1 /* 2 * edac_mc kernel module 3 * (C) 2005-2007 Linux Networx (http://lnxi.com) 4 * 5 * This file may be distributed under the terms of the 6 * GNU General Public License. 7 * 8 * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com 9 * 10 * (c) 2012-2013 - Mauro Carvalho Chehab 11 * The entire API were re-written, and ported to use struct device 12 * 13 */ 14 15 #include <linux/ctype.h> 16 #include <linux/slab.h> 17 #include <linux/edac.h> 18 #include <linux/bug.h> 19 #include <linux/pm_runtime.h> 20 #include <linux/uaccess.h> 21 22 #include "edac_mc.h" 23 #include "edac_module.h" 24 25 /* MC EDAC Controls, setable by module parameter, and sysfs */ 26 static int edac_mc_log_ue = 1; 27 static int edac_mc_log_ce = 1; 28 static int edac_mc_panic_on_ue; 29 static unsigned int edac_mc_poll_msec = 1000; 30 31 /* Getter functions for above */ 32 int edac_mc_get_log_ue(void) 33 { 34 return edac_mc_log_ue; 35 } 36 37 int edac_mc_get_log_ce(void) 38 { 39 return edac_mc_log_ce; 40 } 41 42 int edac_mc_get_panic_on_ue(void) 43 { 44 return edac_mc_panic_on_ue; 45 } 46 47 /* this is temporary */ 48 unsigned int edac_mc_get_poll_msec(void) 49 { 50 return edac_mc_poll_msec; 51 } 52 53 static int edac_set_poll_msec(const char *val, const struct kernel_param *kp) 54 { 55 unsigned int i; 56 int ret; 57 58 if (!val) 59 return -EINVAL; 60 61 ret = kstrtouint(val, 0, &i); 62 if (ret) 63 return ret; 64 65 if (i < 1000) 66 return -EINVAL; 67 68 *((unsigned int *)kp->arg) = i; 69 70 /* notify edac_mc engine to reset the poll period */ 71 edac_mc_reset_delay_period(i); 72 73 return 0; 74 } 75 76 /* Parameter declarations for above */ 77 module_param(edac_mc_panic_on_ue, int, 0644); 78 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on"); 79 module_param(edac_mc_log_ue, int, 0644); 80 MODULE_PARM_DESC(edac_mc_log_ue, 81 "Log uncorrectable error to console: 0=off 1=on"); 82 module_param(edac_mc_log_ce, int, 0644); 83 MODULE_PARM_DESC(edac_mc_log_ce, 84 "Log correctable error to console: 0=off 1=on"); 85 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_uint, 86 &edac_mc_poll_msec, 0644); 87 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds"); 88 89 static struct device *mci_pdev; 90 91 /* 92 * various constants for Memory Controllers 93 */ 94 static const char * const dev_types[] = { 95 [DEV_UNKNOWN] = "Unknown", 96 [DEV_X1] = "x1", 97 [DEV_X2] = "x2", 98 [DEV_X4] = "x4", 99 [DEV_X8] = "x8", 100 [DEV_X16] = "x16", 101 [DEV_X32] = "x32", 102 [DEV_X64] = "x64" 103 }; 104 105 static const char * const edac_caps[] = { 106 [EDAC_UNKNOWN] = "Unknown", 107 [EDAC_NONE] = "None", 108 [EDAC_RESERVED] = "Reserved", 109 [EDAC_PARITY] = "PARITY", 110 [EDAC_EC] = "EC", 111 [EDAC_SECDED] = "SECDED", 112 [EDAC_S2ECD2ED] = "S2ECD2ED", 113 [EDAC_S4ECD4ED] = "S4ECD4ED", 114 [EDAC_S8ECD8ED] = "S8ECD8ED", 115 [EDAC_S16ECD16ED] = "S16ECD16ED" 116 }; 117 118 #ifdef CONFIG_EDAC_LEGACY_SYSFS 119 /* 120 * EDAC sysfs CSROW data structures and methods 121 */ 122 123 #define to_csrow(k) container_of(k, struct csrow_info, dev) 124 125 /* 126 * We need it to avoid namespace conflicts between the legacy API 127 * and the per-dimm/per-rank one 128 */ 129 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \ 130 static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store) 131 132 struct dev_ch_attribute { 133 struct device_attribute attr; 134 unsigned int channel; 135 }; 136 137 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \ 138 static struct dev_ch_attribute dev_attr_legacy_##_name = \ 139 { __ATTR(_name, _mode, _show, _store), (_var) } 140 141 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel) 142 143 /* Set of more default csrow<id> attribute show/store functions */ 144 static ssize_t csrow_ue_count_show(struct device *dev, 145 