xref: /linux/drivers/edac/i7300_edac.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  * Intel 7300 class Memory Controllers kernel module (Clarksboro)
3  *
4  * This file may be distributed under the terms of the
5  * GNU General Public License version 2 only.
6  *
7  * Copyright (c) 2010 by:
8  *	 Mauro Carvalho Chehab <mchehab@redhat.com>
9  *
10  * Red Hat Inc. http://www.redhat.com
11  *
12  * Intel 7300 Chipset Memory Controller Hub (MCH) - Datasheet
13  *	http://www.intel.com/Assets/PDF/datasheet/318082.pdf
14  *
15  * TODO: The chipset allow checking for PCI Express errors also. Currently,
16  *	 the driver covers only memory error errors
17  *
18  * This driver uses "csrows" EDAC attribute to represent DIMM slot#
19  */
20 
21 #include <linux/module.h>
22 #include <linux/init.h>
23 #include <linux/pci.h>
24 #include <linux/pci_ids.h>
25 #include <linux/slab.h>
26 #include <linux/edac.h>
27 #include <linux/mmzone.h>
28 
29 #include "edac_core.h"
30 
31 /*
32  * Alter this version for the I7300 module when modifications are made
33  */
34 #define I7300_REVISION    " Ver: 1.0.0"
35 
36 #define EDAC_MOD_STR      "i7300_edac"
37 
38 #define i7300_printk(level, fmt, arg...) \
39 	edac_printk(level, "i7300", fmt, ##arg)
40 
41 #define i7300_mc_printk(mci, level, fmt, arg...) \
42 	edac_mc_chipset_printk(mci, level, "i7300", fmt, ##arg)
43 
44 /***********************************************
45  * i7300 Limit constants Structs and static vars
46  ***********************************************/
47 
48 /*
49  * Memory topology is organized as:
50  *	Branch 0 - 2 channels: channels 0 and 1 (FDB0 PCI dev 21.0)
51  *	Branch 1 - 2 channels: channels 2 and 3 (FDB1 PCI dev 22.0)
52  * Each channel can have to 8 DIMM sets (called as SLOTS)
53  * Slots should generally be filled in pairs
54  *	Except on Single Channel mode of operation
55  *		just slot 0/channel0 filled on this mode
56  *	On normal operation mode, the two channels on a branch should be
57  *		filled together for the same SLOT#
58  * When in mirrored mode, Branch 1 replicate memory at Branch 0, so, the four
59  *		channels on both branches should be filled
60  */
61 
62 /* Limits for i7300 */
63 #define MAX_SLOTS		8
64 #define MAX_BRANCHES		2
65 #define MAX_CH_PER_BRANCH	2
66 #define MAX_CHANNELS		(MAX_CH_PER_BRANCH * MAX_BRANCHES)
67 #define MAX_MIR			3
68 
69 #define to_channel(ch, branch)	((((branch)) << 1) | (ch))
70 
71 #define to_csrow(slot, ch, branch)					\
72 		(to_channel(ch, branch) | ((slot) << 2))
73 
74 /* Device name and register DID (Device ID) */
75 struct i7300_dev_info {
76 	const char *ctl_name;	/* name for this device */
77 	u16 fsb_mapping_errors;	/* DID for the branchmap,control */
78 };
79 
80 /* Table of devices attributes supported by this driver */
81 static const struct i7300_dev_info i7300_devs[] = {
82 	{
83 		.ctl_name = "I7300",
84 		.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I7300_MCH_ERR,
85 	},
86 };
87 
88 struct i7300_dimm_info {
89 	int megabytes;		/* size, 0 means not present  */
90 };
91 
92 /* driver private data structure */
93 struct i7300_pvt {
94 	struct pci_dev *pci_dev_16_0_fsb_ctlr;		/* 16.0 */
95 	struct pci_dev *pci_dev_16_1_fsb_addr_map;	/* 16.1 */
96 	struct pci_dev *pci_dev_16_2_fsb_err_regs;	/* 16.2 */
97 	struct pci_dev *pci_dev_2x_0_fbd_branch[MAX_BRANCHES];	/* 21.0  and 22.0 */
98 
99 	u16 tolm;				/* top of low memory */
100 	u64 ambase;				/* AMB BAR */
101 
102 	u32 mc_settings;			/* Report several settings */
103 	u32 mc_settings_a;
104 
105 	u16 mir[MAX_MIR];			/* Memory Interleave Reg*/
106 
107 	u16 mtr[MAX_SLOTS][MAX_BRANCHES];	/* Memory Technlogy Reg */
108 	u16 ambpresent[MAX_CHANNELS];		/* AMB present regs */
109 
110 	/* DIMM information matrix, allocating architecture maximums */
111 	struct i7300_dimm_info dimm_info[MAX_SLOTS][MAX_CHANNELS];
112 
113 	/* Temporary buffer for use when preparing error messages */
114 	char *tmp_prt_buffer;
115 };
116 
117 /* FIXME: Why do we need to have this static? */
118 static struct edac_pci_ctl_info *i7300_pci;
119 
120 /***************************************************
121  * i7300 Register definitions for memory enumeration
122  ***************************************************/
123 
124 /*
125  * Device 16,
126  * Function 0: System Address (not documented)
127  * Function 1: Memory Branch Map, Control, Errors Register
128  */
129 
130 	/* OFFSETS for Function 0 */
131 #define AMBASE			0x48 /* AMB Mem Mapped Reg Region Base */
132 #define MAXCH			0x56 /* Max Channel Number */
133 #define MAXDIMMPERCH		0x57 /* Max DIMM PER Channel Number */
134 
135 	/* OFFSETS for Function 1 */
136 #define MC_SETTINGS		0x40
137   #define IS_MIRRORED(mc)		((mc) & (1 << 16))
138   #define IS_ECC_ENABLED(mc)		((mc) & (1 << 5))
139   #define IS_RETRY_ENABLED(mc)		((mc) & (1 << 31))
140   #define IS_SCRBALGO_ENHANCED(mc)	((mc) & (1 << 8))
141 
142 #define MC_SETTINGS_A		0x58
143   #define IS_SINGLE_MODE(mca)		((mca) & (1 << 14))
144 
145 #define TOLM			0x6C
146 
147 #define MIR0			0x80
148 #define MIR1			0x84
149 #define MIR2			0x88
150 
151 /*
152  * Note: Other Intel EDAC drivers use AMBPRESENT to identify if the available
153  * memory. From datasheet item 7.3.1 (FB-DIMM technology & organization), it
154  * seems that we cannot use this information directly for the same usage.
