xref: /linux/drivers/edac/i5000_edac.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  * Intel 5000(P/V/X) class Memory Controllers kernel module
3  *
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Douglas Thompson Linux Networx (http://lnxi.com)
8  *	norsk5@xmission.com
9  *
10  * This module is based on the following document:
11  *
12  * Intel 5000X Chipset Memory Controller Hub (MCH) - Datasheet
13  * 	http://developer.intel.com/design/chipsets/datashts/313070.htm
14  *
15  */
16 
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/pci_ids.h>
21 #include <linux/slab.h>
22 #include <linux/edac.h>
23 #include <asm/mmzone.h>
24 
25 #include "edac_core.h"
26 
27 /*
28  * Alter this version for the I5000 module when modifications are made
29  */
30 #define I5000_REVISION    " Ver: 2.0.12"
31 #define EDAC_MOD_STR      "i5000_edac"
32 
33 #define i5000_printk(level, fmt, arg...) \
34         edac_printk(level, "i5000", fmt, ##arg)
35 
36 #define i5000_mc_printk(mci, level, fmt, arg...) \
37         edac_mc_chipset_printk(mci, level, "i5000", fmt, ##arg)
38 
39 #ifndef PCI_DEVICE_ID_INTEL_FBD_0
40 #define PCI_DEVICE_ID_INTEL_FBD_0	0x25F5
41 #endif
42 #ifndef PCI_DEVICE_ID_INTEL_FBD_1
43 #define PCI_DEVICE_ID_INTEL_FBD_1	0x25F6
44 #endif
45 
46 /* Device 16,
47  * Function 0: System Address
48  * Function 1: Memory Branch Map, Control, Errors Register
49  * Function 2: FSB Error Registers
50  *
51  * All 3 functions of Device 16 (0,1,2) share the SAME DID
52  */
53 #define	PCI_DEVICE_ID_INTEL_I5000_DEV16	0x25F0
54 
55 /* OFFSETS for Function 0 */
56 
57 /* OFFSETS for Function 1 */
58 #define		AMBASE			0x48
59 #define		MAXCH			0x56
60 #define		MAXDIMMPERCH		0x57
61 #define		TOLM			0x6C
62 #define		REDMEMB			0x7C
63 #define			RED_ECC_LOCATOR(x)	((x) & 0x3FFFF)
64 #define			REC_ECC_LOCATOR_EVEN(x)	((x) & 0x001FF)
65 #define			REC_ECC_LOCATOR_ODD(x)	((x) & 0x3FE00)
66 #define		MIR0			0x80
67 #define		MIR1			0x84
68 #define		MIR2			0x88
69 #define		AMIR0			0x8C
70 #define		AMIR1			0x90
71 #define		AMIR2			0x94
72 
73 #define		FERR_FAT_FBD		0x98
74 #define		NERR_FAT_FBD		0x9C
75 #define			EXTRACT_FBDCHAN_INDX(x)	(((x)>>28) & 0x3)
76 #define			FERR_FAT_FBDCHAN 0x30000000
77 #define			FERR_FAT_M3ERR	0x00000004
78 #define			FERR_FAT_M2ERR	0x00000002
79 #define			FERR_FAT_M1ERR	0x00000001
80 #define			FERR_FAT_MASK	(FERR_FAT_M1ERR | \
81 						FERR_FAT_M2ERR | \
82 						FERR_FAT_M3ERR)
83 
84 #define		FERR_NF_FBD		0xA0
85 
86 /* Thermal and SPD or BFD errors */
87 #define			FERR_NF_M28ERR	0x01000000
88 #define			FERR_NF_M27ERR	0x00800000
89 #define			FERR_NF_M26ERR	0x00400000
90 #define			FERR_NF_M25ERR	0x00200000
91 #define			FERR_NF_M24ERR	0x00100000
92 #define			FERR_NF_M23ERR	0x00080000
93 #define			FERR_NF_M22ERR	0x00040000
94 #define			FERR_NF_M21ERR	0x00020000
95 
96 /* Correctable errors */
97 #define			FERR_NF_M20ERR	0x00010000
98 #define			FERR_NF_M19ERR	0x00008000
99 #define			FERR_NF_M18ERR	0x00004000
100 #define			FERR_NF_M17ERR	0x00002000
101 
102 /* Non-Retry or redundant Retry errors */
103 #define			FERR_NF_M16ERR	0x00001000
104 #define			FERR_NF_M15ERR	0x00000800
105 #define			FERR_NF_M14ERR	0x00000400
106 #define			FERR_NF_M13ERR	0x00000200
107 
108 /* Uncorrectable errors */
109 #define			FERR_NF_M12ERR	0x00000100
110 #define			FERR_NF_M11ERR	0x00000080
111 #define			FERR_NF_M10ERR	0x00000040
112 #define			FERR_NF_M9ERR	0x00000020
113 #define			FERR_NF_M8ERR	0x00000010
114 #define			FERR_NF_M7ERR	0x00000008
115 #define			FERR_NF_M6ERR	0x00000004
116 #define			FERR_NF_M5ERR	0x00000002
117 #define			FERR_NF_M4ERR	0x00000001
118 
119 #define			FERR_NF_UNCORRECTABLE	(FERR_NF_M12ERR | \
120 							FERR_NF_M11ERR | \
121 							FERR_NF_M10ERR | \
122 							FERR_NF_M9ERR | \
123 							FERR_NF_M8ERR | \
124 							FERR_NF_M7ERR | \
125 							FERR_NF_M6ERR | \
126 							FERR_NF_M5ERR | \
127 							FERR_NF_M4ERR)
128 #define			FERR_NF_CORRECTABLE	(FERR_NF_M20ERR | \
129 							FERR_NF_M19ERR | \
130 							FERR_NF_M18ERR | \
131 							FERR_NF_M17ERR)
132 #define			FERR_NF_DIMM_SPARE	(FERR_NF_M27ERR | \
133 							FERR_NF_M28ERR)
134 #define			FERR_NF_THERMAL		(FERR_NF_M26ERR | \
135 							FERR_NF_M25ERR | \
136 							FERR_NF_M24ERR | \
137 							FERR_NF_M23ERR)
138 #define			FERR_NF_SPD_PROTOCOL	(FERR_NF_M22ERR)
139 #define			FERR_NF_NORTH_CRC	(FERR_NF_M21ERR)
140 #define			FERR_NF_NON_RETRY	(FERR_NF_M13ERR | \
141 							FERR_NF_M14ERR | \
142 							FERR_NF_M15ERR)
143 
144 #define		NERR_NF_FBD		0xA4
145 #define			FERR_NF_MASK		(FERR_NF_UNCORRECTABLE | \
146 							FERR_NF_CORRECTABLE | \
147 							FERR_NF_DIMM_SPARE | \
148 							FERR_NF_THERMAL | \
149 							FERR_NF_SPD_PROTOCOL | \
150 							FERR_NF_NORTH_CRC | \
151 							FERR_NF_NON_RETRY)
152 
153 #define		EMASK_FBD		0xA8
154 #define			EMASK_FBD_M28ERR	0x08000000
155 #define			EMASK_FBD_M27ERR	0x04000000
156 #define			EMASK_FBD_M26ERR	0x02000000
157 #define			EMASK_FBD_M25ERR	0x01000000
158 #define			EMASK_FBD_M24ERR	0x00800000
159 #define			EMASK_FBD_M23ERR	0x00400000
160 #define			EMASK_FBD_M22ERR	0x00200000
161 #define			EMASK_FBD_M21ERR	0x00100000
162 #define			EMASK_FBD_M20ERR	0x00080000
163 #define			EMASK_FBD_M19ERR	0x00040000
164 #define			EMASK_FBD_M18ERR	0x00020000
165 #define			EMASK_FBD_M17ERR	0x00010000
166 
167 #define			EMASK_FBD_M15ERR	0x00004000
168 #define			EMASK_FBD_M14ERR	0x00002000
169 #define			EMASK_FBD_M13ERR	0x00001000
170 #define			EMASK_FBD_M12ERR	0x00000800
171 #define			EMASK_FBD_M11ERR	0x00000400
172 #define			EMASK_FBD_M10ERR	0x00000200
173 #define			EMASK_FBD_M9ERR		0x00000100
174 #define			EMASK_FBD_M8ERR		0x00000080
175 #define			EMASK_FBD_M7ERR		0x00000040
176 #define			EMASK_FBD_M6ERR		0x00000020
