1 /* 2 * Intel 5400 class Memory Controllers kernel module (Seaburg) 3 * 4 * This file may be distributed under the terms of the 5 * GNU General Public License. 6 * 7 * Copyright (c) 2008 by: 8 * Ben Woodard <woodard@redhat.com> 9 * Mauro Carvalho Chehab 10 * 11 * Red Hat Inc. https://www.redhat.com 12 * 13 * Forked and adapted from the i5000_edac driver which was 14 * written by Douglas Thompson Linux Networx <norsk5@xmission.com> 15 * 16 * This module is based on the following document: 17 * 18 * Intel 5400 Chipset Memory Controller Hub (MCH) - Datasheet 19 * http://developer.intel.com/design/chipsets/datashts/313070.htm 20 * 21 * This Memory Controller manages DDR2 FB-DIMMs. It has 2 branches, each with 22 * 2 channels operating in lockstep no-mirror mode. Each channel can have up to 23 * 4 dimm's, each with up to 8GB. 24 * 25 */ 26 27 #include <linux/module.h> 28 #include <linux/init.h> 29 #include <linux/pci.h> 30 #include <linux/pci_ids.h> 31 #include <linux/slab.h> 32 #include <linux/edac.h> 33 #include <linux/mmzone.h> 34 35 #include "edac_module.h" 36 37 /* 38 * Alter this version for the I5400 module when modifications are made 39 */ 40 #define I5400_REVISION " Ver: 1.0.0" 41 42 #define EDAC_MOD_STR "i5400_edac" 43 44 #define i5400_printk(level, fmt, arg...) \ 45 edac_printk(level, "i5400", fmt, ##arg) 46 47 #define i5400_mc_printk(mci, level, fmt, arg...) \ 48 edac_mc_chipset_printk(mci, level, "i5400", fmt, ##arg) 49 50 /* Limits for i5400 */ 51 #define MAX_BRANCHES 2 52 #define CHANNELS_PER_BRANCH 2 53 #define DIMMS_PER_CHANNEL 4 54 #define MAX_CHANNELS (MAX_BRANCHES * CHANNELS_PER_BRANCH) 55 56 /* Device 16, 57 * Function 0: System Address 58 * Function 1: Memory Branch Map, Control, Errors Register 59 * Function 2: FSB Error Registers 60 * 61 * All 3 functions of Device 16 (0,1,2) share the SAME DID and 62 * uses PCI_DEVICE_ID_INTEL_5400_ERR for device 16 (0,1,2), 63 * PCI_DEVICE_ID_INTEL_5400_FBD0 and PCI_DEVICE_ID_INTEL_5400_FBD1 64 * for device 21 (0,1). 65 */ 66 67 /* OFFSETS for Function 0 */ 68 #define AMBASE 0x48 /* AMB Mem Mapped Reg Region Base */ 69 #define MAXCH 0x56 /* Max Channel Number */ 70 #define MAXDIMMPERCH 0x57 /* Max DIMM PER Channel Number */ 71 72 /* OFFSETS for Function 1 */ 73 #define TOLM 0x6C 74 #define REDMEMB 0x7C 75 #define REC_ECC_LOCATOR_ODD(x) ((x) & 0x3fe00) /* bits [17:9] indicate ODD, [8:0] indicate EVEN */ 76 #define MIR0 0x80 77 #define MIR1 0x84 78 #define AMIR0 0x8c 79 #define AMIR1 0x90 80 81 /* Fatal error registers */ 82 #define FERR_FAT_FBD 0x98 /* also called as FERR_FAT_FB_DIMM at datasheet */ 83 #define FERR_FAT_FBDCHAN (3<<28) /* channel index where the highest-order error occurred */ 84 85 #define NERR_FAT_FBD 0x9c 86 #define FERR_NF_FBD 0xa0 /* also called as FERR_NFAT_FB_DIMM at datasheet */ 87 88 /* Non-fatal error register */ 89 #define NERR_NF_FBD 0xa4 90 91 /* Enable error mask */ 92 #define EMASK_FBD 0xa8 93 94 #define ERR0_FBD 0xac 95 #define ERR1_FBD 0xb0 96 #define ERR2_FBD 0xb4 97 #define MCERR_FBD 0xb8 98 99 /* No OFFSETS for Device 16 Function 2 */ 100 101 /* 102 * Device 21, 103 * Function 0: Memory Map Branch 0 104 * 105 * Device 22, 106 * Function 0: Memory Map Branch 1 107 */ 108 109 /* OFFSETS for Function 0 */ 110 #define AMBPRESENT_0 0x64 111 #define AMBPRESENT_1 0x66 112 #define MTR0 0x80 113 #define MTR1 0x82 114 #define MTR2 0x84 115 #define MTR3 0x86 116 117 /* OFFSETS for Function 1 */ 118 #define NRECFGLOG 0x74 119 #define RECFGLOG 0x78 120 #define NRECMEMA 0xbe 121 #define NRECMEMB 0xc0 122 #define NRECFB_DIMMA 0xc4 123 #define NRECFB_DIMMB 0xc8 124 #define NRECFB_DIMMC 0xcc 125 #define NRECFB_DIMMD 0xd0 126 #define NRECFB_DIMME 0xd4 127 #define NRECFB_DIMMF 0xd8 128 #define REDMEMA 0xdC 129 #define RECMEMA 0xf0 130 #define RECMEMB 0xf4 131 #define RECFB_DIMMA 0xf8 132 #define RECFB_DIMMB 0xec 133 #define RECFB_DIMMC 0xf0 134 #define RECFB_DIMMD 0xf4 135 #define RECFB_DIMME 0xf8 136 #define RECFB_DIMMF 0xfC 137 138 /* 139 * Error indicator bits and masks 140 * Error masks are according with Table 5-17 of i5400 datasheet 141 */ 142 143 enum error_mask { 144 EMASK_M1 = 1<<0, /* Memory Write error on non-redundant retry */ 145 EMASK_M2 = 1<<1, /* Memory or FB-DIMM configuration CRC read error */ 146 EMASK_M3 = 1<<2, /* Reserved */ 147 EMASK_M4 = 1<<3, /* Uncorrectable Data ECC on Replay */ 148 EMASK_M5 = 1<<4, /* Aliased Uncorrectable Non-Mirrored Demand Data ECC */ 149 EMASK_M6 = 1<<5, /* Unsupported on i5400 */ 150 EMASK_M7 = 1<<6, /* Aliased Uncorrectable Resilver- or Spare-Copy Data ECC */ 151 EMASK_M8 = 1<<7, /* Aliased Uncorrectable Patrol Data ECC */ 152 EMASK_M9 = 1<<8, /* Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC */ 153 EMASK_M10 = 1<<9, /* Unsupported on i5400 */ 154 EMASK_M11 = 1<<10, /* Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC */ 155 EMASK_M12 = 1<<11, /* Non-Aliased Uncorrectable Patrol Data ECC */ 156 EMASK_M13 = 1<<12, /* Memory Write error on first attempt */ 157 EMASK_M14 = 1<<13, /* FB-DIMM Configuration Write error on first attempt */ 158 EMASK_M15 = 1<<14, /* Memory or FB-DIMM configuration CRC read error */ 159 EMASK_M16 = 1<<15, /* Channel Failed-Over Occurred */ 160 EMASK_M17 = 1<<16, /* Correctable Non-Mirrored Demand Data ECC */ 161 EMASK_M18 = 1<<17, /* Unsupported on i5400 */ 162 EMASK_M19 = 1<<18, /* Correctable Resilver- or Spare-Copy Data ECC */ 163 EMASK_M20 = 1<<19, /* Correctable Patrol Data ECC */ 164 EMASK_M21 = 1<<20, /* FB-DIMM Northbound parity error on FB-DIMM Sync Status */ 165 EMASK_M22 = 1<<21, /* SPD protocol Error */ 166 EMASK_M23 = 1<<22, /* Non-Redundant