struct device_attribute *mattr, char *data) 146 { 147 struct csrow_info *csrow = to_csrow(dev); 148 149 return sysfs_emit(data, "%u\n", csrow->ue_count); 150 } 151 152 static ssize_t csrow_ce_count_show(struct device *dev, 153 struct device_attribute *mattr, char *data) 154 { 155 struct csrow_info *csrow = to_csrow(dev); 156 157 return sysfs_emit(data, "%u\n", csrow->ce_count); 158 } 159 160 static ssize_t csrow_size_show(struct device *dev, 161 struct device_attribute *mattr, char *data) 162 { 163 struct csrow_info *csrow = to_csrow(dev); 164 int i; 165 u32 nr_pages = 0; 166 167 for (i = 0; i < csrow->nr_channels; i++) 168 nr_pages += csrow->channels[i]->dimm->nr_pages; 169 return sysfs_emit(data, "%u\n", PAGES_TO_MiB(nr_pages)); 170 } 171 172 static ssize_t csrow_mem_type_show(struct device *dev, 173 struct device_attribute *mattr, char *data) 174 { 175 struct csrow_info *csrow = to_csrow(dev); 176 177 return sysfs_emit(data, "%s\n", edac_mem_types[csrow->channels[0]->dimm->mtype]); 178 } 179 180 static ssize_t csrow_dev_type_show(struct device *dev, 181 struct device_attribute *mattr, char *data) 182 { 183 struct csrow_info *csrow = to_csrow(dev); 184 185 return sysfs_emit(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]); 186 } 187 188 static ssize_t csrow_edac_mode_show(struct device *dev, 189 struct device_attribute *mattr, 190 char *data) 191 { 192 struct csrow_info *csrow = to_csrow(dev); 193 194 return sysfs_emit(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]); 195 } 196 197 /* show/store functions for DIMM Label attributes */ 198 static ssize_t channel_dimm_label_show(struct device *dev, 199 struct device_attribute *mattr, 200 char *data) 201 { 202 struct csrow_info *csrow = to_csrow(dev); 203 unsigned int chan = to_channel(mattr); 204 struct rank_info *rank = csrow->channels[chan]; 205 206 /* if field has not been initialized, there is nothing to send */ 207 if (!rank->dimm->label[0]) 208 return 0; 209 210 return sysfs_emit(data, "%s\n", rank->dimm->label); 211 } 212 213 static ssize_t channel_dimm_label_store(struct device *dev, 214 struct device_attribute *mattr, 215 const char *data, size_t count) 216 { 217 struct csrow_info *csrow = to_csrow(dev); 218 unsigned int chan = to_channel(mattr); 219 struct rank_info *rank = csrow->channels[chan]; 220 size_t copy_count = count; 221 222 if (count == 0) 223 return -EINVAL; 224 225 if (data[count - 1] == '\0' || data[count - 1] == '\n') 226 copy_count -= 1; 227 228 if (copy_count == 0 || copy_count >= sizeof(rank->dimm->label)) 229 return -EINVAL; 230 231 memcpy(rank->dimm->label, data, copy_count); 232 rank->dimm->label[copy_count] = '\0'; 233 234 return count; 235 } 236 237 /* show function for dynamic chX_ce_count attribute */ 238 static ssize_t channel_ce_count_show(struct device *dev, 239 struct device_attribute *mattr, char *data) 240 { 241 struct csrow_info *csrow = to_csrow(dev); 242 unsigned int chan = to_channel(mattr); 243 struct rank_info *rank = csrow->channels[chan]; 244 245 return sysfs_emit(data, "%u\n", rank->ce_count); 246 } 247 248 /* cwrow<id>/attribute files */ 249 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL); 250 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL); 251 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL); 252 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL); 253 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL); 254 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL); 255 256 /* default attributes of the CSROW<id> object */ 257 static struct attribute *csrow_attrs[] = { 258 &dev_attr_legacy_dev_type.attr, 259 &dev_attr_legacy_mem_type.attr, 260 &dev_attr_legacy_edac_mode.attr, 261 &dev_attr_legacy_size_mb.attr, 262 &dev_attr_legacy_ue_count.attr, 263 &dev_attr_legacy_ce_count.attr, 