857 	u8 manufacturer;
1858 	u8 serial_number;
1859 	u8 asset_tag;
1860 	u8 part_number;
1861 	u8 attributes;
1862 	u32 extended_size;
1863 	u16 conf_mem_clk_speed;
1864 } __attribute__((__packed__));
1865 
1866 
1867 /*
1868  * Decode the DRAM Clock Frequency, be paranoid, make sure that all
1869  * memory devices show the same speed, and if they don't then consider
1870  * all speeds to be invalid.
1871  */
1872 static void decode_dclk(const struct dmi_header *dh, void *_dclk_freq)
1873 {
1874 	int *dclk_freq = _dclk_freq;
1875 	u16 dmi_mem_clk_speed;
1876 
1877 	if (*dclk_freq == -1)
1878 		return;
1879 
1880 	if (dh->type == DMI_ENTRY_MEM_DEVICE) {
1881 		struct memdev_dmi_entry *memdev_dmi_entry =
1882 			(struct memdev_dmi_entry *)dh;
1883 		unsigned long conf_mem_clk_speed_offset =
1884 			(unsigned long)&memdev_dmi_entry->conf_mem_clk_speed -
1885 			(unsigned long)&memdev_dmi_entry->type;
1886 		unsigned long speed_offset =
1887 			(unsigned long)&memdev_dmi_entry->speed -
1888 			(unsigned long)&memdev_dmi_entry->type;
1889 
1890 		/* Check that a DIMM is present */
1891 		if (memdev_dmi_entry->size == 0)
1892 			return;
1893 
1894 		/*
1895 		 * Pick the configured speed if it's available, otherwise
1896 		 * pick the DIMM speed, or we don't have a speed.
1897 		 */
1898 		if (memdev_dmi_entry->length > conf_mem_clk_speed_offset) {
1899 			dmi_mem_clk_speed =
1900 				memdev_dmi_entry->conf_mem_clk_speed;
1901 		} else if (memdev_dmi_entry->length > speed_offset) {
1902 			dmi_mem_clk_speed = memdev_dmi_entry->speed;
1903 		} else {
1904 			*dclk_freq = -1;
1905 			return;
1906 		}
1907 
1908 		if (*dclk_freq == 0) {
1909 			/* First pass, speed was 0 */
1910 			if (dmi_mem_clk_speed > 0) {
1911 				/* Set speed if a valid speed is read */
1912 				*dclk_freq = dmi_mem_clk_speed;
1913 			} else {
1914 				/* Otherwise we don't have a valid speed */
1915 				*dclk_freq = -1;
1916 			}
1917 		} else if (*dclk_freq > 0 &&
1918 			   *dclk_freq != dmi_mem_clk_speed) {
1919 			/*
1920 			 * If we have a speed, check that all DIMMS are the same
1921 			 * speed, otherwise set the speed as invalid.
1922 			 */
1923 			*dclk_freq = -1;
1924 		}
1925 	}
1926 }
1927 
1928 /*
1929  * The default DCLK frequency is used as a fallback if we
1930  * fail to find anything reliable in the DMI. The value
1931  * is taken straight from the datasheet.
1932  */
1933 #define DEFAULT_DCLK_FREQ 800
1934 
1935 static int get_dclk_freq(void)
1936 {
1937 	int dclk_freq = 0;
1938 
1939 	dmi_walk(decode_dclk, (void *)&dclk_freq);
1940 
1941 	if (dclk_freq < 1)
1942 		return DEFAULT_DCLK_FREQ;
1943 
1944 	return dclk_freq;
1945 }
1946 
1947 /*
1948  * set_sdram_scrub_rate		This routine sets byte/sec bandwidth scrub rate
1949  *				to hardware according to SCRUBINTERVAL formula
1950  *				found in datasheet.
