xref: /linux/drivers/edac/ghes_edac.c (revision 2975489458c59ce2e348b1b3aef5d8d2acb5cc8d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * GHES/EDAC Linux driver
4  *
5  * Copyright (c) 2013 by Mauro Carvalho Chehab
6  *
7  * Red Hat Inc. http://www.redhat.com
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <acpi/ghes.h>
13 #include <linux/edac.h>
14 #include <linux/dmi.h>
15 #include "edac_module.h"
16 #include <ras/ras_event.h>
17 
18 struct ghes_edac_pvt {
19 	struct list_head list;
20 	struct ghes *ghes;
21 	struct mem_ctl_info *mci;
22 
23 	/* Buffers for the error handling routine */
24 	char detail_location[240];
25 	char other_detail[160];
26 	char msg[80];
27 };
28 
29 static atomic_t ghes_init = ATOMIC_INIT(0);
30 static struct ghes_edac_pvt *ghes_pvt;
31 
32 /*
33  * Sync with other, potentially concurrent callers of
34  * ghes_edac_report_mem_error(). We don't know what the
35  * "inventive" firmware would do.
36  */
37 static DEFINE_SPINLOCK(ghes_lock);
38 
39 /* "ghes_edac.force_load=1" skips the platform check */
40 static bool __read_mostly force_load;
41 module_param(force_load, bool, 0);
42 
43 /* Memory Device - Type 17 of SMBIOS spec */
44 struct memdev_dmi_entry {
45 	u8 type;
46 	u8 length;
47 	u16 handle;
48 	u16 phys_mem_array_handle;
49 	u16 mem_err_info_handle;
50 	u16 total_width;
51 	u16 data_width;
52 	u16 size;
53 	u8 form_factor;
54 	u8 device_set;
55 	u8 device_locator;
56 	u8 bank_locator;
57 	u8 memory_type;
58 	u16 type_detail;
59 	u16 speed;
60 	u8 manufacturer;
61 	u8 serial_number;
62 	u8 asset_tag;
63 	u8 part_number;
64 	u8 attributes;
65 	u32 extended_size;
66 	u16 conf_mem_clk_speed;
67 } __attribute__((__packed__));
68 
69 struct ghes_edac_dimm_fill {
70 	struct mem_ctl_info *mci;
71 	unsigned int count;
72 };
73 
74 static void ghes_edac_count_dimms(const struct dmi_header *dh, void *arg)
75 {
76 	int *num_dimm = arg;
77 
78 	if (dh->type == DMI_ENTRY_MEM_DEVICE)
79 		(*num_dimm)++;
80 }
81 
82 static int get_dimm_smbios_index(u16 handle)
83 {
84 	struct mem_ctl_info *mci = ghes_pvt->mci;
85 	int i;
86 
87 	for (i = 0; i < mci->tot_dimms; i++) {
88 		if (mci->dimms[i]->smbios_handle == handle)
89 			return i;
90 	}
91 	return -1;
92 }
93 
94 static void ghes_edac_dmidecode(const struct dmi_header *dh, void *arg)
95 {
96 	struct ghes_edac_dimm_fill *dimm_fill = arg;
97 	struct mem_ctl_info *mci = dimm_fill->mci;
98 
99 	if (dh->type == DMI_ENTRY_MEM_DEVICE) {
100 		struct memdev_dmi_entry *entry = (struct memdev_dmi_entry *)dh;
101 		struct dimm_info *dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms,
102 						       mci->n_layers,
103 						       dimm_fill->count, 0, 0);
104 		u16 rdr_mask = BIT(7) | BIT(13);
105 
106 		if (entry->size == 0xffff) {
107 			pr_info("Can't get DIMM%i size\n",
108 				dimm_fill->count);
109 			dimm->nr_pages = MiB_TO_PAGES(32);/* Unknown */
110 		} else if (entry->size == 0x7fff) {