264 NULL, 265 }; 266 267 static const struct attribute_group csrow_attr_grp = { 268 .attrs = csrow_attrs, 269 }; 270 271 static const struct attribute_group *csrow_attr_groups[] = { 272 &csrow_attr_grp, 273 NULL 274 }; 275 276 static const struct device_type csrow_attr_type = { 277 .groups = csrow_attr_groups, 278 }; 279 280 /* 281 * possible dynamic channel DIMM Label attribute files 282 * 283 */ 284 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR, 285 channel_dimm_label_show, channel_dimm_label_store, 0); 286 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR, 287 channel_dimm_label_show, channel_dimm_label_store, 1); 288 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR, 289 channel_dimm_label_show, channel_dimm_label_store, 2); 290 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR, 291 channel_dimm_label_show, channel_dimm_label_store, 3); 292 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR, 293 channel_dimm_label_show, channel_dimm_label_store, 4); 294 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR, 295 channel_dimm_label_show, channel_dimm_label_store, 5); 296 DEVICE_CHANNEL(ch6_dimm_label, S_IRUGO | S_IWUSR, 297 channel_dimm_label_show, channel_dimm_label_store, 6); 298 DEVICE_CHANNEL(ch7_dimm_label, S_IRUGO | S_IWUSR, 299 channel_dimm_label_show, channel_dimm_label_store, 7); 300 DEVICE_CHANNEL(ch8_dimm_label, S_IRUGO | S_IWUSR, 301 channel_dimm_label_show, channel_dimm_label_store, 8); 302 DEVICE_CHANNEL(ch9_dimm_label, S_IRUGO | S_IWUSR, 303 channel_dimm_label_show, channel_dimm_label_store, 9); 304 DEVICE_CHANNEL(ch10_dimm_label, S_IRUGO | S_IWUSR, 305 channel_dimm_label_show, channel_dimm_label_store, 10); 306 DEVICE_CHANNEL(ch11_dimm_label, S_IRUGO | S_IWUSR, 307 channel_dimm_label_show, channel_dimm_label_store, 11); 308 309 /* Total possible dynamic DIMM Label attribute file table */ 310 static struct attribute *dynamic_csrow_dimm_attr[] = { 311 &dev_attr_legacy_ch0_dimm_label.attr.attr, 312 &dev_attr_legacy_ch1_dimm_label.attr.attr, 313 &dev_attr_legacy_ch2_dimm_label.attr.attr, 314 &dev_attr_legacy_ch3_dimm_label.attr.attr, 315 &dev_attr_legacy_ch4_dimm_label.attr.attr, 316 &dev_attr_legacy_ch5_dimm_label.attr.attr, 317 &dev_attr_legacy_ch6_dimm_label.attr.attr, 318 &dev_attr_legacy_ch7_dimm_label.attr.attr, 319 &dev_attr_legacy_ch8_dimm_label.attr.attr, 320 &dev_attr_legacy_ch9_dimm_label.attr.attr, 321 &dev_attr_legacy_ch10_dimm_label.attr.attr, 322 &dev_attr_legacy_ch11_dimm_label.attr.attr, 323 NULL 324 }; 325 326 /* possible dynamic channel ce_count attribute files */ 327 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO, 328 channel_ce_count_show, NULL, 0); 329 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO, 330 channel_ce_count_show, NULL, 1); 331 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO, 332 channel_ce_count_show, NULL, 2); 333 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO, 334 channel_ce_count_show, NULL, 3); 335 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO, 336 channel_ce_count_show, NULL, 4); 337 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO, 338 channel_ce_count_show, NULL, 5); 339 DEVICE_CHANNEL(ch6_ce_count, S_IRUGO, 340 channel_ce_count_show, NULL, 6); 341 DEVICE_CHANNEL(ch7_ce_count, S_IRUGO, 342 channel_ce_count_show, NULL, 7); 343 DEVICE_CHANNEL(ch8_ce_count, S_IRUGO, 344 channel_ce_count_show, NULL, 8); 345 DEVICE_CHANNEL(ch9_ce_count, S_IRUGO, 346 channel_ce_count_show, NULL, 9); 347 DEVICE_CHANNEL(ch10_ce_count, S_IRUGO, 348 channel_ce_count_show, NULL, 10); 349 DEVICE_CHANNEL(ch11_ce_count, S_IRUGO, 350 channel_ce_count_show, NULL, 11); 351 352 /* Total possible dynamic ce_count attribute file table */ 353 static struct attribute *dynamic_csrow_ce_count_attr[] = { 354 &dev_attr_legacy_ch0_ce_count.attr.attr, 355 &dev_attr_legacy_ch1_ce_count.attr.attr, 356 &dev_attr_legacy_ch2_ce_count.attr.attr, 357 &dev_attr_legacy_ch3_ce_count.attr.attr, 358 &dev_attr_legacy_ch4_ce_count.attr.attr, 359 &dev_attr_legacy_ch5_ce_count.attr.attr, 360 &dev_attr_legacy_ch6_ce_count.attr.attr, 361 &dev_attr_legacy_ch7_ce_count.attr.attr, 362 &dev_attr_legacy_ch8_ce_count.attr.attr, 363 &dev_attr_legacy_ch9_ce_count.attr.attr, 364 &dev_attr_legacy_ch10_ce_count.attr.attr, 365 &dev_attr_legacy_ch11_ce_count.attr.attr, 366 NULL 367 }; 368 369 static umode_t csrow_dev_is_visible(struct kobject *kobj, 370 struct attribute *attr, int idx) 371 { 372 struct device *dev = kobj_to_dev(kobj); 373 struct csrow_info *csrow = container_of(dev, struct csrow_info, dev); 374 375 if (idx >= csrow->nr_channels) 376 return 0; 377 378 if (idx >= ARRAY_SIZE(dynamic_csrow_ce_count_attr) - 1) { 379 WARN_ONCE(1, "idx: %d\n", idx); 380 return 0; 381 } 382 383 /* Only expose populated DIMMs */ 384 if (!csrow->channels[idx]->dimm->nr_pages) 385 return 0; 386 387 return attr->mode; 388 } 389 390 391 static const struct attribute_group csrow_dev_dimm_group = { 392 .attrs = dynamic_csrow_dimm_attr, 393 .is_visible = csrow_dev_is_visible, 394 }; 395 396 static const struct attribute_group csrow_dev_ce_count_group = { 397 .attrs = dynamic_csrow_ce_count_attr, 398 .is_visible = csrow_dev_is_visible, 399 }; 400 401 static const struct attribute_group *csrow_dev_groups[] = { 402 &csrow_dev_dimm_group, 403 &csrow_dev_ce_count_group, 404 NULL 405 }; 406 407 static void csrow_release(struct device *dev) 408 { 409 /* 410 * Nothing to do, just unregister sysfs here. The mci 411 * device owns the data and will also release it. 412 */ 413 } 414 415 static inline int nr_pages_per_csrow(struct csrow_info *csrow) 416 { 417 int chan, nr_pages = 0; 418 419 for (chan = 0; chan < csrow->nr_channels; chan++) 420 nr_pages += csrow->channels[chan]->dimm->nr_pages; 421 422 return nr_pages; 423 } 424 425 /* Create a CSROW object under specifed edac_mc_device */ 426 static int edac_create_csrow_object(struct mem_ctl_info *mci, 427 struct csrow_info *csrow, int index) 428 { 429 int err; 430 431 csrow->dev.type = &csrow_attr_type; 432 csrow->dev.groups = csrow_dev_groups; 433 csrow->dev.release = csrow_release; 434 device_initialize(&csrow->dev); 435 csrow->dev.parent = &mci->dev; 436 csrow->mci = mci; 437 dev_set_name(&csrow->dev, "csrow%d", index); 438 dev_set_drvdata(&csrow->dev, csrow); 439 440 err = device_add(&csrow->dev); 441 if (err) { 442 edac_dbg(1, "failure: create device %s\n", dev_name(&csrow->dev)); 443 put_device(&csrow->dev); 444 return err; 445 } 446 447 edac_dbg(0, "device %s created\n", dev_name(&csrow->dev)); 448 449 return 0; 450 } 451 452 /* Create a CSROW object under specifed edac_mc_device */ 453 static int edac_create_csrow_objects(struct mem_ctl_info *mci) 454 { 455 int err, i; 456 struct csrow_info *csrow; 457 458 for (i = 0; i < mci->nr_csrows; i++) { 459 csrow = mci->csrows[i]; 460 if (!nr_pages_per_csrow(csrow)) 461 continue; 462 err = edac_create_csrow_object(mci, mci->csrows[i], i); 463 if (err < 0) 464 goto error; 465 } 466 return 0; 467 468 error: 469 for (--i; i >= 0; i--) { 470 if (device_is_registered(&mci->csrows[i]->dev)) 471 device_unregister(&mci->csrows[i]->dev); 472 } 473 474 return err; 475 } 476 477 static void edac_delete_csrow_objects(struct mem_ctl_info *mci) 478 { 479 int i; 480 481 for (i = 0; i < mci->nr_csrows; i++) { 482 if (device_is_registered(&mci->csrows[i]->dev)) 483 device_unregister(&mci->csrows[i]->dev); 484 } 485 } 486 487 #endif 488 489 /* 490 * Per-dimm (or per-rank) devices 491 */ 492 493 #define to_dimm(k) container_of(k, struct dimm_info, dev) 494 495 /* show/store functions for DIMM Label