177 #define			EMASK_FBD_M5ERR		0x00000010
178 #define			EMASK_FBD_M4ERR		0x00000008
179 #define			EMASK_FBD_M3ERR		0x00000004
180 #define			EMASK_FBD_M2ERR		0x00000002
181 #define			EMASK_FBD_M1ERR		0x00000001
182 
183 #define			ENABLE_EMASK_FBD_FATAL_ERRORS	(EMASK_FBD_M1ERR | \
184 							EMASK_FBD_M2ERR | \
185 							EMASK_FBD_M3ERR)
186 
187 #define 		ENABLE_EMASK_FBD_UNCORRECTABLE	(EMASK_FBD_M4ERR | \
188 							EMASK_FBD_M5ERR | \
189 							EMASK_FBD_M6ERR | \
190 							EMASK_FBD_M7ERR | \
191 							EMASK_FBD_M8ERR | \
192 							EMASK_FBD_M9ERR | \
193 							EMASK_FBD_M10ERR | \
194 							EMASK_FBD_M11ERR | \
195 							EMASK_FBD_M12ERR)
196 #define 		ENABLE_EMASK_FBD_CORRECTABLE	(EMASK_FBD_M17ERR | \
197 							EMASK_FBD_M18ERR | \
198 							EMASK_FBD_M19ERR | \
199 							EMASK_FBD_M20ERR)
200 #define			ENABLE_EMASK_FBD_DIMM_SPARE	(EMASK_FBD_M27ERR | \
201 							EMASK_FBD_M28ERR)
202 #define			ENABLE_EMASK_FBD_THERMALS	(EMASK_FBD_M26ERR | \
203 							EMASK_FBD_M25ERR | \
204 							EMASK_FBD_M24ERR | \
205 							EMASK_FBD_M23ERR)
206 #define			ENABLE_EMASK_FBD_SPD_PROTOCOL	(EMASK_FBD_M22ERR)
207 #define			ENABLE_EMASK_FBD_NORTH_CRC	(EMASK_FBD_M21ERR)
208 #define			ENABLE_EMASK_FBD_NON_RETRY	(EMASK_FBD_M15ERR | \
209 							EMASK_FBD_M14ERR | \
210 							EMASK_FBD_M13ERR)
211 
212 #define		ENABLE_EMASK_ALL	(ENABLE_EMASK_FBD_NON_RETRY | \
213 					ENABLE_EMASK_FBD_NORTH_CRC | \
214 					ENABLE_EMASK_FBD_SPD_PROTOCOL | \
215 					ENABLE_EMASK_FBD_THERMALS | \
216 					ENABLE_EMASK_FBD_DIMM_SPARE | \
217 					ENABLE_EMASK_FBD_FATAL_ERRORS | \
218 					ENABLE_EMASK_FBD_CORRECTABLE | \
219 					ENABLE_EMASK_FBD_UNCORRECTABLE)
220 
221 #define		ERR0_FBD		0xAC
222 #define		ERR1_FBD		0xB0
223 #define		ERR2_FBD		0xB4
224 #define		MCERR_FBD		0xB8
225 #define		NRECMEMA		0xBE
226 #define			NREC_BANK(x)		(((x)>>12) & 0x7)
227 #define			NREC_RDWR(x)		(((x)>>11) & 1)
228 #define			NREC_RANK(x)		(((x)>>8) & 0x7)
229 #define		NRECMEMB		0xC0
230 #define			NREC_CAS(x)		(((x)>>16) & 0xFFFFFF)
231 #define			NREC_RAS(x)		((x) & 0x7FFF)
232 #define		NRECFGLOG		0xC4
233 #define		NREEECFBDA		0xC8
234 #define		NREEECFBDB		0xCC
235 #define		NREEECFBDC		0xD0
236 #define		NREEECFBDD		0xD4
237 #define		NREEECFBDE		0xD8
238 #define		REDMEMA			0xDC
239 #define		RECMEMA			0xE2
240 #define			REC_BANK(x)		(((x)>>12) & 0x7)
241 #define			REC_RDWR(x)		(((x)>>11) & 1)
242 #define			REC_RANK(x)		(((x)>>8) & 0x7)
243 #define		RECMEMB			0xE4
244 #define			REC_CAS(x)		(((x)>>16) & 0xFFFFFF)
245 #define			REC_RAS(x)		((x) & 0x7FFF)
246 #define		RECFGLOG		0xE8
247 #define		RECFBDA			0xEC
248 #define		RECFBDB			0xF0
249 #define		RECFBDC			0xF4
250 #define		RECFBDD			0xF8
251 #define		RECFBDE			0xFC
252 
253 /* OFFSETS for Function 2 */
254 
255 /*
256  * Device 21,
257  * Function 0: Memory Map Branch 0
258  *
259  * Device 22,
260  * Function 0: Memory Map Branch 1
261  */
262 #define PCI_DEVICE_ID_I5000_BRANCH_0	0x25F5
263 #define PCI_DEVICE_ID_I5000_BRANCH_1	0x25F6
264 
265 #define AMB_PRESENT_0	0x64
266 #define AMB_PRESENT_1	0x66
267 #define MTR0		0x80
268 #define MTR1		0x84
269 #define MTR2		0x88
270 #define MTR3		0x8C
271 
272 #define NUM_MTRS		4
273 #define CHANNELS_PER_BRANCH	2
274 #define MAX_BRANCHES		2
275 
276 /* Defines to extract the vaious fields from the
277  *	MTRx - Memory Technology Registers
278  */
279 #define MTR_DIMMS_PRESENT(mtr)		((mtr) & (0x1 << 8))
280 #define MTR_DRAM_WIDTH(mtr)		((((mtr) >> 6) & 0x1) ? 8 : 4)
281 #define MTR_DRAM_BANKS(mtr)		((((mtr) >> 5) & 0x1) ? 8 : 4)
282 #define MTR_DRAM_BANKS_ADDR_BITS(mtr)	((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
283 #define MTR_DIMM_RANK(mtr)		(((mtr) >> 4) & 0x1)
284 #define MTR_DIMM_RANK_ADDR_BITS(mtr)	(MTR_DIMM_RANK(mtr) ? 2 : 1)
285 #define MTR_DIMM_ROWS(mtr)		(((mtr) >> 2) & 0x3)
286 #define MTR_DIMM_ROWS_ADDR_BITS(mtr)	(MTR_DIMM_ROWS(mtr) + 13)
287 #define MTR_DIMM_COLS(mtr)		((mtr) & 0x3)
288 #define MTR_DIMM_COLS_ADDR_BITS(mtr)	(MTR_DIMM_COLS(mtr) + 10)
289 
290 #ifdef CONFIG_EDAC_DEBUG
291 static char *numrow_toString[] = {
292 	"8,192 - 13 rows",
293 	"16,384 - 14 rows",
294 	"32,768 - 15 rows",
295 	"reserved"
296 };
297 
298 static char *numcol_toString[] = {
299 	"1,024 - 10 columns",
300 	"2,048 - 11 columns",
301 	"4,096 - 12 columns",
302 	"reserved"
303 };
304 #endif
305 
306 /* enables the report of miscellaneous messages as CE errors - default off */
307 static int misc_messages;
308 
309 /* Enumeration of supported devices */
310 enum i5000_chips {
311 	I5000P = 0,
312 	I5000V = 1,		/* future */
313 	I5000X = 2		/* future */
314 };
315 
316 /* Device name and register DID (Device ID) */
317 struct i5000_dev_info {
318 	const char *ctl_name;	/* name for this device */
319 	u16 fsb_mapping_errors;	/* DID for the branchmap,control */
320 };
321 
322 /* Table of devices attributes supported by this driver */
323 static const struct i5000_dev_info i5000_devs[] = {
324 	[I5000P] = {
325 		.ctl_name = "I5000",
326 		.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I5000_DEV16,
327 	},
328 };
329 
330 struct i5000_dimm_info {
331 	int megabytes;		/* size, 0 means not present  */
332 	int dual_rank;
333 };
334 
335 #define	MAX_CHANNELS	6	/* max possible channels */
336 #define MAX_CSROWS	(8*2)	/* max possible csrows per channel */
337 
338 /* driver private data structure */
339 struct i5000_pvt {
340 	struct pci_dev *system_address;	/* 16.0 */
341 	struct pci_dev *branchmap_werrors;	/* 16.1 */
342 	struct pci_dev *fsb_error_regs;	/* 16.2 */
343 	struct pci_dev *branch_0;	/* 21.0 */
344 	struct pci_dev *branch_1;	/* 22.0 */
345 
346 	u16 tolm;		/* top of low memory */
347 	u64 ambase;		/* AMB BAR */
348 
349 	u16 mir0, mir1, mir2;
