xref: /linux/drivers/edac/edac_mc_sysfs.c (revision c6bd5bcc4983f1a2d2f87a3769bf309482ee8c04)
1 /*
2  * edac_mc kernel module
3  * (C) 2005-2007 Linux Networx (http://lnxi.com)
4  *
5  * This file may be distributed under the terms of the
6  * GNU General Public License.
7  *
8  * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
9  *
10  * (c) 2012 - Mauro Carvalho Chehab <mchehab@redhat.com>
11  *	The entire API were re-written, and ported to use struct device
12  *
13  */
14 
15 #include <linux/ctype.h>
16 #include <linux/slab.h>
17 #include <linux/edac.h>
18 #include <linux/bug.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/uaccess.h>
21 
22 #include "edac_core.h"
23 #include "edac_module.h"
24 
25 /* MC EDAC Controls, setable by module parameter, and sysfs */
26 static int edac_mc_log_ue = 1;
27 static int edac_mc_log_ce = 1;
28 static int edac_mc_panic_on_ue;
29 static int edac_mc_poll_msec = 1000;
30 
31 /* Getter functions for above */
32 int edac_mc_get_log_ue(void)
33 {
34 	return edac_mc_log_ue;
35 }
36 
37 int edac_mc_get_log_ce(void)
38 {
39 	return edac_mc_log_ce;
40 }
41 
42 int edac_mc_get_panic_on_ue(void)
43 {
44 	return edac_mc_panic_on_ue;
45 }
46 
47 /* this is temporary */
48 int edac_mc_get_poll_msec(void)
49 {
50 	return edac_mc_poll_msec;
51 }
52 
53 static int edac_set_poll_msec(const char *val, struct kernel_param *kp)
54 {
55 	long l;
56 	int ret;
57 
58 	if (!val)
59 		return -EINVAL;
60 
61 	ret = strict_strtol(val, 0, &l);
62 	if (ret == -EINVAL || ((int)l != l))
63 		return -EINVAL;
64 	*((int *)kp->arg) = l;
65 
66 	/* notify edac_mc engine to reset the poll period */
67 	edac_mc_reset_delay_period(l);
68 
69 	return 0;
70 }
71 
72 /* Parameter declarations for above */
73 module_param(edac_mc_panic_on_ue, int, 0644);
74 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
75 module_param(edac_mc_log_ue, int, 0644);
76 MODULE_PARM_DESC(edac_mc_log_ue,
77 		 "Log uncorrectable error to console: 0=off 1=on");
78 module_param(edac_mc_log_ce, int, 0644);
79 MODULE_PARM_DESC(edac_mc_log_ce,
80 		 "Log correctable error to console: 0=off 1=on");
81 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int,
82 		  &edac_mc_poll_msec, 0644);
83 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
84 
85 static struct device *mci_pdev;
86 
87 /*
88  * various constants for Memory Controllers
89  */
90 static const char *mem_types[] = {
91 	[MEM_EMPTY] = "Empty",
92 	[MEM_RESERVED] = "Reserved",
93 	[MEM_UNKNOWN] = "Unknown",
94 	[MEM_FPM] = "FPM",
95 	[MEM_EDO] = "EDO",
96 	[MEM_BEDO] = "BEDO",
97 	[MEM_SDR] = "Unbuffered-SDR",
98 	[MEM_RDR] = "Registered-SDR",
99 	[MEM_DDR] = "Unbuffered-DDR",
100 	[MEM_RDDR] = "Registered-DDR",
101 	[MEM_RMBS] = "RMBS",
102 	[MEM_DDR2] = "Unbuffered-DDR2",
103 	[MEM_FB_DDR2] = "FullyBuffered-DDR2",
104 	[MEM_RDDR2] = "Registered-DDR2",
105 	[MEM_XDR] = "XDR",
106 	[MEM_DDR3] = "Unbuffered-DDR3",
107 	[MEM_RDDR3] = "Registered-DDR3"
108 };
109 
110 static const char *dev_types[] = {
111 	[DEV_UNKNOWN] = "Unknown",
112 	[DEV_X1] = "x1",
113 	[DEV_X2] = "x2",
114 	[DEV_X4] = "x4",
115 	[DEV_X8] = "x8",
116 	[DEV_X16] = "x16",
117 	[DEV_X32] = "x32",
118 	[DEV_X64] = "x64"
119 };
120 
121 static const char *edac_caps[] = {
122 	[EDAC_UNKNOWN] = "Unknown",
123 	[EDAC_NONE] = "None",
124 	[EDAC_RESERVED] = "Reserved",
125 	[EDAC_PARITY] = "PARITY",
126 	[EDAC_EC] = "EC",
127 	[EDAC_SECDED] = "SECDED",
128 	[EDAC_S2ECD2ED] = "S2ECD2ED",
129 	[EDAC_S4ECD4ED] = "S4ECD4ED",
130 	[EDAC_S8ECD8ED] = "S8ECD8ED",
131 	[EDAC_S16ECD16ED] = "S16ECD16ED"
132 };
133 
134 #ifdef CONFIG_EDAC_LEGACY_SYSFS
135 /*
136  * EDAC sysfs CSROW data structures and methods
137  */
138 
139 #define to_csrow(k) container_of(k, struct csrow_info, dev)
140 
141 /*
142  * We need it to avoid namespace conflicts between the legacy API
143  * and the per-dimm/per-rank one
144  */
145 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
146 	struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
147 
148 struct dev_ch_attribute {
149 	struct device_attribute attr;
150 	int channel;
151 };
152 
153 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
154 	struct dev_ch_attribute dev_attr_legacy_##_name = \
