xref: /linux/drivers/edac/edac_mc_sysfs.c (revision b85d45947951d23cb22d90caecf4c1eb81342c96)
1 /*
2  * edac_mc kernel module
3  * (C) 2005-2007 Linux Networx (http://lnxi.com)
4  *
5  * This file may be distributed under the terms of the
6  * GNU General Public License.
7  *
8  * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
9  *
10  * (c) 2012-2013 - Mauro Carvalho Chehab
11  *	The entire API were re-written, and ported to use struct device
12  *
13  */
14 
15 #include <linux/ctype.h>
16 #include <linux/slab.h>
17 #include <linux/edac.h>
18 #include <linux/bug.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/uaccess.h>
21 
22 #include "edac_core.h"
23 #include "edac_module.h"
24 
25 /* MC EDAC Controls, setable by module parameter, and sysfs */
26 static int edac_mc_log_ue = 1;
27 static int edac_mc_log_ce = 1;
28 static int edac_mc_panic_on_ue;
29 static int edac_mc_poll_msec = 1000;
30 
31 /* Getter functions for above */
32 int edac_mc_get_log_ue(void)
33 {
34 	return edac_mc_log_ue;
35 }
36 
37 int edac_mc_get_log_ce(void)
38 {
39 	return edac_mc_log_ce;
40 }
41 
42 int edac_mc_get_panic_on_ue(void)
43 {
44 	return edac_mc_panic_on_ue;
45 }
46 
47 /* this is temporary */
48 int edac_mc_get_poll_msec(void)
49 {
50 	return edac_mc_poll_msec;
51 }
52 
53 static int edac_set_poll_msec(const char *val, struct kernel_param *kp)
54 {
55 	unsigned long l;
56 	int ret;
57 
58 	if (!val)
59 		return -EINVAL;
60 
61 	ret = kstrtoul(val, 0, &l);
62 	if (ret)
63 		return ret;
64 
65 	if (l < 1000)
66 		return -EINVAL;
67 
68 	*((unsigned long *)kp->arg) = l;
69 
70 	/* notify edac_mc engine to reset the poll period */
71 	edac_mc_reset_delay_period(l);
72 
73 	return 0;
74 }
75 
76 /* Parameter declarations for above */
77 module_param(edac_mc_panic_on_ue, int, 0644);
78 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
79 module_param(edac_mc_log_ue, int, 0644);
80 MODULE_PARM_DESC(edac_mc_log_ue,
81 		 "Log uncorrectable error to console: 0=off 1=on");
82 module_param(edac_mc_log_ce, int, 0644);
83 MODULE_PARM_DESC(edac_mc_log_ce,
84 		 "Log correctable error to console: 0=off 1=on");
85 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int,
86 		  &edac_mc_poll_msec, 0644);
87 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
88 
89 static struct device *mci_pdev;
90 
91 /*
92  * various constants for Memory Controllers
93  */
94 static const char * const mem_types[] = {
95 	[MEM_EMPTY] = "Empty",
96 	[MEM_RESERVED] = "Reserved",
97 	[MEM_UNKNOWN] = "Unknown",
98 	[MEM_FPM] = "FPM",
99 	[MEM_EDO] = "EDO",
100 	[MEM_BEDO] = "BEDO",
101 	[MEM_SDR] = "Unbuffered-SDR",
102 	[MEM_RDR] = "Registered-SDR",
103 	[MEM_DDR] = "Unbuffered-DDR",
104 	[MEM_RDDR] = "Registered-DDR",
105 	[MEM_RMBS] = "RMBS",
106 	[MEM_DDR2] = "Unbuffered-DDR2",
107 	[MEM_FB_DDR2] = "FullyBuffered-DDR2",
108 	[MEM_RDDR2] = "Registered-DDR2",
109 	[MEM_XDR] = "XDR",
110 	[MEM_DDR3] = "Unbuffered-DDR3",
111 	[MEM_RDDR3] = "Registered-DDR3",
112 	[MEM_DDR4] = "Unbuffered-DDR4",
113 	[MEM_RDDR4] = "Registered-DDR4"
114 };
115 
116 static const char * const dev_types[] = {
117 	[DEV_UNKNOWN] = "Unknown",
118 	[DEV_X1] = "x1",
119 	[DEV_X2] = "x2",
120 	[DEV_X4] = "x4",
121 	[DEV_X8] = "x8",
122 	[DEV_X16] = "x16",
123 	[DEV_X32] = "x32",
124 	[DEV_X64] = "x64"
125 };
126 
127 static const char * const edac_caps[] = {
128 	[EDAC_UNKNOWN] = "Unknown",
129 	[EDAC_NONE] = "None",
130 	[EDAC_RESERVED] = "Reserved",
131 	[EDAC_PARITY] = "PARITY",
132 	[EDAC_EC] = "EC",
133 	[EDAC_SECDED] = "SECDED",
134 	[EDAC_S2ECD2ED] = "S2ECD2ED",
135 	[EDAC_S4ECD4ED] = "S4ECD4ED",
136 	[EDAC_S8ECD8ED] = "S8ECD8ED",
137 	[EDAC_S16ECD16ED] = "S16ECD16ED"
138 };
139 
140 #ifdef CONFIG_EDAC_LEGACY_SYSFS
141 /*
142  * EDAC sysfs CSROW data structures and methods
143  */
144 
145 #define to_csrow(k) container_of(k, struct csrow_info, dev)
146 
147 /*
148  * We need it to avoid namespace conflicts between the legacy API
149  * and the per-dimm/per-rank one
150  */
151 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
152 	static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