350 
351 	u16 b0_mtr[NUM_MTRS];	/* Memory Technlogy Reg */
352 	u16 b0_ambpresent0;	/* Branch 0, Channel 0 */
353 	u16 b0_ambpresent1;	/* Brnach 0, Channel 1 */
354 
355 	u16 b1_mtr[NUM_MTRS];	/* Memory Technlogy Reg */
356 	u16 b1_ambpresent0;	/* Branch 1, Channel 8 */
357 	u16 b1_ambpresent1;	/* Branch 1, Channel 1 */
358 
359 	/* DIMM information matrix, allocating architecture maximums */
360 	struct i5000_dimm_info dimm_info[MAX_CSROWS][MAX_CHANNELS];
361 
362 	/* Actual values for this controller */
363 	int maxch;		/* Max channels */
364 	int maxdimmperch;	/* Max DIMMs per channel */
365 };
366 
367 /* I5000 MCH error information retrieved from Hardware */
368 struct i5000_error_info {
369 
370 	/* These registers are always read from the MC */
371 	u32 ferr_fat_fbd;	/* First Errors Fatal */
372 	u32 nerr_fat_fbd;	/* Next Errors Fatal */
373 	u32 ferr_nf_fbd;	/* First Errors Non-Fatal */
374 	u32 nerr_nf_fbd;	/* Next Errors Non-Fatal */
375 
376 	/* These registers are input ONLY if there was a Recoverable  Error */
377 	u32 redmemb;		/* Recoverable Mem Data Error log B */
378 	u16 recmema;		/* Recoverable Mem Error log A */
379 	u32 recmemb;		/* Recoverable Mem Error log B */
380 
381 	/* These registers are input ONLY if there was a
382 	 * Non-Recoverable Error */
383 	u16 nrecmema;		/* Non-Recoverable Mem log A */
384 	u16 nrecmemb;		/* Non-Recoverable Mem log B */
385 
386 };
387 
388 static struct edac_pci_ctl_info *i5000_pci;
389 
390 /*
391  *	i5000_get_error_info	Retrieve the hardware error information from
392  *				the hardware and cache it in the 'info'
393  *				structure
394  */
395 static void i5000_get_error_info(struct mem_ctl_info *mci,
396 				 struct i5000_error_info *info)
397 {
398 	struct i5000_pvt *pvt;
399 	u32 value;
400 
401 	pvt = mci->pvt_info;
402 
403 	/* read in the 1st FATAL error register */
404 	pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
405 
406 	/* Mask only the bits that the doc says are valid
407 	 */
408 	value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
409 
410 	/* If there is an error, then read in the */
411 	/* NEXT FATAL error register and the Memory Error Log Register A */
412 	if (value & FERR_FAT_MASK) {
413 		info->ferr_fat_fbd = value;
414 
415 		/* harvest the various error data we need */
416 		pci_read_config_dword(pvt->branchmap_werrors,
417 				NERR_FAT_FBD, &info->nerr_fat_fbd);
418 		pci_read_config_word(pvt->branchmap_werrors,
419 				NRECMEMA, &info->nrecmema);
420 		pci_read_config_word(pvt->branchmap_werrors,
421 				NRECMEMB, &info->nrecmemb);
422 
423 		/* Clear the error bits, by writing them back */
424 		pci_write_config_dword(pvt->branchmap_werrors,
425 				FERR_FAT_FBD, value);
426 	} else {
427 		info->ferr_fat_fbd = 0;
428 		info->nerr_fat_fbd = 0;
429 		info->nrecmema = 0;
430 		info->nrecmemb = 0;
431 	}
432 
433 	/* read in the 1st NON-FATAL error register */
434 	pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
435 
436 	/* If there is an error, then read in the 1st NON-FATAL error
437 	 * register as well */
438 	if (value & FERR_NF_MASK) {
439 		info->ferr_nf_fbd = value;
440 
441 		/* harvest the various error data we need */
442 		pci_read_config_dword(pvt->branchmap_werrors,
443 				NERR_NF_FBD, &info->nerr_nf_fbd);
444 		pci_read_config_word(pvt->branchmap_werrors,
445 				RECMEMA, &info->recmema);
446 		pci_read_config_dword(pvt->branchmap_werrors,
447 				RECMEMB, &info->recmemb);
448 		pci_read_config_dword(pvt->branchmap_werrors,
449 				REDMEMB, &info->redmemb);
450 
451 		/* Clear the error bits, by writing them back */
452 		pci_write_config_dword(pvt->branchmap_werrors,
453 				FERR_NF_FBD, value);
454 	} else {
455 		info->ferr_nf_fbd = 0;
456 		info->nerr_nf_fbd = 0;
457 		info->recmema = 0;
458 		info->recmemb = 0;
459 		info->redmemb = 0;
460 	}
461 }
462 
463 /*
464  * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
465  * 					struct i5000_error_info *info,
466  * 					int handle_errors);
467  *
468  *	handle the Intel FATAL errors, if any
469  */
470 static void i5000_process_fatal_error_info(struct mem_ctl_info *mci,
471 					struct i5000_error_info *info,
472 					int handle_errors)
473 {
474 	char msg[EDAC_MC_LABEL_LEN + 1 + 160];
475 	char *specific = NULL;
476 	u32 allErrors;
477 	int channel;
478 	int bank;
479 	int rank;
480 	int rdwr;
481 	int ras, cas;
482 
483 	/* mask off the Error bits that are possible */
484 	allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
485 	if (!allErrors)
486 		return;		/* if no error, return now */
487 
488 	channel = EXTRACT_FBDCHAN_INDX(info->ferr_fat_fbd);
489 
490 	/* Use the NON-Recoverable macros to extract data */
491 	bank = NREC_BANK(info->nrecmema);
492 	rank = NREC_RANK(info->nrecmema);
493 	rdwr = NREC_RDWR(info->nrecmema);
494 	ras = NREC_RAS(info->nrecmemb);
495 	cas = NREC_CAS(info->nrecmemb);
496 
497 	debugf0("\t\tCSROW= %d  Channel= %d "
498 		"(DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
499 		rank, channel, bank,
500 		rdwr ? "Write" : "Read", ras, cas);
501 
502 	/* Only 1 bit will be on */
503 	switch (allErrors) {
504 	case FERR_FAT_M1ERR:
505 		specific = "Alert on non-redundant retry or fast "
506 				"reset timeout";
507 		break;
508 	case FERR_FAT_M2ERR:
509 		specific = "Northbound CRC error on non-redundant "
510 				"retry";
511 		break;
512 	case FERR_FAT_M3ERR:
513 		{
514 		static int done;
515 
516 		/*
517 		 * This error is generated to inform that the intelligent
518 		 * throttling is disabled and the temperature passed the
519 		 * specified middle point. Since this is something the BIOS
520 		 * should take care of, we'll warn only once to avoid
521 		 * worthlessly flooding the log.
