1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Driver for Intel(R) 10nm server memory controller. 4 * Copyright (c) 2019, Intel Corporation. 5 * 6 */ 7 8 #include <linux/kernel.h> 9 #include <linux/io.h> 10 #include <asm/cpu_device_id.h> 11 #include <asm/intel-family.h> 12 #include <asm/mce.h> 13 #include "edac_module.h" 14 #include "skx_common.h" 15 16 #define I10NM_REVISION "v0.0.6" 17 #define EDAC_MOD_STR "i10nm_edac" 18 19 /* Debug macros */ 20 #define i10nm_printk(level, fmt, arg...) \ 21 edac_printk(level, "i10nm", fmt, ##arg) 22 23 #define I10NM_GET_SCK_BAR(d, reg) \ 24 pci_read_config_dword((d)->uracu, 0xd0, &(reg)) 25 #define I10NM_GET_IMC_BAR(d, i, reg) \ 26 pci_read_config_dword((d)->uracu, \ 27 (res_cfg->type == GNR ? 0xd4 : 0xd8) + (i) * 4, &(reg)) 28 #define I10NM_GET_SAD(d, offset, i, reg)\ 29 pci_read_config_dword((d)->sad_all, (offset) + (i) * \ 30 (res_cfg->type == GNR ? 12 : 8), &(reg)) 31 #define I10NM_GET_HBM_IMC_BAR(d, reg) \ 32 pci_read_config_dword((d)->uracu, 0xd4, &(reg)) 33 #define I10NM_GET_CAPID3_CFG(d, reg) \ 34 pci_read_config_dword((d)->pcu_cr3, \ 35 res_cfg->type == GNR ? 0x290 : 0x90, &(reg)) 36 #define I10NM_GET_CAPID5_CFG(d, reg) \ 37 pci_read_config_dword((d)->pcu_cr3, \ 38 res_cfg->type == GNR ? 0x298 : 0x98, &(reg)) 39 #define I10NM_GET_DIMMMTR(m, i, j) \ 40 readl((m)->mbase + ((m)->hbm_mc ? 0x80c : \ 41 (res_cfg->type == GNR ? 0xc0c : 0x2080c)) + \ 42 (i) * (m)->chan_mmio_sz + (j) * 4) 43 #define I10NM_GET_MCDDRTCFG(m, i) \ 44 readl((m)->mbase + ((m)->hbm_mc ? 0x970 : 0x20970) + \ 45 (i) * (m)->chan_mmio_sz) 46 #define I10NM_GET_MCMTR(m, i) \ 47 readl((m)->mbase + ((m)->hbm_mc ? 0xef8 : \ 48 (res_cfg->type == GNR ? 0xaf8 : 0x20ef8)) + \ 49 (i) * (m)->chan_mmio_sz) 50 #define I10NM_GET_REG32(m, i, offset) \ 51 readl((m)->mbase + (i) * (m)->chan_mmio_sz + (offset)) 52 #define I10NM_GET_REG64(m, i, offset) \ 53 readq((m)->mbase + (i) * (m)->chan_mmio_sz + (offset)) 54 #define I10NM_SET_REG32(m, i, offset, v) \ 55 writel(v, (m)->mbase + (i) * (m)->chan_mmio_sz + (offset)) 56 57 #define I10NM_GET_SCK_MMIO_BASE(reg) (GET_BITFIELD(reg, 0, 28) << 23) 58 #define I10NM_GET_IMC_MMIO_OFFSET(reg) (GET_BITFIELD(reg, 0, 10) << 12) 59 #define I10NM_GET_IMC_MMIO_SIZE(reg) ((GET_BITFIELD(reg, 13, 23) - \ 60 GET_BITFIELD(reg, 0, 10) + 1) << 12) 61 #define I10NM_GET_HBM_IMC_MMIO_OFFSET(reg) \ 62 ((GET_BITFIELD(reg, 0, 10) << 12) + 0x140000) 63 64 #define I10NM_GNR_IMC_MMIO_OFFSET 0x24c000 65 #define I10NM_GNR_IMC_MMIO_SIZE 0x4000 66 #define I10NM_HBM_IMC_MMIO_SIZE 0x9000 67 #define I10NM_DDR_IMC_CH_CNT(reg) GET_BITFIELD(reg, 21, 24) 68 #define I10NM_IS_HBM_PRESENT(reg) GET_BITFIELD(reg, 27, 30) 69 #define I10NM_IS_HBM_IMC(reg) GET_BITFIELD(reg, 29, 29) 70 71 #define I10NM_MAX_SAD 16 72 #define I10NM_SAD_ENABLE(reg) GET_BITFIELD(reg, 0, 0) 73 #define I10NM_SAD_NM_CACHEABLE(reg) GET_BITFIELD(reg, 5, 5) 74 75 #define RETRY_RD_ERR_LOG_UC BIT(1) 76 #define RETRY_RD_ERR_LOG_NOOVER BIT(14) 77 #define RETRY_RD_ERR_LOG_EN BIT(15) 78 #define RETRY_RD_ERR_LOG_NOOVER_UC (BIT(14) | BIT(1)) 79 #define RETRY_RD_ERR_LOG_OVER_UC_V (BIT(2) | BIT(1) | BIT(0)) 80 81 static struct list_head *i10nm_edac_list; 82 83 static struct res_config *res_cfg; 84 static int retry_rd_err_log; 85 static int decoding_via_mca; 86 static bool mem_cfg_2lm; 87 88 static u32 offsets_scrub_icx[] = {0x22c60, 0x22c54, 0x22c5c, 0x22c58, 0x22c28, 0x20ed8}; 89 static u32 offsets_scrub_spr[] = {0x22c60, 0x22c54, 0x22f08, 0x22c58, 0x22c28, 0x20ed8}; 90 static u32 offsets_scrub_spr_hbm0[] = {0x2860, 0x2854, 0x2b08, 0x2858, 0x2828, 0x0ed8}; 91 static u32 offsets_scrub_spr_hbm1[] = {0x2c60, 0x2c54, 0x2f08, 0x2c58, 0x2c28, 0x0fa8}; 92 static u32 offsets_demand_icx[] = {0x22e54, 0x22e60, 0x22e64, 0x22e58, 0x22e5c, 0x20ee0}; 93 static u32 offsets_demand_spr[] = {0x22e54, 0x22e60, 0x22f10, 0x22e58, 0x22e5c, 0x20ee0}; 94 static u32 offsets_demand2_spr[] = {0x22c70, 0x22d80, 0x22f18, 0x22d58, 0x22c64, 0x20f10}; 95 static u32 offsets_demand_spr_hbm0[] = {0x2a54, 0x2a60, 0x2b10, 0x2a58, 0x2a5c, 0x0ee0}; 96 static u32 offsets_demand_spr_hbm1[] = {0x2e54, 0x2e60, 0x2f10, 0x2e58, 0x2e5c, 0x0fb0}; 97 98 static void __enable_retry_rd_err_log(struct skx_imc *imc, int chan, bool enable, 99 u32 *offsets_scrub, u32 *offsets_demand, 100 u32 *offsets_demand2) 