Fast Reset Timeout */ 167 EMASK_M24 = 1<<23, /* Refresh error */ 168 EMASK_M25 = 1<<24, /* Memory Write error on redundant retry */ 169 EMASK_M26 = 1<<25, /* Redundant Fast Reset Timeout */ 170 EMASK_M27 = 1<<26, /* Correctable Counter Threshold Exceeded */ 171 EMASK_M28 = 1<<27, /* DIMM-Spare Copy Completed */ 172 EMASK_M29 = 1<<28, /* DIMM-Isolation Completed */ 173 }; 174 175 /* 176 * Names to translate bit error into something useful 177 */ 178 static const char *error_name[] = { 179 [0] = "Memory Write error on non-redundant retry", 180 [1] = "Memory or FB-DIMM configuration CRC read error", 181 /* Reserved */ 182 [3] = "Uncorrectable Data ECC on Replay", 183 [4] = "Aliased Uncorrectable Non-Mirrored Demand Data ECC", 184 /* M6 Unsupported on i5400 */ 185 [6] = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC", 186 [7] = "Aliased Uncorrectable Patrol Data ECC", 187 [8] = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC", 188 /* M10 Unsupported on i5400 */ 189 [10] = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC", 190 [11] = "Non-Aliased Uncorrectable Patrol Data ECC", 191 [12] = "Memory Write error on first attempt", 192 [13] = "FB-DIMM Configuration Write error on first attempt", 193 [14] = "Memory or FB-DIMM configuration CRC read error", 194 [15] = "Channel Failed-Over Occurred", 195 [16] = "Correctable Non-Mirrored Demand Data ECC", 196 /* M18 Unsupported on i5400 */ 197 [18] = "Correctable Resilver- or Spare-Copy Data ECC", 198 [19] = "Correctable Patrol Data ECC", 199 [20] = "FB-DIMM Northbound parity error on FB-DIMM Sync Status", 200 [21] = "SPD protocol Error", 201 [22] = "Non-Redundant Fast Reset Timeout", 202 [23] = "Refresh error", 203 [24] = "Memory Write error on redundant retry", 204 [25] = "Redundant Fast Reset Timeout", 205 [26] = "Correctable Counter Threshold Exceeded", 206 [27] = "DIMM-Spare Copy Completed", 207 [28] = "DIMM-Isolation Completed", 208 }; 209 210 /* Fatal errors */ 211 #define ERROR_FAT_MASK (EMASK_M1 | \ 212 EMASK_M2 | \ 213 EMASK_M23) 214 215 /* Correctable errors */ 216 #define ERROR_NF_CORRECTABLE (EMASK_M27 | \ 217 EMASK_M20 | \ 218 EMASK_M19 | \ 219 EMASK_M18 | \ 220 EMASK_M17 | \ 221 EMASK_M16) 222 #define ERROR_NF_DIMM_SPARE (EMASK_M29 | \ 223 EMASK_M28) 224 #define ERROR_NF_SPD_PROTOCOL (EMASK_M22) 225 #define ERROR_NF_NORTH_CRC (EMASK_M21) 226 227 /* Recoverable errors */ 228 #define ERROR_NF_RECOVERABLE (EMASK_M26 | \ 229 EMASK_M25 | \ 230 EMASK_M24 | \ 231 EMASK_M15 | \ 232 EMASK_M14 | \ 233 EMASK_M13 | \ 234 EMASK_M12 | \ 235 EMASK_M11 | \ 236 EMASK_M9 | \ 237 EMASK_M8 | \ 238 EMASK_M7 | \ 239 EMASK_M5) 240 241 /* uncorrectable errors */ 242 #define ERROR_NF_UNCORRECTABLE (EMASK_M4) 243 244 /* mask to all non-fatal errors */ 245 #define ERROR_NF_MASK (ERROR_NF_CORRECTABLE | \ 246 ERROR_NF_UNCORRECTABLE | \ 247 ERROR_NF_RECOVERABLE | \ 248 ERROR_NF_DIMM_SPARE | \ 249 ERROR_NF_SPD_PROTOCOL | \ 250 ERROR_NF_NORTH_CRC) 251 252 /* 253 * Define error masks for the several registers 254 */ 255 256 /* Enable all fatal and non fatal errors */ 257 #define ENABLE_EMASK_ALL (ERROR_FAT_MASK | ERROR_NF_MASK) 258 259 /* mask for fatal error registers */ 260 #define FERR_FAT_MASK ERROR_FAT_MASK 261 262 /* masks for non-fatal error register */ 263 static inline int to_nf_mask(unsigned int mask) 264 { 265 return (mask & EMASK_M29) | (mask >> 3); 266 }; 267 268 static inline int from_nf_ferr(unsigned int mask) 269 { 270 return (mask & EMASK_M29) | /* Bit 28 */ 271 (mask & ((1 << 28) - 1) << 3); /* Bits 0 to 27 */ 272 }; 273 274 #define FERR_NF_MASK to_nf_mask(ERROR_NF_MASK) 275 #define FERR_NF_CORRECTABLE to_nf_mask(ERROR_NF_CORRECTABLE) 276 #define FERR_NF_DIMM_SPARE to_nf_mask(ERROR_NF_DIMM_SPARE) 277 #define FERR_NF_SPD_PROTOCOL to_nf_mask(ERROR_NF_SPD_PROTOCOL) 278 #define FERR_NF_NORTH_CRC to_nf_mask(ERROR_NF_NORTH_CRC) 279 #define FERR_NF_RECOVERABLE to_nf_mask(ERROR_NF_RECOVERABLE) 280 #define FERR_NF_UNCORRECTABLE to_nf_mask(ERROR_NF_UNCORRECTABLE) 281 282 /* 283 * Defines to extract the various fields from the 284 * MTRx - Memory Technology Registers 285 */ 286 #define MTR_DIMMS_PRESENT(mtr) ((mtr) & (1 << 10)) 287 #define MTR_DIMMS_ETHROTTLE(mtr) ((mtr) & (1 << 9)) 288 #define MTR_DRAM_WIDTH(mtr) (((mtr) & (1 << 8)) ? 8 : 4) 289 #define MTR_DRAM_BANKS(mtr) (((mtr) & (1 << 6)) ? 8 : 4) 290 #define MTR_DRAM_BANKS_ADDR_BITS(mtr) ((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2) 291 #define MTR_DIMM_RANK(mtr) (((mtr) >> 5) & 0x1) 292 #define MTR_DIMM_RANK_ADDR_BITS(mtr) (MTR_DIMM_RANK(mtr) ? 2 : 1) 293 #define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3) 294 #define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13) 295 #define MTR_DIMM_COLS(mtr) ((mtr) & 0x3) 296 #define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10) 297 298 /* This applies to FERR_NF_FB-DIMM as well as FERR_FAT_FB-DIMM */ 299 static inline int extract_fbdchan_indx(u32 x) 300 { 301 return (x>>28) & 0x3; 302 } 303 304 /* Device name and register DID (Device ID) */ 305 struct i5400_dev_info { 306 const char *ctl_name; /* name for this device */ 307 u16 fsb_mapping_errors; /* DID for the branchmap,control */ 308 }; 309 310 /* Table of devices attributes supported by this driver */ 311 static const struct i5400_dev_info i5400_devs[] = { 312 { 313 .ctl_name = "I5400", 314 .fsb_mapping_errors = PCI_DEVICE_ID_INTEL_5400_ERR, 315 }, 316 }; 317 318 struct i5400_dimm_info { 319 int megabytes; /* size, 0 means not present */ 320 }; 321 322 /* driver private data structure */ 323 struct i5400_pvt { 324 struct pci_dev *system_address; /* 16.0 */ 325 struct pci_dev *branchmap_werrors; /* 16.1 */ 326 struct pci_dev *fsb_error_regs; /* 16.2 */ 327 struct pci_dev *branch_0; /* 21.0 */ 328 struct pci_dev *branch_1; /* 22.0 */ 329 330 u16 tolm; /* top of low memory */ 331 union { 332 u64 ambase; /* AMB BAR */ 333 struct { 334 u32 ambase_bottom; 335 u32 ambase_top; 336 } u __packed; 337 }; 338 339 u16 mir0, mir1; 340 341 u16 b0_mtr[DIMMS_PER_CHANNEL]; /* Memory Technlogy Reg */ 342 u16 b0_ambpresent0; /* Branch 0, Channel 0 */ 343 u16 b0_ambpresent1; /* Brnach 0, Channel 1 */ 344 345 u16 b1_mtr[DIMMS_PER_CHANNEL]; /* Memory Technlogy Reg */ 346 u16 b1_ambpresent0; /* Branch 1, Channel 8 */ 347 u16 b1_ambpresent1; /* Branch 1, Channel 1 */ 348 349 /* DIMM information matrix, allocating architecture maximums */ 350 struct i5400_dimm_info dimm_info[DIMMS_PER_CHANNEL][MAX_CHANNELS]; 351 352 /* Actual values for this controller */ 353 int maxch; /* Max channels */ 354 int maxdimmperch; /* Max DIMMs per channel */ 355 }; 356 357 /* I5400 MCH error information retrieved from Hardware */ 358 struct i5400_error_info { 359 /* These registers are always read from the MC */ 360 u32 ferr_fat_fbd; /* First Errors Fatal */ 361 u32 nerr_fat_fbd; /* Next Errors Fatal */ 362 u32 ferr_nf_fbd; /* First Errors Non-Fatal */ 363 u32 nerr_nf_fbd; /* Next Errors Non-Fatal */ 364 365 /* These registers are input ONLY if there was a Recoverable Error */ 366 u32 redmemb; /* Recoverable Mem Data Error log B */ 367 u16 recmema; /* Recoverable Mem Error log A */ 368 u32 recmemb; /* Recoverable Mem Error log B */ 369 370 /* These registers are input ONLY if there was a Non-Rec Error */ 371 u16 nrecmema; /* Non-Recoverable Mem log A */ 372 u32 nrecmemb; /* Non-Recoverable Mem log B */ 373 374 }; 375 376 /* note that nrec_rdwr changed from NRECMEMA to NRECMEMB between the 5000 and 377 5400 better to use an inline function than a macro in this case */ 378 static inline int nrec_bank(struct i5400_error_info *info) 379 { 380 return ((info->nrecmema) >> 12) & 0x7; 381 } 382 static inline int nrec_rank(struct i5400_error_info *info) 383 { 384 return ((info->nrecmema) >> 8) & 0xf; 385 } 386 static inline int nrec_buf_id(struct i5400_error_info *info) 387 { 388 return ((info->nrecmema)) & 0xff; 389 } 390 static inline int nrec_rdwr(struct i5400_error_info *info) 391 { 392 return (info->nrecmemb) >> 31; 393 } 394 /* This applies to both NREC and REC string so it can be used with nrec_rdwr 395 and rec_rdwr */ 396 static inline const char *rdwr_str(int rdwr) 397 { 398 return rdwr ? "Write" : "Read"; 399 } 400 static inline int nrec_cas(struct i5400_error_info *info) 401 { 402 return ((info->nrecmemb) >> 16) & 0x1fff; 403 } 404 static inline int nrec_ras(struct i5400_error_info *info) 405 { 406 return (info->nrecmemb) & 0xffff; 407 } 408 static inline int rec_bank(struct i5400_error_info *info) 409 { 410 return ((info->recmema) >> 12) & 0x7; 411 } 412 static inline int rec_rank(struct i5400_error_info *info) 413 { 414 return ((info->recmema) >> 8) & 0xf; 415 } 416 static inline int rec_rdwr(struct i5400_error_info *info) 417 { 418 return (info->recmemb) >> 31; 419 } 420 static inline int rec_cas(struct i5400_error_info *info) 421 { 422 return ((info->recmemb) >> 16) & 0x1fff; 423 } 424 static inline int rec_ras(struct i5400_error_info *info) 425 { 426 return (info->recmemb) & 0xffff; 427 } 428 429 static struct edac_pci_ctl_info *i5400_pci; 430 431 /* 432 * i5400_get_error_info Retrieve the hardware error information from 433 * the hardware and cache it in the 'info' 434 * structure 435 */ 436 static void i5400_get_error_info(struct mem_ctl_info *mci, 437 struct i5400_error_info *info) 438 { 439 struct i5400_pvt *pvt; 440 u32 value; 441 442 pvt = mci->pvt_info; 443 444 /* read in the 1st FATAL error register */ 445 pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value); 446 447 /* Mask only the bits that the doc says are valid 448 */ 449 value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK); 450 451 /* If there is an error, then read in the 452 NEXT FATAL error register and the Memory Error Log Register A 453 */ 454 if (value & FERR_FAT_MASK) { 455 info->ferr_fat_fbd = value; 456 457 /* harvest the various error data we need */ 458 pci_read_config_dword(pvt->branchmap_werrors, 459 NERR_FAT_FBD, &info->nerr_fat_fbd); 460 pci_read_config_word(pvt->branchmap_werrors, 461 NRECMEMA, &info->nrecmema); 462 pci_read_config_dword(pvt->branchmap_werrors, 463 NRECMEMB, &info->nrecmemb); 464 465 /* Clear the error bits, by writing them back */ 466 pci_write_config_dword(pvt->branchmap_werrors, 467 FERR_FAT_FBD, value); 468 } else { 469 info->ferr_fat_fbd = 0; 470 info->nerr_fat_fbd = 0; 471 info->nrecmema = 0; 472 info->nrecmemb = 0; 473 } 474 475 /* read in the 1st NON-FATAL error register */ 476 pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value); 477 478 /* If there is an error, then read in the 1st NON-FATAL error 479 * register as well */ 480 if (value & FERR_NF_MASK) { 481 info->ferr_nf_fbd = value; 482 483 /* harvest the various error data we need */ 484 pci_read_config_dword(pvt->branchmap_werrors, 485 NERR_NF_FBD, &info->nerr_nf_fbd); 486 pci_read_config_word(pvt->branchmap_werrors, 487 RECMEMA, &info->recmema); 488 pci_read_config_dword(pvt->branchmap_werrors, 489 RECMEMB, &info->recmemb); 490 pci_read_config_dword(pvt->branchmap_werrors, 491 REDMEMB, &info->redmemb); 492 493 /* Clear the error bits, by writing them back */ 494 pci_write_config_dword(pvt->branchmap_werrors, 495 FERR_NF_FBD, value); 496 } else { 497 info->ferr_nf_fbd = 0; 498 info->nerr_nf_fbd = 0; 499 info->recmema = 0; 500 info->recmemb = 