153 
154 struct dev_ch_attribute {
155 	struct device_attribute attr;
156 	int channel;
157 };
158 
159 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
160 	static struct dev_ch_attribute dev_attr_legacy_##_name = \
161 		{ __ATTR(_name, _mode, _show, _store), (_var) }
162 
163 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
164 
165 /* Set of more default csrow<id> attribute show/store functions */
166 static ssize_t csrow_ue_count_show(struct device *dev,
167 				   struct device_attribute *mattr, char *data)
168 {
169 	struct csrow_info *csrow = to_csrow(dev);
170 
171 	return sprintf(data, "%u\n", csrow->ue_count);
172 }
173 
174 static ssize_t csrow_ce_count_show(struct device *dev,
175 				   struct device_attribute *mattr, char *data)
176 {
177 	struct csrow_info *csrow = to_csrow(dev);
178 
179 	return sprintf(data, "%u\n", csrow->ce_count);
180 }
181 
182 static ssize_t csrow_size_show(struct device *dev,
183 			       struct device_attribute *mattr, char *data)
184 {
185 	struct csrow_info *csrow = to_csrow(dev);
186 	int i;
187 	u32 nr_pages = 0;
188 
189 	for (i = 0; i < csrow->nr_channels; i++)
190 		nr_pages += csrow->channels[i]->dimm->nr_pages;
191 	return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
192 }
193 
194 static ssize_t csrow_mem_type_show(struct device *dev,
195 				   struct device_attribute *mattr, char *data)
196 {
197 	struct csrow_info *csrow = to_csrow(dev);
198 
199 	return sprintf(data, "%s\n", mem_types[csrow->channels[0]->dimm->mtype]);
200 }
201 
202 static ssize_t csrow_dev_type_show(struct device *dev,
203 				   struct device_attribute *mattr, char *data)
204 {
205 	struct csrow_info *csrow = to_csrow(dev);
206 
207 	return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
208 }
209 
210 static ssize_t csrow_edac_mode_show(struct device *dev,
211 				    struct device_attribute *mattr,
212 				    char *data)
213 {
214 	struct csrow_info *csrow = to_csrow(dev);
215 
216 	return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
217 }
218 
219 /* show/store functions for DIMM Label attributes */
220 static ssize_t channel_dimm_label_show(struct device *dev,
221 				       struct device_attribute *mattr,
222 				       char *data)
223 {
224 	struct csrow_info *csrow = to_csrow(dev);
225 	unsigned chan = to_channel(mattr);
226 	struct rank_info *rank = csrow->channels[chan];
227 
228 	/* if field has not been initialized, there is nothing to send */
229 	if (!rank->dimm->label[0])
230 		return 0;
231 
232 	return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n",
233 			rank->dimm->label);
234 }
235 
236 static ssize_t channel_dimm_label_store(struct device *dev,
237 					struct device_attribute *mattr,
238 					const char *data, size_t count)
239 {
240 	struct csrow_info *csrow = to_csrow(dev);
241 	unsigned chan = to_channel(mattr);
242 	struct rank_info *rank = csrow->channels[chan];
243 
244 	ssize_t max_size = 0;
245 
246 	max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
247 	strncpy(rank->dimm->label, data, max_size);
248 	rank->dimm->label[max_size] = '\0';
249 
250 	return max_size;
251 }
252 
253 /* show function for dynamic chX_ce_count attribute */
254 static ssize_t channel_ce_count_show(struct device *dev,
255 				     struct device_attribute *mattr, char *data)
256 {
257 	struct csrow_info *csrow = to_csrow(dev);
258 	unsigned chan = to_channel(mattr);
259 	struct rank_info *rank = csrow->channels[chan];
260 
261 	return sprintf(data, "%u\n", rank->ce_count);
262 }
263 
264 /* cwrow<id>/attribute files */
265 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
266 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
267 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
268 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
269 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
270 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
271 
272 /* default attributes of the CSROW<id> object */
273 static struct attribute *csrow_attrs[] = {
274 	&dev_attr_legacy_dev_type.attr,