155  * Each memory slot may have up to 2 AMB interfaces, one for income and another
156  * for outcome interface to the next slot.
157  * For now, the driver just stores the AMB present registers, but rely only at
158  * the MTR info to detect memory.
159  * Datasheet is also not clear about how to map each AMBPRESENT registers to
160  * one of the 4 available channels.
161  */
162 #define AMBPRESENT_0	0x64
163 #define AMBPRESENT_1	0x66
164 
165 static const u16 mtr_regs[MAX_SLOTS] = {
166 	0x80, 0x84, 0x88, 0x8c,
167 	0x82, 0x86, 0x8a, 0x8e
168 };
169 
170 /*
171  * Defines to extract the vaious fields from the
172  *	MTRx - Memory Technology Registers
173  */
174 #define MTR_DIMMS_PRESENT(mtr)		((mtr) & (1 << 8))
175 #define MTR_DIMMS_ETHROTTLE(mtr)	((mtr) & (1 << 7))
176 #define MTR_DRAM_WIDTH(mtr)		(((mtr) & (1 << 6)) ? 8 : 4)
177 #define MTR_DRAM_BANKS(mtr)		(((mtr) & (1 << 5)) ? 8 : 4)
178 #define MTR_DIMM_RANKS(mtr)		(((mtr) & (1 << 4)) ? 1 : 0)
179 #define MTR_DIMM_ROWS(mtr)		(((mtr) >> 2) & 0x3)
180 #define MTR_DRAM_BANKS_ADDR_BITS	2
181 #define MTR_DIMM_ROWS_ADDR_BITS(mtr)	(MTR_DIMM_ROWS(mtr) + 13)
182 #define MTR_DIMM_COLS(mtr)		((mtr) & 0x3)
183 #define MTR_DIMM_COLS_ADDR_BITS(mtr)	(MTR_DIMM_COLS(mtr) + 10)
184 
185 #ifdef CONFIG_EDAC_DEBUG
186 /* MTR NUMROW */
187 static const char *numrow_toString[] = {
188 	"8,192 - 13 rows",
189 	"16,384 - 14 rows",
190 	"32,768 - 15 rows",
191 	"65,536 - 16 rows"
192 };
193 
194 /* MTR NUMCOL */
195 static const char *numcol_toString[] = {
196 	"1,024 - 10 columns",
197 	"2,048 - 11 columns",
198 	"4,096 - 12 columns",
199 	"reserved"
200 };
201 #endif
202 
203 /************************************************
204  * i7300 Register definitions for error detection
205  ************************************************/
206 
207 /*
208  * Device 16.1: FBD Error Registers
209  */
210 #define FERR_FAT_FBD	0x98
211 static const char *ferr_fat_fbd_name[] = {
212 	[22] = "Non-Redundant Fast Reset Timeout",
213 	[2]  = ">Tmid Thermal event with intelligent throttling disabled",
214 	[1]  = "Memory or FBD configuration CRC read error",
215 	[0]  = "Memory Write error on non-redundant retry or "
216 	       "FBD configuration Write error on retry",
217 };
218 #define GET_FBD_FAT_IDX(fbderr)	(fbderr & (3 << 28))
219 #define FERR_FAT_FBD_ERR_MASK ((1 << 0) | (1 << 1) | (1 << 2) | (1 << 3))
220 
221 #define FERR_NF_FBD	0xa0
222 static const char *ferr_nf_fbd_name[] = {
223 	[24] = "DIMM-Spare Copy Completed",
224 	[23] = "DIMM-Spare Copy Initiated",
225 	[22] = "Redundant Fast Reset Timeout",
226 	[21] = "Memory Write error on redundant retry",
227 	[18] = "SPD protocol Error",
228 	[17] = "FBD Northbound parity error on FBD Sync Status",
229 	[16] = "Correctable Patrol Data ECC",
230 	[15] = "Correctable Resilver- or Spare-Copy Data ECC",
231 	[14] = "Correctable Mirrored Demand Data ECC",
232 	[13] = "Correctable Non-Mirrored Demand Data ECC",
233 	[11] = "Memory or FBD configuration CRC read error",
234 	[10] = "FBD Configuration Write error on first attempt",
235 	[9]  = "Memory Write error on first attempt",
236 	[8]  = "Non-Aliased Uncorrectable Patrol Data ECC",
237 	[7]  = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
238 	[6]  = "Non-Aliased Uncorrectable Mirrored Demand Data ECC",
239 	[5]  = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC",
240 	[4]  = "Aliased Uncorrectable Patrol Data ECC",
241 	[3]  = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
242 	[2]  = "Aliased Uncorrectable Mirrored Demand Data ECC",
243 	[1]  = "Aliased Uncorrectable Non-Mirrored Demand Data ECC",
244 	[0]  = "Uncorrectable Data ECC on Replay",
245 };
246 #define GET_FBD_NF_IDX(fbderr)	(fbderr & (3 << 28))
247 #define FERR_NF_FBD_ERR_MASK ((1 << 24) | (1 << 23) | (1 << 22) | (1 << 21) |\
248 			      (1 << 18) | (1 << 17) | (1 << 16) | (1 << 15) |\
249 			      (1 << 14) | (1 << 13) | (1 << 11) | (1 << 10) |\
250 			      (1 << 9)  | (1 << 8)  | (1 << 7)  | (1 << 6)  |\
251 			      (1 << 5)  | (1 << 4)  | (1 << 3)  | (1 << 2)  |\
252 			      (1 << 1)  | (1 << 0))
253 
254 #define EMASK_FBD	0xa8
255 #define EMASK_FBD_ERR_MASK ((1 << 27) | (1 << 26) | (1 << 25) | (1 << 24) |\
256 			    (1 << 22) | (1 << 21) | (1 << 20) | (1 << 19) |\
257 			    (1 << 18) | (1 << 17) | (1 << 16) | (1 << 14) |\
258 			    (1 << 13) | (1 << 12) | (1 << 11) | (1 << 10) |\
259 			    (1 << 9)  | (1 << 8)  | (1 << 7)  | (1 << 6)  |\
260 			    (1 << 5)  | (1 << 4)  | (1 << 3)  | (1 << 2)  |\
261 			    (1 << 1)  | (1 << 0))
262 
263 /*
264  * Device 16.2: Global Error Registers
265  */
266 
267 #define FERR_GLOBAL_HI	0x48
268 static const char *ferr_global_hi_name[] = {
269 	[3] = "FSB 3 Fatal Error",
270 	[2] = "FSB 2 Fatal Error",
271 	[1] = "FSB 1 Fatal Error",
272 	[0] = "FSB 0 Fatal Error",
273 };
274 #define ferr_global_hi_is_fatal(errno)	1
275 
276 #define FERR_GLOBAL_LO	0x40
277 static const char *ferr_global_lo_name[] = {
278 	[31] = "Internal MCH Fatal Error",
279 	[30] = "Intel QuickData Technology Device Fatal Error",
280 	[29] = "FSB1 Fatal Error",
281 	[28] = "FSB0 Fatal Error",
282 	[27] = "FBD Channel 3 Fatal Error",
283 	[26] = "FBD Channel 2 Fatal Error",
284 	[25] = "FBD Channel 1 Fatal Error",
285 	[24] = "FBD Channel 0 Fatal Error",