0; 501 info->redmemb = 0; 502 } 503 } 504 505 /* 506 * i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci, 507 * struct i5400_error_info *info, 508 * int handle_errors); 509 * 510 * handle the Intel FATAL and unrecoverable errors, if any 511 */ 512 static void i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci, 513 struct i5400_error_info *info, 514 unsigned long allErrors) 515 { 516 char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80]; 517 int branch; 518 int channel; 519 int bank; 520 int buf_id; 521 int rank; 522 int rdwr; 523 int ras, cas; 524 int errnum; 525 char *type = NULL; 526 enum hw_event_mc_err_type tp_event = HW_EVENT_ERR_UNCORRECTED; 527 528 if (!allErrors) 529 return; /* if no error, return now */ 530 531 if (allErrors & ERROR_FAT_MASK) { 532 type = "FATAL"; 533 tp_event = HW_EVENT_ERR_FATAL; 534 } else if (allErrors & FERR_NF_UNCORRECTABLE) 535 type = "NON-FATAL uncorrected"; 536 else 537 type = "NON-FATAL recoverable"; 538 539 /* ONLY ONE of the possible error bits will be set, as per the docs */ 540 541 branch = extract_fbdchan_indx(info->ferr_fat_fbd); 542 channel = branch; 543 544 /* Use the NON-Recoverable macros to extract data */ 545 bank = nrec_bank(info); 546 rank = nrec_rank(info); 547 buf_id = nrec_buf_id(info); 548 rdwr = nrec_rdwr(info); 549 ras = nrec_ras(info); 550 cas = nrec_cas(info); 551 552 edac_dbg(0, "\t\t%s DIMM= %d Channels= %d,%d (Branch= %d DRAM Bank= %d Buffer ID = %d rdwr= %s ras= %d cas= %d)\n", 553 type, rank, channel, channel + 1, branch >> 1, bank, 554 buf_id, rdwr_str(rdwr), ras, cas); 555 556 /* Only 1 bit will be on */ 557 errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name)); 558 559 /* Form out message */ 560 snprintf(msg, sizeof(msg), 561 "Bank=%d Buffer ID = %d RAS=%d CAS=%d Err=0x%lx (%s)", 562 bank, buf_id, ras, cas, allErrors, error_name[errnum]); 563 564 edac_mc_handle_error(tp_event, mci, 1, 0, 0, 0, 565 branch >> 1, -1, rank, 566 rdwr ? "Write error" : "Read error", 567 msg); 568 } 569 570 /* 571 * i5400_process_fatal_error_info(struct mem_ctl_info *mci, 572 * struct i5400_error_info *info, 573 * int handle_errors); 574 * 575 * handle the Intel NON-FATAL errors, if any 576 */ 577 static void i5400_process_nonfatal_error_info(struct mem_ctl_info *mci, 578 struct i5400_error_info *info) 579 { 580 char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80]; 581 unsigned long allErrors; 582 int branch; 583 int channel; 584 int bank; 585 int rank; 586 int rdwr; 587 int ras, cas; 588 int errnum; 589 590 /* mask off the Error bits that are possible */ 591 allErrors = from_nf_ferr(info->ferr_nf_fbd & FERR_NF_MASK); 592 if (!allErrors) 593 return; /* if no error, return now */ 594 595 /* ONLY ONE of the possible error bits will be set, as per the docs */ 596 597 if (allErrors & (ERROR_NF_UNCORRECTABLE | ERROR_NF_RECOVERABLE)) { 598 i5400_proccess_non_recoverable_info(mci, info, allErrors); 599 return; 600 } 601 602 /* Correctable errors */ 603 if (allErrors & ERROR_NF_CORRECTABLE) { 604 edac_dbg(0, "\tCorrected bits= 0x%lx\n", allErrors); 605 606 branch = extract_fbdchan_indx(info->ferr_nf_fbd); 607 608 channel = 0; 609 if (REC_ECC_LOCATOR_ODD(info->redmemb)) 610 channel = 1; 611 612 /* Convert channel to be based from zero, instead of 613 * from branch base of 0 */ 614 channel += branch; 615 616 bank = rec_bank(info); 617 rank = rec_rank(info); 618 rdwr = rec_rdwr(info); 619 ras = rec_ras(info); 620 cas = rec_cas(info); 621 622 /* Only 1 bit will be on */ 623 errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name)); 624 625 edac_dbg(0, "\t\tDIMM= %d Channel= %d (Branch %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n", 626 rank, channel, branch >> 1, bank, 627 rdwr_str(rdwr), ras, cas); 628 629 /* Form out message */ 630 snprintf(msg, sizeof(msg), 631 "Corrected error (Branch=%d DRAM-Bank=%d RDWR=%s " 632 "RAS=%d CAS=%d, CE Err=0x%lx (%s))", 633 branch >> 1, bank, rdwr_str(rdwr), ras, cas, 634 allErrors, error_name[errnum]); 635 636 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0, 637 branch >> 1, channel % 2, rank, 638 rdwr ? "Write error" : "Read error", 639 msg); 640 641 return; 642 } 643 644 /* Miscellaneous errors */ 645 errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name)); 646 647 branch = extract_fbdchan_indx(info->ferr_nf_fbd); 648 649 i5400_mc_printk(mci, KERN_EMERG, 650 "Non-Fatal misc error (Branch=%d Err=%#lx (%s))", 651 branch >> 1, allErrors, error_name[errnum]); 652 } 653 654 /* 655 * i5400_process_error_info Process the error info that is 656 * in the 'info' structure, previously retrieved from hardware 657 */ 658 static void i5400_process_error_info(struct mem_ctl_info *mci, 659 struct i5400_error_info *info) 660 { u32 allErrors; 661 662 /* First handle any fatal errors that occurred */ 663 allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK); 664 i5400_proccess_non_recoverable_info(mci, info, allErrors); 665 666 /* now handle any non-fatal errors that occurred */ 667 i5400_process_nonfatal_error_info(mci, info); 668 } 669 670 /* 671 * i5400_clear_error Retrieve any error from the hardware 672 * but do NOT process that error. 673 * Used for 'clearing' out of previous errors 674 * Called by the Core module. 675 */ 676 static void i5400_clear_error(struct mem_ctl_info *mci) 677 { 678 struct i5400_error_info info; 679 680 i5400_get_error_info(mci, &info); 681 } 682 683 /* 684 * i5400_check_error Retrieve and process errors reported by the 685 * hardware. Called by the Core module. 