111 			dimm->nr_pages = MiB_TO_PAGES(entry->extended_size);
112 		} else {
113 			if (entry->size & BIT(15))
114 				dimm->nr_pages = MiB_TO_PAGES((entry->size & 0x7fff) << 10);
115 			else
116 				dimm->nr_pages = MiB_TO_PAGES(entry->size);
117 		}
118 
119 		switch (entry->memory_type) {
120 		case 0x12:
121 			if (entry->type_detail & BIT(13))
122 				dimm->mtype = MEM_RDDR;
123 			else
124 				dimm->mtype = MEM_DDR;
125 			break;
126 		case 0x13:
127 			if (entry->type_detail & BIT(13))
128 				dimm->mtype = MEM_RDDR2;
129 			else
130 				dimm->mtype = MEM_DDR2;
131 			break;
132 		case 0x14:
133 			dimm->mtype = MEM_FB_DDR2;
134 			break;
135 		case 0x18:
136 			if (entry->type_detail & BIT(12))
137 				dimm->mtype = MEM_NVDIMM;
138 			else if (entry->type_detail & BIT(13))
139 				dimm->mtype = MEM_RDDR3;
140 			else
141 				dimm->mtype = MEM_DDR3;
142 			break;
143 		case 0x1a:
144 			if (entry->type_detail & BIT(12))
145 				dimm->mtype = MEM_NVDIMM;
146 			else if (entry->type_detail & BIT(13))
147 				dimm->mtype = MEM_RDDR4;
148 			else
149 				dimm->mtype = MEM_DDR4;
150 			break;
151 		default:
152 			if (entry->type_detail & BIT(6))
153 				dimm->mtype = MEM_RMBS;
154 			else if ((entry->type_detail & rdr_mask) == rdr_mask)
155 				dimm->mtype = MEM_RDR;
156 			else if (entry->type_detail & BIT(7))
157 				dimm->mtype = MEM_SDR;
158 			else if (entry->type_detail & BIT(9))
159 				dimm->mtype = MEM_EDO;
160 			else
161 				dimm->mtype = MEM_UNKNOWN;
162 		}
163 
164 		/*
165 		 * Actually, we can only detect if the memory has bits for
166 		 * checksum or not
167 		 */
168 		if (entry->total_width == entry->data_width)
169 			dimm->edac_mode = EDAC_NONE;
170 		else
171 			dimm->edac_mode = EDAC_SECDED;
172 
173 		dimm->dtype = DEV_UNKNOWN;
174 		dimm->grain = 128;		/* Likely, worse case */
175 
176 		/*
177 		 * FIXME: It shouldn't be hard to also fill the DIMM labels
178 		 */
179 
180 		if (dimm->nr_pages) {
181 			edac_dbg(1, "DIMM%i: %s size = %d MB%s\n",
182 				dimm_fill->count, edac_mem_types[dimm->mtype],
183 				PAGES_TO_MiB(dimm->nr_pages),
184 				(dimm->edac_mode != EDAC_NONE) ? "(ECC)" : "");
185 			edac_dbg(2, "\ttype %d, detail 0x%02x, width %d(total %d)\n",
186 				entry->memory_type, entry->type_detail,
187 				entry->total_width, entry->data_width);
188 		}
189 
190 		dimm->smbios_handle = entry->handle;
191 
192 		dimm_fill->count++;
193 	}
194 }
195 
196 void ghes_edac_report_mem_error(int sev, struct cper_sec_mem_err *mem_err)
197 {
198 	enum hw_event_mc_err_type type;
199 	struct edac_raw_error_desc *e;
200 	struct mem_ctl_info *mci;
201 	struct ghes_edac_pvt *pvt = ghes_pvt;
202 	unsigned long flags;
203 	char *p;
204 	u8 grain_bits;
205 
206 	if (!pvt)
207 		return;
208 
209 	/*
210 	 * We can do the locking below because GHES defers error processing
211 	 * from NMI to IRQ context. Whenever that changes, we'd at least
212 	 * know.