286 	[23] = "PCI Express Device 7Fatal Error",
287 	[22] = "PCI Express Device 6 Fatal Error",
288 	[21] = "PCI Express Device 5 Fatal Error",
289 	[20] = "PCI Express Device 4 Fatal Error",
290 	[19] = "PCI Express Device 3 Fatal Error",
291 	[18] = "PCI Express Device 2 Fatal Error",
292 	[17] = "PCI Express Device 1 Fatal Error",
293 	[16] = "ESI Fatal Error",
294 	[15] = "Internal MCH Non-Fatal Error",
295 	[14] = "Intel QuickData Technology Device Non Fatal Error",
296 	[13] = "FSB1 Non-Fatal Error",
297 	[12] = "FSB 0 Non-Fatal Error",
298 	[11] = "FBD Channel 3 Non-Fatal Error",
299 	[10] = "FBD Channel 2 Non-Fatal Error",
300 	[9]  = "FBD Channel 1 Non-Fatal Error",
301 	[8]  = "FBD Channel 0 Non-Fatal Error",
302 	[7]  = "PCI Express Device 7 Non-Fatal Error",
303 	[6]  = "PCI Express Device 6 Non-Fatal Error",
304 	[5]  = "PCI Express Device 5 Non-Fatal Error",
305 	[4]  = "PCI Express Device 4 Non-Fatal Error",
306 	[3]  = "PCI Express Device 3 Non-Fatal Error",
307 	[2]  = "PCI Express Device 2 Non-Fatal Error",
308 	[1]  = "PCI Express Device 1 Non-Fatal Error",
309 	[0]  = "ESI Non-Fatal Error",
310 };
311 #define ferr_global_lo_is_fatal(errno)	((errno < 16) ? 0 : 1)
312 
313 #define NRECMEMA	0xbe
314   #define NRECMEMA_BANK(v)	(((v) >> 12) & 7)
315   #define NRECMEMA_RANK(v)	(((v) >> 8) & 15)
316 
317 #define NRECMEMB	0xc0
318   #define NRECMEMB_IS_WR(v)	((v) & (1 << 31))
319   #define NRECMEMB_CAS(v)	(((v) >> 16) & 0x1fff)
320   #define NRECMEMB_RAS(v)	((v) & 0xffff)
321 
322 #define REDMEMA		0xdc
323 
324 #define REDMEMB		0x7c
325   #define IS_SECOND_CH(v)	((v) * (1 << 17))
326 
327 #define RECMEMA		0xe0
328   #define RECMEMA_BANK(v)	(((v) >> 12) & 7)
329   #define RECMEMA_RANK(v)	(((v) >> 8) & 15)
330 
331 #define RECMEMB		0xe4
332   #define RECMEMB_IS_WR(v)	((v) & (1 << 31))
333   #define RECMEMB_CAS(v)	(((v) >> 16) & 0x1fff)
334   #define RECMEMB_RAS(v)	((v) & 0xffff)
335 
336 /********************************************
337  * i7300 Functions related to error detection
338  ********************************************/
339 
340 /**
341  * get_err_from_table() - Gets the error message from a table
342  * @table:	table name (array of char *)
343  * @size:	number of elements at the table
344  * @pos:	position of the element to be returned
345  *
346  * This is a small routine that gets the pos-th element of a table. If the
347  * element doesn't exist (or it is empty), it returns "reserved".
348  * Instead of calling it directly, the better is to call via the macro
349  * GET_ERR_FROM_TABLE(), that automatically checks the table size via
350  * ARRAY_SIZE() macro
351  */
352 static const char *get_err_from_table(const char *table[], int size, int pos)
353 {
354 	if (unlikely(pos >= size))
355 		return "Reserved";
356 
357 	if (unlikely(!table[pos]))
358 		return "Reserved";
359 
360 	return table[pos];
361 }
362 
363 #define GET_ERR_FROM_TABLE(table, pos)				\
364 	get_err_from_table(table, ARRAY_SIZE(table), pos)
365 
366 /**
367  * i7300_process_error_global() - Retrieve the hardware error information from
368  *				  the hardware global error registers and
369  *				  sends it to dmesg
370  * @mci: struct mem_ctl_info pointer
371  */
372 static void i7300_process_error_global(struct mem_ctl_info *mci)
373 {
374 	struct i7300_pvt *pvt;
375 	u32 errnum, error_reg;
376 	unsigned long errors;
377 	const char *specific;
378 	bool is_fatal;
379 
380 	pvt = mci->pvt_info;
381 
382 	/* read in the 1st FATAL error register */
383 	pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
384 			      FERR_GLOBAL_HI, &error_reg);
385 	if (unlikely(error_reg)) {
386 		errors = error_reg;
387 		errnum = find_first_bit(&errors,
388 					ARRAY_SIZE(ferr_global_hi_name));
389 		specific = GET_ERR_FROM_TABLE(ferr_global_hi_name, errnum);
390 		is_fatal = ferr_global_hi_is_fatal(errnum);
391 
392 		/* Clear the error bit */
393 		pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
394 				       FERR_GLOBAL_HI, error_reg);
395 
396 		goto error_global;
397 	}
398 
399 	pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
400 			      FERR_GLOBAL_LO, &error_reg);
401 	if (unlikely(error_reg)) {
402 		errors = error_reg;
403 		errnum = find_first_bit(&errors,
404 					ARRAY_SIZE(ferr_global_lo_name));
405 		specific = GET_ERR_FROM_TABLE(ferr_global_lo_name, errnum);
406 		is_fatal = ferr_global_lo_is_fatal(errnum);
407 
408 		/* Clear the error bit */
409 		pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
410 				       FERR_GLOBAL_LO, error_reg);
411 
412 		goto error_global;
413 	}
414 	return;
415 
416 error_global:
417 	i7300_mc_printk(mci, KERN_EMERG, "%s misc error: %s\n",
418 			is_fatal ? "Fatal" : "NOT fatal", specific);
419 }
420 
421 /**
422  * i7300_process_fbd_error() - Retrieve the hardware error information from
423  *			       the FBD error registers and sends it via
424  *			       EDAC error API calls
425  * @mci: struct mem_ctl_info pointer
426  */
427 static void i7300_process_fbd_error(struct mem_ctl_info *mci)
428 {
429 	struct i7300_pvt *pvt;
430 	u32 errnum, value, error_reg;
431 	u16 val16;
432 	unsigned branch, channel, bank, rank, cas, ras;
433 	u32 syndrome;
434 
435 	unsigned long errors;
436 	const char *specific;
437 	bool is_wr;
438 
439 	pvt = mci->pvt_info;
