1 /* 2 * Intel 7300 class Memory Controllers kernel module (Clarksboro) 3 * 4 * This file may be distributed under the terms of the 5 * GNU General Public License version 2 only. 6 * 7 * Copyright (c) 2010 by: 8 * Mauro Carvalho Chehab <mchehab@redhat.com> 9 * 10 * Red Hat Inc. http://www.redhat.com 11 * 12 * Intel 7300 Chipset Memory Controller Hub (MCH) - Datasheet 13 * http://www.intel.com/Assets/PDF/datasheet/318082.pdf 14 * 15 * TODO: The chipset allow checking for PCI Express errors also. Currently, 16 * the driver covers only memory error errors 17 * 18 * This driver uses "csrows" EDAC attribute to represent DIMM slot# 19 */ 20 21 #include <linux/module.h> 22 #include <linux/init.h> 23 #include <linux/pci.h> 24 #include <linux/pci_ids.h> 25 #include <linux/slab.h> 26 #include <linux/edac.h> 27 #include <linux/mmzone.h> 28 29 #include "edac_core.h" 30 31 /* 32 * Alter this version for the I7300 module when modifications are made 33 */ 34 #define I7300_REVISION " Ver: 1.0.0" 35 36 #define EDAC_MOD_STR "i7300_edac" 37 38 #define i7300_printk(level, fmt, arg...) \ 39 edac_printk(level, "i7300", fmt, ##arg) 40 41 #define i7300_mc_printk(mci, level, fmt, arg...) \ 42 edac_mc_chipset_printk(mci, level, "i7300", fmt, ##arg) 43 44 /*********************************************** 45 * i7300 Limit constants Structs and static vars 46 ***********************************************/ 47 48 /* 49 * Memory topology is organized as: 50 * Branch 0 - 2 channels: channels 0 and 1 (FDB0 PCI dev 21.0) 51 * Branch 1 - 2 channels: channels 2 and 3 (FDB1 PCI dev 22.0) 52 * Each channel can have to 8 DIMM sets (called as SLOTS) 53 * Slots should generally be filled in pairs 54 * Except on Single Channel mode of operation 55 * just slot 0/channel0 filled on this mode 56 * On normal operation mode, the two channels on a branch should be 57 * filled together for the same SLOT# 58 * When in mirrored mode, Branch 1 replicate memory at Branch 0, so, the four 59 * channels on both branches should be filled 60 */ 61 62 /* Limits for i7300 */ 63 #define MAX_SLOTS 8 64 #define MAX_BRANCHES 2 65 #define MAX_CH_PER_BRANCH 2 66 #define MAX_CHANNELS (MAX_CH_PER_BRANCH * MAX_BRANCHES) 67 #define MAX_MIR 3 68 69 #define to_channel(ch, branch) ((((branch)) << 1) | (ch)) 70 71 #define to_csrow(slot, ch, branch) \ 72 (to_channel(ch, branch) | ((slot) << 2)) 73 74 /* Device name and register DID (Device ID) */ 75 struct i7300_dev_info { 76 const char *ctl_name; /* name for this device */ 77 u16 fsb_mapping_errors; /* DID for the branchmap,control */ 78 }; 79 80 /* Table of devices attributes supported by this driver */ 81 static const struct i7300_dev_info i7300_devs[] = { 82 { 83 .ctl_name = "I7300", 84 .fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I7300_MCH_ERR, 85 }, 86 }; 87 88 struct i7300_dimm_info { 89 int megabytes; /* size, 0 means not present */ 90 }; 91 92 /* driver private data structure */ 93 struct i7300_pvt { 94 struct pci_dev *pci_dev_16_0_fsb_ctlr; /* 16.0 */ 95 struct pci_dev *pci_dev_16_1_fsb_addr_map; /* 16.1 */ 96 struct pci_dev *pci_dev_16_2_fsb_err_regs; /* 16.2 */ 97 struct pci_dev *pci_dev_2x_0_fbd_branch[MAX_BRANCHES]; /* 21.0 and 22.0 */ 98 99 u16 tolm; /* top of low memory */ 100 u64 ambase; /* AMB BAR */ 101 102 u32 mc_settings; /* Report several settings */ 103 u32 mc_settings_a; 104 105 u16 mir[MAX_MIR]; /* Memory Interleave Reg*/ 106 107 u16 mtr[MAX_SLOTS][MAX_BRANCHES]; /* Memory Technlogy Reg */ 108 u16 ambpresent[MAX_CHANNELS]; /* AMB present regs */ 109 110 /* DIMM information matrix, allocating architecture maximums */ 111 struct i7300_dimm_info dimm_info[MAX_SLOTS][MAX_CHANNELS]; 112 113 /* Temporary buffer for use when preparing error messages */ 114 char *tmp_prt_buffer; 115 }; 116 117 /* FIXME: Why do we need to have this static? */ 118 static struct edac_pci_ctl_info *i7300_pci; 119 120 /*************************************************** 121 * i7300 Register definitions for memory enumeration 122 ***************************************************/ 123 124 /* 125 * Device 16, 126 * Function 0: System Address (not documented) 127 * Function 1: Memory Branch Map, Control, Errors Register 128 */ 129 130 /* OFFSETS for Function 0 */ 131 #define AMBASE 0x48 /* AMB Mem Mapped Reg Region Base */ 132 #define MAXCH 0x56 /* Max Channel Number */ 133 #define MAXDIMMPERCH 0x57 /* Max DIMM PER Channel Number */ 134 135 /* OFFSETS for Function 1 */ 136 #define MC_SETTINGS 0x40 137 #define IS_MIRRORED(mc) ((mc) & (1 << 16)) 138 #define IS_ECC_ENABLED(mc) ((mc) & (1 << 5)) 139 #define IS_RETRY_ENABLED(mc) ((mc) & (1 << 31)) 140 #define IS_SCRBALGO_ENHANCED(mc) ((mc) & (1 << 8)) 141 142 #define MC_SETTINGS_A 0x58 143 #define IS_SINGLE_MODE(mca) ((mca) & (1 << 14)) 144 145 #define TOLM 0x6C 146 147 #define MIR0 0x80 148 #define MIR1 0x84 149 #define MIR2 0x88 150 151 /* 152 * Note: Other Intel EDAC drivers use AMBPRESENT to identify if the available 153 * memory. From datasheet item 7.3.1 (FB-DIMM technology & organization), it 154 * seems that we cannot use this information directly for the same usage. 