attributes */ 496 static ssize_t dimmdev_location_show(struct device *dev, 497 struct device_attribute *mattr, char *data) 498 { 499 struct dimm_info *dimm = to_dimm(dev); 500 ssize_t count; 501 502 count = edac_dimm_info_location(dimm, data, PAGE_SIZE); 503 count += scnprintf(data + count, PAGE_SIZE - count, "\n"); 504 505 return count; 506 } 507 508 static ssize_t dimmdev_label_show(struct device *dev, 509 struct device_attribute *mattr, char *data) 510 { 511 struct dimm_info *dimm = to_dimm(dev); 512 513 /* if field has not been initialized, there is nothing to send */ 514 if (!dimm->label[0]) 515 return 0; 516 517 return sysfs_emit(data, "%s\n", dimm->label); 518 } 519 520 static ssize_t dimmdev_label_store(struct device *dev, 521 struct device_attribute *mattr, 522 const char *data, 523 size_t count) 524 { 525 struct dimm_info *dimm = to_dimm(dev); 526 size_t copy_count = count; 527 528 if (count == 0) 529 return -EINVAL; 530 531 if (data[count - 1] == '\0' || data[count - 1] == '\n') 532 copy_count -= 1; 533 534 if (copy_count == 0 || copy_count >= sizeof(dimm->label)) 535 return -EINVAL; 536 537 memcpy(dimm->label, data, copy_count); 538 dimm->label[copy_count] = '\0'; 539 540 return count; 541 } 542 543 static ssize_t dimmdev_size_show(struct device *dev, 544 struct device_attribute *mattr, char *data) 545 { 546 struct dimm_info *dimm = to_dimm(dev); 547 548 return sysfs_emit(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages)); 549 } 550 551 static ssize_t dimmdev_mem_type_show(struct device *dev, 552 struct device_attribute *mattr, char *data) 553 { 554 struct dimm_info *dimm = to_dimm(dev); 555 556 return sysfs_emit(data, "%s\n", edac_mem_types[dimm->mtype]); 557 } 558 559 static ssize_t dimmdev_dev_type_show(struct device *dev, 560 struct device_attribute *mattr, char *data) 561 { 562 struct dimm_info *dimm = to_dimm(dev); 563 564 return sysfs_emit(data, "%s\n", dev_types[dimm->dtype]); 565 } 566 567 static ssize_t dimmdev_edac_mode_show(struct device *dev, 568 struct device_attribute *mattr, 569 char *data) 570 { 571 struct dimm_info *dimm = to_dimm(dev); 572 573 return sysfs_emit(data, "%s\n", edac_caps[dimm->edac_mode]); 574 } 575 576 static ssize_t dimmdev_ce_count_show(struct device *dev, 577 struct device_attribute *mattr, 578 char *data) 579 { 580 struct dimm_info *dimm = to_dimm(dev); 581 582 return sysfs_emit(data, "%u\n", dimm->ce_count); 583 } 584 585 static ssize_t dimmdev_ue_count_show(struct device *dev, 586 struct device_attribute *mattr, 587 char *data) 588 { 589 struct dimm_info *dimm = to_dimm(dev); 590 591 return sysfs_emit(data, "%u\n", dimm->ue_count); 592 } 593 594 /* dimm/rank attribute files */ 595 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR, 596 dimmdev_label_show, dimmdev_label_store); 597 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL); 598 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL); 599 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL); 600 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL); 601 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL); 602 static DEVICE_ATTR(dimm_ce_count, S_IRUGO, dimmdev_ce_count_show, NULL); 603 static DEVICE_ATTR(dimm_ue_count, S_IRUGO, dimmdev_ue_count_show, NULL); 604 605 /* attributes of the dimm<id>/rank<id> object */ 606 static struct attribute *dimm_attrs[] = { 607 &dev_attr_dimm_label.attr, 608 &dev_attr_dimm_location.attr, 609 &dev_attr_size.attr, 610 &dev_attr_dimm_mem_type.attr, 611 &dev_attr_dimm_dev_type.attr, 612 &dev_attr_dimm_edac_mode.attr, 613 &dev_attr_dimm_ce_count.attr, 614 &dev_attr_dimm_ue_count.attr, 615 NULL, 616 }; 617 618 static const struct attribute_group dimm_attr_grp = { 619 .attrs = dimm_attrs, 620 }; 621 622 static const struct attribute_group *dimm_attr_groups[] = { 