440 
441 	/* read in the 1st FATAL error register */
442 	pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
443 			      FERR_FAT_FBD, &error_reg);
444 	if (unlikely(error_reg & FERR_FAT_FBD_ERR_MASK)) {
445 		errors = error_reg & FERR_FAT_FBD_ERR_MASK ;
446 		errnum = find_first_bit(&errors,
447 					ARRAY_SIZE(ferr_fat_fbd_name));
448 		specific = GET_ERR_FROM_TABLE(ferr_fat_fbd_name, errnum);
449 		branch = (GET_FBD_FAT_IDX(error_reg) == 2) ? 1 : 0;
450 
451 		pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map,
452 				     NRECMEMA, &val16);
453 		bank = NRECMEMA_BANK(val16);
454 		rank = NRECMEMA_RANK(val16);
455 
456 		pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
457 				NRECMEMB, &value);
458 		is_wr = NRECMEMB_IS_WR(value);
459 		cas = NRECMEMB_CAS(value);
460 		ras = NRECMEMB_RAS(value);
461 
462 		/* Clean the error register */
463 		pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
464 				FERR_FAT_FBD, error_reg);
465 
466 		snprintf(pvt->tmp_prt_buffer, PAGE_SIZE,
467 			 "Bank=%d RAS=%d CAS=%d Err=0x%lx (%s))",
468 			 bank, ras, cas, errors, specific);
469 
470 		edac_mc_handle_error(HW_EVENT_ERR_FATAL, mci, 0, 0, 0,
471 				     branch, -1, rank,
472 				     is_wr ? "Write error" : "Read error",
473 				     pvt->tmp_prt_buffer, NULL);
474 
475 	}
476 
477 	/* read in the 1st NON-FATAL error register */
478 	pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
479 			      FERR_NF_FBD, &error_reg);
480 	if (unlikely(error_reg & FERR_NF_FBD_ERR_MASK)) {
481 		errors = error_reg & FERR_NF_FBD_ERR_MASK;
482 		errnum = find_first_bit(&errors,
483 					ARRAY_SIZE(ferr_nf_fbd_name));
484 		specific = GET_ERR_FROM_TABLE(ferr_nf_fbd_name, errnum);
485 		branch = (GET_FBD_FAT_IDX(error_reg) == 2) ? 1 : 0;
486 
487 		pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
488 			REDMEMA, &syndrome);
489 
490 		pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map,
491 				     RECMEMA, &val16);
492 		bank = RECMEMA_BANK(val16);
493 		rank = RECMEMA_RANK(val16);
494 
495 		pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
496 				RECMEMB, &value);
497 		is_wr = RECMEMB_IS_WR(value);
498 		cas = RECMEMB_CAS(value);
499 		ras = RECMEMB_RAS(value);
500 
501 		pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
502 				     REDMEMB, &value);
503 		channel = (branch << 1);
504 		if (IS_SECOND_CH(value))
505 			channel++;
506 
507 		/* Clear the error bit */
508 		pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
509 				FERR_NF_FBD, error_reg);
510 
511 		/* Form out message */
512 		snprintf(pvt->tmp_prt_buffer, PAGE_SIZE,
513 			 "DRAM-Bank=%d RAS=%d CAS=%d, Err=0x%lx (%s))",
514 			 bank, ras, cas, errors, specific);
515 
516 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 0, 0,
517 				     syndrome,
518 				     branch >> 1, channel % 2, rank,
519 				     is_wr ? "Write error" : "Read error",
520 				     pvt->tmp_prt_buffer, NULL);
521 	}
522 	return;
523 }
524 
525 /**
526  * i7300_check_error() - Calls the error checking subroutines
527  * @mci: struct mem_ctl_info pointer
528  */
529 static void i7300_check_error(struct mem_ctl_info *mci)
530 {
531 	i7300_process_error_global(mci);
532 	i7300_process_fbd_error(mci);
533 };
534 
535 /**
536  * i7300_clear_error() - Clears the error registers
537  * @mci: struct mem_ctl_info pointer
538  */
539 static void i7300_clear_error(struct mem_ctl_info *mci)
540 {
541 	struct i7300_pvt *pvt = mci->pvt_info;
542 	u32 value;
543 	/*
544 	 * All error values are RWC - we need to read and write 1 to the
545 	 * bit that we want to cleanup
546 	 */
547 
548 	/* Clear global error registers */
549 	pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
550 			      FERR_GLOBAL_HI, &value);
551 	pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
552 			      FERR_GLOBAL_HI, value);
553 
554 	pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
555 			      FERR_GLOBAL_LO, &value);
556 	pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
557 			      FERR_GLOBAL_LO, value);
558 
559 	/* Clear FBD error registers */
560 	pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
561 			      FERR_FAT_FBD, &value);
562 	pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
563 			      FERR_FAT_FBD, value);
564 
565 	pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
566 			      FERR_NF_FBD, &value);
567 	pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
568 			      FERR_NF_FBD, value);
569 }
570 
571 /**
572  * i7300_enable_error_reporting() - Enable the memory reporting logic at the
573  *				    hardware
574  * @mci: struct mem_ctl_info pointer
575  */
576 static void i7300_enable_error_reporting(struct mem_ctl_info *mci)
577 {
578 	struct i7300_pvt *pvt = mci->pvt_info;
579 	u32 fbd_error_mask;
580 
581 	/* Read the FBD Error Mask Register */
582 	pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
583 			      EMASK_FBD, &fbd_error_mask);
584 
585 	/* Enable with a '0' */
586 	fbd_error_mask &= ~(EMASK_FBD_ERR_MASK);
587 
588 	pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
589 			       EMASK_FBD, fbd_error_mask);
590 }
591 
592 /************************************************
593  * i7300 Functions related to memory enumberation