686 */ 687 static void i5400_check_error(struct mem_ctl_info *mci) 688 { 689 struct i5400_error_info info; 690 691 i5400_get_error_info(mci, &info); 692 i5400_process_error_info(mci, &info); 693 } 694 695 /* 696 * i5400_put_devices 'put' all the devices that we have 697 * reserved via 'get' 698 */ 699 static void i5400_put_devices(struct mem_ctl_info *mci) 700 { 701 struct i5400_pvt *pvt; 702 703 pvt = mci->pvt_info; 704 705 /* Decrement usage count for devices */ 706 pci_dev_put(pvt->branch_1); 707 pci_dev_put(pvt->branch_0); 708 pci_dev_put(pvt->fsb_error_regs); 709 pci_dev_put(pvt->branchmap_werrors); 710 } 711 712 /* 713 * i5400_get_devices Find and perform 'get' operation on the MCH's 714 * device/functions we want to reference for this driver 715 * 716 * Need to 'get' device 16 func 1 and func 2 717 */ 718 static int i5400_get_devices(struct mem_ctl_info *mci, int dev_idx) 719 { 720 struct i5400_pvt *pvt; 721 struct pci_dev *pdev; 722 723 pvt = mci->pvt_info; 724 pvt->branchmap_werrors = NULL; 725 pvt->fsb_error_regs = NULL; 726 pvt->branch_0 = NULL; 727 pvt->branch_1 = NULL; 728 729 /* Attempt to 'get' the MCH register we want */ 730 pdev = NULL; 731 while (1) { 732 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 733 PCI_DEVICE_ID_INTEL_5400_ERR, pdev); 734 if (!pdev) { 735 /* End of list, leave */ 736 i5400_printk(KERN_ERR, 737 "'system address,Process Bus' " 738 "device not found:" 739 "vendor 0x%x device 0x%x ERR func 1 " 740 "(broken BIOS?)\n", 741 PCI_VENDOR_ID_INTEL, 742 PCI_DEVICE_ID_INTEL_5400_ERR); 743 return -ENODEV; 744 } 745 746 /* Store device 16 func 1 */ 747 if (PCI_FUNC(pdev->devfn) == 1) 748 break; 749 } 750 pvt->branchmap_werrors = pdev; 751 752 pdev = NULL; 753 while (1) { 754 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 755 PCI_DEVICE_ID_INTEL_5400_ERR, pdev); 756 if (!pdev) { 757 /* End of list, leave */ 758 i5400_printk(KERN_ERR, 759 "'system address,Process Bus' " 760 "device not found:" 761 "vendor 0x%x device 0x%x ERR func 2 " 762 "(broken BIOS?)\n", 763 PCI_VENDOR_ID_INTEL, 764 PCI_DEVICE_ID_INTEL_5400_ERR); 765 766 pci_dev_put(pvt->branchmap_werrors); 767 return -ENODEV; 768 } 769 770 /* Store device 16 func 2 */ 771 if (PCI_FUNC(pdev->devfn) == 2) 772 break; 773 } 774 pvt->fsb_error_regs = pdev; 775 776 edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s %x:%x\n", 777 pci_name(pvt->system_address), 778 pvt->system_address->vendor, pvt->system_address->device); 779 edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s %x:%x\n", 780 pci_name(pvt->branchmap_werrors), 781 pvt->branchmap_werrors->vendor, 782 pvt->branchmap_werrors->device); 783 edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s %x:%x\n", 784 pci_name(pvt->fsb_error_regs), 785 pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device); 786 787 pvt->branch_0 = pci_get_device(PCI_VENDOR_ID_INTEL, 788 PCI_DEVICE_ID_INTEL_5400_FBD0, NULL); 789 if (!pvt->branch_0) { 790 i5400_printk(KERN_ERR, 791 "MC: 'BRANCH 0' device not found:" 792 "vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n", 793 PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_FBD0); 794 795 pci_dev_put(pvt->fsb_error_regs); 796 pci_dev_put(pvt->branchmap_werrors); 797 return -ENODEV; 798 } 799 800 /* If this device claims to have more than 2 channels then 801 * fetch Branch 1's information 802 */ 803 if (pvt->maxch < CHANNELS_PER_BRANCH) 804 return 0; 805 806 pvt->branch_1 = pci_get_device(PCI_VENDOR_ID_INTEL, 807 PCI_DEVICE_ID_INTEL_5400_FBD1, NULL); 808 if (!pvt->branch_1) { 809 i5400_printk(KERN_ERR, 810 "MC: 'BRANCH 1' device not found:" 811 "vendor 0x%x device 0x%x Func 0 " 812 "(broken BIOS?)\n", 813 PCI_VENDOR_ID_INTEL, 814 PCI_DEVICE_ID_INTEL_5400_FBD1); 815 816 pci_dev_put(pvt->branch_0); 817 pci_dev_put(pvt->fsb_error_regs); 818 pci_dev_put(pvt->branchmap_werrors); 819 return -ENODEV; 820 } 821 822 return 0; 823 } 824 825 /* 826 * determine_amb_present 827 * 828 * the information is contained in DIMMS_PER_CHANNEL different 829 * registers determining which of the DIMMS_PER_CHANNEL requires 830 * knowing which channel is in question 831 * 832 * 2 branches, each with 2 channels 833 * b0_ambpresent0 for channel '0' 834 * b0_ambpresent1 for channel '1' 835 * b1_ambpresent0 for channel '2' 836 * b1_ambpresent1 for channel '3' 837 */ 838 static int determine_amb_present_reg(struct i5400_pvt *pvt, int channel) 839 { 840 int amb_present; 841 842 if (channel < CHANNELS_PER_BRANCH) { 843 if (channel & 0x1) 844 amb_present = pvt->b0_ambpresent1; 845 else 846 amb_present = pvt->b0_ambpresent0; 847 } else { 848 if (channel & 0x1) 849 amb_present = pvt->b1_ambpresent1; 850 else 851 amb_present = pvt->b1_ambpresent0; 852 } 853 854 return amb_present; 855 } 856 857 /* 858 * determine_mtr(pvt, dimm, channel) 859 * 860 * return the proper MTR register as determine by the dimm and desired channel 861 */ 862 static int determine_mtr(struct i5400_pvt *pvt, int dimm, int channel) 863 { 864 int mtr; 865 int n; 866 867 /* There is one MTR for each slot pair of FB-DIMMs, 868 Each slot pair may be at branch 0 or branch 1. 