155 * Each memory slot may have up to 2 AMB interfaces, one for income and another 156 * for outcome interface to the next slot. 157 * For now, the driver just stores the AMB present registers, but rely only at 158 * the MTR info to detect memory. 159 * Datasheet is also not clear about how to map each AMBPRESENT registers to 160 * one of the 4 available channels. 161 */ 162 #define AMBPRESENT_0 0x64 163 #define AMBPRESENT_1 0x66 164 165 static const u16 mtr_regs[MAX_SLOTS] = { 166 0x80, 0x84, 0x88, 0x8c, 167 0x82, 0x86, 0x8a, 0x8e 168 }; 169 170 /* 171 * Defines to extract the vaious fields from the 172 * MTRx - Memory Technology Registers 173 */ 174 #define MTR_DIMMS_PRESENT(mtr) ((mtr) & (1 << 8)) 175 #define MTR_DIMMS_ETHROTTLE(mtr) ((mtr) & (1 << 7)) 176 #define MTR_DRAM_WIDTH(mtr) (((mtr) & (1 << 6)) ? 8 : 4) 177 #define MTR_DRAM_BANKS(mtr) (((mtr) & (1 << 5)) ? 8 : 4) 178 #define MTR_DIMM_RANKS(mtr) (((mtr) & (1 << 4)) ? 1 : 0) 179 #define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3) 180 #define MTR_DRAM_BANKS_ADDR_BITS 2 181 #define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13) 182 #define MTR_DIMM_COLS(mtr) ((mtr) & 0x3) 183 #define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10) 184 185 /************************************************ 186 * i7300 Register definitions for error detection 187 ************************************************/ 188 189 /* 190 * Device 16.1: FBD Error Registers 191 */ 192 #define FERR_FAT_FBD 0x98 193 static const char *ferr_fat_fbd_name[] = { 194 [22] = "Non-Redundant Fast Reset Timeout", 195 [2] = ">Tmid Thermal event with intelligent throttling disabled", 196 [1] = "Memory or FBD configuration CRC read error", 197 [0] = "Memory Write error on non-redundant retry or " 198 "FBD configuration Write error on retry", 199 }; 200 #define GET_FBD_FAT_IDX(fbderr) (((fbderr) >> 28) & 3) 201 #define FERR_FAT_FBD_ERR_MASK ((1 << 0) | (1 << 1) | (1 << 2) | (1 << 22)) 202 203 #define FERR_NF_FBD 0xa0 204 static const char *ferr_nf_fbd_name[] = { 205 [24] = "DIMM-Spare Copy Completed", 206 [23] = "DIMM-Spare Copy Initiated", 207 [22] = "Redundant Fast Reset Timeout", 208 [21] = "Memory Write error on redundant retry", 209 [18] = "SPD protocol Error", 210 [17] = "FBD Northbound parity error on FBD Sync Status", 211 [16] = "Correctable Patrol Data ECC", 212 [15] = "Correctable Resilver- or Spare-Copy Data ECC", 213 [14] = "Correctable Mirrored Demand Data ECC", 214 [13] = "Correctable Non-Mirrored Demand Data ECC", 215 [11] = "Memory or FBD configuration CRC read error", 216 [10] = "FBD Configuration Write error on first attempt", 217 [9] = "Memory Write error on first attempt", 218 [8] = "Non-Aliased Uncorrectable Patrol Data ECC", 219 [7] = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC", 220 [6] = "Non-Aliased Uncorrectable Mirrored Demand Data ECC", 221 [5] = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC", 222 [4] = "Aliased Uncorrectable Patrol Data ECC", 223 [3] = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC", 224 [2] = "Aliased Uncorrectable Mirrored Demand Data ECC", 225 [1] = "Aliased Uncorrectable Non-Mirrored Demand Data ECC", 226 [0] = "Uncorrectable Data ECC on Replay", 227 }; 228 #define GET_FBD_NF_IDX(fbderr) (((fbderr) >> 28) & 3) 229 #define FERR_NF_FBD_ERR_MASK ((1 << 24) | (1 << 23) | (1 << 22) | (1 << 21) |\ 230 (1 << 18) | (1 << 17) | (1 << 16) | (1 << 15) |\ 231 (1 << 14) | (1 << 13) | (1 << 11) | (1 << 10) |\ 232 (1 << 9) | (1 << 8) | (1 << 7) | (1 << 6) |\ 233 (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2) |\ 234 (1 << 1) | (1 << 0)) 235 236 #define EMASK_FBD 0xa8 237 #define EMASK_FBD_ERR_MASK ((1 << 27) | (1 << 26) | (1 << 25) | (1 << 24) |\ 238 (1 << 22) | (1 << 21) | (1 << 20) | (1 << 19) |\ 239 (1 << 18) | (1 << 17) | (1 << 16) | (1 << 14) |\ 240 (1 << 13) | (1 << 12) | (1 << 11) | (1 << 10) |\ 241 (1 << 9) | (1 << 8) | (1 << 7) | (1 << 6) |\ 242 (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2) |\ 243 (1 << 1) | (1 << 0)) 244 245 /* 246 * Device 16.2: Global Error Registers 247 */ 248 249 #define FERR_GLOBAL_HI 0x48 250 static const char *ferr_global_hi_name[] = { 251 [3] = "FSB 3 Fatal Error", 252 [2] = "FSB 2 Fatal Error", 253 [1] = "FSB 1 Fatal Error", 254 [0] = "FSB 0 Fatal Error", 255 }; 256 #define ferr_global_hi_is_fatal(errno) 1 257 258 #define FERR_GLOBAL_LO 0x40 259 static const char *ferr_global_lo_name[] = { 260 [31] = "Internal MCH Fatal Error", 261 [30] = "Intel QuickData Technology Device Fatal Error", 262 [29] = "FSB1 Fatal Error", 263 [28] = "FSB0 Fatal Error", 264 [27] = "FBD Channel 3 Fatal Error", 265 [26] = "FBD Channel 2 Fatal