594  ************************************************/
595 
596 /**
597  * decode_mtr() - Decodes the MTR descriptor, filling the edac structs
598  * @pvt: pointer to the private data struct used by i7300 driver
599  * @slot: DIMM slot (0 to 7)
600  * @ch: Channel number within the branch (0 or 1)
601  * @branch: Branch number (0 or 1)
602  * @dinfo: Pointer to DIMM info where dimm size is stored
603  * @p_csrow: Pointer to the struct csrow_info that corresponds to that element
604  */
605 static int decode_mtr(struct i7300_pvt *pvt,
606 		      int slot, int ch, int branch,
607 		      struct i7300_dimm_info *dinfo,
608 		      struct dimm_info *dimm)
609 {
610 	int mtr, ans, addrBits, channel;
611 
612 	channel = to_channel(ch, branch);
613 
614 	mtr = pvt->mtr[slot][branch];
615 	ans = MTR_DIMMS_PRESENT(mtr) ? 1 : 0;
616 
617 	debugf2("\tMTR%d CH%d: DIMMs are %s (mtr)\n",
618 		slot, channel,
619 		ans ? "Present" : "NOT Present");
620 
621 	/* Determine if there is a DIMM present in this DIMM slot */
622 	if (!ans)
623 		return 0;
624 
625 	/* Start with the number of bits for a Bank
626 	* on the DRAM */
627 	addrBits = MTR_DRAM_BANKS_ADDR_BITS;
628 	/* Add thenumber of ROW bits */
629 	addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
630 	/* add the number of COLUMN bits */
631 	addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
632 	/* add the number of RANK bits */
633 	addrBits += MTR_DIMM_RANKS(mtr);
634 
635 	addrBits += 6;	/* add 64 bits per DIMM */
636 	addrBits -= 20;	/* divide by 2^^20 */
637 	addrBits -= 3;	/* 8 bits per bytes */
638 
639 	dinfo->megabytes = 1 << addrBits;
640 
641 	debugf2("\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
642 
643 	debugf2("\t\tELECTRICAL THROTTLING is %s\n",
644 		MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled");
645 
646 	debugf2("\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
647 	debugf2("\t\tNUMRANK: %s\n", MTR_DIMM_RANKS(mtr) ? "double" : "single");
648 	debugf2("\t\tNUMROW: %s\n", numrow_toString[MTR_DIMM_ROWS(mtr)]);
649 	debugf2("\t\tNUMCOL: %s\n", numcol_toString[MTR_DIMM_COLS(mtr)]);
650 	debugf2("\t\tSIZE: %d MB\n", dinfo->megabytes);
651 
652 	/*
653 	 * The type of error detection actually depends of the
654 	 * mode of operation. When it is just one single memory chip, at
655 	 * socket 0, channel 0, it uses 8-byte-over-32-byte SECDED+ code.
656 	 * In normal or mirrored mode, it uses Lockstep mode,
657 	 * with the possibility of using an extended algorithm for x8 memories
658 	 * See datasheet Sections 7.3.6 to 7.3.8
659 	 */
660 
661 	dimm->nr_pages = MiB_TO_PAGES(dinfo->megabytes);
662 	dimm->grain = 8;
663 	dimm->mtype = MEM_FB_DDR2;
664 	if (IS_SINGLE_MODE(pvt->mc_settings_a)) {
665 		dimm->edac_mode = EDAC_SECDED;
666 		debugf2("\t\tECC code is 8-byte-over-32-byte SECDED+ code\n");
667 	} else {
668 		debugf2("\t\tECC code is on Lockstep mode\n");
669 		if (MTR_DRAM_WIDTH(mtr) == 8)
670 			dimm->edac_mode = EDAC_S8ECD8ED;
671 		else
672 			dimm->edac_mode = EDAC_S4ECD4ED;
673 	}
674 
675 	/* ask what device type on this row */
676 	if (MTR_DRAM_WIDTH(mtr) == 8) {
677 		debugf2("\t\tScrub algorithm for x8 is on %s mode\n",
678 			IS_SCRBALGO_ENHANCED(pvt->mc_settings) ?
679 					    "enhanced" : "normal");
680 
681 		dimm->dtype = DEV_X8;
682 	} else
683 		dimm->dtype = DEV_X4;
684 
685 	return mtr;
686 }
687 
688 /**
689  * print_dimm_size() - Prints dump of the memory organization
690  * @pvt: pointer to the private data struct used by i7300 driver
691  *
692  * Useful for debug. If debug is disabled, this routine do nothing
693  */
694 static void print_dimm_size(struct i7300_pvt *pvt)
695 {
696 #ifdef CONFIG_EDAC_DEBUG
697 	struct i7300_dimm_info *dinfo;
698 	char *p;
699 	int space, n;
700 	int channel, slot;
701 
702 	space = PAGE_SIZE;
703 	p = pvt->tmp_prt_buffer;
704 
705 	n = snprintf(p, space, "              ");
706 	p += n;
707 	space -= n;
708 	for (channel = 0; channel < MAX_CHANNELS; channel++) {
709 		n = snprintf(p, space, "channel %d | ", channel);
710 		p += n;
711 		space -= n;
712 	}
713 	debugf2("%s\n", pvt->tmp_prt_buffer);
714 	p = pvt->tmp_prt_buffer;
715 	space = PAGE_SIZE;
716 	n = snprintf(p, space, "-------------------------------"
717 			       "------------------------------");
718 	p += n;
719 	space -= n;
720 	debugf2("%s\n", pvt->tmp_prt_buffer);
721 	p = pvt->tmp_prt_buffer;
722 	space = PAGE_SIZE;
723 
724 	for (slot = 0; slot < MAX_SLOTS; slot++) {
725 		n = snprintf(p, space, "csrow/SLOT %d  ", slot);
726 		p += n;
727 		space -= n;
728 
729 		for (channel = 0; channel < MAX_CHANNELS; channel++) {
730 			dinfo = &pvt->dimm_info[slot][channel];
731 			n = snprintf(p, space, "%4d MB   | ", dinfo->megabytes);
732 			p += n;
733 			space -= n;
734 		}
735 
736 		debugf2("%s\n", pvt->tmp_prt_buffer);
737 		p = pvt->tmp_prt_buffer;
738 		space = PAGE_SIZE;
739 	}
740 
741 	n = snprintf(p, space, "-------------------------------"
742 			       "------------------------------");
743 	p += n;
744 	space -= n;
745 	debugf2("%s\n", pvt->tmp_prt_buffer);
746 	p = pvt->tmp_prt_buffer;
747 	space = PAGE_SIZE;
748 #endif
749 }
750 
751 /**
752  * i7300_init_csrows() - Initialize the 'csrows' table within
753  *			 the mci control structure with the
754  *			 addressing of memory.