213 	 */
214 	if (WARN_ON_ONCE(in_nmi()))
215 		return;
216 
217 	spin_lock_irqsave(&ghes_lock, flags);
218 
219 	mci = pvt->mci;
220 	e = &mci->error_desc;
221 
222 	/* Cleans the error report buffer */
223 	memset(e, 0, sizeof (*e));
224 	e->error_count = 1;
225 	strcpy(e->label, "unknown label");
226 	e->msg = pvt->msg;
227 	e->other_detail = pvt->other_detail;
228 	e->top_layer = -1;
229 	e->mid_layer = -1;
230 	e->low_layer = -1;
231 	*pvt->other_detail = '\0';
232 	*pvt->msg = '\0';
233 
234 	switch (sev) {
235 	case GHES_SEV_CORRECTED:
236 		type = HW_EVENT_ERR_CORRECTED;
237 		break;
238 	case GHES_SEV_RECOVERABLE:
239 		type = HW_EVENT_ERR_UNCORRECTED;
240 		break;
241 	case GHES_SEV_PANIC:
242 		type = HW_EVENT_ERR_FATAL;
243 		break;
244 	default:
245 	case GHES_SEV_NO:
246 		type = HW_EVENT_ERR_INFO;
247 	}
248 
249 	edac_dbg(1, "error validation_bits: 0x%08llx\n",
250 		 (long long)mem_err->validation_bits);
251 
252 	/* Error type, mapped on e->msg */
253 	if (mem_err->validation_bits & CPER_MEM_VALID_ERROR_TYPE) {
254 		p = pvt->msg;
255 		switch (mem_err->error_type) {
256 		case 0:
257 			p += sprintf(p, "Unknown");
258 			break;
259 		case 1:
260 			p += sprintf(p, "No error");
261 			break;
262 		case 2:
263 			p += sprintf(p, "Single-bit ECC");
264 			break;
265 		case 3:
266 			p += sprintf(p, "Multi-bit ECC");
267 			break;
268 		case 4:
269 			p += sprintf(p, "Single-symbol ChipKill ECC");
270 			break;
271 		case 5:
272 			p += sprintf(p, "Multi-symbol ChipKill ECC");
273 			break;
274 		case 6:
275 			p += sprintf(p, "Master abort");
276 			break;
277 		case 7:
278 			p += sprintf(p, "Target abort");
279 			break;
280 		case 8:
281 			p += sprintf(p, "Parity Error");
282 			break;
283 		case 9:
284 			p += sprintf(p, "Watchdog timeout");
285 			break;
286 		case 10:
287 			p += sprintf(p, "Invalid address");
288 			break;
289 		case 11:
290 			p += sprintf(p, "Mirror Broken");
291 			break;
292 		case 12:
293 			p += sprintf(p, "Memory Sparing");
294 			break;
295 		case 13:
296 			p += sprintf(p, "Scrub corrected error");
297 			break;
298 		case 14:
299 			p += sprintf(p, "Scrub uncorrected error");
300 			break;
301 		case 15:
302 			p += sprintf(p, "Physical Memory Map-out event");
303 			break;
304 		default:
305 			p += sprintf(p, "reserved error (%d)",
306 				     mem_err->error_type);
307 		}
308 	} else {
309 		strcpy(pvt->msg, "unknown error");
310 	}
311 
312 	/* Error address */
313 	if (mem_err->validation_bits & CPER_MEM_VALID_PA) {
314 		e->page_frame_number = mem_err->physical_addr >> PAGE_SHIFT;
315 		e->offset_in_page = mem_err->physical_addr & ~PAGE_MASK;
316 	}
317 
318 	/* Error grain */
319 	if (mem_err->validation_bits & CPER_MEM_VALID_PA_MASK)
320 		e->grain = ~(mem_err->physical_addr_mask & ~PAGE_MASK);
321 
322 	/* Memory error location, mapped on e->location */
323 	p = e->location;
324 	if (mem_err->validation_bits & CPER_MEM_VALID_NODE)
325 		p += sprintf(p, "node:%d ", mem_err->node);
326 	if (mem_err->validation_bits & CPER_MEM_VALID_CARD)
327 		p += sprintf(p, "card:%d ", mem_err->card);
328 	if (mem_err->validation_bits & CPER_MEM_VALID_MODULE)
329 		p += sprintf(p, "module:%d ", mem_err->module);
330 	if (mem_err->validation_bits & CPER_MEM_VALID_RANK_NUMBER)
331 		p += sprintf(p, "rank:%d ", mem_err->rank);
332 	if (mem_err->validation_bits & CPER_MEM_VALID_BANK)
333 		p += sprintf(p, "bank:%d ", mem_err->bank);
334 	if (mem_err->validation_bits & CPER_MEM_VALID_ROW)
335 		p += sprintf(p, "row:%d ", mem_err->row);
336 	if (mem_err->validation_bits & CPER_MEM_VALID_COLUMN)
337 		p += sprintf(p, "col:%d ", mem_err->column);
338 	if (mem_err->validation_bits & CPER_MEM_VALID_BIT_POSITION)
339 		p += sprintf(p, "bit_pos:%d ", mem_err->bit_pos);