Error", 266 [25] = "FBD Channel 1 Fatal Error", 267 [24] = "FBD Channel 0 Fatal Error", 268 [23] = "PCI Express Device 7Fatal Error", 269 [22] = "PCI Express Device 6 Fatal Error", 270 [21] = "PCI Express Device 5 Fatal Error", 271 [20] = "PCI Express Device 4 Fatal Error", 272 [19] = "PCI Express Device 3 Fatal Error", 273 [18] = "PCI Express Device 2 Fatal Error", 274 [17] = "PCI Express Device 1 Fatal Error", 275 [16] = "ESI Fatal Error", 276 [15] = "Internal MCH Non-Fatal Error", 277 [14] = "Intel QuickData Technology Device Non Fatal Error", 278 [13] = "FSB1 Non-Fatal Error", 279 [12] = "FSB 0 Non-Fatal Error", 280 [11] = "FBD Channel 3 Non-Fatal Error", 281 [10] = "FBD Channel 2 Non-Fatal Error", 282 [9] = "FBD Channel 1 Non-Fatal Error", 283 [8] = "FBD Channel 0 Non-Fatal Error", 284 [7] = "PCI Express Device 7 Non-Fatal Error", 285 [6] = "PCI Express Device 6 Non-Fatal Error", 286 [5] = "PCI Express Device 5 Non-Fatal Error", 287 [4] = "PCI Express Device 4 Non-Fatal Error", 288 [3] = "PCI Express Device 3 Non-Fatal Error", 289 [2] = "PCI Express Device 2 Non-Fatal Error", 290 [1] = "PCI Express Device 1 Non-Fatal Error", 291 [0] = "ESI Non-Fatal Error", 292 }; 293 #define ferr_global_lo_is_fatal(errno) ((errno < 16) ? 0 : 1) 294 295 #define NRECMEMA 0xbe 296 #define NRECMEMA_BANK(v) (((v) >> 12) & 7) 297 #define NRECMEMA_RANK(v) (((v) >> 8) & 15) 298 299 #define NRECMEMB 0xc0 300 #define NRECMEMB_IS_WR(v) ((v) & (1 << 31)) 301 #define NRECMEMB_CAS(v) (((v) >> 16) & 0x1fff) 302 #define NRECMEMB_RAS(v) ((v) & 0xffff) 303 304 #define REDMEMA 0xdc 305 306 #define REDMEMB 0x7c 307 #define IS_SECOND_CH(v) ((v) * (1 << 17)) 308 309 #define RECMEMA 0xe0 310 #define RECMEMA_BANK(v) (((v) >> 12) & 7) 311 #define RECMEMA_RANK(v) (((v) >> 8) & 15) 312 313 #define RECMEMB 0xe4 314 #define RECMEMB_IS_WR(v) ((v) & (1 << 31)) 315 #define RECMEMB_CAS(v) (((v) >> 16) & 0x1fff) 316 #define RECMEMB_RAS(v) ((v) & 0xffff) 317 318 /******************************************** 319 * i7300 Functions related to error detection 320 ********************************************/ 321 322 /** 323 * get_err_from_table() - Gets the error message from a table 324 * @table: table name (array of char *) 325 * @size: number of elements at the table 326 * @pos: position of the element to be returned 327 * 328 * This is a small routine that gets the pos-th element of a table. If the 329 * element doesn't exist (or it is empty), it returns "reserved". 330 * Instead of calling it directly, the better is to call via the macro 331 * GET_ERR_FROM_TABLE(), that automatically checks the table size via 332 * ARRAY_SIZE() macro 333 */ 334 static const char *get_err_from_table(const char *table[], int size, int pos) 335 { 336 if (unlikely(pos >= size)) 337 return "Reserved"; 338 339 if (unlikely(!table[pos])) 340 return "Reserved"; 341 342 return table[pos]; 343 } 344 345 #define GET_ERR_FROM_TABLE(table, pos) \ 346 get_err_from_table(table, ARRAY_SIZE(table), pos) 347 348 /** 349 * i7300_process_error_global() - Retrieve the hardware error information from 350 * the hardware global error registers and 351 * sends it to dmesg 352 * @mci: struct mem_ctl_info pointer 353 */ 354 static void i7300_process_error_global(struct mem_ctl_info *mci) 355 { 356 struct i7300_pvt *pvt; 357 u32 errnum, error_reg; 358 unsigned long errors; 359 const char *specific; 360 bool is_fatal; 361 362 pvt = mci->pvt_info; 363 364 /* read in the 1st FATAL error register */ 365 pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs, 366 FERR_GLOBAL_HI, &error_reg); 367 if (unlikely(error_reg)) { 368 errors = error_reg; 369 errnum = find_first_bit(&errors, 370 ARRAY_SIZE(ferr_global_hi_name)); 371 specific = GET_ERR_FROM_TABLE(ferr_global_hi_name, errnum); 372 is_fatal = ferr_global_hi_is_fatal(errnum); 373 374 /* Clear the error bit */ 375 pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs, 376 FERR_GLOBAL_HI, error_reg); 377 378 goto error_global; 379 } 380 381 pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs, 382 FERR_GLOBAL_LO, &error_reg); 383 if (unlikely(error_reg)) { 384 errors = error_reg; 385 errnum = find_first_bit(&errors, 386 ARRAY_SIZE(ferr_global_lo_name)); 387 specific = GET_ERR_FROM_TABLE(ferr_global_lo_name, errnum); 388 is_fatal = ferr_global_lo_is_fatal(errnum); 389 390 /* Clear the error bit */ 391 pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs, 392 FERR_GLOBAL_LO, error_reg); 393 394 goto error_global; 395 } 396 return; 397 398 error_global: 399 i7300_mc_printk(mci, KERN_EMERG, "%s misc error: %s\n", 400 is_fatal ? "Fatal" : "NOT fatal", specific); 401 } 402 403 /** 404 * i7300_process_fbd_error() - Retrieve the hardware error information from 405 * the FBD error registers and sends it via 406 * EDAC error API calls 407 * @mci: struct mem_ctl_info pointer 408 */ 409 static void i7300_process_fbd_error(struct mem_ctl_info *mci) 410 { 411 struct i7300_pvt *pvt; 412 u32 errnum, value, error_reg; 413 u16 val16; 414 unsigned branch, channel, bank, rank, cas, ras; 415 u32 syndrome; 416 417 unsigned long errors; 418 const char *specific; 419 bool is_wr; 420 421 pvt = mci->pvt_info; 422 423 /* read in the 1st FATAL error register */ 424 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, 425 FERR_FAT_FBD, &error_reg); 426 if (unlikely(error_reg & FERR_FAT_FBD_ERR_MASK)) { 427 errors = error_reg & FERR_FAT_FBD_ERR_MASK ; 428 errnum = find_first_bit(&errors, 429 ARRAY_SIZE(ferr_fat_fbd_name)); 430 specific = GET_ERR_FROM_TABLE(ferr_fat_fbd_name, errnum); 431 branch = (GET_FBD_FAT_IDX(error_reg) == 2) ? 