755  * @mci: struct mem_ctl_info pointer
756  */
757 static int i7300_init_csrows(struct mem_ctl_info *mci)
758 {
759 	struct i7300_pvt *pvt;
760 	struct i7300_dimm_info *dinfo;
761 	int rc = -ENODEV;
762 	int mtr;
763 	int ch, branch, slot, channel;
764 	struct dimm_info *dimm;
765 
766 	pvt = mci->pvt_info;
767 
768 	debugf2("Memory Technology Registers:\n");
769 
770 	/* Get the AMB present registers for the four channels */
771 	for (branch = 0; branch < MAX_BRANCHES; branch++) {
772 		/* Read and dump branch 0's MTRs */
773 		channel = to_channel(0, branch);
774 		pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
775 				     AMBPRESENT_0,
776 				&pvt->ambpresent[channel]);
777 		debugf2("\t\tAMB-present CH%d = 0x%x:\n",
778 			channel, pvt->ambpresent[channel]);
779 
780 		channel = to_channel(1, branch);
781 		pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
782 				     AMBPRESENT_1,
783 				&pvt->ambpresent[channel]);
784 		debugf2("\t\tAMB-present CH%d = 0x%x:\n",
785 			channel, pvt->ambpresent[channel]);
786 	}
787 
788 	/* Get the set of MTR[0-7] regs by each branch */
789 	for (slot = 0; slot < MAX_SLOTS; slot++) {
790 		int where = mtr_regs[slot];
791 		for (branch = 0; branch < MAX_BRANCHES; branch++) {
792 			pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
793 					where,
794 					&pvt->mtr[slot][branch]);
795 			for (ch = 0; ch < MAX_CH_PER_BRANCH; ch++) {
796 				int channel = to_channel(ch, branch);
797 
798 				dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms,
799 					       mci->n_layers, branch, ch, slot);
800 
801 				dinfo = &pvt->dimm_info[slot][channel];
802 
803 				mtr = decode_mtr(pvt, slot, ch, branch,
804 						 dinfo, dimm);
805 
806 				/* if no DIMMS on this row, continue */
807 				if (!MTR_DIMMS_PRESENT(mtr))
808 					continue;
809 
810 				rc = 0;
811 
812 			}
813 		}
814 	}
815 
816 	return rc;
817 }
818 
819 /**
820  * decode_mir() - Decodes Memory Interleave Register (MIR) info
821  * @int mir_no: number of the MIR register to decode
822  * @mir: array with the MIR data cached on the driver
823  */
824 static void decode_mir(int mir_no, u16 mir[MAX_MIR])
825 {
826 	if (mir[mir_no] & 3)
827 		debugf2("MIR%d: limit= 0x%x Branch(es) that participate:"
828 			" %s %s\n",
829 			mir_no,
830 			(mir[mir_no] >> 4) & 0xfff,
831 			(mir[mir_no] & 1) ? "B0" : "",
832 			(mir[mir_no] & 2) ? "B1" : "");
833 }
834 
835 /**
836  * i7300_get_mc_regs() - Get the contents of the MC enumeration registers
837  * @mci: struct mem_ctl_info pointer
838  *
839  * Data read is cached internally for its usage when needed
840  */
841 static int i7300_get_mc_regs(struct mem_ctl_info *mci)
842 {
843 	struct i7300_pvt *pvt;
844 	u32 actual_tolm;
845 	int i, rc;
846 
847 	pvt = mci->pvt_info;
848 
849 	pci_read_config_dword(pvt->pci_dev_16_0_fsb_ctlr, AMBASE,
850 			(u32 *) &pvt->ambase);
851 
852 	debugf2("AMBASE= 0x%lx\n", (long unsigned int)pvt->ambase);
853 
854 	/* Get the Branch Map regs */
855 	pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, TOLM, &pvt->tolm);
856 	pvt->tolm >>= 12;
857 	debugf2("TOLM (number of 256M regions) =%u (0x%x)\n", pvt->tolm,
858 		pvt->tolm);
859 
860 	actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28));
861 	debugf2("Actual TOLM byte addr=%u.%03u GB (0x%x)\n",
862 		actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28);
863 
864 	/* Get memory controller settings */
865 	pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS,
866 			     &pvt->mc_settings);
867 	pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS_A,
868 			     &pvt->mc_settings_a);
869 
870 	if (IS_SINGLE_MODE(pvt->mc_settings_a))
871 		debugf0("Memory controller operating on single mode\n");
872 	else
873 		debugf0("Memory controller operating on %s mode\n",
874 		IS_MIRRORED(pvt->mc_settings) ? "mirrored" : "non-mirrored");
875 
876 	debugf0("Error detection is %s\n",
877 		IS_ECC_ENABLED(pvt->mc_settings) ? "enabled" : "disabled");
878 	debugf0("Retry is %s\n",
879 		IS_RETRY_ENABLED(pvt->mc_settings) ? "enabled" : "disabled");
880 
881 	/* Get Memory Interleave Range registers */
882 	pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR0,
883 			     &pvt->mir[0]);
884 	pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR1,
885 			     &pvt->mir[1]);
886 	pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR2,
887 			     &pvt->mir[2]);
888 
889 	/* Decode the MIR regs */
890 	for (i = 0; i < MAX_MIR; i++)
891 		decode_mir(i, pvt->mir);
892 
893 	rc = i7300_init_csrows(mci);
894 	if (rc < 0)
895 		return rc;
896 
897 	/* Go and determine the size of each DIMM and place in an
898 	 * orderly matrix */
899 	print_dimm_size(pvt);
900 
901 	return 0;
902 }
903 
904 /*************************************************
905  * i7300 Functions related to device probe/release
906  *************************************************/