155 		{ __ATTR(_name, _mode, _show, _store), (_var) }
156 
157 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
158 
159 /* Set of more default csrow<id> attribute show/store functions */
160 static ssize_t csrow_ue_count_show(struct device *dev,
161 				   struct device_attribute *mattr, char *data)
162 {
163 	struct csrow_info *csrow = to_csrow(dev);
164 
165 	return sprintf(data, "%u\n", csrow->ue_count);
166 }
167 
168 static ssize_t csrow_ce_count_show(struct device *dev,
169 				   struct device_attribute *mattr, char *data)
170 {
171 	struct csrow_info *csrow = to_csrow(dev);
172 
173 	return sprintf(data, "%u\n", csrow->ce_count);
174 }
175 
176 static ssize_t csrow_size_show(struct device *dev,
177 			       struct device_attribute *mattr, char *data)
178 {
179 	struct csrow_info *csrow = to_csrow(dev);
180 	int i;
181 	u32 nr_pages = 0;
182 
183 	if (csrow->mci->csbased)
184 		return sprintf(data, "%u\n", PAGES_TO_MiB(csrow->nr_pages));
185 
186 	for (i = 0; i < csrow->nr_channels; i++)
187 		nr_pages += csrow->channels[i]->dimm->nr_pages;
188 	return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
189 }
190 
191 static ssize_t csrow_mem_type_show(struct device *dev,
192 				   struct device_attribute *mattr, char *data)
193 {
194 	struct csrow_info *csrow = to_csrow(dev);
195 
196 	return sprintf(data, "%s\n", mem_types[csrow->channels[0]->dimm->mtype]);
197 }
198 
199 static ssize_t csrow_dev_type_show(struct device *dev,
200 				   struct device_attribute *mattr, char *data)
201 {
202 	struct csrow_info *csrow = to_csrow(dev);
203 
204 	return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
205 }
206 
207 static ssize_t csrow_edac_mode_show(struct device *dev,
208 				    struct device_attribute *mattr,
209 				    char *data)
210 {
211 	struct csrow_info *csrow = to_csrow(dev);
212 
213 	return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
214 }
215 
216 /* show/store functions for DIMM Label attributes */
217 static ssize_t channel_dimm_label_show(struct device *dev,
218 				       struct device_attribute *mattr,
219 				       char *data)
220 {
221 	struct csrow_info *csrow = to_csrow(dev);
222 	unsigned chan = to_channel(mattr);
223 	struct rank_info *rank = csrow->channels[chan];
224 
225 	/* if field has not been initialized, there is nothing to send */
226 	if (!rank->dimm->label[0])
227 		return 0;
228 
229 	return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n",
230 			rank->dimm->label);
231 }
232 
233 static ssize_t channel_dimm_label_store(struct device *dev,
234 					struct device_attribute *mattr,
235 					const char *data, size_t count)
236 {
237 	struct csrow_info *csrow = to_csrow(dev);
238 	unsigned chan = to_channel(mattr);
239 	struct rank_info *rank = csrow->channels[chan];
240 
241 	ssize_t max_size = 0;
242 
243 	max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
244 	strncpy(rank->dimm->label, data, max_size);
245 	rank->dimm->label[max_size] = '\0';
246 
247 	return max_size;
248 }
249 
250 /* show function for dynamic chX_ce_count attribute */
251 static ssize_t channel_ce_count_show(struct device *dev,
252 				     struct device_attribute *mattr, char *data)
253 {
254 	struct csrow_info *csrow = to_csrow(dev);
255 	unsigned chan = to_channel(mattr);
256 	struct rank_info *rank = csrow->channels[chan];
257 
258 	return sprintf(data, "%u\n", rank->ce_count);
259 }
260 
261 /* cwrow<id>/attribute files */
262 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
263 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
264 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
265 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
266 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
267 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
268 
269 /* default attributes of the CSROW<id> object */
270 static struct attribute *csrow_attrs[] = {
271 	&dev_attr_legacy_dev_type.attr,
272 	&dev_attr_legacy_mem_type.attr,
273 	&dev_attr_legacy_edac_mode.attr,
274 	&dev_attr_legacy_size_mb.attr,
275 	&dev_attr_legacy_ue_count.attr,
276 	&dev_attr_legacy_ce_count.attr,
277 	NULL,
278 };
279 
280 static struct attribute_group csrow_attr_grp = {
281 	.attrs	= csrow_attrs,
282 };
283 