1 : 0; 432 433 pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, 434 NRECMEMA, &val16); 435 bank = NRECMEMA_BANK(val16); 436 rank = NRECMEMA_RANK(val16); 437 438 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, 439 NRECMEMB, &value); 440 is_wr = NRECMEMB_IS_WR(value); 441 cas = NRECMEMB_CAS(value); 442 ras = NRECMEMB_RAS(value); 443 444 /* Clean the error register */ 445 pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map, 446 FERR_FAT_FBD, error_reg); 447 448 snprintf(pvt->tmp_prt_buffer, PAGE_SIZE, 449 "Bank=%d RAS=%d CAS=%d Err=0x%lx (%s))", 450 bank, ras, cas, errors, specific); 451 452 edac_mc_handle_error(HW_EVENT_ERR_FATAL, mci, 1, 0, 0, 0, 453 branch, -1, rank, 454 is_wr ? "Write error" : "Read error", 455 pvt->tmp_prt_buffer); 456 457 } 458 459 /* read in the 1st NON-FATAL error register */ 460 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, 461 FERR_NF_FBD, &error_reg); 462 if (unlikely(error_reg & FERR_NF_FBD_ERR_MASK)) { 463 errors = error_reg & FERR_NF_FBD_ERR_MASK; 464 errnum = find_first_bit(&errors, 465 ARRAY_SIZE(ferr_nf_fbd_name)); 466 specific = GET_ERR_FROM_TABLE(ferr_nf_fbd_name, errnum); 467 branch = (GET_FBD_NF_IDX(error_reg) == 2) ? 1 : 0; 468 469 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, 470 REDMEMA, &syndrome); 471 472 pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, 473 RECMEMA, &val16); 474 bank = RECMEMA_BANK(val16); 475 rank = RECMEMA_RANK(val16); 476 477 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, 478 RECMEMB, &value); 479 is_wr = RECMEMB_IS_WR(value); 480 cas = RECMEMB_CAS(value); 481 ras = RECMEMB_RAS(value); 482 483 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, 484 REDMEMB, &value); 485 channel = (branch << 1); 486 if (IS_SECOND_CH(value)) 487 channel++; 488 489 /* Clear the error bit */ 490 pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map, 491 FERR_NF_FBD, error_reg); 492 493 /* Form out message */ 494 snprintf(pvt->tmp_prt_buffer, PAGE_SIZE, 495 "DRAM-Bank=%d RAS=%d CAS=%d, Err=0x%lx (%s))", 496 bank, ras, cas, errors, specific); 497 498 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 499 syndrome, 500 branch >> 1, channel % 2, rank, 501 is_wr ? "Write error" : "Read error", 502 pvt->tmp_prt_buffer); 503 } 504 return; 505 } 506 507 /** 508 * i7300_check_error() - Calls the error checking subroutines 509 * @mci: struct mem_ctl_info pointer 510 */ 511 static void i7300_check_error(struct mem_ctl_info *mci) 512 { 513 i7300_process_error_global(mci); 514 i7300_process_fbd_error(mci); 515 }; 516 517 /** 518 * i7300_clear_error() - Clears the error registers 519 * @mci: struct mem_ctl_info pointer 520 */ 521 static void i7300_clear_error(struct mem_ctl_info *mci) 522 { 523 struct i7300_pvt *pvt = mci->pvt_info; 524 u32 value; 525 /* 526 * All error values are RWC - we need to read and write 1 to the 527 * bit that we want to cleanup 528 */ 529 530 /* Clear global error registers */ 531 pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs, 532 FERR_GLOBAL_HI, &value); 533 pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs, 534 FERR_GLOBAL_HI, value); 535 536 pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs, 537 FERR_GLOBAL_LO, &value); 538 pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs, 539 FERR_GLOBAL_LO, value); 540 541 /* Clear FBD error registers */ 542 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, 543 FERR_FAT_FBD, &value); 544 pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map, 545 FERR_FAT_FBD, value); 546 547 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, 548 FERR_NF_FBD, &value); 549 pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map, 550 FERR_NF_FBD, value); 551 } 552 553 /** 554 * i7300_enable_error_reporting() - Enable the memory reporting logic at the 555 * hardware 556 * @mci: struct mem_ctl_info pointer 557 */ 558 static void i7300_enable_error_reporting(struct mem_ctl_info *mci) 559 { 560 struct i7300_pvt *pvt = mci->pvt_info; 561 u32 fbd_error_mask; 562 563 /* Read the FBD Error Mask Register */ 564 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, 565 EMASK_FBD, &fbd_error_mask); 566 567 /* Enable with a '0' */ 568 