623 &dimm_attr_grp, 624 NULL 625 }; 626 627 static const struct device_type dimm_attr_type = { 628 .groups = dimm_attr_groups, 629 }; 630 631 static void dimm_release(struct device *dev) 632 { 633 /* 634 * Nothing to do, just unregister sysfs here. The mci 635 * device owns the data and will also release it. 636 */ 637 } 638 639 /* Create a DIMM object under specifed memory controller device */ 640 static int edac_create_dimm_object(struct mem_ctl_info *mci, 641 struct dimm_info *dimm) 642 { 643 int err; 644 dimm->mci = mci; 645 646 dimm->dev.type = &dimm_attr_type; 647 dimm->dev.release = dimm_release; 648 device_initialize(&dimm->dev); 649 650 dimm->dev.parent = &mci->dev; 651 if (mci->csbased) 652 dev_set_name(&dimm->dev, "rank%d", dimm->idx); 653 else 654 dev_set_name(&dimm->dev, "dimm%d", dimm->idx); 655 dev_set_drvdata(&dimm->dev, dimm); 656 pm_runtime_forbid(&mci->dev); 657 658 err = device_add(&dimm->dev); 659 if (err) { 660 edac_dbg(1, "failure: create device %s\n", dev_name(&dimm->dev)); 661 put_device(&dimm->dev); 662 return err; 663 } 664 665 if (IS_ENABLED(CONFIG_EDAC_DEBUG)) { 666 char location[80]; 667 668 edac_dimm_info_location(dimm, location, sizeof(location)); 669 edac_dbg(0, "device %s created at location %s\n", 670 dev_name(&dimm->dev), location); 671 } 672 673 return 0; 674 } 675 676 /* 677 * Memory controller device 678 */ 679 680 #define to_mci(k) container_of(k, struct mem_ctl_info, dev) 681 682 static ssize_t mci_reset_counters_store(struct device *dev, 683 struct device_attribute *mattr, 684 const char *data, size_t count) 685 { 686 struct mem_ctl_info *mci = to_mci(dev); 687 struct dimm_info *dimm; 688 int row, chan; 689 690 mci->ue_mc = 0; 691 mci->ce_mc = 0; 692 mci->ue_noinfo_count = 0; 693 mci->ce_noinfo_count = 0; 694 695 for (row = 0; row < mci->nr_csrows; row++) { 696 struct csrow_info *ri = mci->csrows[row]; 697 698 ri->ue_count = 0; 699 ri->ce_count = 0; 700 701 for (chan = 0; chan < ri->nr_channels; chan++) 702 ri->channels[chan]->ce_count = 0; 703 } 704 705 mci_for_each_dimm(mci, dimm) { 706 dimm->ue_count = 0; 707 dimm->ce_count = 0; 708 } 709 710 mci->start_time = jiffies; 711 return count; 712 } 713 714 /* Memory scrubbing interface: 715 * 716 * A MC driver can limit the scrubbing bandwidth based on the CPU type. 717 * Therefore, ->set_sdram_scrub_rate should be made to return the actual 718 * bandwidth that is accepted or 0 when scrubbing is to be disabled. 719 * 720 * Negative value still means that an error has occurred while setting 721 * the scrub rate. 722 */ 723 static ssize_t mci_sdram_scrub_rate_store(struct device *dev, 724 struct device_attribute *mattr, 725 const char *data, size_t count) 726 { 727 struct mem_ctl_info *mci = to_mci(dev); 728 unsigned long bandwidth = 0; 729 int new_bw = 0; 730 731 if (kstrtoul(data, 10, &bandwidth) < 0) 732 return -EINVAL; 733 734 new_bw = mci->set_sdram_scrub_rate(mci, bandwidth); 735 if (new_bw < 0) { 736 edac_printk(KERN_WARNING, EDAC_MC, 737 "Error setting scrub rate to: %lu\n", bandwidth); 738 return -EINVAL; 739 } 740 741 return count; 742 } 743 744 /* 745 * ->get_sdram_scrub_rate() return value semantics same as above. 746 */ 747 static ssize_t mci_sdram_scrub_rate_show(struct device *dev, 748 struct device_attribute *mattr, 749 char *data) 750 { 751 struct mem_ctl_info *mci = to_mci(dev); 752 int bandwidth = 0; 753 754 bandwidth = mci->get_sdram_scrub_rate(mci); 755 if (bandwidth < 0) { 756 edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n"); 757 return bandwidth; 758 } 759 760 return sysfs_emit(data, "%d\n", bandwidth); 761 } 762 763 /* default attribute files for the MCI object */ 764 static ssize_t mci_ue_count_show(struct device *dev, 765 struct device_attribute *mattr, 766 char *data) 767 { 768 struct