101 { 102 u32 s, d, d2; 103 104 s = I10NM_GET_REG32(imc, chan, offsets_scrub[0]); 105 d = I10NM_GET_REG32(imc, chan, offsets_demand[0]); 106 if (offsets_demand2) 107 d2 = I10NM_GET_REG32(imc, chan, offsets_demand2[0]); 108 109 if (enable) { 110 /* Save default configurations */ 111 imc->chan[chan].retry_rd_err_log_s = s; 112 imc->chan[chan].retry_rd_err_log_d = d; 113 if (offsets_demand2) 114 imc->chan[chan].retry_rd_err_log_d2 = d2; 115 116 s &= ~RETRY_RD_ERR_LOG_NOOVER_UC; 117 s |= RETRY_RD_ERR_LOG_EN; 118 d &= ~RETRY_RD_ERR_LOG_NOOVER_UC; 119 d |= RETRY_RD_ERR_LOG_EN; 120 121 if (offsets_demand2) { 122 d2 &= ~RETRY_RD_ERR_LOG_UC; 123 d2 |= RETRY_RD_ERR_LOG_NOOVER; 124 d2 |= RETRY_RD_ERR_LOG_EN; 125 } 126 } else { 127 /* Restore default configurations */ 128 if (imc->chan[chan].retry_rd_err_log_s & RETRY_RD_ERR_LOG_UC) 129 s |= RETRY_RD_ERR_LOG_UC; 130 if (imc->chan[chan].retry_rd_err_log_s & RETRY_RD_ERR_LOG_NOOVER) 131 s |= RETRY_RD_ERR_LOG_NOOVER; 132 if (!(imc->chan[chan].retry_rd_err_log_s & RETRY_RD_ERR_LOG_EN)) 133 s &= ~RETRY_RD_ERR_LOG_EN; 134 if (imc->chan[chan].retry_rd_err_log_d & RETRY_RD_ERR_LOG_UC) 135 d |= RETRY_RD_ERR_LOG_UC; 136 if (imc->chan[chan].retry_rd_err_log_d & RETRY_RD_ERR_LOG_NOOVER) 137 d |= RETRY_RD_ERR_LOG_NOOVER; 138 if (!(imc->chan[chan].retry_rd_err_log_d & RETRY_RD_ERR_LOG_EN)) 139 d &= ~RETRY_RD_ERR_LOG_EN; 140 141 if (offsets_demand2) { 142 if (imc->chan[chan].retry_rd_err_log_d2 & RETRY_RD_ERR_LOG_UC) 143 d2 |= RETRY_RD_ERR_LOG_UC; 144 if (!(imc->chan[chan].retry_rd_err_log_d2 & RETRY_RD_ERR_LOG_NOOVER)) 145 d2 &= ~RETRY_RD_ERR_LOG_NOOVER; 146 if (!(imc->chan[chan].retry_rd_err_log_d2 & RETRY_RD_ERR_LOG_EN)) 147 d2 &= ~RETRY_RD_ERR_LOG_EN; 148 } 149 } 150 151 I10NM_SET_REG32(imc, chan, offsets_scrub[0], s); 152 I10NM_SET_REG32(imc, chan, offsets_demand[0], d); 153 if (offsets_demand2) 154 I10NM_SET_REG32(imc, chan, offsets_demand2[0], d2); 155 } 156 157 static void enable_retry_rd_err_log(bool enable) 158 { 159 int i, j, imc_num, chan_num; 160 struct skx_imc *imc; 161 struct skx_dev *d; 162 163 edac_dbg(2, "\n"); 164 165 list_for_each_entry(d, i10nm_edac_list, list) { 166 imc_num = res_cfg->ddr_imc_num; 167 chan_num = res_cfg->ddr_chan_num; 168 169 for (i = 0; i < imc_num; i++) { 170 imc = &d->imc[i]; 171 if (!imc->mbase) 172 continue; 173 174 for (j = 0; j < chan_num; j++) 175 __enable_retry_rd_err_log(imc, j, enable, 176 res_cfg->offsets_scrub, 177 res_cfg->offsets_demand, 178 res_cfg->offsets_demand2); 179 } 180 181 imc_num += res_cfg->hbm_imc_num; 182 chan_num = res_cfg->hbm_chan_num; 183 184 for (; i < imc_num; i++) { 185 imc = &d->imc[i]; 186 if (!imc->mbase || !imc->hbm_mc) 187 continue; 188 189 for (j = 0; j < chan_num; j++) { 190 __enable_retry_rd_err_log(imc, j, enable, 191 res_cfg->offsets_scrub_hbm0, 192 res_cfg->offsets_demand_hbm0, 193 NULL); 194 __enable_retry_rd_err_log(imc, j, enable, 195 res_cfg->offsets_scrub_hbm1, 196 res_cfg->offsets_demand_hbm1, 197 NULL); 198 } 199 } 200 } 201 } 202 203 static void show_retry_rd_err_log(struct decoded_addr *res, char *msg, 204 int len, bool scrub_err) 205 { 206 struct skx_imc *imc = &res->dev->imc[res->imc]; 207 u32 log0, log1, log2, log3, log4; 208 u32 corr0, corr1, corr2, corr3; 209 u32 lxg0, lxg1, lxg3, lxg4; 210 u32 *xffsets = NULL; 211 u64 log2a, log5; 212 u64 lxg2a, lxg5; 213 u32 *offsets; 214 int n, pch; 215 216 if (!imc->mbase) 217 return; 218 219 if (imc->hbm_mc) { 220 pch = res->cs & 1; 221 222 if (pch) 223 offsets = scrub_err ? res_cfg->offsets_scrub_hbm1 : 224 res_cfg->offsets_demand_hbm1; 225 else 226 offsets = scrub_err ? res_cfg->offsets_scrub_hbm0 : 227 res_cfg->offsets_demand_hbm0; 228 } else { 229 if (scrub_err) { 230 offsets = res_cfg->offsets_scrub; 231 } else { 232 offsets = res_cfg->offsets_demand; 233 xffsets = res_cfg->offsets_demand2; 234 } 235 } 236 237 log0 = I10NM_GET_REG32(imc, res->channel, offsets[0]); 238 log1 = I10NM_GET_REG32(imc, res->channel, offsets[1]); 239 log3 = I10NM_GET_REG32(imc, res->channel, offsets[3]); 240 log4 = I10NM_GET_REG32(imc, res->channel, offsets[4]); 241 log5 = I10NM_GET_REG64(imc, res->channel, offsets[5]); 242 243 if (xffsets) { 244 lxg0 = I10NM_GET_REG32(imc, res->channel, xffsets[0]); 245 lxg1 = I10NM_GET_REG32(imc, res->channel, xffsets[1]); 246 lxg3 = I10NM_GET_REG32(imc, res->channel, xffsets[3]); 247 lxg4 = I10NM_GET_REG32(imc, res->channel, xffsets[4]); 248 lxg5 = I10NM_GET_REG64(imc, res->channel, xffsets[5]); 249 } 250 251 if (res_cfg->type == SPR) { 252 log2a = I10NM_GET_REG64(imc, res->channel, offsets[2]); 253 n = snprintf(msg, len, " retry_rd_err_log[%.8x %.8x %.16llx %.8x %.8x %.16llx", 254 log0, log1, log2a, log3, log4, log5); 255 256 if (len - n > 0) { 257 if (xffsets) { 258 lxg2a = I10NM_GET_REG64(imc, res->channel, xffsets[2]); 259 n += snprintf(msg + n, len - n, " %.8x %.8x %.16llx %.8x %.8x %.16llx]", 260 lxg0, lxg1, lxg2a, lxg3, lxg4, lxg5); 261 } else { 262 n += snprintf(msg + n, len - n, "]"); 263 } 264 } 265 } else { 266 log2 = I10NM_GET_REG32(imc, res->channel, offsets[2]); 267 n = snprintf(msg, len, " retry_rd_err_log[%.8x %.8x %.8x %.8x %.8x %.16llx]", 268 log0, log1, log2, log3, log4, log5); 269 } 270 271 if (imc->hbm_mc) { 272 if (pch) { 273 corr0 = I10NM_GET_REG32(imc, res->channel, 0x2c18); 274 corr1 = I10NM_GET_REG32(imc, res->channel, 0x2c1c); 275 corr2 = I10NM_GET_REG32(imc, res->channel, 0x2c20); 276 corr3 = I10NM_GET_REG32(imc, res->channel, 0x2c24); 277 } else { 278 corr0 = I10NM_GET_REG32(imc, res->channel, 0x2818); 279 corr1 = I10NM_GET_REG32(imc, res->channel, 0x281c); 280 corr2 = I10NM_GET_REG32(imc, res->channel, 0x2820); 281 corr3 = I10NM_GET_REG32(imc, res->channel, 0x2824); 282 } 283 } else { 284 corr0 = I10NM_GET_REG32(imc, res->channel, 0x22c18); 285 corr1 = I10NM_GET_REG32(imc, res->channel, 0x22c1c); 286 corr2 = I10NM_GET_REG32(imc, res->channel, 0x22c20); 287 corr3 = I10NM_GET_REG32(imc, res->channel, 0x22c24); 288 } 289 290 if (len - n > 0) 291 snprintf(msg + n, len - n, 292 " correrrcnt[%.4x %.4x %.4x %.4x %.4x %.4x %.4x %.4x]", 293 corr0 & 0xffff, corr0 >> 16, 294 corr1 & 0xffff, corr1 >> 16, 295 corr2 & 0xffff, corr2 >> 16, 296 corr3 & 0xffff, corr3 >> 16); 297 298 /* Clear status bits */ 299 if (retry_rd_err_log == 2) { 300 if (log0 & RETRY_RD_ERR_LOG_OVER_UC_V) { 301 log0 &= ~RETRY_RD_ERR_LOG_OVER_UC_V; 302 I10NM_SET_REG32(imc, res->channel, offsets[0], log0); 303 } 304 305 if (xffsets && (lxg0 & RETRY_RD_ERR_LOG_OVER_UC_V)) { 306 lxg0 &= ~RETRY_RD_ERR_LOG_OVER_UC_V; 307 I10NM_SET_REG32(imc, res->channel, xffsets[0], lxg0); 308 } 309 } 310 } 311 312 static struct pci_dev *pci_get_dev_wrapper(int dom, unsigned int bus, 313 unsigned int dev, unsigned int fun) 314 { 315 struct pci_dev *pdev; 316 317 pdev = pci_get_domain_bus_and_slot(dom, bus, PCI_DEVFN(dev, fun)); 318 if (!pdev) { 319 edac_dbg(2, "No device %02x:%02x.%x\n", 320 bus, dev, fun); 321 return NULL; 322 } 323 324 if (unlikely(pci_enable_device(pdev) < 0)) { 325 edac_dbg(2, "Failed to enable device %02x:%02x.%x\n", 326 bus, dev, fun); 327 pci_dev_put(pdev); 328 return NULL; 329 } 330 331 return pdev; 332 } 333 334 /** 335 * i10nm_get_imc_num() - Get the number of present DDR memory controllers. 336 * 337 * @cfg : The pointer to the structure of EDAC resource configurations. 338 * 339 * For Granite Rapids CPUs, the number of present DDR memory controllers read 340 * at runtime overwrites the value statically configured in @cfg->ddr_imc_num. 341 * For other CPUs, the number of present DDR memory controllers is statically 342 * configured in @cfg->ddr_imc_num. 343 * 344 * RETURNS : 0 on success, < 0 on failure. 345 */ 346 static int i10nm_get_imc_num(struct res_config *cfg) 347 { 348 int n, imc_num, chan_num = 0; 349 struct skx_dev *d; 350 u32 reg; 351 352 list_for_each_entry(d, i10nm_edac_list, list) { 353 d->pcu_cr3 = pci_get_dev_wrapper(d->seg, d->bus[res_cfg->pcu_cr3_bdf.bus], 354 res_cfg->pcu_cr3_bdf.dev, 355 res_cfg->pcu_cr3_bdf.fun); 356 if (!d->pcu_cr3) 357 continue; 358 359 if (I10NM_GET_CAPID5_CFG(d, reg)) 360 continue; 361 362 n = I10NM_DDR_IMC_CH_CNT(reg); 363 364 if (!chan_num) { 365 chan_num = n; 366 edac_dbg(2, "Get DDR CH number: %d\n", chan_num); 367 } else if (chan_num != n) { 368 i10nm_printk(KERN_NOTICE, "Get DDR CH numbers: %d, %d\n", chan_num, n); 369 } 370 } 371 372 switch (cfg->type) { 373 case GNR: 374 /* 375 * One channel per DDR memory controller for Granite Rapids CPUs. 376 */ 377 imc_num = chan_num; 378 379 if (!imc_num) { 380 i10nm_printk(KERN_ERR, "Invalid DDR MC number\n"); 381 return -ENODEV; 382 } 383 384 if (imc_num > I10NM_NUM_DDR_IMC) { 385 i10nm_printk(KERN_ERR, "Need to make I10NM_NUM_DDR_IMC >= %d\n", imc_num); 386 return -EINVAL; 387 } 388 389 if (cfg->ddr_imc_num != imc_num) { 390 /* 391 * Store the number of present DDR memory controllers. 