fbd_error_mask &= ~(EMASK_FBD_ERR_MASK); 569 570 pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map, 571 EMASK_FBD, fbd_error_mask); 572 } 573 574 /************************************************ 575 * i7300 Functions related to memory enumberation 576 ************************************************/ 577 578 /** 579 * decode_mtr() - Decodes the MTR descriptor, filling the edac structs 580 * @pvt: pointer to the private data struct used by i7300 driver 581 * @slot: DIMM slot (0 to 7) 582 * @ch: Channel number within the branch (0 or 1) 583 * @branch: Branch number (0 or 1) 584 * @dinfo: Pointer to DIMM info where dimm size is stored 585 * @p_csrow: Pointer to the struct csrow_info that corresponds to that element 586 */ 587 static int decode_mtr(struct i7300_pvt *pvt, 588 int slot, int ch, int branch, 589 struct i7300_dimm_info *dinfo, 590 struct dimm_info *dimm) 591 { 592 int mtr, ans, addrBits, channel; 593 594 channel = to_channel(ch, branch); 595 596 mtr = pvt->mtr[slot][branch]; 597 ans = MTR_DIMMS_PRESENT(mtr) ? 1 : 0; 598 599 edac_dbg(2, "\tMTR%d CH%d: DIMMs are %sPresent (mtr)\n", 600 slot, channel, ans ? "" : "NOT "); 601 602 /* Determine if there is a DIMM present in this DIMM slot */ 603 if (!ans) 604 return 0; 605 606 /* Start with the number of bits for a Bank 607 * on the DRAM */ 608 addrBits = MTR_DRAM_BANKS_ADDR_BITS; 609 /* Add thenumber of ROW bits */ 610 addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr); 611 /* add the number of COLUMN bits */ 612 addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr); 613 /* add the number of RANK bits */ 614 addrBits += MTR_DIMM_RANKS(mtr); 615 616 addrBits += 6; /* add 64 bits per DIMM */ 617 addrBits -= 20; /* divide by 2^^20 */ 618 addrBits -= 3; /* 8 bits per bytes */ 619 620 dinfo->megabytes = 1 << addrBits; 621 622 edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr)); 623 624 edac_dbg(2, "\t\tELECTRICAL THROTTLING is %s\n", 625 MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled"); 626 627 edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr)); 628 edac_dbg(2, "\t\tNUMRANK: %s\n", 629 MTR_DIMM_RANKS(mtr) ? "double" : "single"); 630 edac_dbg(2, "\t\tNUMROW: %s\n", 631 MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" : 632 MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" : 633 MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" : 634 "65,536 - 16 rows"); 635 edac_dbg(2, "\t\tNUMCOL: %s\n", 636 MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" : 637 MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" : 638 MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" : 639 "reserved"); 640 edac_dbg(2, "\t\tSIZE: %d MB\n", dinfo->megabytes); 641 642 /* 643 * The type of error detection actually depends of the 644 * mode of operation. When it is just one single memory chip, at 645 * socket 0, channel 0, it uses 8-byte-over-32-byte SECDED+ code. 646 * In normal or mirrored mode, it uses Lockstep mode, 647 * with the possibility of using an extended algorithm for x8 memories 648 * See datasheet Sections 7.3.6 to 7.3.8 649 */ 650 651 dimm->nr_pages = MiB_TO_PAGES(dinfo->megabytes); 652 dimm->grain = 8; 653 dimm->mtype = MEM_FB_DDR2; 654 if (IS_SINGLE_MODE(pvt->mc_settings_a)) { 655 dimm->edac_mode = EDAC_SECDED; 656 edac_dbg(2, "\t\tECC code is 8-byte-over-32-byte SECDED+ code\n"); 657 } else { 658 edac_dbg(2, "\t\tECC code is on Lockstep mode\n"); 659 if (MTR_DRAM_WIDTH(mtr) == 8) 660 dimm->edac_mode = EDAC_S8ECD8ED; 661 else 662 dimm->edac_mode = EDAC_S4ECD4ED; 663 } 664 665 /* ask what device type on this row */ 666 if (MTR_DRAM_WIDTH(mtr) == 8) { 667 edac_dbg(2, "\t\tScrub algorithm for x8 is on %s mode\n", 668 IS_SCRBALGO_ENHANCED(pvt->mc_settings) ? 669 "enhanced" : "normal"); 670 671 dimm->dtype = DEV_X8; 672 } else 673 dimm->dtype = DEV_X4; 674 675 return mtr; 676 } 677 678 /** 679 * print_dimm_size() - Prints dump of the memory organization 680 * @pvt: pointer to the private data struct used by i7300 driver 681 * 682 * Useful for debug. If debug is disabled, this routine do nothing 683 */ 684 static void print_dimm_size(struct i7300_pvt *pvt) 685 { 686 #ifdef CONFIG_EDAC_DEBUG 687 struct i7300_dimm_info *dinfo; 688 char *p; 689 int space, n; 690 int channel, slot; 691 692 space = PAGE_SIZE; 693 p = pvt->tmp_prt_buffer; 694 695 n = snprintf(p, space, " "); 696 p += n; 697 space -= n; 698 for (channel = 0; channel < MAX_CHANNELS; channel++) { 699 n = snprintf(p, space, "channel %d | ", channel); 700 p += n; 701 space -= n; 702 } 703 edac_dbg(2, "%s\n", pvt->tmp_prt_buffer); 704 p = pvt->tmp_prt_buffer; 705 space = PAGE_SIZE; 706 n = snprintf(p, space, "-------------------------------" 707 "------------------------------"); 708 p += n; 709 space -= n; 710 edac_dbg(2, "%s\n", pvt->tmp_prt_buffer); 711 p = pvt->tmp_prt_buffer; 712 space = PAGE_SIZE; 713 714 for (slot = 0; slot < MAX_SLOTS; slot++) { 715 n = snprintf(p, space, "csrow/SLOT %d ", slot); 716 p += n; 717 space -= n; 718 719 for (channel = 0; channel < MAX_CHANNELS; channel++) { 720 dinfo = &pvt->dimm_info[slot][channel]; 721 n = snprintf(p, space, "%4d MB | ", dinfo->megabytes); 722 p += n; 723 space -= n; 724 } 725 726 edac_dbg(2, "%s\n", pvt->tmp_prt_buffer); 727 p = pvt->tmp_prt_buffer; 728 space = PAGE_SIZE; 729 } 730 731 n = snprintf(p, space, "-------------------------------" 732 "------------------------------"); 733 p += n; 734 space -= n; 735 edac_dbg(2, "%s\n", pvt->tmp_prt_buffer); 736 p = pvt->tmp_prt_buffer; 737 space = PAGE_SIZE; 738 #endif 739 } 740 741 /** 742 * i7300_init_csrows() - Initialize the 'csrows' table within 743 * the mci control structure with the 744 * addressing of memory. 745 * @mci: struct mem_ctl_info pointer 746 */ 747 static int i7300_init_csrows(struct mem_ctl_info *mci) 748 { 749 struct i7300_pvt *pvt; 750 struct i7300_dimm_info *dinfo; 751 int rc = -ENODEV; 752 int mtr; 753 int ch, branch, slot, channel; 754 struct dimm_info *dimm; 755 756 pvt = mci->pvt_info; 757 758 edac_dbg(2, "Memory Technology Registers:\n"); 759 760 /* Get the AMB present registers for the four channels */ 761 for (branch = 0; branch < MAX_BRANCHES; branch++) { 762 /* Read and dump branch 0's MTRs */ 763 channel = to_channel(0, branch); 764 pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch], 765 AMBPRESENT_0, 766 &pvt->ambpresent[channel]); 767 edac_dbg(2, "\t\tAMB-present CH%d = 0x%x:\n", 768 channel, pvt->ambpresent[channel]); 769 770 channel = to_channel(1, branch); 771 pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch], 772 AMBPRESENT_1, 773 &pvt->ambpresent[channel]); 774 edac_dbg(2, "\t\tAMB-present CH%d = 0x%x:\n", 775 channel, pvt->ambpresent[channel]); 776 } 777 778 /* Get the set of MTR[0-7] regs by each branch */ 779 for (slot = 0; slot < MAX_SLOTS; slot++) { 780 int where = mtr_regs[slot]; 781 for (branch = 0; branch < MAX_BRANCHES; branch++) { 782 pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch], 783 where, 784 &pvt->mtr[slot][branch]); 785 for (ch = 0; ch < MAX_CH_PER_BRANCH; ch++) { 786 int channel = to_channel(ch, branch); 787 788 dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, 789 mci->n_layers, branch, ch, slot); 790 791 dinfo = &pvt->dimm_info[slot][channel]; 792 793 mtr = decode_mtr(pvt, slot, ch, branch, 794 dinfo, dimm); 795 796 /* if no DIMMS on this row, continue */ 797 if (!MTR_DIMMS_PRESENT(mtr)) 798 continue; 799 800 rc = 0; 801 802 } 803 } 804 } 805 806 return rc; 807 } 808 809 /** 810 * decode_mir() - Decodes Memory Interleave Register (MIR) info 811 * @int mir_no: number of the MIR register to decode 812 * @mir: array with the MIR data cached on the driver 813 */ 814 static void decode_mir(int mir_no, u16 mir[MAX_MIR]) 815 { 816 if (mir[mir_no] & 3) 817 edac_dbg(2, "MIR%d: limit= 0x%x Branch(es) that participate: %s %s\n", 818 mir_no, 819 (mir[mir_no] >> 4) & 0xfff, 820 (mir[mir_no] & 1) ? "B0" : "", 821 (mir[mir_no] & 2) ? "B1" : ""); 822 } 823 824 /** 825 * i7300_get_mc_regs() - Get the contents of the MC enumeration registers 826 * @mci: struct mem_ctl_info pointer 827 * 828 * Data read is cached internally for its usage when needed 829 */ 830 static int i7300_get_mc_regs(struct mem_ctl_info *mci) 831 { 832 struct i7300_pvt *pvt; 833 u32 actual_tolm; 834 int i, rc; 835 836 pvt = mci->pvt_info; 837 838 pci_read_config_dword(pvt->pci_dev_16_0_fsb_ctlr, AMBASE, 839 (u32 *) &pvt->ambase); 840 841 edac_dbg(2, "AMBASE= 0x%lx\n", (long unsigned int)pvt->ambase); 842 843 /* Get the Branch Map regs */ 844 pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, TOLM, &pvt->tolm); 845 pvt->tolm >>= 12; 846 edac_dbg(2, "TOLM (number of 256M regions) =%u (0x%x)\n", 847 pvt->tolm, pvt->tolm); 848 849 actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28)); 850 edac_dbg(2, "Actual TOLM byte addr=%u.%03u GB (0x%x)\n", 851 actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28); 852 853 /* Get memory controller settings */ 854 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS, 855 &pvt->mc_settings); 856 pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS_A, 857 &pvt->mc_settings_a); 858 859 if (IS_SINGLE_MODE(pvt->mc_settings_a)) 860 edac_dbg(0, "Memory controller operating on single mode\n"); 861 else 862 edac_dbg(0, "Memory controller operating on %smirrored mode\n", 863 IS_MIRRORED(pvt->mc_settings) ? "" : "non-"); 864 865 edac_dbg(0, "Error detection is %s\n", 866 IS_ECC_ENABLED(pvt->mc_settings) ? "enabled" : "disabled"); 867 edac_dbg(0, "Retry is %s\n", 868 IS_RETRY_ENABLED(pvt->mc_settings) ? "enabled" : "disabled"); 869 870 /* Get Memory Interleave Range registers */ 871 pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR0, 872 &pvt->mir[0]); 873 pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR1, 874 &pvt->mir[1]); 875 pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR2, 876 &pvt->mir[2]); 877 878 /* Decode the MIR regs */ 879 for (i = 0; i < MAX_MIR; i++) 880 decode_mir(i, pvt->mir); 881 882 rc = i7300_init_csrows(mci); 883 if (rc < 0) 884 return rc; 885 886 /* Go and determine the size of each DIMM and place in an 887 * orderly matrix */ 888 print_dimm_size(pvt); 889 890 return 0; 891 } 892 893 /************************************************* 894 * i7300 Functions related to device probe/release 895 *************************************************/ 896 897 /** 898 * i7300_put_devices() - Release the PCI devices 899 * @mci: struct mem_ctl_info pointer 900 */ 901 static void i7300_put_devices(struct mem_ctl_info *mci) 902 { 903 struct i7300_pvt *pvt; 904 int branch; 905 906 pvt = mci->pvt_info; 907 908 /* Decrement usage count for devices */ 909 for (branch = 0; branch < MAX_CH_PER_BRANCH; branch++) 910 pci_dev_put(pvt->pci_dev_2x_0_fbd_branch[branch]); 911 pci_dev_put(pvt->pci_dev_16_2_fsb_err_regs); 912 pci_dev_put(pvt->pci_dev_16_1_fsb_addr_map); 913 } 914 915 /** 916 * i7300_get_devices() - Find and perform 'get' operation on the MCH's 917 * device/functions we want to reference for this driver 918 * @mci: struct mem_ctl_info pointer 919 * 920 * Access and prepare the several devices for usage: 921 * I7300 devices used by this driver: 922 * Device 16, functions 0,1 and 2: PCI_DEVICE_ID_INTEL_I7300_MCH_ERR 923 * Device 21 function 0: PCI_DEVICE_ID_INTEL_I7300_MCH_FB0 924 * Device 22 function 0: PCI_DEVICE_ID_INTEL_I7300_MCH_FB1 925 */ 926 static int __devinit i7300_get_devices(struct mem_ctl_info *mci) 927 { 928 struct i7300_pvt *pvt; 929 struct pci_dev *pdev; 930 931 pvt = mci->pvt_info; 932 933 /* Attempt to 'get' the MCH register we want */ 934 pdev = NULL; 935 while (!pvt->pci_dev_16_1_fsb_addr_map || 936 !pvt->pci_dev_16_2_fsb_err_regs) { 937 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 938 PCI_DEVICE_ID_INTEL_I7300_MCH_ERR, pdev); 939 if (!pdev) { 940 /* End of list, leave */ 941 i7300_printk(KERN_ERR, 942 "'system address,Process Bus' " 943 "device not found:" 944 "vendor 0x%x device 0x%x ERR funcs " 945 "(broken BIOS?)\n", 946 PCI_VENDOR_ID_INTEL, 947 PCI_DEVICE_ID_INTEL_I7300_MCH_ERR); 948 goto error; 949 } 950 951 /* Store device 16 funcs 1 and 2 */ 952 switch (PCI_FUNC(pdev->devfn)) { 953 case 1: 954 pvt->pci_dev_16_1_fsb_addr_map = pdev; 955 break; 956 case 2: 957 pvt->pci_dev_16_2_fsb_err_regs = pdev; 958 break; 959 } 960 } 961 962 edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s %x:%x\n", 963 pci_name(pvt->pci_dev_16_0_fsb_ctlr), 964 pvt->pci_dev_16_0_fsb_ctlr->vendor, 965 pvt->pci_dev_16_0_fsb_ctlr->device); 966 edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s %x:%x\n", 967 pci_name(pvt->pci_dev_16_1_fsb_addr_map), 968 pvt->pci_dev_16_1_fsb_addr_map->vendor, 969 pvt->pci_dev_16_1_fsb_addr_map->device); 970 edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s %x:%x\n", 971 pci_name(pvt->pci_dev_16_2_fsb_err_regs), 972 pvt->pci_dev_16_2_fsb_err_regs->vendor, 973 pvt->pci_dev_16_2_fsb_err_regs->device); 974 975 pvt->pci_dev_2x_0_fbd_branch[0] = pci_get_device(PCI_VENDOR_ID_INTEL, 976 PCI_DEVICE_ID_INTEL_I7300_MCH_FB0, 977 NULL); 978 if (!pvt->pci_dev_2x_0_fbd_branch[0]) { 979 i7300_printk(KERN_ERR, 980 "MC: 'BRANCH 0' device not found:" 981 "vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n", 982 PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_FB0); 983 goto error; 984 } 985 986 pvt->pci_dev_2x_0_fbd_branch[1] = pci_get_device(PCI_VENDOR_ID_INTEL, 987 PCI_DEVICE_ID_INTEL_I7300_MCH_FB1, 988 NULL); 989 if (!pvt->pci_dev_2x_0_fbd_branch[1]) { 990 i7300_printk(KERN_ERR, 991 "MC: 'BRANCH 1' device not found:" 992 "vendor 0x%x device 0x%x Func 0 " 993 "(broken BIOS?)\n", 994 PCI_VENDOR_ID_INTEL, 995 PCI_DEVICE_ID_INTEL_I7300_MCH_FB1); 996 goto error; 997 } 998 999 return 0; 1000 1001 error: 1002 i7300_put_devices(mci); 1003 return -ENODEV; 1004 } 1005 1006 /** 1007 * i7300_init_one() - Probe for one instance of the device 1008 * @pdev: struct pci_dev pointer 1009 * @id: struct pci_device_id pointer - currently unused 1010 */ 1011 static int __devinit i7300_init_one(struct pci_dev *pdev, 1012 const struct pci_device_id *id) 1013 { 1014 struct mem_ctl_info *mci; 1015 struct edac_mc_layer layers[3]; 1016 struct i7300_pvt *pvt; 1017 int rc; 1018 1019 /* wake up device */ 1020 rc = pci_enable_device(pdev); 1021 if (rc == -EIO) 1022 return rc; 1023 1024 edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n", 1025 pdev->bus->number, 1026 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); 1027 1028 /* We only are looking for func 0 of the set */ 1029 if (PCI_FUNC(pdev->devfn) != 0) 1030 return -ENODEV; 1031 1032 /* allocate a new MC control structure */ 1033 layers[0].type = EDAC_MC_LAYER_BRANCH; 1034 layers[0].size = MAX_BRANCHES; 