1951  */
1952 static int set_sdram_scrub_rate(struct mem_ctl_info *mci, u32 new_bw)
1953 {
1954 	struct i7core_pvt *pvt = mci->pvt_info;
1955 	struct pci_dev *pdev;
1956 	u32 dw_scrub;
1957 	u32 dw_ssr;
1958 
1959 	/* Get data from the MC register, function 2 */
1960 	pdev = pvt->pci_mcr[2];
1961 	if (!pdev)
1962 		return -ENODEV;
1963 
1964 	pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &dw_scrub);
1965 
1966 	if (new_bw == 0) {
1967 		/* Prepare to disable petrol scrub */
1968 		dw_scrub &= ~STARTSCRUB;
1969 		/* Stop the patrol scrub engine */
1970 		write_and_test(pdev, MC_SCRUB_CONTROL,
1971 			       dw_scrub & ~SCRUBINTERVAL_MASK);
1972 
1973 		/* Get current status of scrub rate and set bit to disable */
1974 		pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr);
1975 		dw_ssr &= ~SSR_MODE_MASK;
1976 		dw_ssr |= SSR_MODE_DISABLE;
1977 	} else {
1978 		const int cache_line_size = 64;
1979 		const u32 freq_dclk_mhz = pvt->dclk_freq;
1980 		unsigned long long scrub_interval;
1981 		/*
1982 		 * Translate the desired scrub rate to a register value and
1983 		 * program the corresponding register value.
1984 		 */
1985 		scrub_interval = (unsigned long long)freq_dclk_mhz *
1986 			cache_line_size * 1000000;
1987 		do_div(scrub_interval, new_bw);
1988 
1989 		if (!scrub_interval || scrub_interval > SCRUBINTERVAL_MASK)
1990 			return -EINVAL;
1991 
1992 		dw_scrub = SCRUBINTERVAL_MASK & scrub_interval;
1993 
1994 		/* Start the patrol scrub engine */
1995 		pci_write_config_dword(pdev, MC_SCRUB_CONTROL,
1996 				       STARTSCRUB | dw_scrub);
1997 
1998 		/* Get current status of scrub rate and set bit to enable */
1999 		pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr);
2000 		dw_ssr &= ~SSR_MODE_MASK;
2001 		dw_ssr |= SSR_MODE_ENABLE;
2002 	}
2003 	/* Disable or enable scrubbing */
2004 	pci_write_config_dword(pdev, MC_SSRCONTROL, dw_ssr);
2005 
2006 	return new_bw;
2007 }
2008 
2009 /*
2010  * get_sdram_scrub_rate		This routine convert current scrub rate value
2011  *				into byte/sec bandwidth according to
2012  *				SCRUBINTERVAL formula found in datasheet.
2013  */
2014 static int get_sdram_scrub_rate(struct mem_ctl_info *mci)
2015 {
2016 	struct i7core_pvt *pvt = mci->pvt_info;
2017 	struct pci_dev *pdev;
2018 	const u32 cache_line_size = 64;
2019 	const u32 freq_dclk_mhz = pvt->dclk_freq;
2020 	unsigned long long scrub_rate;
2021 	u32 scrubval;
2022 
2023 	/* Get data from the MC register, function 2 */
2024 	pdev = pvt->pci_mcr[2];
2025 	if (!pdev)
2026 		return -ENODEV;
2027 
2028 	/* Get current scrub control data */
2029 	pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &scrubval);
2030 
2031 	/* Mask highest 8-bits to 0 */
2032 	scrubval &=  SCRUBINTERVAL_MASK;
2033 	if (!scrubval)
2034 		return 0;
2035 
2036 	/* Calculate scrub rate value into byte/sec bandwidth */
2037 	scrub_rate =  (unsigned long long)freq_dclk_mhz *
2038 		1000000 * cache_line_size;
2039 	do_div(scrub_rate, scrubval);
2040 	return (int)scrub_rate;
2041 }
2042 
2043 static void enable_sdram_scrub_setting(struct mem_ctl_info *mci)
2044 {
2045 	struct i7core_pvt *pvt = mci->pvt_info;
2046 	u32 pci_lock;
2047 
2048 	/* Unlock writes to pci registers */
2049 	pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock);
2050 	pci_lock &= ~0x3;