392 */ 393 cfg->ddr_imc_num = imc_num; 394 edac_dbg(2, "Set DDR MC number: %d", imc_num); 395 } 396 397 return 0; 398 default: 399 /* 400 * For other CPUs, the number of present DDR memory controllers 401 * is statically pre-configured in cfg->ddr_imc_num. 402 */ 403 return 0; 404 } 405 } 406 407 static bool i10nm_check_2lm(struct res_config *cfg) 408 { 409 struct skx_dev *d; 410 u32 reg; 411 int i; 412 413 list_for_each_entry(d, i10nm_edac_list, list) { 414 d->sad_all = pci_get_dev_wrapper(d->seg, d->bus[res_cfg->sad_all_bdf.bus], 415 res_cfg->sad_all_bdf.dev, 416 res_cfg->sad_all_bdf.fun); 417 if (!d->sad_all) 418 continue; 419 420 for (i = 0; i < I10NM_MAX_SAD; i++) { 421 I10NM_GET_SAD(d, cfg->sad_all_offset, i, reg); 422 if (I10NM_SAD_ENABLE(reg) && I10NM_SAD_NM_CACHEABLE(reg)) { 423 edac_dbg(2, "2-level memory configuration.\n"); 424 return true; 425 } 426 } 427 } 428 429 return false; 430 } 431 432 /* 433 * Check whether the error comes from DDRT by ICX/Tremont/SPR model specific error code. 434 * Refer to SDM vol3B 17.11.3/17.13.2 Intel IMC MC error codes for IA32_MCi_STATUS. 435 */ 436 static bool i10nm_mscod_is_ddrt(u32 mscod) 437 { 438 switch (res_cfg->type) { 439 case I10NM: 440 switch (mscod) { 441 case 0x0106: case 0x0107: 442 case 0x0800: case 0x0804: 443 case 0x0806 ... 0x0808: 444 case 0x080a ... 0x080e: 445 case 0x0810: case 0x0811: 446 case 0x0816: case 0x081e: 447 case 0x081f: 448 return true; 449 } 450 451 break; 452 case SPR: 453 switch (mscod) { 454 case 0x0800: case 0x0804: 455 case 0x0806 ... 0x0808: 456 case 0x080a ... 0x080e: 457 case 0x0810: case 0x0811: 458 case 0x0816: case 0x081e: 459 case 0x081f: 460 return true; 461 } 462 463 break; 464 default: 465 return false; 466 } 467 468 return false; 469 } 470 471 static bool i10nm_mc_decode_available(struct mce *mce) 472 { 473 #define ICX_IMCx_CHy 0x06666000 474 u8 bank; 475 476 if (!decoding_via_mca || mem_cfg_2lm) 477 return false; 478 479 if ((mce->status & (MCI_STATUS_MISCV | MCI_STATUS_ADDRV)) 480 != (MCI_STATUS_MISCV | MCI_STATUS_ADDRV)) 481 return false; 482 483 bank = mce->bank; 484 485 switch (res_cfg->type) { 486 case I10NM: 487 /* Check whether the bank is one of {13,14,17,18,21,22,25,26} */ 488 if (!(ICX_IMCx_CHy & (1 << bank))) 489 return false; 490 break; 491 case SPR: 492 if (bank < 13 || bank > 20) 493 return false; 494 break; 495 default: 496 return false; 497 } 498 499 /* DDRT errors can't be decoded from MCA bank registers */ 500 if (MCI_MISC_ECC_MODE(mce->misc) == MCI_MISC_ECC_DDRT) 501 return false; 502 503 if (i10nm_mscod_is_ddrt(MCI_STATUS_MSCOD(mce->status))) 504 return false; 505 506 return true; 507 } 508 509 static bool i10nm_mc_decode(struct decoded_addr *res) 510 { 511 struct mce *m = res->mce; 512 struct skx_dev *d; 513 u8 bank; 514 515 if (!i10nm_mc_decode_available(m)) 516 return false; 517 518 list_for_each_entry(d, i10nm_edac_list, list) { 519 if (d->imc[0].src_id == m->socketid) { 520 res->socket = m->socketid; 521 res->dev = d; 522 break; 523 } 524 } 525 526 switch (res_cfg->type) { 527 case I10NM: 528 bank = m->bank - 13; 529 res->imc = bank / 4; 530 res->channel = bank % 2; 531 res->column = GET_BITFIELD(m->misc, 9, 18) << 2; 532 res->row = GET_BITFIELD(m->misc, 19, 39); 533 res->bank_group = GET_BITFIELD(m->misc, 40, 41); 534 res->bank_address = GET_BITFIELD(m->misc, 42, 43); 535 res->bank_group |= GET_BITFIELD(m->misc, 44, 44) << 2; 536 res->rank = GET_BITFIELD(m->misc, 56, 58); 537 res->dimm = res->rank >> 2; 538 res->rank = res->rank % 4; 539 break; 540 case SPR: 541 bank = m->bank - 13; 542 res->imc = bank / 2; 543 res->channel = bank % 2; 544 res->column = GET_BITFIELD(m->misc, 9, 18) << 2; 545 res->row = GET_BITFIELD(m->misc, 19, 36); 546 res->bank_group = GET_BITFIELD(m->misc, 37, 38); 547 res->bank_address = GET_BITFIELD(m->misc, 39, 40); 548 res->bank_group |= GET_BITFIELD(m->misc, 41, 41) << 2; 549 res->rank = GET_BITFIELD(m->misc, 57, 57); 550 res->dimm = GET_BITFIELD(m->misc, 58, 58); 551 break; 552 default: 553 return false; 554 } 555 556 if (!res->dev) { 557 skx_printk(KERN_ERR, "No device for src_id %d imc %d\n", 558 m->socketid, res->imc); 559 return false; 560 } 561 562 return true; 563 } 564 565 /** 566 * get_gnr_mdev() - Get the PCI device of the @logical_idx-th DDR memory controller. 