275 	&dev_attr_legacy_mem_type.attr,
276 	&dev_attr_legacy_edac_mode.attr,
277 	&dev_attr_legacy_size_mb.attr,
278 	&dev_attr_legacy_ue_count.attr,
279 	&dev_attr_legacy_ce_count.attr,
280 	NULL,
281 };
282 
283 static struct attribute_group csrow_attr_grp = {
284 	.attrs	= csrow_attrs,
285 };
286 
287 static const struct attribute_group *csrow_attr_groups[] = {
288 	&csrow_attr_grp,
289 	NULL
290 };
291 
292 static void csrow_attr_release(struct device *dev)
293 {
294 	struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
295 
296 	edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
297 	kfree(csrow);
298 }
299 
300 static struct device_type csrow_attr_type = {
301 	.groups		= csrow_attr_groups,
302 	.release	= csrow_attr_release,
303 };
304 
305 /*
306  * possible dynamic channel DIMM Label attribute files
307  *
308  */
309 
310 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
311 	channel_dimm_label_show, channel_dimm_label_store, 0);
312 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
313 	channel_dimm_label_show, channel_dimm_label_store, 1);
314 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
315 	channel_dimm_label_show, channel_dimm_label_store, 2);
316 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
317 	channel_dimm_label_show, channel_dimm_label_store, 3);
318 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
319 	channel_dimm_label_show, channel_dimm_label_store, 4);
320 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
321 	channel_dimm_label_show, channel_dimm_label_store, 5);
322 
323 /* Total possible dynamic DIMM Label attribute file table */
324 static struct attribute *dynamic_csrow_dimm_attr[] = {
325 	&dev_attr_legacy_ch0_dimm_label.attr.attr,
326 	&dev_attr_legacy_ch1_dimm_label.attr.attr,
327 	&dev_attr_legacy_ch2_dimm_label.attr.attr,
328 	&dev_attr_legacy_ch3_dimm_label.attr.attr,
329 	&dev_attr_legacy_ch4_dimm_label.attr.attr,
330 	&dev_attr_legacy_ch5_dimm_label.attr.attr,
331 	NULL
332 };
333 
334 /* possible dynamic channel ce_count attribute files */
335 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO,
336 		   channel_ce_count_show, NULL, 0);
337 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO,
338 		   channel_ce_count_show, NULL, 1);
339 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO,
340 		   channel_ce_count_show, NULL, 2);
341 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO,
342 		   channel_ce_count_show, NULL, 3);
343 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO,
344 		   channel_ce_count_show, NULL, 4);
345 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO,
346 		   channel_ce_count_show, NULL, 5);
347 
348 /* Total possible dynamic ce_count attribute file table */
349 static struct attribute *dynamic_csrow_ce_count_attr[] = {
350 	&dev_attr_legacy_ch0_ce_count.attr.attr,
351 	&dev_attr_legacy_ch1_ce_count.attr.attr,
352 	&dev_attr_legacy_ch2_ce_count.attr.attr,
353 	&dev_attr_legacy_ch3_ce_count.attr.attr,
354 	&dev_attr_legacy_ch4_ce_count.attr.attr,
355 	&dev_attr_legacy_ch5_ce_count.attr.attr,
356 	NULL
357 };
358 
359 static umode_t csrow_dev_is_visible(struct kobject *kobj,
360 				    struct attribute *attr, int idx)
361 {
362 	struct device *dev = kobj_to_dev(kobj);
363 	struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
364 
365 	if (idx >= csrow->nr_channels)
366 		return 0;
367 	/* Only expose populated DIMMs */
368 	if (!csrow->channels[idx]->dimm->nr_pages)
369 		return 0;
370 	return attr->mode;
371 }
372 
373 
374 static const struct attribute_group csrow_dev_dimm_group = {
375 	.attrs = dynamic_csrow_dimm_attr,
376 	.is_visible = csrow_dev_is_visible,
377 };
378 
379 static const struct attribute_group csrow_dev_ce_count_group = {
380 	.attrs = dynamic_csrow_ce_count_attr,
381 	.is_visible = csrow_dev_is_visible,
382 };
383 
384 static const struct attribute_group *csrow_dev_groups[] = {
385 	&csrow_dev_dimm_group,
386 	&csrow_dev_ce_count_group,
387 	NULL
388 };
389 
390 static inline int nr_pages_per_csrow(struct csrow_info *csrow)
391 {
392 	int chan, nr_pages = 0;
393 