284 static const struct attribute_group *csrow_attr_groups[] = {
285 	&csrow_attr_grp,
286 	NULL
287 };
288 
289 static void csrow_attr_release(struct device *dev)
290 {
291 	struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
292 
293 	edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
294 	kfree(csrow);
295 }
296 
297 static struct device_type csrow_attr_type = {
298 	.groups		= csrow_attr_groups,
299 	.release	= csrow_attr_release,
300 };
301 
302 /*
303  * possible dynamic channel DIMM Label attribute files
304  *
305  */
306 
307 #define EDAC_NR_CHANNELS	6
308 
309 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
310 	channel_dimm_label_show, channel_dimm_label_store, 0);
311 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
312 	channel_dimm_label_show, channel_dimm_label_store, 1);
313 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
314 	channel_dimm_label_show, channel_dimm_label_store, 2);
315 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
316 	channel_dimm_label_show, channel_dimm_label_store, 3);
317 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
318 	channel_dimm_label_show, channel_dimm_label_store, 4);
319 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
320 	channel_dimm_label_show, channel_dimm_label_store, 5);
321 
322 /* Total possible dynamic DIMM Label attribute file table */
323 static struct device_attribute *dynamic_csrow_dimm_attr[] = {
324 	&dev_attr_legacy_ch0_dimm_label.attr,
325 	&dev_attr_legacy_ch1_dimm_label.attr,
326 	&dev_attr_legacy_ch2_dimm_label.attr,
327 	&dev_attr_legacy_ch3_dimm_label.attr,
328 	&dev_attr_legacy_ch4_dimm_label.attr,
329 	&dev_attr_legacy_ch5_dimm_label.attr
330 };
331 
332 /* possible dynamic channel ce_count attribute files */
333 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO | S_IWUSR,
334 		   channel_ce_count_show, NULL, 0);
335 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO | S_IWUSR,
336 		   channel_ce_count_show, NULL, 1);
337 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO | S_IWUSR,
338 		   channel_ce_count_show, NULL, 2);
339 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO | S_IWUSR,
340 		   channel_ce_count_show, NULL, 3);
341 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO | S_IWUSR,
342 		   channel_ce_count_show, NULL, 4);
343 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO | S_IWUSR,
344 		   channel_ce_count_show, NULL, 5);
345 
346 /* Total possible dynamic ce_count attribute file table */
347 static struct device_attribute *dynamic_csrow_ce_count_attr[] = {
348 	&dev_attr_legacy_ch0_ce_count.attr,
349 	&dev_attr_legacy_ch1_ce_count.attr,
350 	&dev_attr_legacy_ch2_ce_count.attr,
351 	&dev_attr_legacy_ch3_ce_count.attr,
352 	&dev_attr_legacy_ch4_ce_count.attr,
353 	&dev_attr_legacy_ch5_ce_count.attr
354 };
355 
356 static inline int nr_pages_per_csrow(struct csrow_info *csrow)
357 {
358 	int chan, nr_pages = 0;
359 
360 	for (chan = 0; chan < csrow->nr_channels; chan++)
361 		nr_pages += csrow->channels[chan]->dimm->nr_pages;
362 
363 	return nr_pages;
364 }
365 
366 /* Create a CSROW object under specifed edac_mc_device */
367 static int edac_create_csrow_object(struct mem_ctl_info *mci,
368 				    struct csrow_info *csrow, int index)
369 {
370 	int err, chan;
371 
372 	if (csrow->nr_channels >= EDAC_NR_CHANNELS)
373 		return -ENODEV;
374 
375 	csrow->dev.type = &csrow_attr_type;
376 	csrow->dev.bus = &mci->bus;
377 	device_initialize(&csrow->dev);
378 	csrow->dev.parent = &mci->dev;
379 	csrow->mci = mci;
380 	dev_set_name(&csrow->dev, "csrow%d", index);
381 	dev_set_drvdata(&csrow->dev, csrow);
382 
383 	edac_dbg(0, "creating (virtual) csrow node %s\n",
384 		 dev_name(&csrow->dev));
385 
386 	err = device_add(&csrow->dev);
387 	if (err < 0)
388 		return err;
389 
390 	for (chan = 0; chan < csrow->nr_channels; chan++) {
391 		/* Only expose populated DIMMs */
392 		if (!csrow->channels[chan]->dimm->nr_pages)
393 			continue;
394 		err = device_create_file(&csrow->dev,
395 					 dynamic_csrow_dimm_attr[chan]);
396 		if (err < 0)
397 			goto error;
398 		err = device_create_file(&csrow->dev,
399 					 dynamic_csrow_ce_count_attr[chan]);
400 		if (err < 0) {
401 			device_remove_file(&csrow->dev,
402 					   dynamic_csrow_dimm_attr[chan]);