567 * 568 * @d : The pointer to the structure of CPU socket EDAC device. 569 * @logical_idx : The logical index of the present memory controller (0 ~ max present MC# - 1). 570 * @physical_idx : To store the corresponding physical index of @logical_idx. 571 * 572 * RETURNS : The PCI device of the @logical_idx-th DDR memory controller, NULL on failure. 573 */ 574 static struct pci_dev *get_gnr_mdev(struct skx_dev *d, int logical_idx, int *physical_idx) 575 { 576 #define GNR_MAX_IMC_PCI_CNT 28 577 578 struct pci_dev *mdev; 579 int i, logical = 0; 580 581 /* 582 * Detect present memory controllers from { PCI device: 8-5, function 7-1 } 583 */ 584 for (i = 0; i < GNR_MAX_IMC_PCI_CNT; i++) { 585 mdev = pci_get_dev_wrapper(d->seg, 586 d->bus[res_cfg->ddr_mdev_bdf.bus], 587 res_cfg->ddr_mdev_bdf.dev + i / 7, 588 res_cfg->ddr_mdev_bdf.fun + i % 7); 589 590 if (mdev) { 591 if (logical == logical_idx) { 592 *physical_idx = i; 593 return mdev; 594 } 595 596 pci_dev_put(mdev); 597 logical++; 598 } 599 } 600 601 return NULL; 602 } 603 604 /** 605 * get_ddr_munit() - Get the resource of the i-th DDR memory controller. 606 * 607 * @d : The pointer to the structure of CPU socket EDAC device. 608 * @i : The index of the CPU socket relative DDR memory controller. 609 * @offset : To store the MMIO offset of the i-th DDR memory controller. 610 * @size : To store the MMIO size of the i-th DDR memory controller. 611 * 612 * RETURNS : The PCI device of the i-th DDR memory controller, NULL on failure. 613 */ 614 static struct pci_dev *get_ddr_munit(struct skx_dev *d, int i, u32 *offset, unsigned long *size) 615 { 616 struct pci_dev *mdev; 617 int physical_idx; 618 u32 reg; 619 620 switch (res_cfg->type) { 621 case GNR: 622 if (I10NM_GET_IMC_BAR(d, 0, reg)) { 623 i10nm_printk(KERN_ERR, "Failed to get mc0 bar\n"); 624 return NULL; 625 } 626 627 mdev = get_gnr_mdev(d, i, &physical_idx); 628 if (!mdev) 629 return NULL; 630 631 *offset = I10NM_GET_IMC_MMIO_OFFSET(reg) + 632 I10NM_GNR_IMC_MMIO_OFFSET + 633 physical_idx * I10NM_GNR_IMC_MMIO_SIZE; 634 *size = I10NM_GNR_IMC_MMIO_SIZE; 635 636 break; 637 default: 638 if (I10NM_GET_IMC_BAR(d, i, reg)) { 639 i10nm_printk(KERN_ERR, "Failed to get mc%d bar\n", i); 640 return NULL; 641 } 642 643 mdev = pci_get_dev_wrapper(d->seg, 644 d->bus[res_cfg->ddr_mdev_bdf.bus], 645 res_cfg->ddr_mdev_bdf.dev + i, 646 res_cfg->ddr_mdev_bdf.fun); 647 if (!mdev) 648 return NULL; 649 650 *offset = I10NM_GET_IMC_MMIO_OFFSET(reg); 651 *size = I10NM_GET_IMC_MMIO_SIZE(reg); 652 } 653 654 return mdev; 655 } 656 657 /** 658 * i10nm_imc_absent() - Check whether the memory controller @imc is absent 659 * 660 * @imc : The pointer to the structure of memory controller EDAC device. 661 * 662 * RETURNS : true if the memory controller EDAC device is absent, false otherwise. 663 */ 664 static bool i10nm_imc_absent(struct skx_imc *imc) 665 { 666 u32 mcmtr; 667 int i; 668 669 switch (res_cfg->type) { 670 case SPR: 671 for (i = 0; i < res_cfg->ddr_chan_num; i++) { 672 mcmtr = I10NM_GET_MCMTR(imc, i); 673 edac_dbg(1, "ch%d mcmtr reg %x\n", i, mcmtr); 674 if (mcmtr != ~0) 675 return false; 676 } 677 678 /* 679 * Some workstations' absent memory controllers still 680 * appear as PCIe devices, misleading the EDAC driver. 681 * By observing that the MMIO registers of these absent 682 * memory controllers consistently hold the value of ~0. 683 * 684 * We identify a memory controller as absent by checking 685 * if its MMIO register "mcmtr" == ~0 in all its channels. 