394 	for (chan = 0; chan < csrow->nr_channels; chan++)
395 		nr_pages += csrow->channels[chan]->dimm->nr_pages;
396 
397 	return nr_pages;
398 }
399 
400 /* Create a CSROW object under specifed edac_mc_device */
401 static int edac_create_csrow_object(struct mem_ctl_info *mci,
402 				    struct csrow_info *csrow, int index)
403 {
404 	csrow->dev.type = &csrow_attr_type;
405 	csrow->dev.bus = mci->bus;
406 	csrow->dev.groups = csrow_dev_groups;
407 	device_initialize(&csrow->dev);
408 	csrow->dev.parent = &mci->dev;
409 	csrow->mci = mci;
410 	dev_set_name(&csrow->dev, "csrow%d", index);
411 	dev_set_drvdata(&csrow->dev, csrow);
412 
413 	edac_dbg(0, "creating (virtual) csrow node %s\n",
414 		 dev_name(&csrow->dev));
415 
416 	return device_add(&csrow->dev);
417 }
418 
419 /* Create a CSROW object under specifed edac_mc_device */
420 static int edac_create_csrow_objects(struct mem_ctl_info *mci)
421 {
422 	int err, i;
423 	struct csrow_info *csrow;
424 
425 	for (i = 0; i < mci->nr_csrows; i++) {
426 		csrow = mci->csrows[i];
427 		if (!nr_pages_per_csrow(csrow))
428 			continue;
429 		err = edac_create_csrow_object(mci, mci->csrows[i], i);
430 		if (err < 0) {
431 			edac_dbg(1,
432 				 "failure: create csrow objects for csrow %d\n",
433 				 i);
434 			goto error;
435 		}
436 	}
437 	return 0;
438 
439 error:
440 	for (--i; i >= 0; i--) {
441 		csrow = mci->csrows[i];
442 		if (!nr_pages_per_csrow(csrow))
443 			continue;
444 		put_device(&mci->csrows[i]->dev);
445 	}
446 
447 	return err;
448 }
449 
450 static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
451 {
452 	int i;
453 	struct csrow_info *csrow;
454 
455 	for (i = mci->nr_csrows - 1; i >= 0; i--) {
456 		csrow = mci->csrows[i];
457 		if (!nr_pages_per_csrow(csrow))
458 			continue;
459 		device_unregister(&mci->csrows[i]->dev);
460 	}
461 }
462 #endif
463 
464 /*
465  * Per-dimm (or per-rank) devices
466  */
467 
468 #define to_dimm(k) container_of(k, struct dimm_info, dev)
469 
470 /* show/store functions for DIMM Label attributes */
471 static ssize_t dimmdev_location_show(struct device *dev,
472 				     struct device_attribute *mattr, char *data)
473 {
474 	struct dimm_info *dimm = to_dimm(dev);
475 
476 	return edac_dimm_info_location(dimm, data, PAGE_SIZE);
477 }
478 
479 static ssize_t dimmdev_label_show(struct device *dev,
480 				  struct device_attribute *mattr, char *data)
481 {
482 	struct dimm_info *dimm = to_dimm(dev);
483 
484 	/* if field has not been initialized, there is nothing to send */
485 	if (!dimm->label[0])
486 		return 0;
487 
488 	return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n", dimm->label);
489 }
490 
491 static ssize_t dimmdev_label_store(struct device *dev,
492 				   struct device_attribute *mattr,
493 				   const char *data,
494 				   size_t count)
495 {
496 	struct dimm_info *dimm = to_dimm(dev);
497 
498 	ssize_t max_size = 0;
499 
500 	max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
501 	strncpy(dimm->label, data, max_size);
502 	dimm->label[max_size] = '\0';
503 
504 	return max_size;
505 }
506 
507 static ssize_t dimmdev_size_show(struct device *dev,
508 				 struct device_attribute *mattr, char *data)
509 {
510 	struct dimm_info *dimm = to_dimm(dev);
511 
512 	return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
513 }
514 
515 static ssize_t dimmdev_mem_type_show(struct device *dev,
516 				     struct device_attribute *mattr, char *data)
517 {
518 	struct dimm_info *dimm = to_dimm(dev);
519 
520 	return sprintf(data, "%s\n", mem_types[dimm->mtype]);
521 }
522 
523 static ssize_t dimmdev_dev_type_show(struct device *dev,
524 				     struct device_attribute *mattr, char *data)
525 {
526 	struct dimm_info *dimm = to_dimm(dev);
527 
528 	return sprintf(data, "%s\n", dev_types[dimm->dtype]);
529 }
530 
531 static ssize_t dimmdev_edac_mode_show(struct device *dev,
532 				      struct device_attribute *mattr,
533 				      char *data)
534 {
535 	struct dimm_info *dimm = to_dimm(dev);
536 
537 	return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
538 }
539 