522 		 */
523 		if (done)
524 			return;
525 		done++;
526 
527 		specific = ">Tmid Thermal event with intelligent "
528 			   "throttling disabled";
529 		}
530 		break;
531 	}
532 
533 	/* Form out message */
534 	snprintf(msg, sizeof(msg),
535 		 "Bank=%d RAS=%d CAS=%d FATAL Err=0x%x (%s)",
536 		 bank, ras, cas, allErrors, specific);
537 
538 	/* Call the helper to output message */
539 	edac_mc_handle_error(HW_EVENT_ERR_FATAL, mci, 0, 0, 0,
540 			     channel >> 1, channel & 1, rank,
541 			     rdwr ? "Write error" : "Read error",
542 			     msg, NULL);
543 }
544 
545 /*
546  * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
547  * 				struct i5000_error_info *info,
548  * 				int handle_errors);
549  *
550  *	handle the Intel NON-FATAL errors, if any
551  */
552 static void i5000_process_nonfatal_error_info(struct mem_ctl_info *mci,
553 					struct i5000_error_info *info,
554 					int handle_errors)
555 {
556 	char msg[EDAC_MC_LABEL_LEN + 1 + 170];
557 	char *specific = NULL;
558 	u32 allErrors;
559 	u32 ue_errors;
560 	u32 ce_errors;
561 	u32 misc_errors;
562 	int branch;
563 	int channel;
564 	int bank;
565 	int rank;
566 	int rdwr;
567 	int ras, cas;
568 
569 	/* mask off the Error bits that are possible */
570 	allErrors = (info->ferr_nf_fbd & FERR_NF_MASK);
571 	if (!allErrors)
572 		return;		/* if no error, return now */
573 
574 	/* ONLY ONE of the possible error bits will be set, as per the docs */
575 	ue_errors = allErrors & FERR_NF_UNCORRECTABLE;
576 	if (ue_errors) {
577 		debugf0("\tUncorrected bits= 0x%x\n", ue_errors);
578 
579 		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
580 
581 		/*
582 		 * According with i5000 datasheet, bit 28 has no significance
583 		 * for errors M4Err-M12Err and M17Err-M21Err, on FERR_NF_FBD
584 		 */
585 		channel = branch & 2;
586 
587 		bank = NREC_BANK(info->nrecmema);
588 		rank = NREC_RANK(info->nrecmema);
589 		rdwr = NREC_RDWR(info->nrecmema);
590 		ras = NREC_RAS(info->nrecmemb);
591 		cas = NREC_CAS(info->nrecmemb);
592 
593 		debugf0
594 			("\t\tCSROW= %d  Channels= %d,%d  (Branch= %d "
595 			"DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
596 			rank, channel, channel + 1, branch >> 1, bank,
597 			rdwr ? "Write" : "Read", ras, cas);
598 
599 		switch (ue_errors) {
600 		case FERR_NF_M12ERR:
601 			specific = "Non-Aliased Uncorrectable Patrol Data ECC";
602 			break;
603 		case FERR_NF_M11ERR:
604 			specific = "Non-Aliased Uncorrectable Spare-Copy "
605 					"Data ECC";
606 			break;
607 		case FERR_NF_M10ERR:
608 			specific = "Non-Aliased Uncorrectable Mirrored Demand "
609 					"Data ECC";
610 			break;
611 		case FERR_NF_M9ERR:
612 			specific = "Non-Aliased Uncorrectable Non-Mirrored "
613 					"Demand Data ECC";
614 			break;
615 		case FERR_NF_M8ERR:
616 			specific = "Aliased Uncorrectable Patrol Data ECC";
617 			break;
618 		case FERR_NF_M7ERR:
619 			specific = "Aliased Uncorrectable Spare-Copy Data ECC";
620 			break;
621 		case FERR_NF_M6ERR:
622 			specific = "Aliased Uncorrectable Mirrored Demand "
623 					"Data ECC";
624 			break;
625 		case FERR_NF_M5ERR:
626 			specific = "Aliased Uncorrectable Non-Mirrored Demand "
627 					"Data ECC";
628 			break;
629 		case FERR_NF_M4ERR:
630 			specific = "Uncorrectable Data ECC on Replay";
631 			break;
632 		}
633 
634 		/* Form out message */
635 		snprintf(msg, sizeof(msg),
636 			 "Rank=%d Bank=%d RAS=%d CAS=%d, UE Err=0x%x (%s)",
637 			 rank, bank, ras, cas, ue_errors, specific);
638 
639 		/* Call the helper to output message */
640 		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 0, 0, 0,
641 				channel >> 1, -1, rank,
642 				rdwr ? "Write error" : "Read error",
643 				msg, NULL);
644 	}
645 
646 	/* Check correctable errors */
647 	ce_errors = allErrors & FERR_NF_CORRECTABLE;
648 	if (ce_errors) {
649 		debugf0("\tCorrected bits= 0x%x\n", ce_errors);
650 
651 		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
652 
653 		channel = 0;
654 		if (REC_ECC_LOCATOR_ODD(info->redmemb))
655 			channel = 1;
656 
657 		/* Convert channel to be based from zero, instead of
658 		 * from branch base of 0 */
659 		channel += branch;
660 
661 		bank = REC_BANK(info->recmema);
662 		rank = REC_RANK(info->recmema);
663 		rdwr = REC_RDWR(info->recmema);
664 		ras = REC_RAS(info->recmemb);
665 		cas = REC_CAS(info->recmemb);
666 
667 		debugf0("\t\tCSROW= %d Channel= %d  (Branch %d "
668 			"DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
669 			rank, channel, branch >> 1, bank,
670 			rdwr ? "Write" : "Read", ras, cas);
671 
672 		switch (ce_errors) {
673 		case FERR_NF_M17ERR:
674 			specific = "Correctable Non-Mirrored Demand Data ECC";
675 			break;
676 		case FERR_NF_M18ERR:
677 			specific = "Correctable Mirrored Demand Data ECC";
678 			break;
679 		case FERR_NF_M19ERR:
680 			specific = "Correctable Spare-Copy Data ECC";
681 			break;
682 		case FERR_NF_M20ERR:
683 			specific = "Correctable Patrol Data ECC";
684 			break;
685 		}
686 
687 		/* Form out message */
688 		snprintf(msg, sizeof(msg),
689 			 "Rank=%d Bank=%d RDWR=%s RAS=%d "
690 			 "CAS=%d, CE Err=0x%x (%s))", branch >> 1, bank,
691 			 rdwr ? "Write" : "Read", ras, cas, ce_errors,
692 			 specific);
693 
694 		/* Call the helper to output message */
695 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 0, 0, 0,
696 				channel >> 1, channel % 2, rank,
697 				rdwr ? "Write error" : "Read error",
698 				msg, NULL);
699 	}
700 
701 	if (!misc_messages)
702 		return;
703 
704 	misc_errors = allErrors & (FERR_NF_NON_RETRY | FERR_NF_NORTH_CRC |
705 				   FERR_NF_SPD_PROTOCOL | FERR_NF_DIMM_SPARE);
706 	if (misc_errors) {
707 		switch (misc_errors) {
708 		case FERR_NF_M13ERR:
709 			specific = "Non-Retry or Redundant Retry FBD Memory "
710 					"Alert or Redundant Fast Reset Timeout";
711 			break;
712 		case FERR_NF_M14ERR:
713 			specific = "Non-Retry or Redundant Retry FBD "
714 					"Configuration Alert";
715 			break;
716 		case FERR_NF_M15ERR:
717 			specific = "Non-Retry or Redundant Retry FBD "
718 					"Northbound CRC error on read data";
719 			break;
720 		case FERR_NF_M21ERR:
721 			specific = "FBD Northbound CRC error on "
722 					"FBD Sync Status";
723 			break;
724 		case FERR_NF_M22ERR:
725 			specific = "SPD protocol error";
726 			break;
727 		case FERR_NF_M27ERR:
728 			specific = "DIMM-spare copy started";
729 			break;
730 		case FERR_NF_M28ERR:
731 			specific = "DIMM-spare copy completed";
732 			break;
733 		}
734 		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
735 
736 		/* Form out message */
737 		snprintf(msg, sizeof(msg),
738 			 "Err=%#x (%s)", misc_errors, specific);
739 
740 		/* Call the helper to output message */
741 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 0, 0, 0,
742 				branch >> 1, -1, -1,
743 				"Misc error", msg, NULL);
744 	}
745 }
746 
747 /*
748  *	i5000_process_error_info	Process the error info that is
749  *	in the 'info' structure, previously retrieved from hardware
750  */
751 static void i5000_process_error_info(struct mem_ctl_info *mci,
752 				struct i5000_error_info *info,
753 				int handle_errors)
754 {
755 	/* First handle any fatal errors that occurred */
756 	i5000_process_fatal_error_info(mci, info, handle_errors);
757 
758 	/* now handle any non-fatal errors that occurred */
759 	i5000_process_nonfatal_error_info(mci, info, handle_errors);
760 }
761 
762 /*
763  *	i5000_clear_error	Retrieve any error from the hardware
764  *				but do NOT process that error.