403 			goto error;
404 		}
405 	}
406 
407 	return 0;
408 
409 error:
410 	for (--chan; chan >= 0; chan--) {
411 		device_remove_file(&csrow->dev,
412 					dynamic_csrow_dimm_attr[chan]);
413 		device_remove_file(&csrow->dev,
414 					   dynamic_csrow_ce_count_attr[chan]);
415 	}
416 	put_device(&csrow->dev);
417 
418 	return err;
419 }
420 
421 /* Create a CSROW object under specifed edac_mc_device */
422 static int edac_create_csrow_objects(struct mem_ctl_info *mci)
423 {
424 	int err, i, chan;
425 	struct csrow_info *csrow;
426 
427 	for (i = 0; i < mci->nr_csrows; i++) {
428 		csrow = mci->csrows[i];
429 		if (!nr_pages_per_csrow(csrow))
430 			continue;
431 		err = edac_create_csrow_object(mci, mci->csrows[i], i);
432 		if (err < 0)
433 			goto error;
434 	}
435 	return 0;
436 
437 error:
438 	for (--i; i >= 0; i--) {
439 		csrow = mci->csrows[i];
440 		if (!nr_pages_per_csrow(csrow))
441 			continue;
442 		for (chan = csrow->nr_channels - 1; chan >= 0; chan--) {
443 			if (!csrow->channels[chan]->dimm->nr_pages)
444 				continue;
445 			device_remove_file(&csrow->dev,
446 						dynamic_csrow_dimm_attr[chan]);
447 			device_remove_file(&csrow->dev,
448 						dynamic_csrow_ce_count_attr[chan]);
449 		}
450 		put_device(&mci->csrows[i]->dev);
451 	}
452 
453 	return err;
454 }
455 
456 static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
457 {
458 	int i, chan;
459 	struct csrow_info *csrow;
460 
461 	for (i = mci->nr_csrows - 1; i >= 0; i--) {
462 		csrow = mci->csrows[i];
463 		if (!nr_pages_per_csrow(csrow))
464 			continue;
465 		for (chan = csrow->nr_channels - 1; chan >= 0; chan--) {
466 			if (!csrow->channels[chan]->dimm->nr_pages)
467 				continue;
468 			edac_dbg(1, "Removing csrow %d channel %d sysfs nodes\n",
469 				 i, chan);
470 			device_remove_file(&csrow->dev,
471 						dynamic_csrow_dimm_attr[chan]);
472 			device_remove_file(&csrow->dev,
473 						dynamic_csrow_ce_count_attr[chan]);
474 		}
475 		put_device(&mci->csrows[i]->dev);
476 		device_del(&mci->csrows[i]->dev);
477 	}
478 }
479 #endif
480 
481 /*
482  * Per-dimm (or per-rank) devices
483  */
484 
485 #define to_dimm(k) container_of(k, struct dimm_info, dev)
486 
487 /* show/store functions for DIMM Label attributes */
488 static ssize_t dimmdev_location_show(struct device *dev,
489 				     struct device_attribute *mattr, char *data)
490 {
491 	struct dimm_info *dimm = to_dimm(dev);
492 
493 	return edac_dimm_info_location(dimm, data, PAGE_SIZE);
494 }
495 
496 static ssize_t dimmdev_label_show(struct device *dev,
497 				  struct device_attribute *mattr, char *data)
498 {
499 	struct dimm_info *dimm = to_dimm(dev);
500 
501 	/* if field has not been initialized, there is nothing to send */
502 	if (!dimm->label[0])
503 		return 0;
504 
505 	return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n", dimm->label);
506 }
507 
508 static ssize_t dimmdev_label_store(struct device *dev,
509 				   struct device_attribute *mattr,
510 				   const char *data,
511 				   size_t count)
512 {
513 	struct dimm_info *dimm = to_dimm(dev);
514 
515 	ssize_t max_size = 0;
516 
517 	max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
518 	strncpy(dimm->label, data, max_size);
519 	dimm->label[max_size] = '\0';
520 
521 	return max_size;
522 }
523 
524 static ssize_t dimmdev_size_show(struct device *dev,
525 				 struct device_attribute *mattr, char *data)
526 {
527 	struct dimm_info *dimm = to_dimm(dev);
528 
529 	return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
530 }
531 
532 static ssize_t dimmdev_mem_type_show(struct device *dev,
533 				     struct device_attribute *mattr, char *data)
534 {
535 	struct dimm_info *dimm = to_dimm(dev);
536 
537 	return sprintf(data, "%s\n", mem_types[dimm->mtype]);
538 }
539 
540 static ssize_t dimmdev_dev_type_show(struct device *dev,
541 				     struct device_attribute *mattr, char *data)
542 {
543 	struct dimm_info *dimm = to_dimm(dev);
544 
545 	return sprintf(data, "%s\n", dev_types[dimm->dtype]);
546 }
547 
548 static ssize_t dimmdev_edac_mode_show(struct device *dev,
549 				      struct device_attribute *mattr,
550 				      char *data)
551 {
552 	struct dimm_info *dimm = to_dimm(dev);
553 