686 */ 687 return true; 688 default: 689 return false; 690 } 691 } 692 693 static int i10nm_get_ddr_munits(void) 694 { 695 struct pci_dev *mdev; 696 void __iomem *mbase; 697 unsigned long size; 698 struct skx_dev *d; 699 int i, lmc, j = 0; 700 u32 reg, off; 701 u64 base; 702 703 list_for_each_entry(d, i10nm_edac_list, list) { 704 d->util_all = pci_get_dev_wrapper(d->seg, d->bus[res_cfg->util_all_bdf.bus], 705 res_cfg->util_all_bdf.dev, 706 res_cfg->util_all_bdf.fun); 707 if (!d->util_all) 708 return -ENODEV; 709 710 d->uracu = pci_get_dev_wrapper(d->seg, d->bus[res_cfg->uracu_bdf.bus], 711 res_cfg->uracu_bdf.dev, 712 res_cfg->uracu_bdf.fun); 713 if (!d->uracu) 714 return -ENODEV; 715 716 if (I10NM_GET_SCK_BAR(d, reg)) { 717 i10nm_printk(KERN_ERR, "Failed to socket bar\n"); 718 return -ENODEV; 719 } 720 721 base = I10NM_GET_SCK_MMIO_BASE(reg); 722 edac_dbg(2, "socket%d mmio base 0x%llx (reg 0x%x)\n", 723 j++, base, reg); 724 725 for (lmc = 0, i = 0; i < res_cfg->ddr_imc_num; i++) { 726 mdev = get_ddr_munit(d, i, &off, &size); 727 728 if (i == 0 && !mdev) { 729 i10nm_printk(KERN_ERR, "No IMC found\n"); 730 return -ENODEV; 731 } 732 if (!mdev) 733 continue; 734 735 edac_dbg(2, "mc%d mmio base 0x%llx size 0x%lx (reg 0x%x)\n", 736 i, base + off, size, reg); 737 738 mbase = ioremap(base + off, size); 739 if (!mbase) { 740 i10nm_printk(KERN_ERR, "Failed to ioremap 0x%llx\n", 741 base + off); 742 return -ENODEV; 743 } 744 745 d->imc[lmc].mbase = mbase; 746 if (i10nm_imc_absent(&d->imc[lmc])) { 747 pci_dev_put(mdev); 748 iounmap(mbase); 749 d->imc[lmc].mbase = NULL; 750 edac_dbg(2, "Skip absent mc%d\n", i); 751 continue; 752 } else { 753 d->imc[lmc].mdev = mdev; 754 lmc++; 755 } 756 } 757 } 758 759 return 0; 760 } 761 762 static bool i10nm_check_hbm_imc(struct skx_dev *d) 763 { 764 u32 reg; 765 766 if (I10NM_GET_CAPID3_CFG(d, reg)) { 767 i10nm_printk(KERN_ERR, "Failed to get capid3_cfg\n"); 768 return false; 769 } 770 771 return I10NM_IS_HBM_PRESENT(reg) != 0; 772 } 773 774 static int i10nm_get_hbm_munits(void) 775 { 776 struct pci_dev *mdev; 777 void __iomem *mbase; 778 u32 reg, off, mcmtr; 779 struct skx_dev *d; 780 int i, lmc; 781 u64 base; 782 783 list_for_each_entry(d, i10nm_edac_list, list) { 784 if (!d->pcu_cr3) 785 return -ENODEV; 786 787 if (!i10nm_check_hbm_imc(d)) { 788 i10nm_printk(KERN_DEBUG, "No hbm memory\n"); 789 return -ENODEV; 790 } 791 792 if (I10NM_GET_SCK_BAR(d, reg)) { 793 i10nm_printk(KERN_ERR, "Failed to get socket bar\n"); 794 return -ENODEV; 795 } 796 base = I10NM_GET_SCK_MMIO_BASE(reg); 797 798 if (I10NM_GET_HBM_IMC_BAR(d, reg)) { 799 i10nm_printk(KERN_ERR, "Failed to get hbm mc bar\n"); 800 return -ENODEV; 801 } 802 base += I10NM_GET_HBM_IMC_MMIO_OFFSET(reg); 803 804 lmc = res_cfg->ddr_imc_num; 805 806 for (i = 0; i < res_cfg->hbm_imc_num; i++) { 807 mdev = pci_get_dev_wrapper(d->seg, d->bus[res_cfg->hbm_mdev_bdf.bus], 808 res_cfg->hbm_mdev_bdf.dev + i / 4, 809 res_cfg->hbm_mdev_bdf.fun + i % 4); 810 811 if (i == 0 && !mdev) { 812 i10nm_printk(KERN_ERR, "No hbm mc found\n"); 813 return -ENODEV; 814 } 815 if (!mdev) 816 continue; 817 818 d->imc[lmc].mdev = mdev; 819 off = i * I10NM_HBM_IMC_MMIO_SIZE; 820 821 edac_dbg(2, "hbm mc%d mmio base 0x%llx size 0x%x\n", 822 lmc, base + off, I10NM_HBM_IMC_MMIO_SIZE); 823 824 mbase = ioremap(base + off, I10NM_HBM_IMC_MMIO_SIZE); 825 if (!mbase) { 826 pci_dev_put(d->imc[lmc].mdev); 827 d->imc[lmc].mdev = NULL; 828 829 i10nm_printk(KERN_ERR, "Failed to ioremap for hbm mc 0x%llx\n", 830 base + off); 831 return -ENOMEM; 832 } 833 834 d->imc[lmc].mbase = mbase; 835 d->imc[lmc].hbm_mc = true; 836 837 mcmtr = I10NM_GET_MCMTR(&d->imc[lmc], 0); 838 if (!I10NM_IS_HBM_IMC(mcmtr)) { 839 iounmap(d->imc[lmc].mbase); 840 d->imc[lmc].mbase = NULL; 841 d->imc[lmc].hbm_mc = false; 842 pci_dev_put(d->imc[lmc].mdev); 843 d->imc[lmc].mdev = NULL; 844 845 i10nm_printk(KERN_ERR, "This isn't an hbm mc!\n"); 846 return -ENODEV; 847 } 848 849 lmc++; 850 } 851 } 852 853 return 0; 854 } 855 856 static struct res_config i10nm_cfg0 = { 857 .type = I10NM, 858 .decs_did = 0x3452, 859 .busno_cfg_offset = 0xcc, 860 .ddr_imc_num = 4, 861 .ddr_chan_num = 2, 862 .ddr_dimm_num = 2, 863 .ddr_chan_mmio_sz = 0x4000, 864 .sad_all_bdf = {1, 29, 0}, 865 .pcu_cr3_bdf = {1, 30, 3}, 866 .util_all_bdf = {1, 29, 1}, 867 .uracu_bdf = {0, 0, 1}, 868 .ddr_mdev_bdf = {0, 12, 0}, 869 .hbm_mdev_bdf = {0, 12, 1}, 870 .sad_all_offset = 0x108, 871 .offsets_scrub = offsets_scrub_icx, 872 .offsets_demand = offsets_demand_icx, 873 }; 874 875 static struct res_config i10nm_cfg1 = { 876 .type = I10NM, 877 .decs_did = 0x3452, 878 .busno_cfg_offset = 0xd0, 879 .ddr_imc_num = 4, 880 .ddr_chan_num = 2, 881 .ddr_dimm_num = 2, 882 .ddr_chan_mmio_sz = 0x4000, 883 .sad_all_bdf = {1, 29, 0}, 884 .pcu_cr3_bdf = {1, 30, 3}, 885 .util_all_bdf = {1, 29, 1}, 886 .uracu_bdf = {0, 0, 