869 */ 870 n = dimm; 871 872 if (n >= DIMMS_PER_CHANNEL) { 873 edac_dbg(0, "ERROR: trying to access an invalid dimm: %d\n", 874 dimm); 875 return 0; 876 } 877 878 if (channel < CHANNELS_PER_BRANCH) 879 mtr = pvt->b0_mtr[n]; 880 else 881 mtr = pvt->b1_mtr[n]; 882 883 return mtr; 884 } 885 886 /* 887 */ 888 static void decode_mtr(int slot_row, u16 mtr) 889 { 890 int ans; 891 892 ans = MTR_DIMMS_PRESENT(mtr); 893 894 edac_dbg(2, "\tMTR%d=0x%x: DIMMs are %sPresent\n", 895 slot_row, mtr, ans ? "" : "NOT "); 896 if (!ans) 897 return; 898 899 edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr)); 900 901 edac_dbg(2, "\t\tELECTRICAL THROTTLING is %s\n", 902 MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled"); 903 904 edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr)); 905 edac_dbg(2, "\t\tNUMRANK: %s\n", 906 MTR_DIMM_RANK(mtr) ? "double" : "single"); 907 edac_dbg(2, "\t\tNUMROW: %s\n", 908 MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" : 909 MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" : 910 MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" : 911 "65,536 - 16 rows"); 912 edac_dbg(2, "\t\tNUMCOL: %s\n", 913 MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" : 914 MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" : 915 MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" : 916 "reserved"); 917 } 918 919 static void handle_channel(struct i5400_pvt *pvt, int dimm, int channel, 920 struct i5400_dimm_info *dinfo) 921 { 922 int mtr; 923 int amb_present_reg; 924 int addrBits; 925 926 mtr = determine_mtr(pvt, dimm, channel); 927 if (MTR_DIMMS_PRESENT(mtr)) { 928 amb_present_reg = determine_amb_present_reg(pvt, channel); 929 930 /* Determine if there is a DIMM present in this DIMM slot */ 931 if (amb_present_reg & (1 << dimm)) { 932 /* Start with the number of bits for a Bank 933 * on the DRAM */ 934 addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr); 935 /* Add thenumber of ROW bits */ 936 addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr); 937 /* add the number of COLUMN bits */ 938 addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr); 939 /* add the number of RANK bits */ 940 addrBits += MTR_DIMM_RANK(mtr); 941 942 addrBits += 6; /* add 64 bits per DIMM */ 943 addrBits -= 20; /* divide by 2^^20 */ 944 addrBits -= 3; /* 8 bits per bytes */ 945 946 dinfo->megabytes = 1 << addrBits; 947 } 948 } 949 } 950 951 /* 952 * calculate_dimm_size 953 * 954 * also will output a DIMM matrix map, if debug is enabled, for viewing 955 * how the DIMMs are populated 956 */ 957 static void calculate_dimm_size(struct i5400_pvt *pvt) 958 { 959 struct i5400_dimm_info *dinfo; 960 int dimm, max_dimms; 961 char *p, *mem_buffer; 962 int space, n; 963 int channel, branch; 964 965 /* ================= Generate some debug output ================= */ 966 space = PAGE_SIZE; 967 mem_buffer = p = kmalloc(space, GFP_KERNEL); 968 if (p == NULL) { 969 i5400_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n", 970 __FILE__, __func__); 971 return; 972 } 973 974 /* Scan all the actual DIMMS 975 * and calculate the information for each DIMM 976 * Start with the highest dimm first, to display it first 977 * and work toward the 0th dimm 978 */ 979 max_dimms = pvt->maxdimmperch; 980 for (dimm = max_dimms - 1; dimm >= 0; dimm--) { 981 982 /* on an odd dimm, first output a 'boundary' marker, 983 * then reset the message buffer */ 984 if (dimm & 0x1) { 985 n = snprintf(p, space, "---------------------------" 986 "-------------------------------"); 987 p += n; 988 space -= n; 989 edac_dbg(2, "%s\n", mem_buffer); 990 p = mem_buffer; 991 space = PAGE_SIZE; 992 } 993 n = snprintf(p, space, "dimm %2d ", dimm); 994 p += n; 995 space -= n; 996 997 for (channel = 0; channel < pvt->maxch; channel++) { 998 dinfo = &pvt->dimm_info[dimm][channel]; 999 handle_channel(pvt, dimm, channel, dinfo); 1000 n = snprintf(p, space, "%4d MB | ", dinfo->megabytes); 1001 p += n; 1002 space -= n; 1003 } 1004 edac_dbg(2, "%s\n", mem_buffer); 1005 p = mem_buffer; 1006 space = PAGE_SIZE; 1007 } 1008 1009 /* Output the last bottom 'boundary' marker */ 1010 n = snprintf(p, space, "---------------------------" 1011 "-------------------------------"); 1012 p += n; 1013 space -= n; 1014 edac_dbg(2, "%s\n", mem_buffer); 1015 p = mem_buffer; 1016 space = PAGE_SIZE; 1017 1018 /* now output the 'channel' labels */ 1019 n = snprintf(p, space, " "); 1020 p += n; 1021 space -= n; 1022 for (channel = 0; channel < pvt->maxch; channel++) { 1023 n = snprintf(p, space, "channel %d | ", channel); 1024 p += n; 1025 space -= n; 1026 } 1027 1028 space -= n; 1029 edac_dbg(2, "%s\n", mem_buffer); 1030 p = mem_buffer; 1031 space = PAGE_SIZE; 1032 1033 n = snprintf(p, space, " "); 1034 p += n; 1035 for (branch = 0; branch < MAX_BRANCHES; branch++) { 1036 n = snprintf(p, space, " branch %d | ", branch); 1037 p += n; 1038 space -= n; 1039 } 1040 1041 /* output the last message and free buffer */ 1042 edac_dbg(2, "%s\n", mem_buffer); 1043 kfree(mem_buffer); 1044 } 1045 1046 /* 1047 * i5400_get_mc_regs read in the necessary registers and 1048 * cache locally 1049 * 1050 * Fills in the private data members 1051 */ 1052 static void i5400_get_mc_regs(struct mem_ctl_info *mci) 1053 { 1054 struct i5400_pvt *pvt; 1055 u32 actual_tolm; 1056 u16 limit; 1057 int slot_row; 1058 int way0, way1; 1059 1060 pvt = mci->pvt_info; 1061 1062 pci_read_config_dword(pvt->system_address, AMBASE, 1063 &pvt->u.ambase_bottom); 1064 pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32), 1065 &pvt->u.ambase_top); 1066 1067 edac_dbg(2, "AMBASE= 0x%lx MAXCH= %d MAX-DIMM-Per-CH= %d\n", 1068 (long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch); 1069 1070 /* Get the Branch Map regs */ 1071 pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm); 1072 pvt->tolm >>= 12; 1073 edac_dbg(2, "\nTOLM (number of 256M regions) =%u (0x%x)\n", 1074 pvt->tolm, pvt->tolm); 1075 1076 actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28)); 1077 edac_dbg(2, "Actual TOLM byte addr=%u.