mem_ctl_info *mci = to_mci(dev); 769 770 return sysfs_emit(data, "%u\n", mci->ue_mc); 771 } 772 773 static ssize_t mci_ce_count_show(struct device *dev, 774 struct device_attribute *mattr, 775 char *data) 776 { 777 struct mem_ctl_info *mci = to_mci(dev); 778 779 return sysfs_emit(data, "%u\n", mci->ce_mc); 780 } 781 782 static ssize_t mci_ce_noinfo_show(struct device *dev, 783 struct device_attribute *mattr, 784 char *data) 785 { 786 struct mem_ctl_info *mci = to_mci(dev); 787 788 return sysfs_emit(data, "%u\n", mci->ce_noinfo_count); 789 } 790 791 static ssize_t mci_ue_noinfo_show(struct device *dev, 792 struct device_attribute *mattr, 793 char *data) 794 { 795 struct mem_ctl_info *mci = to_mci(dev); 796 797 return sysfs_emit(data, "%u\n", mci->ue_noinfo_count); 798 } 799 800 static ssize_t mci_seconds_show(struct device *dev, 801 struct device_attribute *mattr, 802 char *data) 803 { 804 struct mem_ctl_info *mci = to_mci(dev); 805 806 return sysfs_emit(data, "%ld\n", (jiffies - mci->start_time) / HZ); 807 } 808 809 static ssize_t mci_ctl_name_show(struct device *dev, 810 struct device_attribute *mattr, 811 char *data) 812 { 813 struct mem_ctl_info *mci = to_mci(dev); 814 815 return sysfs_emit(data, "%s\n", mci->ctl_name); 816 } 817 818 static ssize_t mci_size_mb_show(struct device *dev, 819 struct device_attribute *mattr, 820 char *data) 821 { 822 struct mem_ctl_info *mci = to_mci(dev); 823 int total_pages = 0, csrow_idx, j; 824 825 for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) { 826 struct csrow_info *csrow = mci->csrows[csrow_idx]; 827 828 for (j = 0; j < csrow->nr_channels; j++) { 829 struct dimm_info *dimm = csrow->channels[j]->dimm; 830 831 total_pages += dimm->nr_pages; 832 } 833 } 834 835 return sysfs_emit(data, "%u\n", PAGES_TO_MiB(total_pages)); 836 } 837 838 static ssize_t mci_max_location_show(struct device *dev, 839 struct device_attribute *mattr, 840 char *data) 841 { 842 struct mem_ctl_info *mci = to_mci(dev); 843 int len = PAGE_SIZE; 844 char *p = data; 845 int i, n; 846 847 for (i = 0; i < mci->n_layers; i++) { 848 n = scnprintf(p, len, "%s %d ", 849 edac_layer_name[mci->layers[i].type], 850 mci->layers[i].size - 1); 851 len -= n; 852 if (len <= 0) 853 goto out; 854 855 p += n; 856 } 857 858 p += scnprintf(p, len, "\n"); 859 out: 860 return p - data; 861 } 862 863 /* default Control file */ 864 static DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store); 865 866 /* default Attribute files */ 867 static DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL); 868 static DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL); 869 static DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL); 870 static DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL); 871 static DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL); 872 static DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL); 873 static DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL); 874 static DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL); 875 876 /* memory scrubber attribute file */ 877 static DEVICE_ATTR(sdram_scrub_rate, 0, mci_sdram_scrub_rate_show, 878 mci_sdram_scrub_rate_store); /* umode set later in is_visible */ 879 880 static struct attribute *mci_attrs[] = { 881 &dev_attr_reset_counters.attr, 882 &dev_attr_mc_name.attr, 883 &dev_attr_size_mb.attr, 884 &dev_attr_seconds_since_reset.attr, 885 &dev_attr_ue_noinfo_count.attr, 886 &dev_attr_ce_noinfo_count.attr, 887 &dev_attr_ue_count.attr, 888 &dev_attr_ce_count.attr, 889 &dev_attr_max_location.attr, 890 &dev_attr_sdram_scrub_rate.attr, 891 NULL 892 }; 893 894 static umode_t mci_attr_is_visible(struct kobject *kobj, 895 struct attribute *attr, int idx) 896 { 897 struct device *dev = kobj_to_dev(kobj); 898 struct mem_ctl_info *mci = to_mci(dev); 899 umode_t mode = 0; 900 901 if (attr != &dev_attr_sdram_scrub_rate.attr) 902 return attr->mode; 903 if (mci->get_sdram_scrub_rate) 904 mode |= S_IRUGO; 905 if (mci->set_sdram_scrub_rate) 906 mode |= S_IWUSR; 907 return mode; 908 } 909 910 static const struct attribute_group mci_attr_grp = { 911 .attrs = mci_attrs, 912 .is_visible = mci_attr_is_visible, 913 }; 914 915 static const struct attribute_group *mci_attr_groups[] = { 916 &mci_attr_grp, 917 NULL 918 }; 919 920 static const struct device_type mci_attr_type = { 921 .groups = mci_attr_groups, 922 }; 923 924 /* 925 * Create a new Memory Controller kobject instance, 926 * mc<id> under the 'mc' directory 927 * 928 * Return: 929 * 0 Success 930 * !0 Failure 931 */ 932 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci, 933 const struct attribute_group **groups) 934 { 935 struct dimm_info *dimm; 936 int err; 937 938 /* get the /sys/devices/system/edac subsys reference */ 939 mci->dev.type = &mci_attr_type; 940 mci->dev.parent = mci_pdev; 941 mci->dev.groups = groups; 942 dev_set_name(&mci->dev, "mc%d", mci->mc_idx); 943 dev_set_drvdata(&mci->dev, mci); 944 pm_runtime_forbid(&mci->dev); 945 946 err = device_add(&mci->dev); 947 if (err < 0) { 948 edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev)); 949 /* no put_device() here, free mci with _edac_mc_free() */ 950 return err; 951 } 952 953 edac_dbg(0, "device %s created\n", dev_name(&mci->dev)); 954 955 /* 956 * Create the dimm/rank devices 957 */ 958 mci_for_each_dimm(mci, dimm) { 959 /* Only expose populated DIMMs */ 960 if (!dimm->nr_pages) 961 continue; 962 963 err = edac_create_dimm_object(mci, dimm); 964 if (err) 965 goto fail; 966 } 967 968 #ifdef CONFIG_EDAC_LEGACY_SYSFS 969 err = edac_create_csrow_objects(mci); 970 if (err < 0) 971 goto fail; 972 #endif 973 974 edac_create_debugfs_nodes(mci); 975 return 0; 976 977 fail: 978 edac_remove_sysfs_mci_device(mci); 979 980 return err; 981 } 982 983 /* 984 * remove a Memory Controller instance 985 */ 986 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci) 987 { 988 struct dimm_info *dimm; 989 990 if (!device_is_registered(&mci->dev)) 991 return; 992 993 edac_dbg(0, "\n"); 994 995 #ifdef CONFIG_EDAC_DEBUG 996 edac_debugfs_remove_recursive(mci->debugfs); 997 #endif 998 #ifdef CONFIG_EDAC_LEGACY_SYSFS 999 edac_delete_csrow_objects(mci); 1000 #endif 1001 1002 mci_for_each_dimm(mci, dimm) { 1003 if (!device_is_registered(&dimm->dev)) 1004 continue; 1005 edac_dbg(1, "unregistering device %s\n", dev_name(&dimm->dev)); 1006 device_unregister(&dimm->dev); 1007 } 1008 1009 /* only remove the device, but keep mci */ 1010 device_del(&mci->dev); 1011 } 1012 1013 static void mc_attr_release(struct device *dev) 1014 { 1015 /* 1016 * There's no container structure here, as this is just the mci 1017 * parent device, used to create the /sys/devices/mc sysfs node. 1018 * So, there are no attributes on it. 1019 */ 1020 edac_dbg(1, "device %s released\n", dev_name(dev)); 1021 kfree(dev); 1022 } 1023 1024 /* 1025 * Init/exit code for the module. Basically, creates/removes /sys/class/rc 1026 */ 1027 int __init edac_mc_sysfs_init(void) 1028 { 1029 int err; 1030 1031 mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL); 1032 if (!mci_pdev) 1033 return -ENOMEM; 1034 1035 mci_pdev->bus = edac_get_sysfs_subsys(); 1036 mci_pdev->release = mc_attr_release; 1037 mci_pdev->init_name = "mc"; 1038 1039 err = device_register(mci_pdev); 1040 if (err < 0) { 1041 edac_dbg(1, "failure: create device %s\n", dev_name(mci_pdev)); 1042 put_device(mci_pdev); 1043 return err; 1044 } 1045 1046 edac_dbg(0, "device %s created\n", dev_name(mci_pdev)); 1047 1048 return 0; 1049 } 1050 1051 void edac_mc_sysfs_exit(void) 1052 { 1053 device_unregister(mci_pdev); 1054 } 1055