554 	return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
555 }
556 
557 /* dimm/rank attribute files */
558 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
559 		   dimmdev_label_show, dimmdev_label_store);
560 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
561 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
562 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
563 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
564 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
565 
566 /* attributes of the dimm<id>/rank<id> object */
567 static struct attribute *dimm_attrs[] = {
568 	&dev_attr_dimm_label.attr,
569 	&dev_attr_dimm_location.attr,
570 	&dev_attr_size.attr,
571 	&dev_attr_dimm_mem_type.attr,
572 	&dev_attr_dimm_dev_type.attr,
573 	&dev_attr_dimm_edac_mode.attr,
574 	NULL,
575 };
576 
577 static struct attribute_group dimm_attr_grp = {
578 	.attrs	= dimm_attrs,
579 };
580 
581 static const struct attribute_group *dimm_attr_groups[] = {
582 	&dimm_attr_grp,
583 	NULL
584 };
585 
586 static void dimm_attr_release(struct device *dev)
587 {
588 	struct dimm_info *dimm = container_of(dev, struct dimm_info, dev);
589 
590 	edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev));
591 	kfree(dimm);
592 }
593 
594 static struct device_type dimm_attr_type = {
595 	.groups		= dimm_attr_groups,
596 	.release	= dimm_attr_release,
597 };
598 
599 /* Create a DIMM object under specifed memory controller device */
600 static int edac_create_dimm_object(struct mem_ctl_info *mci,
601 				   struct dimm_info *dimm,
602 				   int index)
603 {
604 	int err;
605 	dimm->mci = mci;
606 
607 	dimm->dev.type = &dimm_attr_type;
608 	dimm->dev.bus = &mci->bus;
609 	device_initialize(&dimm->dev);
610 
611 	dimm->dev.parent = &mci->dev;
612 	if (mci->mem_is_per_rank)
613 		dev_set_name(&dimm->dev, "rank%d", index);
614 	else
615 		dev_set_name(&dimm->dev, "dimm%d", index);
616 	dev_set_drvdata(&dimm->dev, dimm);
617 	pm_runtime_forbid(&mci->dev);
618 
619 	err =  device_add(&dimm->dev);
620 
621 	edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev));
622 
623 	return err;
624 }
625 
626 /*
627  * Memory controller device
628  */
629 
630 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
631 
632 static ssize_t mci_reset_counters_store(struct device *dev,
633 					struct device_attribute *mattr,
634 					const char *data, size_t count)
635 {
636 	struct mem_ctl_info *mci = to_mci(dev);
637 	int cnt, row, chan, i;
638 	mci->ue_mc = 0;
639 	mci->ce_mc = 0;
640 	mci->ue_noinfo_count = 0;
641 	mci->ce_noinfo_count = 0;
642 
643 	for (row = 0; row < mci->nr_csrows; row++) {
644 		struct csrow_info *ri = mci->csrows[row];
645 
646 		ri->ue_count = 0;
647 		ri->ce_count = 0;
648 
649 		for (chan = 0; chan < ri->nr_channels; chan++)
650 			ri->channels[chan]->ce_count = 0;
651 	}
652 
653 	cnt = 1;
654 	for (i = 0; i < mci->n_layers; i++) {
655 		cnt *= mci->layers[i].size;
656 		memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
657 		memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
658 	}
659 
660 	mci->start_time = jiffies;
661 	return count;
662 }
663 
664 /* Memory scrubbing interface:
665  *
666  * A MC driver can limit the scrubbing bandwidth based on the CPU type.
667  * Therefore, ->set_sdram_scrub_rate should be made to return the actual
668  * bandwidth that is accepted or 0 when scrubbing is to be disabled.
669  *
670  * Negative value still means that an error has occurred while setting
671  * the scrub rate.
672  */
673 static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
674 					  struct device_attribute *mattr,
675 					  const char *data, size_t count)
676 {
677 	struct mem_ctl_info *mci = to_mci(dev);
678 	unsigned long bandwidth = 0;
679 	int new_bw = 0;
680 
681 	if (!mci->set_sdram_scrub_rate)
682 		return -ENODEV;
683 
684 	if (strict_strtoul(data, 10, &bandwidth) < 0)
685 		return -EINVAL;
686 
687 	new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
688 	if (new_bw < 0) {
689 		edac_printk(KERN_WARNING, EDAC_MC,
690 			    "Error setting scrub rate to: %lu\n", bandwidth);
691 		return -EINVAL;
692 	}
693 
694 	return count;
695 }
696 
697 /*
698  * ->get_sdram_scrub_rate() return value semantics same as above.