%03u GB (0x%x)\n", 1078 actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28); 1079 1080 pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0); 1081 pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1); 1082 1083 /* Get the MIR[0-1] regs */ 1084 limit = (pvt->mir0 >> 4) & 0x0fff; 1085 way0 = pvt->mir0 & 0x1; 1086 way1 = pvt->mir0 & 0x2; 1087 edac_dbg(2, "MIR0: limit= 0x%x WAY1= %u WAY0= %x\n", 1088 limit, way1, way0); 1089 limit = (pvt->mir1 >> 4) & 0xfff; 1090 way0 = pvt->mir1 & 0x1; 1091 way1 = pvt->mir1 & 0x2; 1092 edac_dbg(2, "MIR1: limit= 0x%x WAY1= %u WAY0= %x\n", 1093 limit, way1, way0); 1094 1095 /* Get the set of MTR[0-3] regs by each branch */ 1096 for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++) { 1097 int where = MTR0 + (slot_row * sizeof(u16)); 1098 1099 /* Branch 0 set of MTR registers */ 1100 pci_read_config_word(pvt->branch_0, where, 1101 &pvt->b0_mtr[slot_row]); 1102 1103 edac_dbg(2, "MTR%d where=0x%x B0 value=0x%x\n", 1104 slot_row, where, pvt->b0_mtr[slot_row]); 1105 1106 if (pvt->maxch < CHANNELS_PER_BRANCH) { 1107 pvt->b1_mtr[slot_row] = 0; 1108 continue; 1109 } 1110 1111 /* Branch 1 set of MTR registers */ 1112 pci_read_config_word(pvt->branch_1, where, 1113 &pvt->b1_mtr[slot_row]); 1114 edac_dbg(2, "MTR%d where=0x%x B1 value=0x%x\n", 1115 slot_row, where, pvt->b1_mtr[slot_row]); 1116 } 1117 1118 /* Read and dump branch 0's MTRs */ 1119 edac_dbg(2, "Memory Technology Registers:\n"); 1120 edac_dbg(2, " Branch 0:\n"); 1121 for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++) 1122 decode_mtr(slot_row, pvt->b0_mtr[slot_row]); 1123 1124 pci_read_config_word(pvt->branch_0, AMBPRESENT_0, 1125 &pvt->b0_ambpresent0); 1126 edac_dbg(2, "\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0); 1127 pci_read_config_word(pvt->branch_0, AMBPRESENT_1, 1128 &pvt->b0_ambpresent1); 1129 edac_dbg(2, "\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1); 1130 1131 /* Only if we have 2 branchs (4 channels) */ 1132 if (pvt->maxch < CHANNELS_PER_BRANCH) { 1133 pvt->b1_ambpresent0 = 0; 1134 pvt->b1_ambpresent1 = 0; 1135 } else { 1136 /* Read and dump branch 1's MTRs */ 1137 edac_dbg(2, " Branch 1:\n"); 1138 for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++) 1139 decode_mtr(slot_row, pvt->b1_mtr[slot_row]); 1140 1141 pci_read_config_word(pvt->branch_1, AMBPRESENT_0, 1142 &pvt->b1_ambpresent0); 1143 edac_dbg(2, "\t\tAMB-Branch 1-present0 0x%x:\n", 1144 pvt->b1_ambpresent0); 1145 pci_read_config_word(pvt->branch_1, AMBPRESENT_1, 1146 &pvt->b1_ambpresent1); 1147 edac_dbg(2, "\t\tAMB-Branch 1-present1 0x%x:\n", 1148 pvt->b1_ambpresent1); 1149 } 1150 1151 /* Go and determine the size of each DIMM and place in an 1152 * orderly matrix */ 1153 calculate_dimm_size(pvt); 1154 } 1155 1156 /* 1157 * i5400_init_dimms Initialize the 'dimms' table within 1158 * the mci control structure with the 1159 * addressing of memory. 1160 * 1161 * return: 1162 * 0 success 1163 * 1 no actual memory found on this MC 1164 */ 1165 static int i5400_init_dimms(struct mem_ctl_info *mci) 1166 { 1167 struct i5400_pvt *pvt; 1168 struct dimm_info *dimm; 1169 int ndimms; 1170 int mtr; 1171 int size_mb; 1172 int channel, slot; 1173 1174 pvt = mci->pvt_info; 1175 1176 ndimms = 0; 1177 1178 /* 1179 * FIXME: remove pvt->dimm_info[slot][channel] and use the 3 1180 * layers here. 1181 */ 1182 for (channel = 0; channel < mci->layers[0].size * mci->layers[1].size; 1183 channel++) { 1184 for (slot = 0; slot < mci->layers[2].size; slot++) { 1185 mtr = determine_mtr(pvt, slot, channel); 1186 1187 /* if no DIMMS on this slot, continue */ 1188 if (!MTR_DIMMS_PRESENT(mtr)) 1189 continue; 1190 1191 dimm = edac_get_dimm(mci, channel / 2, channel % 2, slot); 1192 1193 size_mb = pvt->dimm_info[slot][channel].megabytes; 1194 1195 edac_dbg(2, "dimm (branch %d channel %d slot %d): %d.%03d GB\n", 1196 channel / 2, channel % 2, slot, 1197 size_mb / 1000, size_mb % 1000); 1198 1199 dimm->nr_pages = size_mb << 8; 1200 dimm->grain = 8; 1201 dimm->dtype = MTR_DRAM_WIDTH(mtr) == 8 ? 1202 DEV_X8 : DEV_X4; 1203 dimm->mtype = MEM_FB_DDR2; 1204 /* 1205 * The eccc mechanism is SDDC (aka SECC), with 1206 * is similar to Chipkill. 1207 */ 1208 dimm->edac_mode = MTR_DRAM_WIDTH(mtr) == 8 ? 1209 EDAC_S8ECD8ED : EDAC_S4ECD4ED; 1210 ndimms++; 1211 } 1212 } 1213 1214 /* 1215 * When just one memory is provided, it should be at location (0,0,0). 1216 * With such single-DIMM mode, the SDCC algorithm degrades to SECDEC+. 1217 */ 1218 if (ndimms == 1) 1219 mci->dimms[0]->edac_mode = EDAC_SECDED; 1220 1221 return (ndimms == 0); 1222 } 1223 1224 /* 1225 * i5400_enable_error_reporting 1226 * Turn on the memory reporting features of the hardware 1227 */ 1228 static void i5400_enable_error_reporting(struct mem_ctl_info *mci) 1229 { 1230 struct i5400_pvt *pvt; 1231 u32 fbd_error_mask; 1232 1233 pvt = mci->pvt_info; 1234 1235 /* Read the FBD Error Mask Register */ 1236 pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD, 1237 &fbd_error_mask); 1238 1239 /* Enable with a '0' */ 1240 fbd_error_mask &= ~(ENABLE_EMASK_ALL); 1241 1242 pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD, 1243 fbd_error_mask); 1244 } 1245 1246 /* 1247 * i5400_probe1 Probe for ONE instance of device to see if it is 1248 * present. 1249 * return: 1250 * 0 for FOUND a device 1251 * < 0 for error code 1252 */ 1253 static int i5400_probe1(struct pci_dev *pdev, int dev_idx) 1254 { 1255 struct mem_ctl_info *mci; 1256 struct i5400_pvt *pvt; 1257 struct edac_mc_layer layers[3]; 1258 1259 if (dev_idx >= ARRAY_SIZE(i5400_devs)) 1260 return -EINVAL; 1261 1262 edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n", 1263 pdev->bus->number, 1264 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); 1265 1266 /* We only are looking for func 0 of the set */ 1267 if (PCI_FUNC(pdev->devfn) != 0) 1268 return -ENODEV; 1269 1270 /* 1271 * allocate a new MC control structure 1272 * 1273 * This drivers uses the DIMM slot as "csrow" and the rest as "channel". 