765  *				Used for 'clearing' out of previous errors
766  *				Called by the Core module.
767  */
768 static void i5000_clear_error(struct mem_ctl_info *mci)
769 {
770 	struct i5000_error_info info;
771 
772 	i5000_get_error_info(mci, &info);
773 }
774 
775 /*
776  *	i5000_check_error	Retrieve and process errors reported by the
777  *				hardware. Called by the Core module.
778  */
779 static void i5000_check_error(struct mem_ctl_info *mci)
780 {
781 	struct i5000_error_info info;
782 	debugf4("MC%d: %s: %s()\n", mci->mc_idx, __FILE__, __func__);
783 	i5000_get_error_info(mci, &info);
784 	i5000_process_error_info(mci, &info, 1);
785 }
786 
787 /*
788  *	i5000_get_devices	Find and perform 'get' operation on the MCH's
789  *			device/functions we want to reference for this driver
790  *
791  *			Need to 'get' device 16 func 1 and func 2
792  */
793 static int i5000_get_devices(struct mem_ctl_info *mci, int dev_idx)
794 {
795 	//const struct i5000_dev_info *i5000_dev = &i5000_devs[dev_idx];
796 	struct i5000_pvt *pvt;
797 	struct pci_dev *pdev;
798 
799 	pvt = mci->pvt_info;
800 
801 	/* Attempt to 'get' the MCH register we want */
802 	pdev = NULL;
803 	while (1) {
804 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
805 				PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
806 
807 		/* End of list, leave */
808 		if (pdev == NULL) {
809 			i5000_printk(KERN_ERR,
810 				"'system address,Process Bus' "
811 				"device not found:"
812 				"vendor 0x%x device 0x%x FUNC 1 "
813 				"(broken BIOS?)\n",
814 				PCI_VENDOR_ID_INTEL,
815 				PCI_DEVICE_ID_INTEL_I5000_DEV16);
816 
817 			return 1;
818 		}
819 
820 		/* Scan for device 16 func 1 */
821 		if (PCI_FUNC(pdev->devfn) == 1)
822 			break;
823 	}
824 
825 	pvt->branchmap_werrors = pdev;
826 
827 	/* Attempt to 'get' the MCH register we want */
828 	pdev = NULL;
829 	while (1) {
830 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
831 				PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
832 
833 		if (pdev == NULL) {
834 			i5000_printk(KERN_ERR,
835 				"MC: 'branchmap,control,errors' "
836 				"device not found:"
837 				"vendor 0x%x device 0x%x Func 2 "
838 				"(broken BIOS?)\n",
839 				PCI_VENDOR_ID_INTEL,
840 				PCI_DEVICE_ID_INTEL_I5000_DEV16);
841 
842 			pci_dev_put(pvt->branchmap_werrors);
843 			return 1;
844 		}
845 
846 		/* Scan for device 16 func 1 */
847 		if (PCI_FUNC(pdev->devfn) == 2)
848 			break;
849 	}
850 
851 	pvt->fsb_error_regs = pdev;
852 
853 	debugf1("System Address, processor bus- PCI Bus ID: %s  %x:%x\n",
854 		pci_name(pvt->system_address),
855 		pvt->system_address->vendor, pvt->system_address->device);
856 	debugf1("Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n",
857 		pci_name(pvt->branchmap_werrors),
858 		pvt->branchmap_werrors->vendor, pvt->branchmap_werrors->device);
859 	debugf1("FSB Error Regs - PCI Bus ID: %s  %x:%x\n",
860 		pci_name(pvt->fsb_error_regs),
861 		pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
862 
863 	pdev = NULL;
864 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
865 			PCI_DEVICE_ID_I5000_BRANCH_0, pdev);
866 
867 	if (pdev == NULL) {
868 		i5000_printk(KERN_ERR,
869 			"MC: 'BRANCH 0' device not found:"
870 			"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
871 			PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_I5000_BRANCH_0);
872 
873 		pci_dev_put(pvt->branchmap_werrors);
874 		pci_dev_put(pvt->fsb_error_regs);
875 		return 1;
876 	}
877 
878 	pvt->branch_0 = pdev;
879 
880 	/* If this device claims to have more than 2 channels then
881 	 * fetch Branch 1's information
882 	 */
883 	if (pvt->maxch >= CHANNELS_PER_BRANCH) {
884 		pdev = NULL;
885 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
886 				PCI_DEVICE_ID_I5000_BRANCH_1, pdev);
887 
888 		if (pdev == NULL) {
889 			i5000_printk(KERN_ERR,
890 				"MC: 'BRANCH 1' device not found:"
891 				"vendor 0x%x device 0x%x Func 0 "
892 				"(broken BIOS?)\n",
893 				PCI_VENDOR_ID_INTEL,
894 				PCI_DEVICE_ID_I5000_BRANCH_1);
895 
896 			pci_dev_put(pvt->branchmap_werrors);
897 			pci_dev_put(pvt->fsb_error_regs);
898 			pci_dev_put(pvt->branch_0);
899 			return 1;
900 		}
901 
902 		pvt->branch_1 = pdev;
903 	}
904 
905 	return 0;
906 }
907 
908 /*
909  *	i5000_put_devices	'put' all the devices that we have
910  *				reserved via 'get'
911  */
912 static void i5000_put_devices(struct mem_ctl_info *mci)
913 {
914 	struct i5000_pvt *pvt;
915 
916 	pvt = mci->pvt_info;
917 
918 	pci_dev_put(pvt->branchmap_werrors);	/* FUNC 1 */
919 	pci_dev_put(pvt->fsb_error_regs);	/* FUNC 2 */
920 	pci_dev_put(pvt->branch_0);	/* DEV 21 */
921 
922 	/* Only if more than 2 channels do we release the second branch */
923 	if (pvt->maxch >= CHANNELS_PER_BRANCH)
924 		pci_dev_put(pvt->branch_1);	/* DEV 22 */
925 }
926 
927 /*
928  *	determine_amb_resent
929  *
930  *		the information is contained in NUM_MTRS different registers
931  *		determineing which of the NUM_MTRS requires knowing
932  *		which channel is in question
933  *
934  *	2 branches, each with 2 channels
935  *		b0_ambpresent0 for channel '0'
936  *		b0_ambpresent1 for channel '1'
937  *		b1_ambpresent0 for channel '2'
938  *		b1_ambpresent1 for channel '3'
939  */
940 static int determine_amb_present_reg(struct i5000_pvt *pvt, int channel)
941 {
942 	int amb_present;
943 
944 	if (channel < CHANNELS_PER_BRANCH) {
945 		if (channel & 0x1)
946 			amb_present = pvt->b0_ambpresent1;
947 		else
948 			amb_present = pvt->b0_ambpresent0;
949 	} else {
950 		if (channel & 0x1)
951 			amb_present = pvt->b1_ambpresent1;
952 		else
953 			amb_present = pvt->b1_ambpresent0;
954 	}
955 
956 	return amb_present;
957 }
958 
959 /*
960  * determine_mtr(pvt, csrow, channel)
961  *
962  *	return the proper MTR register as determine by the csrow and channel desired
963  */
964 static int determine_mtr(struct i5000_pvt *pvt, int slot, int channel)
965 {
966 	int mtr;
967 
968 	if (channel < CHANNELS_PER_BRANCH)
969 		mtr = pvt->b0_mtr[slot];
970 	else
971 		mtr = pvt->b1_mtr[slot];
972 
973 	return mtr;
974 }
975 
976 /*
977  */
978 static void decode_mtr(int slot_row, u16 mtr)
979 {
980 	int ans;
981 
982 	ans = MTR_DIMMS_PRESENT(mtr);
983 
984 	debugf2("\tMTR%d=0x%x:  DIMMs are %s\n", slot_row, mtr,
985 		ans ? "Present" : "NOT Present");
986 	if (!ans)
987 		return;
988 
989 	debugf2("\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
990 	debugf2("\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