540 /* dimm/rank attribute files */
541 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
542 		   dimmdev_label_show, dimmdev_label_store);
543 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
544 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
545 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
546 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
547 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
548 
549 /* attributes of the dimm<id>/rank<id> object */
550 static struct attribute *dimm_attrs[] = {
551 	&dev_attr_dimm_label.attr,
552 	&dev_attr_dimm_location.attr,
553 	&dev_attr_size.attr,
554 	&dev_attr_dimm_mem_type.attr,
555 	&dev_attr_dimm_dev_type.attr,
556 	&dev_attr_dimm_edac_mode.attr,
557 	NULL,
558 };
559 
560 static struct attribute_group dimm_attr_grp = {
561 	.attrs	= dimm_attrs,
562 };
563 
564 static const struct attribute_group *dimm_attr_groups[] = {
565 	&dimm_attr_grp,
566 	NULL
567 };
568 
569 static void dimm_attr_release(struct device *dev)
570 {
571 	struct dimm_info *dimm = container_of(dev, struct dimm_info, dev);
572 
573 	edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev));
574 	kfree(dimm);
575 }
576 
577 static struct device_type dimm_attr_type = {
578 	.groups		= dimm_attr_groups,
579 	.release	= dimm_attr_release,
580 };
581 
582 /* Create a DIMM object under specifed memory controller device */
583 static int edac_create_dimm_object(struct mem_ctl_info *mci,
584 				   struct dimm_info *dimm,
585 				   int index)
586 {
587 	int err;
588 	dimm->mci = mci;
589 
590 	dimm->dev.type = &dimm_attr_type;
591 	dimm->dev.bus = mci->bus;
592 	device_initialize(&dimm->dev);
593 
594 	dimm->dev.parent = &mci->dev;
595 	if (mci->csbased)
596 		dev_set_name(&dimm->dev, "rank%d", index);
597 	else
598 		dev_set_name(&dimm->dev, "dimm%d", index);
599 	dev_set_drvdata(&dimm->dev, dimm);
600 	pm_runtime_forbid(&mci->dev);
601 
602 	err =  device_add(&dimm->dev);
603 
604 	edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev));
605 
606 	return err;
607 }
608 
609 /*
610  * Memory controller device
611  */
612 
613 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
614 
615 static ssize_t mci_reset_counters_store(struct device *dev,
616 					struct device_attribute *mattr,
617 					const char *data, size_t count)
618 {
619 	struct mem_ctl_info *mci = to_mci(dev);
620 	int cnt, row, chan, i;
621 	mci->ue_mc = 0;
622 	mci->ce_mc = 0;
623 	mci->ue_noinfo_count = 0;
624 	mci->ce_noinfo_count = 0;
625 
626 	for (row = 0; row < mci->nr_csrows; row++) {
627 		struct csrow_info *ri = mci->csrows[row];
628 
629 		ri->ue_count = 0;
630 		ri->ce_count = 0;
631 
632 		for (chan = 0; chan < ri->nr_channels; chan++)
633 			ri->channels[chan]->ce_count = 0;
634 	}
635 
636 	cnt = 1;
637 	for (i = 0; i < mci->n_layers; i++) {
638 		cnt *= mci->layers[i].size;
639 		memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
640 		memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
641 	}
642 
643 	mci->start_time = jiffies;
644 	return count;
645 }
646 
647 /* Memory scrubbing interface:
648  *
649  * A MC driver can limit the scrubbing bandwidth based on the CPU type.
650  * Therefore, ->set_sdram_scrub_rate should be made to return the actual
651  * bandwidth that is accepted or 0 when scrubbing is to be disabled.
652  *
653  * Negative value still means that an error has occurred while setting
654  * the scrub rate.
655  */
656 static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
657 					  struct device_attribute *mattr,
658 					  const char *data, size_t count)
659 {
660 	struct mem_ctl_info *mci = to_mci(dev);
661 	unsigned long bandwidth = 0;
662 	int new_bw = 0;
663 
664 	if (kstrtoul(data, 10, &bandwidth) < 0)
665 		return -EINVAL;
666 
667 	new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
668 	if (new_bw < 0) {
669 		edac_printk(KERN_WARNING, EDAC_MC,
670 			    "Error setting scrub rate to: %lu\n", bandwidth);
671 		return -EINVAL;
672 	}
673 
674 	return count;
675 }
676 
677 /*
678  * ->get_sdram_scrub_rate() return value semantics same as above.