699  */
700 static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
701 					 struct device_attribute *mattr,
702 					 char *data)
703 {
704 	struct mem_ctl_info *mci = to_mci(dev);
705 	int bandwidth = 0;
706 
707 	if (!mci->get_sdram_scrub_rate)
708 		return -ENODEV;
709 
710 	bandwidth = mci->get_sdram_scrub_rate(mci);
711 	if (bandwidth < 0) {
712 		edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
713 		return bandwidth;
714 	}
715 
716 	return sprintf(data, "%d\n", bandwidth);
717 }
718 
719 /* default attribute files for the MCI object */
720 static ssize_t mci_ue_count_show(struct device *dev,
721 				 struct device_attribute *mattr,
722 				 char *data)
723 {
724 	struct mem_ctl_info *mci = to_mci(dev);
725 
726 	return sprintf(data, "%d\n", mci->ue_mc);
727 }
728 
729 static ssize_t mci_ce_count_show(struct device *dev,
730 				 struct device_attribute *mattr,
731 				 char *data)
732 {
733 	struct mem_ctl_info *mci = to_mci(dev);
734 
735 	return sprintf(data, "%d\n", mci->ce_mc);
736 }
737 
738 static ssize_t mci_ce_noinfo_show(struct device *dev,
739 				  struct device_attribute *mattr,
740 				  char *data)
741 {
742 	struct mem_ctl_info *mci = to_mci(dev);
743 
744 	return sprintf(data, "%d\n", mci->ce_noinfo_count);
745 }
746 
747 static ssize_t mci_ue_noinfo_show(struct device *dev,
748 				  struct device_attribute *mattr,
749 				  char *data)
750 {
751 	struct mem_ctl_info *mci = to_mci(dev);
752 
753 	return sprintf(data, "%d\n", mci->ue_noinfo_count);
754 }
755 
756 static ssize_t mci_seconds_show(struct device *dev,
757 				struct device_attribute *mattr,
758 				char *data)
759 {
760 	struct mem_ctl_info *mci = to_mci(dev);
761 
762 	return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
763 }
764 
765 static ssize_t mci_ctl_name_show(struct device *dev,
766 				 struct device_attribute *mattr,
767 				 char *data)
768 {
769 	struct mem_ctl_info *mci = to_mci(dev);
770 
771 	return sprintf(data, "%s\n", mci->ctl_name);
772 }
773 
774 static ssize_t mci_size_mb_show(struct device *dev,
775 				struct device_attribute *mattr,
776 				char *data)
777 {
778 	struct mem_ctl_info *mci = to_mci(dev);
779 	int total_pages = 0, csrow_idx, j;
780 
781 	for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
782 		struct csrow_info *csrow = mci->csrows[csrow_idx];
783 
784 		if (csrow->mci->csbased) {
785 			total_pages += csrow->nr_pages;
786 		} else {
787 			for (j = 0; j < csrow->nr_channels; j++) {
788 				struct dimm_info *dimm = csrow->channels[j]->dimm;
789 
790 				total_pages += dimm->nr_pages;
791 			}
792 		}
793 	}
794 
795 	return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
796 }
797 
798 static ssize_t mci_max_location_show(struct device *dev,
799 				     struct device_attribute *mattr,
800 				     char *data)
801 {
802 	struct mem_ctl_info *mci = to_mci(dev);
803 	int i;
804 	char *p = data;
805 
806 	for (i = 0; i < mci->n_layers; i++) {
807 		p += sprintf(p, "%s %d ",
808 			     edac_layer_name[mci->layers[i].type],
809 			     mci->layers[i].size - 1);
810 	}
811 
812 	return p - data;
813 }
814 
815 #ifdef CONFIG_EDAC_DEBUG
816 static ssize_t edac_fake_inject_write(struct file *file,
817 				      const char __user *data,
818 				      size_t count, loff_t *ppos)
819 {
820 	struct device *dev = file->private_data;
821 	struct mem_ctl_info *mci = to_mci(dev);
822 	static enum hw_event_mc_err_type type;
823 	u16 errcount = mci->fake_inject_count;
824 
825 	if (!errcount)
826 		errcount = 1;
827 
828 	type = mci->fake_inject_ue ? HW_EVENT_ERR_UNCORRECTED
829 				   : HW_EVENT_ERR_CORRECTED;
830 
831 	printk(KERN_DEBUG
832 	       "Generating %d %s fake error%s to %d.%d.%d to test core handling. NOTE: this won't test the driver-specific decoding logic.\n",
833 		errcount,
834 		(type == HW_EVENT_ERR_UNCORRECTED) ? "UE" : "CE",
835 		errcount > 1 ? "s" : "",
836 		mci->fake_inject_layer[0],
837 		mci->fake_inject_layer[1],
838 		mci->fake_inject_layer[2]
839 	       );
840 	edac_mc_handle_error(type, mci, errcount, 0, 0, 0,