991 	debugf2("\t\tNUMRANK: %s\n", MTR_DIMM_RANK(mtr) ? "double" : "single");
992 	debugf2("\t\tNUMROW: %s\n", numrow_toString[MTR_DIMM_ROWS(mtr)]);
993 	debugf2("\t\tNUMCOL: %s\n", numcol_toString[MTR_DIMM_COLS(mtr)]);
994 }
995 
996 static void handle_channel(struct i5000_pvt *pvt, int slot, int channel,
997 			struct i5000_dimm_info *dinfo)
998 {
999 	int mtr;
1000 	int amb_present_reg;
1001 	int addrBits;
1002 
1003 	mtr = determine_mtr(pvt, slot, channel);
1004 	if (MTR_DIMMS_PRESENT(mtr)) {
1005 		amb_present_reg = determine_amb_present_reg(pvt, channel);
1006 
1007 		/* Determine if there is a DIMM present in this DIMM slot */
1008 		if (amb_present_reg) {
1009 			dinfo->dual_rank = MTR_DIMM_RANK(mtr);
1010 
1011 			/* Start with the number of bits for a Bank
1012 				* on the DRAM */
1013 			addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
1014 			/* Add the number of ROW bits */
1015 			addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
1016 			/* add the number of COLUMN bits */
1017 			addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
1018 
1019 			addrBits += 6;	/* add 64 bits per DIMM */
1020 			addrBits -= 20;	/* divide by 2^^20 */
1021 			addrBits -= 3;	/* 8 bits per bytes */
1022 
1023 			dinfo->megabytes = 1 << addrBits;
1024 		}
1025 	}
1026 }
1027 
1028 /*
1029  *	calculate_dimm_size
1030  *
1031  *	also will output a DIMM matrix map, if debug is enabled, for viewing
1032  *	how the DIMMs are populated
1033  */
1034 static void calculate_dimm_size(struct i5000_pvt *pvt)
1035 {
1036 	struct i5000_dimm_info *dinfo;
1037 	int slot, channel, branch;
1038 	char *p, *mem_buffer;
1039 	int space, n;
1040 
1041 	/* ================= Generate some debug output ================= */
1042 	space = PAGE_SIZE;
1043 	mem_buffer = p = kmalloc(space, GFP_KERNEL);
1044 	if (p == NULL) {
1045 		i5000_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
1046 			__FILE__, __func__);
1047 		return;
1048 	}
1049 
1050 	/* Scan all the actual slots
1051 	 * and calculate the information for each DIMM
1052 	 * Start with the highest slot first, to display it first
1053 	 * and work toward the 0th slot
1054 	 */
1055 	for (slot = pvt->maxdimmperch - 1; slot >= 0; slot--) {
1056 
1057 		/* on an odd slot, first output a 'boundary' marker,
1058 		 * then reset the message buffer  */
1059 		if (slot & 0x1) {
1060 			n = snprintf(p, space, "--------------------------"
1061 				"--------------------------------");
1062 			p += n;
1063 			space -= n;
1064 			debugf2("%s\n", mem_buffer);
1065 			p = mem_buffer;
1066 			space = PAGE_SIZE;
1067 		}
1068 		n = snprintf(p, space, "slot %2d    ", slot);
1069 		p += n;
1070 		space -= n;
1071 
1072 		for (channel = 0; channel < pvt->maxch; channel++) {
1073 			dinfo = &pvt->dimm_info[slot][channel];
1074 			handle_channel(pvt, slot, channel, dinfo);
1075 			if (dinfo->megabytes)
1076 				n = snprintf(p, space, "%4d MB %dR| ",
1077 					     dinfo->megabytes, dinfo->dual_rank + 1);
1078 			else
1079 				n = snprintf(p, space, "%4d MB   | ", 0);
1080 			p += n;
1081 			space -= n;
1082 		}
1083 		p += n;
1084 		space -= n;
1085 		debugf2("%s\n", mem_buffer);
1086 		p = mem_buffer;
1087 		space = PAGE_SIZE;
1088 	}
1089 
1090 	/* Output the last bottom 'boundary' marker */
1091 	n = snprintf(p, space, "--------------------------"
1092 		"--------------------------------");
1093 	p += n;
1094 	space -= n;
1095 	debugf2("%s\n", mem_buffer);
1096 	p = mem_buffer;
1097 	space = PAGE_SIZE;
1098 
1099 	/* now output the 'channel' labels */
1100 	n = snprintf(p, space, "           ");
1101 	p += n;
1102 	space -= n;
1103 	for (channel = 0; channel < pvt->maxch; channel++) {
1104 		n = snprintf(p, space, "channel %d | ", channel);
1105 		p += n;
1106 		space -= n;
1107 	}
1108 	debugf2("%s\n", mem_buffer);
1109 	p = mem_buffer;
1110 	space = PAGE_SIZE;
1111 
1112 	n = snprintf(p, space, "           ");
1113 	p += n;
1114 	for (branch = 0; branch < MAX_BRANCHES; branch++) {
1115 		n = snprintf(p, space, "       branch %d       | ", branch);
1116 		p += n;
1117 		space -= n;
1118 	}
1119 
1120 	/* output the last message and free buffer */
1121 	debugf2("%s\n", mem_buffer);
1122 	kfree(mem_buffer);
1123 }
1124 
1125 /*
1126  *	i5000_get_mc_regs	read in the necessary registers and
1127  *				cache locally
1128  *
1129  *			Fills in the private data members
1130  */
1131 static void i5000_get_mc_regs(struct mem_ctl_info *mci)
1132 {
1133 	struct i5000_pvt *pvt;
1134 	u32 actual_tolm;
1135 	u16 limit;
1136 	int slot_row;
1137 	int maxch;
1138 	int maxdimmperch;
1139 	int way0, way1;
1140 
1141 	pvt = mci->pvt_info;
1142 
1143 	pci_read_config_dword(pvt->system_address, AMBASE,
1144 			(u32 *) & pvt->ambase);
1145 	pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
1146 			((u32 *) & pvt->ambase) + sizeof(u32));
1147 
1148 	maxdimmperch = pvt->maxdimmperch;
1149 	maxch = pvt->maxch;
1150 
1151 	debugf2("AMBASE= 0x%lx  MAXCH= %d  MAX-DIMM-Per-CH= %d\n",
1152 		(long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
1153 
1154 	/* Get the Branch Map regs */
1155 	pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
1156 	pvt->tolm >>= 12;
1157 	debugf2("\nTOLM (number of 256M regions) =%u (0x%x)\n", pvt->tolm,
1158 		pvt->tolm);
1159 
1160 	actual_tolm = pvt->tolm << 28;
1161 	debugf2("Actual TOLM byte addr=%u (0x%x)\n", actual_tolm, actual_tolm);
1162 
1163 	pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
1164 	pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
1165 	pci_read_config_word(pvt->branchmap_werrors, MIR2, &pvt->mir2);
1166 
1167 	/* Get the MIR[0-2] regs */
1168 	limit = (pvt->mir0 >> 4) & 0x0FFF;
1169 	way0 = pvt->mir0 & 0x1;
1170 	way1 = pvt->mir0 & 0x2;
1171 	debugf2("MIR0: limit= 0x%x  WAY1= %u  WAY0= %x\n", limit, way1, way0);
1172 	limit = (pvt->mir1 >> 4) & 0x0FFF;
1173 	way0 = pvt->mir1 & 0x1;
1174 	way1 = pvt->mir1 & 0x2;
1175 	debugf2("MIR1: limit= 0x%x  WAY1= %u  WAY0= %x\n", limit, way1, way0);
1176 	limit = (pvt->mir2 >> 4) & 0x0FFF;
1177 	way0 = pvt->mir2 & 0x1;
1178 	way1 = pvt->mir2 & 0x2;
1179 	debugf2("MIR2: limit= 0x%x  WAY1= %u  WAY0= %x\n", limit, way1, way0);
1180 
1181 	/* Get the MTR[0-3] regs */
1182 	for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1183 		int where = MTR0 + (slot_row * sizeof(u32));
1184 
1185 		pci_read_config_word(pvt->branch_0, where,
1186 				&pvt->b0_mtr[slot_row]);
1187 