2051 	pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL,
2052 			       pci_lock | MC_CFG_UNLOCK);
2053 
2054 	mci->set_sdram_scrub_rate = set_sdram_scrub_rate;
2055 	mci->get_sdram_scrub_rate = get_sdram_scrub_rate;
2056 }
2057 
2058 static void disable_sdram_scrub_setting(struct mem_ctl_info *mci)
2059 {
2060 	struct i7core_pvt *pvt = mci->pvt_info;
2061 	u32 pci_lock;
2062 
2063 	/* Lock writes to pci registers */
2064 	pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock);
2065 	pci_lock &= ~0x3;
2066 	pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL,
2067 			       pci_lock | MC_CFG_LOCK);
2068 }
2069 
2070 static void i7core_pci_ctl_create(struct i7core_pvt *pvt)
2071 {
2072 	pvt->i7core_pci = edac_pci_create_generic_ctl(
2073 						&pvt->i7core_dev->pdev[0]->dev,
2074 						EDAC_MOD_STR);
2075 	if (unlikely(!pvt->i7core_pci))
2076 		i7core_printk(KERN_WARNING,
2077 			      "Unable to setup PCI error report via EDAC\n");
2078 }
2079 
2080 static void i7core_pci_ctl_release(struct i7core_pvt *pvt)
2081 {
2082 	if (likely(pvt->i7core_pci))
2083 		edac_pci_release_generic_ctl(pvt->i7core_pci);
2084 	else
2085 		i7core_printk(KERN_ERR,
2086 				"Couldn't find mem_ctl_info for socket %d\n",
2087 				pvt->i7core_dev->socket);
2088 	pvt->i7core_pci = NULL;
2089 }
2090 
2091 static void i7core_unregister_mci(struct i7core_dev *i7core_dev)
2092 {
2093 	struct mem_ctl_info *mci = i7core_dev->mci;
2094 	struct i7core_pvt *pvt;
2095 
2096 	if (unlikely(!mci || !mci->pvt_info)) {
2097 		edac_dbg(0, "MC: dev = %p\n", &i7core_dev->pdev[0]->dev);
2098 
2099 		i7core_printk(KERN_ERR, "Couldn't find mci handler\n");
2100 		return;
2101 	}
2102 
2103 	pvt = mci->pvt_info;
2104 
2105 	edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &i7core_dev->pdev[0]->dev);
2106 
2107 	/* Disable scrubrate setting */
2108 	if (pvt->enable_scrub)
2109 		disable_sdram_scrub_setting(mci);
2110 
2111 	/* Disable EDAC polling */
2112 	i7core_pci_ctl_release(pvt);
2113 
2114 	/* Remove MC sysfs nodes */
2115 	i7core_delete_sysfs_devices(mci);
2116 	edac_mc_del_mc(mci->pdev);
2117 
2118 	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
2119 	kfree(mci->ctl_name);
2120 	edac_mc_free(mci);
2121 	i7core_dev->mci = NULL;
2122 }
2123 
2124 static int i7core_register_mci(struct i7core_dev *i7core_dev)
2125 {
2126 	struct mem_ctl_info *mci;
2127 	struct i7core_pvt *pvt;
2128 	int rc;
2129 	struct edac_mc_layer layers[2];
2130 
2131 	/* allocate a new MC control structure */
2132 
2133 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
2134 	layers[0].size = NUM_CHANS;
2135 	layers[0].is_virt_csrow = false;
2136 	layers[1].type = EDAC_MC_LAYER_SLOT;
2137 	layers[1].size = MAX_DIMMS;
2138 	layers[1].is_virt_csrow = true;
2139 	mci = edac_mc_alloc(i7core_dev->socket, ARRAY_SIZE(layers), layers,
2140 			    sizeof(*pvt));
2141 	if (unlikely(!mci))
2142 		return -ENOMEM;
2143 
2144 	edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &i7core_dev->pdev[0]->dev);
2145 
2146 	pvt = mci->pvt_info;
2147 	memset(pvt, 0, sizeof(*pvt));
2148 
2149 	/* Associates i7core_dev and mci for future usage */
2150 	pvt->i7core_dev = i7core_dev;
2151 	i7core_dev->mci = mci;
2152 
2153 	/*
2154 	 * FIXME: how to handle RDDR3 at MCI level? It is possible to have
2155 	 * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different