841 			     mci->fake_inject_layer[0],
842 			     mci->fake_inject_layer[1],
843 			     mci->fake_inject_layer[2],
844 			     "FAKE ERROR", "for EDAC testing only");
845 
846 	return count;
847 }
848 
849 static const struct file_operations debug_fake_inject_fops = {
850 	.open = simple_open,
851 	.write = edac_fake_inject_write,
852 	.llseek = generic_file_llseek,
853 };
854 #endif
855 
856 /* default Control file */
857 DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
858 
859 /* default Attribute files */
860 DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
861 DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
862 DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
863 DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
864 DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
865 DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
866 DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
867 DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
868 
869 /* memory scrubber attribute file */
870 DEVICE_ATTR(sdram_scrub_rate, S_IRUGO | S_IWUSR, mci_sdram_scrub_rate_show,
871 	mci_sdram_scrub_rate_store);
872 
873 static struct attribute *mci_attrs[] = {
874 	&dev_attr_reset_counters.attr,
875 	&dev_attr_mc_name.attr,
876 	&dev_attr_size_mb.attr,
877 	&dev_attr_seconds_since_reset.attr,
878 	&dev_attr_ue_noinfo_count.attr,
879 	&dev_attr_ce_noinfo_count.attr,
880 	&dev_attr_ue_count.attr,
881 	&dev_attr_ce_count.attr,
882 	&dev_attr_sdram_scrub_rate.attr,
883 	&dev_attr_max_location.attr,
884 	NULL
885 };
886 
887 static struct attribute_group mci_attr_grp = {
888 	.attrs	= mci_attrs,
889 };
890 
891 static const struct attribute_group *mci_attr_groups[] = {
892 	&mci_attr_grp,
893 	NULL
894 };
895 
896 static void mci_attr_release(struct device *dev)
897 {
898 	struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
899 
900 	edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
901 	kfree(mci);
902 }
903 
904 static struct device_type mci_attr_type = {
905 	.groups		= mci_attr_groups,
906 	.release	= mci_attr_release,
907 };
908 
909 #ifdef CONFIG_EDAC_DEBUG
910 static struct dentry *edac_debugfs;
911 
912 int __init edac_debugfs_init(void)
913 {
914 	edac_debugfs = debugfs_create_dir("edac", NULL);
915 	if (IS_ERR(edac_debugfs)) {
916 		edac_debugfs = NULL;
917 		return -ENOMEM;
918 	}
919 	return 0;
920 }
921 
922 void __exit edac_debugfs_exit(void)
923 {
924 	debugfs_remove(edac_debugfs);
925 }
926 
927 int edac_create_debug_nodes(struct mem_ctl_info *mci)
928 {
929 	struct dentry *d, *parent;
930 	char name[80];
931 	int i;
932 
933 	if (!edac_debugfs)
934 		return -ENODEV;
935 
936 	d = debugfs_create_dir(mci->dev.kobj.name, edac_debugfs);
937 	if (!d)
938 		return -ENOMEM;
939 	parent = d;
940 
941 	for (i = 0; i < mci->n_layers; i++) {
942 		sprintf(name, "fake_inject_%s",
943 			     edac_layer_name[mci->layers[i].type]);
944 		d = debugfs_create_u8(name, S_IRUGO | S_IWUSR, parent,
945 				      &mci->fake_inject_layer[i]);
946 		if (!d)
947 			goto nomem;
948 	}
949 
950 	d = debugfs_create_bool("fake_inject_ue", S_IRUGO | S_IWUSR, parent,
951 				&mci->fake_inject_ue);
952 	if (!d)
953 		goto nomem;
954 
955 	d = debugfs_create_u16("fake_inject_count", S_IRUGO | S_IWUSR, parent,
956 				&mci->fake_inject_count);
957 	if (!d)
958 		goto nomem;
959 
960 	d = debugfs_create_file("fake_inject", S_IWUSR, parent,
961 				&mci->dev,
962 				&debug_fake_inject_fops);
963 	if (!d)
964 		goto nomem;
965 
966 	mci->debugfs = parent;
967 	return 0;
968 nomem:
969 	debugfs_remove(mci->debugfs);
970 	return -ENOMEM;
971 }
972 #endif
973 
974 /*
975  * Create a new Memory Controller kobject instance,
976  *	mc<id> under the 'mc' directory
977  *
978  * Return:
979  *	0	Success
980  *	!0	Failure
981  */
982 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci)
983 {
984 	int i, err;
985 
986 	/*
987 	 * The memory controller needs its own bus, in order to avoid
988 	 * namespace conflicts at /sys/bus/edac.