679  */
680 static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
681 					 struct device_attribute *mattr,
682 					 char *data)
683 {
684 	struct mem_ctl_info *mci = to_mci(dev);
685 	int bandwidth = 0;
686 
687 	bandwidth = mci->get_sdram_scrub_rate(mci);
688 	if (bandwidth < 0) {
689 		edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
690 		return bandwidth;
691 	}
692 
693 	return sprintf(data, "%d\n", bandwidth);
694 }
695 
696 /* default attribute files for the MCI object */
697 static ssize_t mci_ue_count_show(struct device *dev,
698 				 struct device_attribute *mattr,
699 				 char *data)
700 {
701 	struct mem_ctl_info *mci = to_mci(dev);
702 
703 	return sprintf(data, "%d\n", mci->ue_mc);
704 }
705 
706 static ssize_t mci_ce_count_show(struct device *dev,
707 				 struct device_attribute *mattr,
708 				 char *data)
709 {
710 	struct mem_ctl_info *mci = to_mci(dev);
711 
712 	return sprintf(data, "%d\n", mci->ce_mc);
713 }
714 
715 static ssize_t mci_ce_noinfo_show(struct device *dev,
716 				  struct device_attribute *mattr,
717 				  char *data)
718 {
719 	struct mem_ctl_info *mci = to_mci(dev);
720 
721 	return sprintf(data, "%d\n", mci->ce_noinfo_count);
722 }
723 
724 static ssize_t mci_ue_noinfo_show(struct device *dev,
725 				  struct device_attribute *mattr,
726 				  char *data)
727 {
728 	struct mem_ctl_info *mci = to_mci(dev);
729 
730 	return sprintf(data, "%d\n", mci->ue_noinfo_count);
731 }
732 
733 static ssize_t mci_seconds_show(struct device *dev,
734 				struct device_attribute *mattr,
735 				char *data)
736 {
737 	struct mem_ctl_info *mci = to_mci(dev);
738 
739 	return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
740 }
741 
742 static ssize_t mci_ctl_name_show(struct device *dev,
743 				 struct device_attribute *mattr,
744 				 char *data)
745 {
746 	struct mem_ctl_info *mci = to_mci(dev);
747 
748 	return sprintf(data, "%s\n", mci->ctl_name);
749 }
750 
751 static ssize_t mci_size_mb_show(struct device *dev,
752 				struct device_attribute *mattr,
753 				char *data)
754 {
755 	struct mem_ctl_info *mci = to_mci(dev);
756 	int total_pages = 0, csrow_idx, j;
757 
758 	for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
759 		struct csrow_info *csrow = mci->csrows[csrow_idx];
760 
761 		for (j = 0; j < csrow->nr_channels; j++) {
762 			struct dimm_info *dimm = csrow->channels[j]->dimm;
763 
764 			total_pages += dimm->nr_pages;
765 		}
766 	}
767 
768 	return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
769 }
770 
771 static ssize_t mci_max_location_show(struct device *dev,
772 				     struct device_attribute *mattr,
773 				     char *data)
774 {
775 	struct mem_ctl_info *mci = to_mci(dev);
776 	int i;
777 	char *p = data;
778 
779 	for (i = 0; i < mci->n_layers; i++) {
780 		p += sprintf(p, "%s %d ",
781 			     edac_layer_name[mci->layers[i].type],
782 			     mci->layers[i].size - 1);
783 	}
784 
785 	return p - data;
786 }
787 
788 #ifdef CONFIG_EDAC_DEBUG
789 static ssize_t edac_fake_inject_write(struct file *file,
790 				      const char __user *data,
791 				      size_t count, loff_t *ppos)
792 {
793 	struct device *dev = file->private_data;
794 	struct mem_ctl_info *mci = to_mci(dev);
795 	static enum hw_event_mc_err_type type;
796 	u16 errcount = mci->fake_inject_count;
797 
798 	if (!errcount)
799 		errcount = 1;
800 
801 	type = mci->fake_inject_ue ? HW_EVENT_ERR_UNCORRECTED
802 				   : HW_EVENT_ERR_CORRECTED;
803 
804 	printk(KERN_DEBUG
805 	       "Generating %d %s fake error%s to %d.%d.%d to test core handling. NOTE: this won't test the driver-specific decoding logic.\n",
806 		errcount,
807 		(type == HW_EVENT_ERR_UNCORRECTED) ? "UE" : "CE",
808 		errcount > 1 ? "s" : "",
809 		mci->fake_inject_layer[0],
810 		mci->fake_inject_layer[1],
811 		mci->fake_inject_layer[2]
812 	       );
813 	edac_mc_handle_error(type, mci, errcount, 0, 0, 0,
814 			     mci->fake_inject_layer[0],
815 			     mci->fake_inject_layer[1],
816 			     mci->fake_inject_layer[2],
817 			     "FAKE ERROR", "for EDAC testing only");
818 
819 	return count;
820 }
821 
822 static const struct file_operations debug_fake_inject_fops = {
823 	.open = simple_open,
824 	.write = edac_fake_inject_write,
825 	.llseek = generic_file_llseek,