1188 		debugf2("MTR%d where=0x%x B0 value=0x%x\n", slot_row, where,
1189 			pvt->b0_mtr[slot_row]);
1190 
1191 		if (pvt->maxch >= CHANNELS_PER_BRANCH) {
1192 			pci_read_config_word(pvt->branch_1, where,
1193 					&pvt->b1_mtr[slot_row]);
1194 			debugf2("MTR%d where=0x%x B1 value=0x%x\n", slot_row,
1195 				where, pvt->b1_mtr[slot_row]);
1196 		} else {
1197 			pvt->b1_mtr[slot_row] = 0;
1198 		}
1199 	}
1200 
1201 	/* Read and dump branch 0's MTRs */
1202 	debugf2("\nMemory Technology Registers:\n");
1203 	debugf2("   Branch 0:\n");
1204 	for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1205 		decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
1206 	}
1207 	pci_read_config_word(pvt->branch_0, AMB_PRESENT_0,
1208 			&pvt->b0_ambpresent0);
1209 	debugf2("\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
1210 	pci_read_config_word(pvt->branch_0, AMB_PRESENT_1,
1211 			&pvt->b0_ambpresent1);
1212 	debugf2("\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
1213 
1214 	/* Only if we have 2 branchs (4 channels) */
1215 	if (pvt->maxch < CHANNELS_PER_BRANCH) {
1216 		pvt->b1_ambpresent0 = 0;
1217 		pvt->b1_ambpresent1 = 0;
1218 	} else {
1219 		/* Read and dump  branch 1's MTRs */
1220 		debugf2("   Branch 1:\n");
1221 		for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1222 			decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
1223 		}
1224 		pci_read_config_word(pvt->branch_1, AMB_PRESENT_0,
1225 				&pvt->b1_ambpresent0);
1226 		debugf2("\t\tAMB-Branch 1-present0 0x%x:\n",
1227 			pvt->b1_ambpresent0);
1228 		pci_read_config_word(pvt->branch_1, AMB_PRESENT_1,
1229 				&pvt->b1_ambpresent1);
1230 		debugf2("\t\tAMB-Branch 1-present1 0x%x:\n",
1231 			pvt->b1_ambpresent1);
1232 	}
1233 
1234 	/* Go and determine the size of each DIMM and place in an
1235 	 * orderly matrix */
1236 	calculate_dimm_size(pvt);
1237 }
1238 
1239 /*
1240  *	i5000_init_csrows	Initialize the 'csrows' table within
1241  *				the mci control	structure with the
1242  *				addressing of memory.
1243  *
1244  *	return:
1245  *		0	success
1246  *		1	no actual memory found on this MC
1247  */
1248 static int i5000_init_csrows(struct mem_ctl_info *mci)
1249 {
1250 	struct i5000_pvt *pvt;
1251 	struct dimm_info *dimm;
1252 	int empty, channel_count;
1253 	int max_csrows;
1254 	int mtr;
1255 	int csrow_megs;
1256 	int channel;
1257 	int slot;
1258 
1259 	pvt = mci->pvt_info;
1260 
1261 	channel_count = pvt->maxch;
1262 	max_csrows = pvt->maxdimmperch * 2;
1263 
1264 	empty = 1;		/* Assume NO memory */
1265 
1266 	/*
1267 	 * FIXME: The memory layout used to map slot/channel into the
1268 	 * real memory architecture is weird: branch+slot are "csrows"
1269 	 * and channel is channel. That required an extra array (dimm_info)
1270 	 * to map the dimms. A good cleanup would be to remove this array,
1271 	 * and do a loop here with branch, channel, slot
1272 	 */
1273 	for (slot = 0; slot < max_csrows; slot++) {
1274 		for (channel = 0; channel < pvt->maxch; channel++) {
1275 
1276 			mtr = determine_mtr(pvt, slot, channel);
1277 
1278 			if (!MTR_DIMMS_PRESENT(mtr))
1279 				continue;
1280 
1281 			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
1282 				       channel / MAX_BRANCHES,
1283 				       channel % MAX_BRANCHES, slot);
1284 
1285 			csrow_megs = pvt->dimm_info[slot][channel].megabytes;
1286 			dimm->grain = 8;
1287 
1288 			/* Assume DDR2 for now */
1289 			dimm->mtype = MEM_FB_DDR2;
1290 
1291 			/* ask what device type on this row */
1292 			if (MTR_DRAM_WIDTH(mtr))
1293 				dimm->dtype = DEV_X8;
1294 			else
1295 				dimm->dtype = DEV_X4;
1296 
1297 			dimm->edac_mode = EDAC_S8ECD8ED;
1298 			dimm->nr_pages = csrow_megs << 8;
1299 		}
1300 
1301 		empty = 0;
1302 	}
1303 
1304 	return empty;
1305 }
1306 
1307 /*
1308  *	i5000_enable_error_reporting
1309  *			Turn on the memory reporting features of the hardware
1310  */
1311 static void i5000_enable_error_reporting(struct mem_ctl_info *mci)
1312 {
1313 	struct i5000_pvt *pvt;
1314 	u32 fbd_error_mask;
1315 
1316 	pvt = mci->pvt_info;
1317 
1318 	/* Read the FBD Error Mask Register */
1319 	pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1320 			&fbd_error_mask);
1321 
1322 	/* Enable with a '0' */
1323 	fbd_error_mask &= ~(ENABLE_EMASK_ALL);
1324 
1325 	pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1326 			fbd_error_mask);
1327 }
1328 
1329 /*
1330  * i5000_get_dimm_and_channel_counts(pdev, &nr_csrows, &num_channels)
1331  *
1332  *	ask the device how many channels are present and how many CSROWS
1333  *	 as well
1334  */
1335 static void i5000_get_dimm_and_channel_counts(struct pci_dev *pdev,
1336 					int *num_dimms_per_channel,
1337 					int *num_channels)
1338 {
1339 	u8 value;
1340 
1341 	/* Need to retrieve just how many channels and dimms per channel are
1342 	 * supported on this memory controller
1343 	 */
1344 	pci_read_config_byte(pdev, MAXDIMMPERCH, &value);
1345 	*num_dimms_per_channel = (int)value;
1346 
1347 	pci_read_config_byte(pdev, MAXCH, &value);
1348 	*num_channels = (int)value;
1349 }
1350 
1351 /*
1352  *	i5000_probe1	Probe for ONE instance of device to see if it is
1353  *			present.
1354  *	return:
1355  *		0 for FOUND a device
1356  *		< 0 for error code
1357  */
1358 static int i5000_probe1(struct pci_dev *pdev, int dev_idx)
1359 {
1360 	struct mem_ctl_info *mci;
1361 	struct edac_mc_layer layers[3];
1362 	struct i5000_pvt *pvt;
1363 	int num_channels;
1364 	int num_dimms_per_channel;
1365 
1366 	debugf0("MC: %s: %s(), pdev bus %u dev=0x%x fn=0x%x\n",
1367 		__FILE__, __func__,
1368 		pdev->bus->number,
1369 		PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1370 
1371 	/* We only are looking for func 0 of the set */
1372 	if (PCI_FUNC(pdev->devfn) != 0)
1373 		return -ENODEV;
1374 
1375 	/* Ask the devices for the number of CSROWS and CHANNELS so
1376 	 * that we can calculate the memory resources, etc
1377 	 *
1378 	 * The Chipset will report what it can handle which will be greater
1379 	 * or equal to what the motherboard manufacturer will implement.
1380 	 *
1381 	 * As we don't have a motherboard identification routine to determine
1382 	 * actual number of slots/dimms per channel, we thus utilize the
1383 	 * resource as specified by the chipset. Thus, we might have
1384 	 * have more DIMMs per channel than actually on the mobo, but this
1385 	 * allows the driver to support up to the chipset max, without
1386 	 * some fancy mobo determination.