907 
908 /**
909  * i7300_put_devices() - Release the PCI devices
910  * @mci: struct mem_ctl_info pointer
911  */
912 static void i7300_put_devices(struct mem_ctl_info *mci)
913 {
914 	struct i7300_pvt *pvt;
915 	int branch;
916 
917 	pvt = mci->pvt_info;
918 
919 	/* Decrement usage count for devices */
920 	for (branch = 0; branch < MAX_CH_PER_BRANCH; branch++)
921 		pci_dev_put(pvt->pci_dev_2x_0_fbd_branch[branch]);
922 	pci_dev_put(pvt->pci_dev_16_2_fsb_err_regs);
923 	pci_dev_put(pvt->pci_dev_16_1_fsb_addr_map);
924 }
925 
926 /**
927  * i7300_get_devices() - Find and perform 'get' operation on the MCH's
928  *			 device/functions we want to reference for this driver
929  * @mci: struct mem_ctl_info pointer
930  *
931  * Access and prepare the several devices for usage:
932  * I7300 devices used by this driver:
933  *    Device 16, functions 0,1 and 2:	PCI_DEVICE_ID_INTEL_I7300_MCH_ERR
934  *    Device 21 function 0:		PCI_DEVICE_ID_INTEL_I7300_MCH_FB0
935  *    Device 22 function 0:		PCI_DEVICE_ID_INTEL_I7300_MCH_FB1
936  */
937 static int __devinit i7300_get_devices(struct mem_ctl_info *mci)
938 {
939 	struct i7300_pvt *pvt;
940 	struct pci_dev *pdev;
941 
942 	pvt = mci->pvt_info;
943 
944 	/* Attempt to 'get' the MCH register we want */
945 	pdev = NULL;
946 	while (!pvt->pci_dev_16_1_fsb_addr_map ||
947 	       !pvt->pci_dev_16_2_fsb_err_regs) {
948 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
949 				      PCI_DEVICE_ID_INTEL_I7300_MCH_ERR, pdev);
950 		if (!pdev) {
951 			/* End of list, leave */
952 			i7300_printk(KERN_ERR,
953 				"'system address,Process Bus' "
954 				"device not found:"
955 				"vendor 0x%x device 0x%x ERR funcs "
956 				"(broken BIOS?)\n",
957 				PCI_VENDOR_ID_INTEL,
958 				PCI_DEVICE_ID_INTEL_I7300_MCH_ERR);
959 			goto error;
960 		}
961 
962 		/* Store device 16 funcs 1 and 2 */
963 		switch (PCI_FUNC(pdev->devfn)) {
964 		case 1:
965 			pvt->pci_dev_16_1_fsb_addr_map = pdev;
966 			break;
967 		case 2:
968 			pvt->pci_dev_16_2_fsb_err_regs = pdev;
969 			break;
970 		}
971 	}
972 
973 	debugf1("System Address, processor bus- PCI Bus ID: %s  %x:%x\n",
974 		pci_name(pvt->pci_dev_16_0_fsb_ctlr),
975 		pvt->pci_dev_16_0_fsb_ctlr->vendor,
976 		pvt->pci_dev_16_0_fsb_ctlr->device);
977 	debugf1("Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n",
978 		pci_name(pvt->pci_dev_16_1_fsb_addr_map),
979 		pvt->pci_dev_16_1_fsb_addr_map->vendor,
980 		pvt->pci_dev_16_1_fsb_addr_map->device);
981 	debugf1("FSB Error Regs - PCI Bus ID: %s  %x:%x\n",
982 		pci_name(pvt->pci_dev_16_2_fsb_err_regs),
983 		pvt->pci_dev_16_2_fsb_err_regs->vendor,
984 		pvt->pci_dev_16_2_fsb_err_regs->device);
985 
986 	pvt->pci_dev_2x_0_fbd_branch[0] = pci_get_device(PCI_VENDOR_ID_INTEL,
987 					    PCI_DEVICE_ID_INTEL_I7300_MCH_FB0,
988 					    NULL);
989 	if (!pvt->pci_dev_2x_0_fbd_branch[0]) {
990 		i7300_printk(KERN_ERR,
991 			"MC: 'BRANCH 0' device not found:"
992 			"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
993 			PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_FB0);
994 		goto error;
995 	}
996 
997 	pvt->pci_dev_2x_0_fbd_branch[1] = pci_get_device(PCI_VENDOR_ID_INTEL,
998 					    PCI_DEVICE_ID_INTEL_I7300_MCH_FB1,
999 					    NULL);
1000 	if (!pvt->pci_dev_2x_0_fbd_branch[1]) {
1001 		i7300_printk(KERN_ERR,
1002 			"MC: 'BRANCH 1' device not found:"
1003 			"vendor 0x%x device 0x%x Func 0 "
1004 			"(broken BIOS?)\n",
1005 			PCI_VENDOR_ID_INTEL,
1006 			PCI_DEVICE_ID_INTEL_I7300_MCH_FB1);
1007 		goto error;
1008 	}
1009 
1010 	return 0;
1011 
1012 error:
1013 	i7300_put_devices(mci);
1014 	return -ENODEV;
1015 }
1016 
1017 /**
1018  * i7300_init_one() - Probe for one instance of the device
1019  * @pdev: struct pci_dev pointer
1020  * @id: struct pci_device_id pointer - currently unused
1021  */
1022 static int __devinit i7300_init_one(struct pci_dev *pdev,
1023 				    const struct pci_device_id *id)
1024 {
1025 	struct mem_ctl_info *mci;
1026 	struct edac_mc_layer layers[3];
1027 	struct i7300_pvt *pvt;
1028 	int rc;
1029 
1030 	/* wake up device */
1031 	rc = pci_enable_device(pdev);
1032 	if (rc == -EIO)
1033 		return rc;
1034 
1035 	debugf0("MC: " __FILE__ ": %s(), pdev bus %u dev=0x%x fn=0x%x\n",
1036 		__func__,
1037 		pdev->bus->number,
1038 		PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1039 
1040 	/* We only are looking for func 0 of the set */
1041 	if (PCI_FUNC(pdev->devfn) != 0)
1042 		return -ENODEV;
1043 
1044 	/* allocate a new MC control structure */
1045 	layers[0].type = EDAC_MC_LAYER_BRANCH;
1046 	layers[0].size = MAX_BRANCHES;
1047 	layers[0].is_virt_csrow = false;
1048 	layers[1].type = EDAC_MC_LAYER_CHANNEL;
1049 	layers[1].size = MAX_CH_PER_BRANCH;
1050 	layers[1].is_virt_csrow = true;
1051 	layers[2].type = EDAC_MC_LAYER_SLOT;
1052 	layers[2].size = MAX_SLOTS;
1053 	layers[2].is_virt_csrow = true;