1274 */ 1275 layers[0].type = EDAC_MC_LAYER_BRANCH; 1276 layers[0].size = MAX_BRANCHES; 1277 layers[0].is_virt_csrow = false; 1278 layers[1].type = EDAC_MC_LAYER_CHANNEL; 1279 layers[1].size = CHANNELS_PER_BRANCH; 1280 layers[1].is_virt_csrow = false; 1281 layers[2].type = EDAC_MC_LAYER_SLOT; 1282 layers[2].size = DIMMS_PER_CHANNEL; 1283 layers[2].is_virt_csrow = true; 1284 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt)); 1285 if (mci == NULL) 1286 return -ENOMEM; 1287 1288 edac_dbg(0, "MC: mci = %p\n", mci); 1289 1290 mci->pdev = &pdev->dev; /* record ptr to the generic device */ 1291 1292 pvt = mci->pvt_info; 1293 pvt->system_address = pdev; /* Record this device in our private */ 1294 pvt->maxch = MAX_CHANNELS; 1295 pvt->maxdimmperch = DIMMS_PER_CHANNEL; 1296 1297 /* 'get' the pci devices we want to reserve for our use */ 1298 if (i5400_get_devices(mci, dev_idx)) 1299 goto fail0; 1300 1301 /* Time to get serious */ 1302 i5400_get_mc_regs(mci); /* retrieve the hardware registers */ 1303 1304 mci->mc_idx = 0; 1305 mci->mtype_cap = MEM_FLAG_FB_DDR2; 1306 mci->edac_ctl_cap = EDAC_FLAG_NONE; 1307 mci->edac_cap = EDAC_FLAG_NONE; 1308 mci->mod_name = "i5400_edac.c"; 1309 mci->ctl_name = i5400_devs[dev_idx].ctl_name; 1310 mci->dev_name = pci_name(pdev); 1311 mci->ctl_page_to_phys = NULL; 1312 1313 /* Set the function pointer to an actual operation function */ 1314 mci->edac_check = i5400_check_error; 1315 1316 /* initialize the MC control structure 'dimms' table 1317 * with the mapping and control information */ 1318 if (i5400_init_dimms(mci)) { 1319 edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i5400_init_dimms() returned nonzero value\n"); 1320 mci->edac_cap = EDAC_FLAG_NONE; /* no dimms found */ 1321 } else { 1322 edac_dbg(1, "MC: Enable error reporting now\n"); 1323 i5400_enable_error_reporting(mci); 1324 } 1325 1326 /* add this new MC control structure to EDAC's list of MCs */ 1327 if (edac_mc_add_mc(mci)) { 1328 edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); 1329 /* FIXME: perhaps some code should go here that disables error 1330 * reporting if we just enabled it 1331 */ 1332 goto fail1; 1333 } 1334 1335 i5400_clear_error(mci); 1336 1337 /* allocating generic PCI control info */ 1338 i5400_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR); 1339 if (!i5400_pci) { 1340 printk(KERN_WARNING 1341 "%s(): Unable to create PCI control\n", 1342 __func__); 1343 printk(KERN_WARNING 1344 "%s(): PCI error report via EDAC not setup\n", 1345 __func__); 1346 } 1347 1348 return 0; 1349 1350 /* Error exit unwinding stack */ 1351 fail1: 1352 1353 i5400_put_devices(mci); 1354 1355 fail0: 1356 edac_mc_free(mci); 1357 return -ENODEV; 1358 } 1359 1360 /* 1361 * i5400_init_one constructor for one instance of device 1362 * 1363 * returns: 1364 * negative on error 1365 * count (>= 0) 1366 */ 1367 static int i5400_init_one(struct pci_dev *pdev, const struct pci_device_id *id) 1368 { 1369 int rc; 1370 1371 edac_dbg(0, "MC:\n"); 1372 1373 /* wake up device */ 1374 rc = pci_enable_device(pdev); 1375 if (rc) 1376 return rc; 1377 1378 /* now probe and enable the device */ 1379 return i5400_probe1(pdev, id->driver_data); 1380 } 1381 1382 /* 1383 * i5400_remove_one destructor for one instance of device 1384 * 1385 */ 1386 static void i5400_remove_one(struct pci_dev *pdev) 1387 { 1388 struct mem_ctl_info *mci; 1389 1390 edac_dbg(0, "\n"); 1391 1392 if (i5400_pci) 1393 edac_pci_release_generic_ctl(i5400_pci); 1394 1395 mci = edac_mc_del_mc(&pdev->dev); 1396 if (!mci) 1397 return; 1398 1399 /* retrieve references to resources, and free those resources */ 1400 i5400_put_devices(mci); 1401 1402 pci_disable_device(pdev); 1403 1404 edac_mc_free(mci); 1405 } 1406 1407 /* 1408 * pci_device_id table for which devices we are looking for 1409 * 1410 * The "E500P" device is the first device supported. 1411 */ 1412 static const struct pci_device_id i5400_pci_tbl[] = { 1413 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_ERR)}, 1414 {0,} /* 0 terminated list. */ 1415 }; 1416 1417 MODULE_DEVICE_TABLE(pci, i5400_pci_tbl); 1418 1419 /* 1420 * i5400_driver pci_driver structure for this module 1421 * 1422 */ 1423 static struct pci_driver i5400_driver = { 1424 .name = "i5400_edac", 1425 .probe = i5400_init_one, 1426 .remove = i5400_remove_one, 1427 .id_table = i5400_pci_tbl, 1428 }; 1429 1430 /* 1431 * i5400_init Module entry function 1432 * Try to initialize this module for its devices 1433 */ 1434 static int __init i5400_init(void) 1435 { 1436 int pci_rc; 1437 1438 edac_dbg(2, "MC:\n"); 1439 1440 /* Ensure that the OPSTATE is set correctly for POLL or NMI */ 1441 opstate_init(); 1442 1443 pci_rc = pci_register_driver(&i5400_driver); 1444 1445 return (pci_rc < 0) ? pci_rc : 0; 1446 } 1447 1448 /* 1449 * i5400_exit() Module exit function 1450 * Unregister the driver 1451 */ 1452 static void __exit i5400_exit(void) 1453 { 1454 edac_dbg(2, "MC:\n"); 1455 pci_unregister_driver(&i5400_driver); 1456 } 1457 1458 module_init(i5400_init); 1459 module_exit(i5400_exit); 1460 1461 MODULE_LICENSE("GPL"); 1462 MODULE_AUTHOR("Ben Woodard <woodard@redhat.com>"); 1463 MODULE_AUTHOR("Mauro Carvalho Chehab"); 1464 MODULE_AUTHOR("Red Hat Inc. (https://www.redhat.com)"); 1465 MODULE_DESCRIPTION("MC Driver for Intel I5400 memory controllers - " 1466 I5400_REVISION); 1467 1468 module_param(edac_op_state, int, 0444); 1469 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); 1470