2156 	 * memory channels
2157 	 */
2158 	mci->mtype_cap = MEM_FLAG_DDR3;
2159 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
2160 	mci->edac_cap = EDAC_FLAG_NONE;
2161 	mci->mod_name = "i7core_edac.c";
2162 	mci->mod_ver = I7CORE_REVISION;
2163 	mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d",
2164 				  i7core_dev->socket);
2165 	mci->dev_name = pci_name(i7core_dev->pdev[0]);
2166 	mci->ctl_page_to_phys = NULL;
2167 
2168 	/* Store pci devices at mci for faster access */
2169 	rc = mci_bind_devs(mci, i7core_dev);
2170 	if (unlikely(rc < 0))
2171 		goto fail0;
2172 
2173 
2174 	/* Get dimm basic config */
2175 	get_dimm_config(mci);
2176 	/* record ptr to the generic device */
2177 	mci->pdev = &i7core_dev->pdev[0]->dev;
2178 
2179 	/* Enable scrubrate setting */
2180 	if (pvt->enable_scrub)
2181 		enable_sdram_scrub_setting(mci);
2182 
2183 	/* add this new MC control structure to EDAC's list of MCs */
2184 	if (unlikely(edac_mc_add_mc_with_groups(mci, i7core_dev_groups))) {
2185 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
2186 		/* FIXME: perhaps some code should go here that disables error
2187 		 * reporting if we just enabled it
2188 		 */
2189 
2190 		rc = -EINVAL;
2191 		goto fail0;
2192 	}
2193 	if (i7core_create_sysfs_devices(mci)) {
2194 		edac_dbg(0, "MC: failed to create sysfs nodes\n");
2195 		edac_mc_del_mc(mci->pdev);
2196 		rc = -EINVAL;
2197 		goto fail0;
2198 	}
2199 
2200 	/* Default error mask is any memory */
2201 	pvt->inject.channel = 0;
2202 	pvt->inject.dimm = -1;
2203 	pvt->inject.rank = -1;
2204 	pvt->inject.bank = -1;
2205 	pvt->inject.page = -1;
2206 	pvt->inject.col = -1;
2207 
2208 	/* allocating generic PCI control info */
2209 	i7core_pci_ctl_create(pvt);
2210 
2211 	/* DCLK for scrub rate setting */
2212 	pvt->dclk_freq = get_dclk_freq();
2213 
2214 	return 0;
2215 
2216 fail0:
2217 	kfree(mci->ctl_name);
2218 	edac_mc_free(mci);
2219 	i7core_dev->mci = NULL;
2220 	return rc;
2221 }
2222 
2223 /*
2224  *	i7core_probe	Probe for ONE instance of device to see if it is
2225  *			present.
2226  *	return:
2227  *		0 for FOUND a device
2228  *		< 0 for error code
2229  */
2230 
2231 static int i7core_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2232 {
2233 	int rc, count = 0;
2234 	struct i7core_dev *i7core_dev;
2235 
2236 	/* get the pci devices we want to reserve for our use */
2237 	mutex_lock(&i7core_edac_lock);
2238 
2239 	/*
2240 	 * All memory controllers are allocated at the first pass.
2241 	 */
2242 	if (unlikely(probed >= 1)) {
2243 		mutex_unlock(&i7core_edac_lock);
2244 		return -ENODEV;
2245 	}
2246 	probed++;
2247 
2248 	rc = i7core_get_all_devices();
2249 	if (unlikely(rc < 0))
2250 		goto fail0;
2251 
2252 	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
2253 		count++;
2254 		rc = i7core_register_mci(i7core_dev);
2255 		if (unlikely(rc < 0))
2256 			goto fail1;
2257 	}
2258 
2259 	/*
2260 	 * Nehalem-EX uses a different memory controller. However, as the
2261 	 * memory controller is not visible on some Nehalem/Nehalem-EP, we
2262 	 * need to indirectly probe via a X58 PCI device. The same devices
2263 	 * are found on (some) Nehalem-EX. So, on those machines, the
2264 	 * probe routine needs to return -ENODEV, as the actual Memory
2265 	 * Controller registers won't be detected.