340 	if (mem_err->validation_bits & CPER_MEM_VALID_MODULE_HANDLE) {
341 		const char *bank = NULL, *device = NULL;
342 		int index = -1;
343 
344 		dmi_memdev_name(mem_err->mem_dev_handle, &bank, &device);
345 		if (bank != NULL && device != NULL)
346 			p += sprintf(p, "DIMM location:%s %s ", bank, device);
347 		else
348 			p += sprintf(p, "DIMM DMI handle: 0x%.4x ",
349 				     mem_err->mem_dev_handle);
350 
351 		index = get_dimm_smbios_index(mem_err->mem_dev_handle);
352 		if (index >= 0) {
353 			e->top_layer = index;
354 			e->enable_per_layer_report = true;
355 		}
356 
357 	}
358 	if (p > e->location)
359 		*(p - 1) = '\0';
360 
361 	/* All other fields are mapped on e->other_detail */
362 	p = pvt->other_detail;
363 	if (mem_err->validation_bits & CPER_MEM_VALID_ERROR_STATUS) {
364 		u64 status = mem_err->error_status;
365 
366 		p += sprintf(p, "status(0x%016llx): ", (long long)status);
367 		switch ((status >> 8) & 0xff) {
368 		case 1:
369 			p += sprintf(p, "Error detected internal to the component ");
370 			break;
371 		case 16:
372 			p += sprintf(p, "Error detected in the bus ");
373 			break;
374 		case 4:
375 			p += sprintf(p, "Storage error in DRAM memory ");
376 			break;
377 		case 5:
378 			p += sprintf(p, "Storage error in TLB ");
379 			break;
380 		case 6:
381 			p += sprintf(p, "Storage error in cache ");
382 			break;
383 		case 7:
384 			p += sprintf(p, "Error in one or more functional units ");
385 			break;
386 		case 8:
387 			p += sprintf(p, "component failed self test ");
388 			break;
389 		case 9:
390 			p += sprintf(p, "Overflow or undervalue of internal queue ");
391 			break;
392 		case 17:
393 			p += sprintf(p, "Virtual address not found on IO-TLB or IO-PDIR ");
394 			break;
395 		case 18:
396 			p += sprintf(p, "Improper access error ");
397 			break;
398 		case 19:
399 			p += sprintf(p, "Access to a memory address which is not mapped to any component ");
400 			break;
401 		case 20:
402 			p += sprintf(p, "Loss of Lockstep ");
403 			break;
404 		case 21:
405 			p += sprintf(p, "Response not associated with a request ");
406 			break;
407 		case 22:
408 			p += sprintf(p, "Bus parity error - must also set the A, C, or D Bits ");
409 			break;
410 		case 23:
411 			p += sprintf(p, "Detection of a PATH_ERROR ");
412 			break;
413 		case 25:
414 			p += sprintf(p, "Bus operation timeout ");
415 			break;
416 		case 26:
417 			p += sprintf(p, "A read was issued to data that has been poisoned ");
418 			break;
419 		default:
420 			p += sprintf(p, "reserved ");
421 			break;
422 		}
423 	}
424 	if (mem_err->validation_bits & CPER_MEM_VALID_REQUESTOR_ID)
425 		p += sprintf(p, "requestorID: 0x%016llx ",
426 			     (long long)mem_err->requestor_id);
427 	if (mem_err->validation_bits & CPER_MEM_VALID_RESPONDER_ID)
428 		p += sprintf(p, "responderID: 0x%016llx ",
429 			     (long long)mem_err->responder_id);
430 	if (mem_err->validation_bits & CPER_MEM_VALID_TARGET_ID)
431 		p += sprintf(p, "targetID: 0x%016llx ",
432 			     (long long)mem_err->responder_id);
433 	if (p > pvt->other_detail)
434 		*(p - 1) = '\0';
435 
436 	/* Generate the trace event */
437 	grain_bits = fls_long(e->grain);
438 	snprintf(pvt->detail_location, sizeof(pvt->detail_location),
439 		 "APEI location: %s %s", e->location, e->other_detail);
440 	trace_mc_event(type, e->msg, e->label, e->error_count,
441 		       mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer,
442 		       (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
443 		       grain_bits, e->syndrome, pvt->detail_location);
444 
445 	edac_raw_mc_handle_error(type, mci, e);
446 	spin_unlock_irqrestore(&ghes_lock, flags);
447 }
448 
449 /*
450  * Known systems that are safe to enable this module.