1}, 887 .ddr_mdev_bdf = {0, 12, 0}, 888 .hbm_mdev_bdf = {0, 12, 1}, 889 .sad_all_offset = 0x108, 890 .offsets_scrub = offsets_scrub_icx, 891 .offsets_demand = offsets_demand_icx, 892 }; 893 894 static struct res_config spr_cfg = { 895 .type = SPR, 896 .decs_did = 0x3252, 897 .busno_cfg_offset = 0xd0, 898 .ddr_imc_num = 4, 899 .ddr_chan_num = 2, 900 .ddr_dimm_num = 2, 901 .hbm_imc_num = 16, 902 .hbm_chan_num = 2, 903 .hbm_dimm_num = 1, 904 .ddr_chan_mmio_sz = 0x8000, 905 .hbm_chan_mmio_sz = 0x4000, 906 .support_ddr5 = true, 907 .sad_all_bdf = {1, 10, 0}, 908 .pcu_cr3_bdf = {1, 30, 3}, 909 .util_all_bdf = {1, 29, 1}, 910 .uracu_bdf = {0, 0, 1}, 911 .ddr_mdev_bdf = {0, 12, 0}, 912 .hbm_mdev_bdf = {0, 12, 1}, 913 .sad_all_offset = 0x300, 914 .offsets_scrub = offsets_scrub_spr, 915 .offsets_scrub_hbm0 = offsets_scrub_spr_hbm0, 916 .offsets_scrub_hbm1 = offsets_scrub_spr_hbm1, 917 .offsets_demand = offsets_demand_spr, 918 .offsets_demand2 = offsets_demand2_spr, 919 .offsets_demand_hbm0 = offsets_demand_spr_hbm0, 920 .offsets_demand_hbm1 = offsets_demand_spr_hbm1, 921 }; 922 923 static struct res_config gnr_cfg = { 924 .type = GNR, 925 .decs_did = 0x3252, 926 .busno_cfg_offset = 0xd0, 927 .ddr_imc_num = 12, 928 .ddr_chan_num = 1, 929 .ddr_dimm_num = 2, 930 .ddr_chan_mmio_sz = 0x4000, 931 .support_ddr5 = true, 932 .sad_all_bdf = {0, 13, 0}, 933 .pcu_cr3_bdf = {0, 5, 0}, 934 .util_all_bdf = {0, 13, 1}, 935 .uracu_bdf = {0, 0, 1}, 936 .ddr_mdev_bdf = {0, 5, 1}, 937 .sad_all_offset = 0x300, 938 }; 939 940 static const struct x86_cpu_id i10nm_cpuids[] = { 941 X86_MATCH_VFM_STEPPINGS(INTEL_ATOM_TREMONT_D, X86_STEPPINGS(0x0, 0x3), &i10nm_cfg0), 942 X86_MATCH_VFM_STEPPINGS(INTEL_ATOM_TREMONT_D, X86_STEPPINGS(0x4, 0xf), &i10nm_cfg1), 943 X86_MATCH_VFM_STEPPINGS(INTEL_ICELAKE_X, X86_STEPPINGS(0x0, 0x3), &i10nm_cfg0), 944 X86_MATCH_VFM_STEPPINGS(INTEL_ICELAKE_X, X86_STEPPINGS(0x4, 0xf), &i10nm_cfg1), 945 X86_MATCH_VFM_STEPPINGS(INTEL_ICELAKE_D, X86_STEPPINGS(0x0, 0xf), &i10nm_cfg1), 946 X86_MATCH_VFM_STEPPINGS(INTEL_SAPPHIRERAPIDS_X, X86_STEPPINGS(0x0, 0xf), &spr_cfg), 947 X86_MATCH_VFM_STEPPINGS(INTEL_EMERALDRAPIDS_X, X86_STEPPINGS(0x0, 0xf), &spr_cfg), 948 X86_MATCH_VFM_STEPPINGS(INTEL_GRANITERAPIDS_X, X86_STEPPINGS(0x0, 0xf), &gnr_cfg), 949 X86_MATCH_VFM_STEPPINGS(INTEL_ATOM_CRESTMONT_X, X86_STEPPINGS(0x0, 0xf), &gnr_cfg), 950 X86_MATCH_VFM_STEPPINGS(INTEL_ATOM_CRESTMONT, X86_STEPPINGS(0x0, 0xf), &gnr_cfg), 951 {} 952 }; 953 MODULE_DEVICE_TABLE(x86cpu, i10nm_cpuids); 954 955 static bool i10nm_check_ecc(struct skx_imc *imc, int chan) 956 { 957 u32 mcmtr; 958 959 mcmtr = I10NM_GET_MCMTR(imc, chan); 960 edac_dbg(1, "ch%d mcmtr reg %x\n", chan, mcmtr); 961 962 return !!GET_BITFIELD(mcmtr, 2, 2); 963 } 964 965 static int i10nm_get_dimm_config(struct mem_ctl_info *mci, 966 struct res_config *cfg) 967 { 968 struct skx_pvt *pvt = mci->pvt_info; 969 struct skx_imc *imc = pvt->imc; 970 u32 mtr, mcddrtcfg = 0; 971 struct dimm_info *dimm; 972 int i, j, ndimms; 973 974 for (i = 0; i < imc->num_channels; i++) { 975 if (!imc->mbase) 976 continue; 977 978 ndimms = 0; 979 980 if (res_cfg->type != GNR) 981 mcddrtcfg = I10NM_GET_MCDDRTCFG(imc, i); 982 983 for (j = 0; j < imc->num_dimms; j++) { 984 dimm = edac_get_dimm(mci, i, j, 0); 985 mtr = I10NM_GET_DIMMMTR(imc, i, j); 986 edac_dbg(1, "dimmmtr 0x%x mcddrtcfg 0x%x (mc%d ch%d dimm%d)\n", 987 mtr, mcddrtcfg, imc->mc, i, j); 988 989 if (IS_DIMM_PRESENT(mtr)) 990 ndimms += skx_get_dimm_info(mtr, 0, 0, dimm, 991 imc, i, j, cfg); 992 else if (IS_NVDIMM_PRESENT(mcddrtcfg, j)) 993 ndimms += skx_get_nvdimm_info(dimm, imc, i, j, 994 EDAC_MOD_STR); 995 } 996 if (ndimms && !i10nm_check_ecc(imc, i)) { 997 i10nm_printk(KERN_ERR, "ECC is disabled on imc %d channel %d\n", 998 imc->mc, i); 999 return -ENODEV; 1000 } 1001 } 1002 1003 return 0; 1004 } 1005 1006 static struct notifier_block i10nm_mce_dec = { 1007 .notifier_call = skx_mce_check_error, 1008 .priority = MCE_PRIO_EDAC, 1009 }; 1010 1011 static int __init i10nm_init(void) 1012 { 1013 u8 mc = 0, src_id = 0, node_id = 0; 1014 const struct x86_cpu_id *id; 1015 struct res_config *cfg; 1016 const char *owner; 1017 struct skx_dev *d; 1018 int rc, i, off[3] = {0xd0, 0xc8, 0xcc}; 1019 u64 tolm, tohm; 1020 int imc_num; 1021 1022 edac_dbg(2, "\n"); 1023 1024 if (ghes_get_devices()) 1025 return -EBUSY; 1026 1027 owner = edac_get_owner(); 1028 if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR))) 1029 return -EBUSY; 1030 1031 if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR)) 1032 return -ENODEV; 1033 1034 id = x86_match_cpu(i10nm_cpuids); 1035 if (!id) 1036 return -ENODEV; 1037 1038 cfg = (struct res_config *)id->driver_data; 1039 skx_set_res_cfg(cfg); 1040 res_cfg = cfg; 1041 1042 rc = skx_get_hi_lo(0x09a2, off, &tolm, &tohm); 1043 if (rc) 1044 return rc; 1045 1046 rc = skx_get_all_bus_mappings(cfg, &i10nm_edac_list); 1047 if (rc < 0) 1048 goto fail; 1049 if (rc == 0) { 1050 i10nm_printk(KERN_ERR, "No memory controllers found\n"); 1051 return -ENODEV; 1052 } 1053 1054 rc = i10nm_get_imc_num(cfg); 1055 if (rc < 0) 1056 goto fail; 1057 1058 mem_cfg_2lm = i10nm_check_2lm(cfg); 1059 skx_set_mem_cfg(mem_cfg_2lm); 1060 1061 rc = i10nm_get_ddr_munits(); 1062 1063 if (i10nm_get_hbm_munits() && rc) 1064 goto fail; 1065 1066 imc_num = res_cfg->ddr_imc_num + res_cfg->hbm_imc_num; 1067 1068 list_for_each_entry(d, i10nm_edac_list, list) { 1069 rc = skx_get_src_id(d, 0xf8, &src_id); 1070 if (rc < 0) 1071 goto fail; 1072 1073 rc = skx_get_node_id(d, &node_id); 1074 if (rc < 0) 1075 goto fail; 1076 1077 edac_dbg(2, "src_id = %d node_id = %d\n", src_id, node_id); 1078 for (i = 0; i < imc_num; i++) { 1079 if (!d->imc[i].mdev) 1080 continue; 1081 1082 d->imc[i].mc = mc++; 1083 d->imc[i].lmc = i; 1084 d->imc[i].src_id = src_id; 1085 d->imc[i].node_id = node_id; 1086 if (d->imc[i].hbm_mc) { 1087 d->imc[i].chan_mmio_sz = cfg->hbm_chan_mmio_sz; 1088 d->imc[i].num_channels = cfg->hbm_chan_num; 1089 d->imc[i].num_dimms = cfg->hbm_dimm_num; 1090 } else { 1091 d->imc[i].chan_mmio_sz = cfg->ddr_chan_mmio_sz; 1092 d->imc[i].num_channels = cfg->ddr_chan_num; 1093 d->imc[i].num_dimms = cfg->ddr_dimm_num; 1094 } 1095 1096 rc = skx_register_mci(&d->imc[i], d->imc[i].mdev, 1097 "Intel_10nm Socket", EDAC_MOD_STR, 1098 i10nm_get_dimm_config, cfg); 1099 if (rc < 0) 1100 goto fail; 1101 } 1102 } 1103 1104 rc = skx_adxl_get(); 1105 if (rc) 1106 goto fail; 1107 1108 opstate_init(); 1109 mce_register_decode_chain(&i10nm_mce_dec); 1110 skx_setup_debug("i10nm_test"); 1111 1112 if (retry_rd_err_log && res_cfg->offsets_scrub && res_cfg->offsets_demand) { 1113 skx_set_decode(i10nm_mc_decode, show_retry_rd_err_log); 1114 if (retry_rd_err_log == 2) 1115 enable_retry_rd_err_log(true); 1116 } else { 1117 skx_set_decode(i10nm_mc_decode, NULL); 1118 } 1119 1120 i10nm_printk(KERN_INFO, "%s\n", I10NM_REVISION); 1121 1122 return 0; 1123 fail: 1124 skx_remove(); 1125 return rc; 1126 } 1127 1128 static void __exit i10nm_exit(void) 1129 { 1130 edac_dbg(2, "\n"); 1131 1132 if (retry_rd_err_log && res_cfg->offsets_scrub && res_cfg->offsets_demand) { 1133 skx_set_decode(NULL, NULL); 1134 if (retry_rd_err_log == 2) 1135 enable_retry_rd_err_log(false); 1136 } 1137 1138 skx_teardown_debug(); 1139 mce_unregister_decode_chain(&i10nm_mce_dec); 1140 skx_adxl_put(); 1141 skx_remove(); 1142 } 1143 1144 module_init(i10nm_init); 1145 module_exit(i10nm_exit); 1146 1147 static int set_decoding_via_mca(const char *buf, const struct kernel_param *kp) 1148 { 1149 unsigned long val; 1150 int ret; 1151 1152 ret = kstrtoul(buf, 0, &val); 1153 1154 if (ret || val > 1) 1155 return -EINVAL; 1156 1157 if (val && mem_cfg_2lm) { 1158 i10nm_printk(KERN_NOTICE, "Decoding errors via MCA banks for 2LM isn't supported yet\n"); 1159 return -EIO; 1160 } 1161 1162 ret = param_set_int(buf, kp); 1163 1164 return ret; 1165 } 1166 1167 static const struct kernel_param_ops decoding_via_mca_param_ops = { 1168 .set = set_decoding_via_mca, 1169 .get = param_get_int, 1170 }; 1171 1172 module_param_cb(decoding_via_mca, &decoding_via_mca_param_ops, &decoding_via_mca, 0644); 1173 MODULE_PARM_DESC(decoding_via_mca, "decoding_via_mca: 0=off(default), 1=enable"); 1174 1175 module_param(retry_rd_err_log, int, 0444); 1176 MODULE_PARM_DESC(retry_rd_err_log, "retry_rd_err_log: 0=off(default), 1=bios(Linux doesn't reset any control bits, but just reports values.), 2=linux(Linux tries to take control and resets mode bits, clear valid/UC bits after reading.)"); 1177 1178 MODULE_LICENSE("GPL v2"); 1179 MODULE_DESCRIPTION("MC Driver for Intel 10nm server processors"); 1180