2266 	 */
2267 	if (!count) {
2268 		rc = -ENODEV;
2269 		goto fail1;
2270 	}
2271 
2272 	i7core_printk(KERN_INFO,
2273 		      "Driver loaded, %d memory controller(s) found.\n",
2274 		      count);
2275 
2276 	mutex_unlock(&i7core_edac_lock);
2277 	return 0;
2278 
2279 fail1:
2280 	list_for_each_entry(i7core_dev, &i7core_edac_list, list)
2281 		i7core_unregister_mci(i7core_dev);
2282 
2283 	i7core_put_all_devices();
2284 fail0:
2285 	mutex_unlock(&i7core_edac_lock);
2286 	return rc;
2287 }
2288 
2289 /*
2290  *	i7core_remove	destructor for one instance of device
2291  *
2292  */
2293 static void i7core_remove(struct pci_dev *pdev)
2294 {
2295 	struct i7core_dev *i7core_dev;
2296 
2297 	edac_dbg(0, "\n");
2298 
2299 	/*
2300 	 * we have a trouble here: pdev value for removal will be wrong, since
2301 	 * it will point to the X58 register used to detect that the machine
2302 	 * is a Nehalem or upper design. However, due to the way several PCI
2303 	 * devices are grouped together to provide MC functionality, we need
2304 	 * to use a different method for releasing the devices
2305 	 */
2306 
2307 	mutex_lock(&i7core_edac_lock);
2308 
2309 	if (unlikely(!probed)) {
2310 		mutex_unlock(&i7core_edac_lock);
2311 		return;
2312 	}
2313 
2314 	list_for_each_entry(i7core_dev, &i7core_edac_list, list)
2315 		i7core_unregister_mci(i7core_dev);
2316 
2317 	/* Release PCI resources */
2318 	i7core_put_all_devices();
2319 
2320 	probed--;
2321 
2322 	mutex_unlock(&i7core_edac_lock);
2323 }
2324 
2325 MODULE_DEVICE_TABLE(pci, i7core_pci_tbl);
2326 
2327 /*
2328  *	i7core_driver	pci_driver structure for this module
2329  *
2330  */
2331 static struct pci_driver i7core_driver = {
2332 	.name     = "i7core_edac",
2333 	.probe    = i7core_probe,
2334 	.remove   = i7core_remove,
2335 	.id_table = i7core_pci_tbl,
2336 };
2337 
2338 /*
2339  *	i7core_init		Module entry function
2340  *			Try to initialize this module for its devices
2341  */
2342 static int __init i7core_init(void)
2343 {
2344 	int pci_rc;
2345 
2346 	edac_dbg(2, "\n");
2347 
2348 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
2349 	opstate_init();
2350 
2351 	if (use_pci_fixup)
2352 		i7core_xeon_pci_fixup(pci_dev_table);
2353 
2354 	pci_rc = pci_register_driver(&i7core_driver);
2355 
2356 	if (pci_rc >= 0) {
2357 		mce_register_decode_chain(&i7_mce_dec);
2358 		return 0;
2359 	}
2360 
2361 	i7core_printk(KERN_ERR, "Failed to register device with error %d.\n",
2362 		      pci_rc);
2363 
2364 	return pci_rc;
2365 }
2366 
2367 /*
2368  *	i7core_exit()	Module exit function
2369  *			Unregister the driver
2370  */
2371 static void __exit i7core_exit(void)
2372 {
2373 	edac_dbg(2, "\n");
2374 	pci_unregister_driver(&i7core_driver);
2375 	mce_unregister_decode_chain(&i7_mce_dec);
2376 }
2377 
2378 module_init(i7core_init);
2379 module_exit(i7core_exit);
2380 
2381 MODULE_LICENSE("GPL");
2382 MODULE_AUTHOR("Mauro Carvalho Chehab");
2383 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
2384 MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - "
2385 		   I7CORE_REVISION);
2386 
2387 module_param(edac_op_state, int, 0444);
2388 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
2389