826 };
827 #endif
828 
829 /* default Control file */
830 static DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
831 
832 /* default Attribute files */
833 static DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
834 static DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
835 static DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
836 static DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
837 static DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
838 static DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
839 static DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
840 static DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
841 
842 /* memory scrubber attribute file */
843 DEVICE_ATTR(sdram_scrub_rate, 0, mci_sdram_scrub_rate_show,
844 	    mci_sdram_scrub_rate_store); /* umode set later in is_visible */
845 
846 static struct attribute *mci_attrs[] = {
847 	&dev_attr_reset_counters.attr,
848 	&dev_attr_mc_name.attr,
849 	&dev_attr_size_mb.attr,
850 	&dev_attr_seconds_since_reset.attr,
851 	&dev_attr_ue_noinfo_count.attr,
852 	&dev_attr_ce_noinfo_count.attr,
853 	&dev_attr_ue_count.attr,
854 	&dev_attr_ce_count.attr,
855 	&dev_attr_max_location.attr,
856 	&dev_attr_sdram_scrub_rate.attr,
857 	NULL
858 };
859 
860 static umode_t mci_attr_is_visible(struct kobject *kobj,
861 				   struct attribute *attr, int idx)
862 {
863 	struct device *dev = kobj_to_dev(kobj);
864 	struct mem_ctl_info *mci = to_mci(dev);
865 	umode_t mode = 0;
866 
867 	if (attr != &dev_attr_sdram_scrub_rate.attr)
868 		return attr->mode;
869 	if (mci->get_sdram_scrub_rate)
870 		mode |= S_IRUGO;
871 	if (mci->set_sdram_scrub_rate)
872 		mode |= S_IWUSR;
873 	return mode;
874 }
875 
876 static struct attribute_group mci_attr_grp = {
877 	.attrs	= mci_attrs,
878 	.is_visible = mci_attr_is_visible,
879 };
880 
881 static const struct attribute_group *mci_attr_groups[] = {
882 	&mci_attr_grp,
883 	NULL
884 };
885 
886 static void mci_attr_release(struct device *dev)
887 {
888 	struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
889 
890 	edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
891 	kfree(mci);
892 }
893 
894 static struct device_type mci_attr_type = {
895 	.groups		= mci_attr_groups,
896 	.release	= mci_attr_release,
897 };
898 
899 #ifdef CONFIG_EDAC_DEBUG
900 static struct dentry *edac_debugfs;
901 
902 int __init edac_debugfs_init(void)
903 {
904 	edac_debugfs = debugfs_create_dir("edac", NULL);
905 	if (IS_ERR(edac_debugfs)) {
906 		edac_debugfs = NULL;
907 		return -ENOMEM;
908 	}
909 	return 0;
910 }
911 
912 void edac_debugfs_exit(void)
913 {
914 	debugfs_remove(edac_debugfs);
915 }
916 
917 static int edac_create_debug_nodes(struct mem_ctl_info *mci)
918 {
919 	struct dentry *d, *parent;
920 	char name[80];
921 	int i;
922 
923 	if (!edac_debugfs)
924 		return -ENODEV;
925 
926 	d = debugfs_create_dir(mci->dev.kobj.name, edac_debugfs);
927 	if (!d)
928 		return -ENOMEM;
929 	parent = d;
930 
931 	for (i = 0; i < mci->n_layers; i++) {
932 		sprintf(name, "fake_inject_%s",
933 			     edac_layer_name[mci->layers[i].type]);
934 		d = debugfs_create_u8(name, S_IRUGO | S_IWUSR, parent,
935 				      &mci->fake_inject_layer[i]);
936 		if (!d)
937 			goto nomem;
938 	}
939 
940 	d = debugfs_create_bool("fake_inject_ue", S_IRUGO | S_IWUSR, parent,
941 				&mci->fake_inject_ue);
942 	if (!d)
943 		goto nomem;
944 
945 	d = debugfs_create_u16("fake_inject_count", S_IRUGO | S_IWUSR, parent,
946 				&mci->fake_inject_count);
947 	if (!d)
948 		goto nomem;
949 
950 	d = debugfs_create_file("fake_inject", S_IWUSR, parent,
951 				&mci->dev,
952 				&debug_fake_inject_fops);
953 	if (!d)
954 		goto nomem;
955 
956 	mci->debugfs = parent;
957 	return 0;
958 nomem:
959 	debugfs_remove(mci->debugfs);
960 	return -ENOMEM;
961 }
962 #endif
963 
964 /*
965  * Create a new Memory Controller kobject instance,
966  *	mc<id> under the 'mc' directory
967  *
968  * Return:
969  *	0	Success
970  *	!0	Failure
971  */
972 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci,
973 				 const struct attribute_group **groups)
974 {
975 	int i, err;
976 
977 	/*
978 	 * The memory controller needs its own bus, in order to avoid
979 	 * namespace conflicts at /sys/bus/edac.