1035 layers[0].is_virt_csrow = false; 1036 layers[1].type = EDAC_MC_LAYER_CHANNEL; 1037 layers[1].size = MAX_CH_PER_BRANCH; 1038 layers[1].is_virt_csrow = true; 1039 layers[2].type = EDAC_MC_LAYER_SLOT; 1040 layers[2].size = MAX_SLOTS; 1041 layers[2].is_virt_csrow = true; 1042 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt)); 1043 if (mci == NULL) 1044 return -ENOMEM; 1045 1046 edac_dbg(0, "MC: mci = %p\n", mci); 1047 1048 mci->pdev = &pdev->dev; /* record ptr to the generic device */ 1049 1050 pvt = mci->pvt_info; 1051 pvt->pci_dev_16_0_fsb_ctlr = pdev; /* Record this device in our private */ 1052 1053 pvt->tmp_prt_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL); 1054 if (!pvt->tmp_prt_buffer) { 1055 edac_mc_free(mci); 1056 return -ENOMEM; 1057 } 1058 1059 /* 'get' the pci devices we want to reserve for our use */ 1060 if (i7300_get_devices(mci)) 1061 goto fail0; 1062 1063 mci->mc_idx = 0; 1064 mci->mtype_cap = MEM_FLAG_FB_DDR2; 1065 mci->edac_ctl_cap = EDAC_FLAG_NONE; 1066 mci->edac_cap = EDAC_FLAG_NONE; 1067 mci->mod_name = "i7300_edac.c"; 1068 mci->mod_ver = I7300_REVISION; 1069 mci->ctl_name = i7300_devs[0].ctl_name; 1070 mci->dev_name = pci_name(pdev); 1071 mci->ctl_page_to_phys = NULL; 1072 1073 /* Set the function pointer to an actual operation function */ 1074 mci->edac_check = i7300_check_error; 1075 1076 /* initialize the MC control structure 'csrows' table 1077 * with the mapping and control information */ 1078 if (i7300_get_mc_regs(mci)) { 1079 edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i7300_init_csrows() returned nonzero value\n"); 1080 mci->edac_cap = EDAC_FLAG_NONE; /* no csrows found */ 1081 } else { 1082 edac_dbg(1, "MC: Enable error reporting now\n"); 1083 i7300_enable_error_reporting(mci); 1084 } 1085 1086 /* add this new MC control structure to EDAC's list of MCs */ 1087 if (edac_mc_add_mc(mci)) { 1088 edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); 1089 /* FIXME: perhaps some code should go here that disables error 1090 * reporting if we just enabled it 1091 */ 1092 goto fail1; 1093 } 1094 1095 i7300_clear_error(mci); 1096 1097 /* allocating generic PCI control info */ 1098 i7300_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR); 1099 if (!i7300_pci) { 1100 printk(KERN_WARNING 1101 "%s(): Unable to create PCI control\n", 1102 __func__); 1103 printk(KERN_WARNING 1104 "%s(): PCI error report via EDAC not setup\n", 1105 __func__); 1106 } 1107 1108 return 0; 1109 1110 /* Error exit unwinding stack */ 1111 fail1: 1112 1113 i7300_put_devices(mci); 1114 1115 fail0: 1116 kfree(pvt->tmp_prt_buffer); 1117 edac_mc_free(mci); 1118 return -ENODEV; 1119 } 1120 1121 /** 1122 * i7300_remove_one() - Remove the driver 1123 * @pdev: struct pci_dev pointer 1124 */ 1125 static void __devexit i7300_remove_one(struct pci_dev *pdev) 1126 { 1127 struct mem_ctl_info *mci; 1128 char *tmp; 1129 1130 edac_dbg(0, "\n"); 1131 1132 if (i7300_pci) 1133 edac_pci_release_generic_ctl(i7300_pci); 1134 1135 mci = edac_mc_del_mc(&pdev->dev); 1136 if (!mci) 1137 return; 1138 1139 tmp = ((struct i7300_pvt *)mci->pvt_info)->tmp_prt_buffer; 1140 1141 /* retrieve references to resources, and free those resources */ 1142 i7300_put_devices(mci); 1143 1144 kfree(tmp); 1145 edac_mc_free(mci); 1146 } 1147 1148 /* 1149 * pci_device_id: table for which devices we are looking for 1150 * 1151 * Has only 8086:360c PCI ID 1152 */ 1153 static DEFINE_PCI_DEVICE_TABLE(i7300_pci_tbl) = { 1154 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_ERR)}, 1155 {0,} /* 0 terminated list. */ 1156 }; 1157 1158 MODULE_DEVICE_TABLE(pci, i7300_pci_tbl); 1159 1160 /* 1161 * i7300_driver: pci_driver structure for this module 1162 */ 1163 static struct pci_driver i7300_driver = { 1164 .name = "i7300_edac", 1165 .probe = i7300_init_one, 1166 .remove = __devexit_p(i7300_remove_one), 1167 .id_table = i7300_pci_tbl, 1168 }; 1169 1170 /** 1171 * i7300_init() - Registers the driver 1172 */ 1173 static int __init i7300_init(void) 1174 { 1175 int pci_rc; 1176 1177 edac_dbg(2, "\n"); 1178 1179 /* Ensure that the OPSTATE is set correctly for POLL or NMI */ 1180 opstate_init(); 1181 1182 pci_rc = pci_register_driver(&i7300_driver); 1183 1184 return (pci_rc < 0) ? pci_rc : 0; 1185 } 1186 1187 /** 1188 * i7300_init() - Unregisters the driver 1189 */ 1190 static void __exit i7300_exit(void) 1191 { 1192 edac_dbg(2, "\n"); 1193 pci_unregister_driver(&i7300_driver); 1194 } 1195 1196 module_init(i7300_init); 1197 module_exit(i7300_exit); 1198 1199 MODULE_LICENSE("GPL"); 1200 MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>"); 1201 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)"); 1202 MODULE_DESCRIPTION("MC Driver for Intel I7300 memory controllers - " 1203 I7300_REVISION); 1204 1205 module_param(edac_op_state, int, 0444); 1206 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); 1207