1387 	 */
1388 	i5000_get_dimm_and_channel_counts(pdev, &num_dimms_per_channel,
1389 					&num_channels);
1390 
1391 	debugf0("MC: %s(): Number of Branches=2 Channels= %d  DIMMS= %d\n",
1392 		__func__, num_channels, num_dimms_per_channel);
1393 
1394 	/* allocate a new MC control structure */
1395 
1396 	layers[0].type = EDAC_MC_LAYER_BRANCH;
1397 	layers[0].size = MAX_BRANCHES;
1398 	layers[0].is_virt_csrow = false;
1399 	layers[1].type = EDAC_MC_LAYER_CHANNEL;
1400 	layers[1].size = num_channels / MAX_BRANCHES;
1401 	layers[1].is_virt_csrow = false;
1402 	layers[2].type = EDAC_MC_LAYER_SLOT;
1403 	layers[2].size = num_dimms_per_channel;
1404 	layers[2].is_virt_csrow = true;
1405 	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
1406 	if (mci == NULL)
1407 		return -ENOMEM;
1408 
1409 	kobject_get(&mci->edac_mci_kobj);
1410 	debugf0("MC: %s: %s(): mci = %p\n", __FILE__, __func__, mci);
1411 
1412 	mci->dev = &pdev->dev;	/* record ptr  to the generic device */
1413 
1414 	pvt = mci->pvt_info;
1415 	pvt->system_address = pdev;	/* Record this device in our private */
1416 	pvt->maxch = num_channels;
1417 	pvt->maxdimmperch = num_dimms_per_channel;
1418 
1419 	/* 'get' the pci devices we want to reserve for our use */
1420 	if (i5000_get_devices(mci, dev_idx))
1421 		goto fail0;
1422 
1423 	/* Time to get serious */
1424 	i5000_get_mc_regs(mci);	/* retrieve the hardware registers */
1425 
1426 	mci->mc_idx = 0;
1427 	mci->mtype_cap = MEM_FLAG_FB_DDR2;
1428 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
1429 	mci->edac_cap = EDAC_FLAG_NONE;
1430 	mci->mod_name = "i5000_edac.c";
1431 	mci->mod_ver = I5000_REVISION;
1432 	mci->ctl_name = i5000_devs[dev_idx].ctl_name;
1433 	mci->dev_name = pci_name(pdev);
1434 	mci->ctl_page_to_phys = NULL;
1435 
1436 	/* Set the function pointer to an actual operation function */
1437 	mci->edac_check = i5000_check_error;
1438 
1439 	/* initialize the MC control structure 'csrows' table
1440 	 * with the mapping and control information */
1441 	if (i5000_init_csrows(mci)) {
1442 		debugf0("MC: Setting mci->edac_cap to EDAC_FLAG_NONE\n"
1443 			"    because i5000_init_csrows() returned nonzero "
1444 			"value\n");
1445 		mci->edac_cap = EDAC_FLAG_NONE;	/* no csrows found */
1446 	} else {
1447 		debugf1("MC: Enable error reporting now\n");
1448 		i5000_enable_error_reporting(mci);
1449 	}
1450 
1451 	/* add this new MC control structure to EDAC's list of MCs */
1452 	if (edac_mc_add_mc(mci)) {
1453 		debugf0("MC: %s: %s(): failed edac_mc_add_mc()\n",
1454 			__FILE__, __func__);
1455 		/* FIXME: perhaps some code should go here that disables error
1456 		 * reporting if we just enabled it
1457 		 */
1458 		goto fail1;
1459 	}
1460 
1461 	i5000_clear_error(mci);
1462 
1463 	/* allocating generic PCI control info */
1464 	i5000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
1465 	if (!i5000_pci) {
1466 		printk(KERN_WARNING
1467 			"%s(): Unable to create PCI control\n",
1468 			__func__);
1469 		printk(KERN_WARNING
1470 			"%s(): PCI error report via EDAC not setup\n",
1471 			__func__);
1472 	}
1473 
1474 	return 0;
1475 
1476 	/* Error exit unwinding stack */
1477 fail1:
1478 
1479 	i5000_put_devices(mci);
1480 
1481 fail0:
1482 	kobject_put(&mci->edac_mci_kobj);
1483 	edac_mc_free(mci);
1484 	return -ENODEV;
1485 }
1486 
1487 /*
1488  *	i5000_init_one	constructor for one instance of device
1489  *
1490  * 	returns:
1491  *		negative on error
1492  *		count (>= 0)
1493  */
1494 static int __devinit i5000_init_one(struct pci_dev *pdev,
1495 				const struct pci_device_id *id)
1496 {
1497 	int rc;
1498 
1499 	debugf0("MC: %s: %s()\n", __FILE__, __func__);
1500 
1501 	/* wake up device */
1502 	rc = pci_enable_device(pdev);
1503 	if (rc)
1504 		return rc;
1505 
1506 	/* now probe and enable the device */
1507 	return i5000_probe1(pdev, id->driver_data);
1508 }
1509 
1510 /*
1511  *	i5000_remove_one	destructor for one instance of device
1512  *
1513  */
1514 static void __devexit i5000_remove_one(struct pci_dev *pdev)
1515 {
1516 	struct mem_ctl_info *mci;
1517 
1518 	debugf0("%s: %s()\n", __FILE__, __func__);
1519 
1520 	if (i5000_pci)
1521 		edac_pci_release_generic_ctl(i5000_pci);
1522 
1523 	if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL)
1524 		return;
1525 
1526 	/* retrieve references to resources, and free those resources */
1527 	i5000_put_devices(mci);
1528 	kobject_put(&mci->edac_mci_kobj);
1529 	edac_mc_free(mci);
1530 }
1531 
1532 /*
1533  *	pci_device_id	table for which devices we are looking for
1534  *
1535  *	The "E500P" device is the first device supported.
1536  */
1537 static DEFINE_PCI_DEVICE_TABLE(i5000_pci_tbl) = {
1538 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I5000_DEV16),
1539 	 .driver_data = I5000P},
1540 
1541 	{0,}			/* 0 terminated list. */
1542 };
1543 
1544 MODULE_DEVICE_TABLE(pci, i5000_pci_tbl);
1545 
1546 /*
1547  *	i5000_driver	pci_driver structure for this module
1548  *
1549  */
1550 static struct pci_driver i5000_driver = {
1551 	.name = KBUILD_BASENAME,
1552 	.probe = i5000_init_one,
1553 	.remove = __devexit_p(i5000_remove_one),
1554 	.id_table = i5000_pci_tbl,
1555 };
1556 
1557 /*
1558  *	i5000_init		Module entry function
1559  *			Try to initialize this module for its devices
1560  */
1561 static int __init i5000_init(void)
1562 {
1563 	int pci_rc;
1564 
1565 	debugf2("MC: %s: %s()\n", __FILE__, __func__);
1566 
1567        /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1568        opstate_init();
1569 
1570 	pci_rc = pci_register_driver(&i5000_driver);
1571 
1572 	return (pci_rc < 0) ? pci_rc : 0;
1573 }
1574 
1575 /*
1576  *	i5000_exit()	Module exit function
1577  *			Unregister the driver
1578  */
1579 static void __exit i5000_exit(void)
1580 {
1581 	debugf2("MC: %s: %s()\n", __FILE__, __func__);
1582 	pci_unregister_driver(&i5000_driver);
1583 }
1584 
1585 module_init(i5000_init);
1586 module_exit(i5000_exit);
1587 
1588 MODULE_LICENSE("GPL");
1589 MODULE_AUTHOR
1590     ("Linux Networx (http://lnxi.com) Doug Thompson <norsk5@xmission.com>");
1591 MODULE_DESCRIPTION("MC Driver for Intel I5000 memory controllers - "
1592 		I5000_REVISION);
1593 
1594 module_param(edac_op_state, int, 0444);
1595 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1596 module_param(misc_messages, int, 0444);
1597 MODULE_PARM_DESC(misc_messages, "Log miscellaneous non fatal messages");
1598 
1599