980 	 */
981 	mci->bus->name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx);
982 	if (!mci->bus->name)
983 		return -ENOMEM;
984 
985 	edac_dbg(0, "creating bus %s\n", mci->bus->name);
986 
987 	err = bus_register(mci->bus);
988 	if (err < 0)
989 		goto fail_free_name;
990 
991 	/* get the /sys/devices/system/edac subsys reference */
992 	mci->dev.type = &mci_attr_type;
993 	device_initialize(&mci->dev);
994 
995 	mci->dev.parent = mci_pdev;
996 	mci->dev.bus = mci->bus;
997 	mci->dev.groups = groups;
998 	dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
999 	dev_set_drvdata(&mci->dev, mci);
1000 	pm_runtime_forbid(&mci->dev);
1001 
1002 	edac_dbg(0, "creating device %s\n", dev_name(&mci->dev));
1003 	err = device_add(&mci->dev);
1004 	if (err < 0) {
1005 		edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev));
1006 		goto fail_unregister_bus;
1007 	}
1008 
1009 	/*
1010 	 * Create the dimm/rank devices
1011 	 */
1012 	for (i = 0; i < mci->tot_dimms; i++) {
1013 		struct dimm_info *dimm = mci->dimms[i];
1014 		/* Only expose populated DIMMs */
1015 		if (!dimm->nr_pages)
1016 			continue;
1017 
1018 #ifdef CONFIG_EDAC_DEBUG
1019 		edac_dbg(1, "creating dimm%d, located at ", i);
1020 		if (edac_debug_level >= 1) {
1021 			int lay;
1022 			for (lay = 0; lay < mci->n_layers; lay++)
1023 				printk(KERN_CONT "%s %d ",
1024 					edac_layer_name[mci->layers[lay].type],
1025 					dimm->location[lay]);
1026 			printk(KERN_CONT "\n");
1027 		}
1028 #endif
1029 		err = edac_create_dimm_object(mci, dimm, i);
1030 		if (err) {
1031 			edac_dbg(1, "failure: create dimm %d obj\n", i);
1032 			goto fail_unregister_dimm;
1033 		}
1034 	}
1035 
1036 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1037 	err = edac_create_csrow_objects(mci);
1038 	if (err < 0)
1039 		goto fail_unregister_dimm;
1040 #endif
1041 
1042 #ifdef CONFIG_EDAC_DEBUG
1043 	edac_create_debug_nodes(mci);
1044 #endif
1045 	return 0;
1046 
1047 fail_unregister_dimm:
1048 	for (i--; i >= 0; i--) {
1049 		struct dimm_info *dimm = mci->dimms[i];
1050 		if (!dimm->nr_pages)
1051 			continue;
1052 
1053 		device_unregister(&dimm->dev);
1054 	}
1055 	device_unregister(&mci->dev);
1056 fail_unregister_bus:
1057 	bus_unregister(mci->bus);
1058 fail_free_name:
1059 	kfree(mci->bus->name);
1060 	return err;
1061 }
1062 
1063 /*
1064  * remove a Memory Controller instance
1065  */
1066 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1067 {
1068 	int i;
1069 
1070 	edac_dbg(0, "\n");
1071 
1072 #ifdef CONFIG_EDAC_DEBUG
1073 	debugfs_remove(mci->debugfs);
1074 #endif
1075 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1076 	edac_delete_csrow_objects(mci);
1077 #endif
1078 
1079 	for (i = 0; i < mci->tot_dimms; i++) {
1080 		struct dimm_info *dimm = mci->dimms[i];
1081 		if (dimm->nr_pages == 0)
1082 			continue;
1083 		edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev));
1084 		device_unregister(&dimm->dev);
1085 	}
1086 }
1087 
1088 void edac_unregister_sysfs(struct mem_ctl_info *mci)
1089 {
1090 	edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev));
1091 	device_unregister(&mci->dev);
1092 	bus_unregister(mci->bus);
1093 	kfree(mci->bus->name);
1094 }
1095 
1096 static void mc_attr_release(struct device *dev)
1097 {
1098 	/*
1099 	 * There's no container structure here, as this is just the mci
1100 	 * parent device, used to create the /sys/devices/mc sysfs node.
1101 	 * So, there are no attributes on it.
1102 	 */
1103 	edac_dbg(1, "Releasing device %s\n", dev_name(dev));
1104 	kfree(dev);
1105 }
1106 
1107 static struct device_type mc_attr_type = {
1108 	.release	= mc_attr_release,
1109 };
1110 /*
1111  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1112  */
1113 int __init edac_mc_sysfs_init(void)
1114 {
1115 	struct bus_type *edac_subsys;
1116 	int err;
1117 
1118 	/* get the /sys/devices/system/edac subsys reference */
1119 	edac_subsys = edac_get_sysfs_subsys();
1120 	if (edac_subsys == NULL) {
1121 		edac_dbg(1, "no edac_subsys\n");
1122 		err = -EINVAL;
1123 		goto out;
1124 	}
1125 
1126 	mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1127 	if (!mci_pdev) {
1128 		err = -ENOMEM;
1129 		goto out_put_sysfs;
1130 	}
1131 
1132 	mci_pdev->bus = edac_subsys;
1133 	mci_pdev->type = &mc_attr_type;
1134 	device_initialize(mci_pdev);
1135 	dev_set_name(mci_pdev, "mc");
1136 
1137 	err = device_add(mci_pdev);
1138 	if (err < 0)
1139 		goto out_dev_free;
1140 
1141 	edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1142 
1143 	return 0;
1144 
1145  out_dev_free:
1146 	kfree(mci_pdev);
1147  out_put_sysfs:
1148 	edac_put_sysfs_subsys();
1149  out:
1150 	return err;
1151 }
1152 
1153 void edac_mc_sysfs_exit(void)
1154 {
1155 	device_unregister(mci_pdev);
1156 	edac_put_sysfs_subsys();
1157 }
1158