451  */
452 static struct acpi_platform_list plat_list[] = {
453 	{"HPE   ", "Server  ", 0, ACPI_SIG_FADT, all_versions},
454 	{ } /* End */
455 };
456 
457 int ghes_edac_register(struct ghes *ghes, struct device *dev)
458 {
459 	bool fake = false;
460 	int rc, num_dimm = 0;
461 	struct mem_ctl_info *mci;
462 	struct edac_mc_layer layers[1];
463 	struct ghes_edac_dimm_fill dimm_fill;
464 	int idx = -1;
465 
466 	if (IS_ENABLED(CONFIG_X86)) {
467 		/* Check if safe to enable on this system */
468 		idx = acpi_match_platform_list(plat_list);
469 		if (!force_load && idx < 0)
470 			return -ENODEV;
471 	} else {
472 		idx = 0;
473 	}
474 
475 	/*
476 	 * We have only one logical memory controller to which all DIMMs belong.
477 	 */
478 	if (atomic_inc_return(&ghes_init) > 1)
479 		return 0;
480 
481 	/* Get the number of DIMMs */
482 	dmi_walk(ghes_edac_count_dimms, &num_dimm);
483 
484 	/* Check if we've got a bogus BIOS */
485 	if (num_dimm == 0) {
486 		fake = true;
487 		num_dimm = 1;
488 	}
489 
490 	layers[0].type = EDAC_MC_LAYER_ALL_MEM;
491 	layers[0].size = num_dimm;
492 	layers[0].is_virt_csrow = true;
493 
494 	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(struct ghes_edac_pvt));
495 	if (!mci) {
496 		pr_info("Can't allocate memory for EDAC data\n");
497 		return -ENOMEM;
498 	}
499 
500 	ghes_pvt	= mci->pvt_info;
501 	ghes_pvt->ghes	= ghes;
502 	ghes_pvt->mci	= mci;
503 
504 	mci->pdev = dev;
505 	mci->mtype_cap = MEM_FLAG_EMPTY;
506 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
507 	mci->edac_cap = EDAC_FLAG_NONE;
508 	mci->mod_name = "ghes_edac.c";
509 	mci->ctl_name = "ghes_edac";
510 	mci->dev_name = "ghes";
511 
512 	if (fake) {
513 		pr_info("This system has a very crappy BIOS: It doesn't even list the DIMMS.\n");
514 		pr_info("Its SMBIOS info is wrong. It is doubtful that the error report would\n");
515 		pr_info("work on such system. Use this driver with caution\n");
516 	} else if (idx < 0) {
517 		pr_info("This EDAC driver relies on BIOS to enumerate memory and get error reports.\n");
518 		pr_info("Unfortunately, not all BIOSes reflect the memory layout correctly.\n");
519 		pr_info("So, the end result of using this driver varies from vendor to vendor.\n");
520 		pr_info("If you find incorrect reports, please contact your hardware vendor\n");
521 		pr_info("to correct its BIOS.\n");
522 		pr_info("This system has %d DIMM sockets.\n", num_dimm);
523 	}
524 
525 	if (!fake) {
526 		dimm_fill.count = 0;
527 		dimm_fill.mci = mci;
528 		dmi_walk(ghes_edac_dmidecode, &dimm_fill);
529 	} else {
530 		struct dimm_info *dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms,
531 						       mci->n_layers, 0, 0, 0);
532 
533 		dimm->nr_pages = 1;
534 		dimm->grain = 128;
535 		dimm->mtype = MEM_UNKNOWN;
536 		dimm->dtype = DEV_UNKNOWN;
537 		dimm->edac_mode = EDAC_SECDED;
538 	}
539 
540 	rc = edac_mc_add_mc(mci);
541 	if (rc < 0) {
542 		pr_info("Can't register at EDAC core\n");
543 		edac_mc_free(mci);
544 		return -ENODEV;
545 	}
546 	return 0;
547 }
548 
549 void ghes_edac_unregister(struct ghes *ghes)
550 {
551 	struct mem_ctl_info *mci;
552 
553 	if (!ghes_pvt)
554 		return;
555 
556 	if (atomic_dec_return(&ghes_init))
557 		return;
558 
559 	mci = ghes_pvt->mci;
560 	ghes_pvt = NULL;
561 	edac_mc_del_mc(mci->pdev);
562 	edac_mc_free(mci);
563 }
564