989 	 */
990 	mci->bus.name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx);
991 	if (!mci->bus.name)
992 		return -ENOMEM;
993 	edac_dbg(0, "creating bus %s\n", mci->bus.name);
994 	err = bus_register(&mci->bus);
995 	if (err < 0)
996 		return err;
997 
998 	/* get the /sys/devices/system/edac subsys reference */
999 	mci->dev.type = &mci_attr_type;
1000 	device_initialize(&mci->dev);
1001 
1002 	mci->dev.parent = mci_pdev;
1003 	mci->dev.bus = &mci->bus;
1004 	dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
1005 	dev_set_drvdata(&mci->dev, mci);
1006 	pm_runtime_forbid(&mci->dev);
1007 
1008 	edac_dbg(0, "creating device %s\n", dev_name(&mci->dev));
1009 	err = device_add(&mci->dev);
1010 	if (err < 0) {
1011 		bus_unregister(&mci->bus);
1012 		kfree(mci->bus.name);
1013 		return err;
1014 	}
1015 
1016 	/*
1017 	 * Create the dimm/rank devices
1018 	 */
1019 	for (i = 0; i < mci->tot_dimms; i++) {
1020 		struct dimm_info *dimm = mci->dimms[i];
1021 		/* Only expose populated DIMMs */
1022 		if (dimm->nr_pages == 0)
1023 			continue;
1024 #ifdef CONFIG_EDAC_DEBUG
1025 		edac_dbg(1, "creating dimm%d, located at ", i);
1026 		if (edac_debug_level >= 1) {
1027 			int lay;
1028 			for (lay = 0; lay < mci->n_layers; lay++)
1029 				printk(KERN_CONT "%s %d ",
1030 					edac_layer_name[mci->layers[lay].type],
1031 					dimm->location[lay]);
1032 			printk(KERN_CONT "\n");
1033 		}
1034 #endif
1035 		err = edac_create_dimm_object(mci, dimm, i);
1036 		if (err) {
1037 			edac_dbg(1, "failure: create dimm %d obj\n", i);
1038 			goto fail;
1039 		}
1040 	}
1041 
1042 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1043 	err = edac_create_csrow_objects(mci);
1044 	if (err < 0)
1045 		goto fail;
1046 #endif
1047 
1048 #ifdef CONFIG_EDAC_DEBUG
1049 	edac_create_debug_nodes(mci);
1050 #endif
1051 	return 0;
1052 
1053 fail:
1054 	for (i--; i >= 0; i--) {
1055 		struct dimm_info *dimm = mci->dimms[i];
1056 		if (dimm->nr_pages == 0)
1057 			continue;
1058 		put_device(&dimm->dev);
1059 		device_del(&dimm->dev);
1060 	}
1061 	put_device(&mci->dev);
1062 	device_del(&mci->dev);
1063 	bus_unregister(&mci->bus);
1064 	kfree(mci->bus.name);
1065 	return err;
1066 }
1067 
1068 /*
1069  * remove a Memory Controller instance
1070  */
1071 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1072 {
1073 	int i;
1074 
1075 	edac_dbg(0, "\n");
1076 
1077 #ifdef CONFIG_EDAC_DEBUG
1078 	debugfs_remove(mci->debugfs);
1079 #endif
1080 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1081 	edac_delete_csrow_objects(mci);
1082 #endif
1083 
1084 	for (i = 0; i < mci->tot_dimms; i++) {
1085 		struct dimm_info *dimm = mci->dimms[i];
1086 		if (dimm->nr_pages == 0)
1087 			continue;
1088 		edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev));
1089 		put_device(&dimm->dev);
1090 		device_del(&dimm->dev);
1091 	}
1092 }
1093 
1094 void edac_unregister_sysfs(struct mem_ctl_info *mci)
1095 {
1096 	edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev));
1097 	put_device(&mci->dev);
1098 	device_del(&mci->dev);
1099 	bus_unregister(&mci->bus);
1100 	kfree(mci->bus.name);
1101 }
1102 
1103 static void mc_attr_release(struct device *dev)
1104 {
1105 	/*
1106 	 * There's no container structure here, as this is just the mci
1107 	 * parent device, used to create the /sys/devices/mc sysfs node.
1108 	 * So, there are no attributes on it.
1109 	 */
1110 	edac_dbg(1, "Releasing device %s\n", dev_name(dev));
1111 	kfree(dev);
1112 }
1113 
1114 static struct device_type mc_attr_type = {
1115 	.release	= mc_attr_release,
1116 };
1117 /*
1118  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1119  */
1120 int __init edac_mc_sysfs_init(void)
1121 {
1122 	struct bus_type *edac_subsys;
1123 	int err;
1124 
1125 	/* get the /sys/devices/system/edac subsys reference */
1126 	edac_subsys = edac_get_sysfs_subsys();
1127 	if (edac_subsys == NULL) {
1128 		edac_dbg(1, "no edac_subsys\n");
1129 		err = -EINVAL;
1130 		goto out;
1131 	}
1132 
1133 	mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1134 	if (!mci_pdev) {
1135 		err = -ENOMEM;
1136 		goto out_put_sysfs;
1137 	}
1138 
1139 	mci_pdev->bus = edac_subsys;
1140 	mci_pdev->type = &mc_attr_type;
1141 	device_initialize(mci_pdev);
1142 	dev_set_name(mci_pdev, "mc");
1143 
1144 	err = device_add(mci_pdev);
1145 	if (err < 0)
1146 		goto out_dev_free;
1147 
1148 	edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1149 
1150 	return 0;
1151 
1152  out_dev_free:
1153 	kfree(mci_pdev);
1154  out_put_sysfs:
1155 	edac_put_sysfs_subsys();
1156  out:
1157 	return err;
1158 }
1159 
1160 void __exit edac_mc_sysfs_exit(void)
1161 {
1162 	put_device(mci_pdev);
1163 	device_del(mci_pdev);
1164 	edac_put_sysfs_subsys();
1165 	kfree(mci_pdev);
1166 }
1167