1054 	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
1055 	if (mci == NULL)
1056 		return -ENOMEM;
1057 
1058 	debugf0("MC: " __FILE__ ": %s(): mci = %p\n", __func__, mci);
1059 
1060 	mci->dev = &pdev->dev;	/* record ptr  to the generic device */
1061 
1062 	pvt = mci->pvt_info;
1063 	pvt->pci_dev_16_0_fsb_ctlr = pdev;	/* Record this device in our private */
1064 
1065 	pvt->tmp_prt_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
1066 	if (!pvt->tmp_prt_buffer) {
1067 		edac_mc_free(mci);
1068 		return -ENOMEM;
1069 	}
1070 
1071 	/* 'get' the pci devices we want to reserve for our use */
1072 	if (i7300_get_devices(mci))
1073 		goto fail0;
1074 
1075 	mci->mc_idx = 0;
1076 	mci->mtype_cap = MEM_FLAG_FB_DDR2;
1077 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
1078 	mci->edac_cap = EDAC_FLAG_NONE;
1079 	mci->mod_name = "i7300_edac.c";
1080 	mci->mod_ver = I7300_REVISION;
1081 	mci->ctl_name = i7300_devs[0].ctl_name;
1082 	mci->dev_name = pci_name(pdev);
1083 	mci->ctl_page_to_phys = NULL;
1084 
1085 	/* Set the function pointer to an actual operation function */
1086 	mci->edac_check = i7300_check_error;
1087 
1088 	/* initialize the MC control structure 'csrows' table
1089 	 * with the mapping and control information */
1090 	if (i7300_get_mc_regs(mci)) {
1091 		debugf0("MC: Setting mci->edac_cap to EDAC_FLAG_NONE\n"
1092 			"    because i7300_init_csrows() returned nonzero "
1093 			"value\n");
1094 		mci->edac_cap = EDAC_FLAG_NONE;	/* no csrows found */
1095 	} else {
1096 		debugf1("MC: Enable error reporting now\n");
1097 		i7300_enable_error_reporting(mci);
1098 	}
1099 
1100 	/* add this new MC control structure to EDAC's list of MCs */
1101 	if (edac_mc_add_mc(mci)) {
1102 		debugf0("MC: " __FILE__
1103 			": %s(): failed edac_mc_add_mc()\n", __func__);
1104 		/* FIXME: perhaps some code should go here that disables error
1105 		 * reporting if we just enabled it
1106 		 */
1107 		goto fail1;
1108 	}
1109 
1110 	i7300_clear_error(mci);
1111 
1112 	/* allocating generic PCI control info */
1113 	i7300_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
1114 	if (!i7300_pci) {
1115 		printk(KERN_WARNING
1116 			"%s(): Unable to create PCI control\n",
1117 			__func__);
1118 		printk(KERN_WARNING
1119 			"%s(): PCI error report via EDAC not setup\n",
1120 			__func__);
1121 	}
1122 
1123 	return 0;
1124 
1125 	/* Error exit unwinding stack */
1126 fail1:
1127 
1128 	i7300_put_devices(mci);
1129 
1130 fail0:
1131 	kfree(pvt->tmp_prt_buffer);
1132 	edac_mc_free(mci);
1133 	return -ENODEV;
1134 }
1135 
1136 /**
1137  * i7300_remove_one() - Remove the driver
1138  * @pdev: struct pci_dev pointer
1139  */
1140 static void __devexit i7300_remove_one(struct pci_dev *pdev)
1141 {
1142 	struct mem_ctl_info *mci;
1143 	char *tmp;
1144 
1145 	debugf0(__FILE__ ": %s()\n", __func__);
1146 
1147 	if (i7300_pci)
1148 		edac_pci_release_generic_ctl(i7300_pci);
1149 
1150 	mci = edac_mc_del_mc(&pdev->dev);
1151 	if (!mci)
1152 		return;
1153 
1154 	tmp = ((struct i7300_pvt *)mci->pvt_info)->tmp_prt_buffer;
1155 
1156 	/* retrieve references to resources, and free those resources */
1157 	i7300_put_devices(mci);
1158 
1159 	kfree(tmp);
1160 	edac_mc_free(mci);
1161 }
1162 
1163 /*
1164  * pci_device_id: table for which devices we are looking for
1165  *
1166  * Has only 8086:360c PCI ID
1167  */
1168 static DEFINE_PCI_DEVICE_TABLE(i7300_pci_tbl) = {
1169 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_ERR)},
1170 	{0,}			/* 0 terminated list. */
1171 };
1172 
1173 MODULE_DEVICE_TABLE(pci, i7300_pci_tbl);
1174 
1175 /*
1176  * i7300_driver: pci_driver structure for this module
1177  */
1178 static struct pci_driver i7300_driver = {
1179 	.name = "i7300_edac",
1180 	.probe = i7300_init_one,
1181 	.remove = __devexit_p(i7300_remove_one),
1182 	.id_table = i7300_pci_tbl,
1183 };
1184 
1185 /**
1186  * i7300_init() - Registers the driver
1187  */
1188 static int __init i7300_init(void)
1189 {
1190 	int pci_rc;
1191 
1192 	debugf2("MC: " __FILE__ ": %s()\n", __func__);
1193 
1194 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
1195 	opstate_init();
1196 
1197 	pci_rc = pci_register_driver(&i7300_driver);
1198 
1199 	return (pci_rc < 0) ? pci_rc : 0;
1200 }
1201 
1202 /**
1203  * i7300_init() - Unregisters the driver
1204  */
1205 static void __exit i7300_exit(void)
1206 {
1207 	debugf2("MC: " __FILE__ ": %s()\n", __func__);
1208 	pci_unregister_driver(&i7300_driver);
1209 }
1210 
1211 module_init(i7300_init);
1212 module_exit(i7300_exit);
1213 
1214 MODULE_LICENSE("GPL");
1215 MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
1216 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
1217 MODULE_DESCRIPTION("MC Driver for Intel I7300 memory controllers - "
1218 		   I7300_REVISION);
1219 
1220 module_param(edac_op_state, int, 0444);
1221 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1222