1 /* 2 * edac_mc kernel module 3 * (C) 2005-2007 Linux Networx (http://lnxi.com) 4 * 5 * This file may be distributed under the terms of the 6 * GNU General Public License. 7 * 8 * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com 9 * 10 * (c) 2012-2013 - Mauro Carvalho Chehab 11 * The entire API were re-written, and ported to use struct device 12 * 13 */ 14 15 #include <linux/ctype.h> 16 #include <linux/slab.h> 17 #include <linux/edac.h> 18 #include <linux/bug.h> 19 #include <linux/pm_runtime.h> 20 #include <linux/uaccess.h> 21 22 #include "edac_mc.h" 23 #include "edac_module.h" 24 25 /* MC EDAC Controls, setable by module parameter, and sysfs */ 26 static int edac_mc_log_ue = 1; 27 static int edac_mc_log_ce = 1; 28 static int edac_mc_panic_on_ue; 29 static unsigned int edac_mc_poll_msec = 1000; 30 31 /* Getter functions for above */ 32 int edac_mc_get_log_ue(void) 33 { 34 return edac_mc_log_ue; 35 } 36 37 int edac_mc_get_log_ce(void) 38 { 39 return edac_mc_log_ce; 40 } 41 42 int edac_mc_get_panic_on_ue(void) 43 { 44 return edac_mc_panic_on_ue; 45 } 46 47 /* this is temporary */ 48 unsigned int edac_mc_get_poll_msec(void) 49 { 50 return edac_mc_poll_msec; 51 } 52 53 static int edac_set_poll_msec(const char *val, const struct kernel_param *kp) 54 { 55 unsigned int i; 56 int ret; 57 58 if (!val) 59 return -EINVAL; 60 61 ret = kstrtouint(val, 0, &i); 62 if (ret) 63 return ret; 64 65 if (i < 1000) 66 return -EINVAL; 67 68 *((unsigned int *)kp->arg) = i; 69 70 /* notify edac_mc engine to reset the poll period */ 71 edac_mc_reset_delay_period(i); 72 73 return 0; 74 } 75 76 /* Parameter declarations for above */ 77 module_param(edac_mc_panic_on_ue, int, 0644); 78 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on"); 79 module_param(edac_mc_log_ue, int, 0644); 80 MODULE_PARM_DESC(edac_mc_log_ue, 81 "Log uncorrectable error to console: 0=off 1=on"); 82 module_param(edac_mc_log_ce, int, 0644); 83 MODULE_PARM_DESC(edac_mc_log_ce, 84 "Log correctable error to console: 0=off 1=on"); 85 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_uint, 86 &edac_mc_poll_msec, 0644); 87 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds"); 88 89 static struct device *mci_pdev; 90 91 /* 92 * various constants for Memory Controllers 93 */ 94 static const char * const dev_types[] = { 95 [DEV_UNKNOWN] = "Unknown", 96 [DEV_X1] = "x1", 97 [DEV_X2] = "x2", 98 [DEV_X4] = "x4", 99 [DEV_X8] = "x8", 100 [DEV_X16] = "x16", 101 [DEV_X32] = "x32", 102 [DEV_X64] = "x64" 103 }; 104 105 static const char * const edac_caps[] = { 106 [EDAC_UNKNOWN] = "Unknown", 107 [EDAC_NONE] = "None", 108 [EDAC_RESERVED] = "Reserved", 109 [EDAC_PARITY] = "PARITY", 110 [EDAC_EC] = "EC", 111 [EDAC_SECDED] = "SECDED", 112 [EDAC_S2ECD2ED] = "S2ECD2ED", 113 [EDAC_S4ECD4ED] = "S4ECD4ED", 114 [EDAC_S8ECD8ED] = "S8ECD8ED", 115 [EDAC_S16ECD16ED] = "S16ECD16ED" 116 }; 117 118 #ifdef CONFIG_EDAC_LEGACY_SYSFS 119 /* 120 * EDAC sysfs CSROW data structures and methods 121 */ 122 123 #define to_csrow(k) container_of(k, struct csrow_info, dev) 124 125 /* 126 * We need it to avoid namespace conflicts between the legacy API 127 * and the per-dimm/per-rank one 128 */ 129 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \ 130 static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store) 131 132 struct dev_ch_attribute { 133 struct device_attribute attr; 134 unsigned int channel; 135 }; 136 137 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \ 138 static struct dev_ch_attribute dev_attr_legacy_##_name = \ 139 { __ATTR(_name, _mode, _show, _store), (_var) } 140 141 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel) 142 143 /* Set of more default csrow<id> attribute show/store functions */ 144 static ssize_t csrow_ue_count_show(struct device *dev, 145 struct device_attribute *mattr, char *data) 146 { 147 struct csrow_info *csrow = to_csrow(dev); 148 149 return sprintf(data, "%u\n", csrow->ue_count); 150 } 151 152 static ssize_t csrow_ce_count_show(struct device *dev, 153 struct device_attribute *mattr, char *data) 154 { 155 struct csrow_info *csrow = to_csrow(dev); 156 157 return sprintf(data, "%u\n", csrow->ce_count); 158 } 159 160 static ssize_t csrow_size_show(struct device *dev, 161 struct device_attribute *mattr, char *data) 162 { 163 struct csrow_info *csrow = to_csrow(dev); 164 int i; 165 u32 nr_pages = 0; 166 167 for (i = 0; i < csrow->nr_channels; i++) 168 nr_pages += csrow->channels[i]->dimm->nr_pages; 169 return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages)); 170 } 171 172 static ssize_t csrow_mem_type_show(struct device *dev, 173 struct device_attribute *mattr, char *data) 174 { 175 struct csrow_info *csrow = to_csrow(dev); 176 177 return sprintf(data, "%s\n", edac_mem_types[csrow->channels[0]->dimm->mtype]); 178 } 179 180 static ssize_t csrow_dev_type_show(struct device *dev, 181 struct device_attribute *mattr, char *data) 182 { 183 struct csrow_info *csrow = to_csrow(dev); 184 185 return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]); 186 } 187 188 static ssize_t csrow_edac_mode_show(struct device *dev, 189 struct device_attribute *mattr, 190 char *data) 191 { 192 struct csrow_info *csrow = to_csrow(dev); 193 194 return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]); 195 } 196 197 /* show/store functions for DIMM Label attributes */ 198 static ssize_t channel_dimm_label_show(struct device *dev, 199 struct device_attribute *mattr, 200 char *data) 201 { 202 struct csrow_info *csrow = to_csrow(dev); 203 unsigned int chan = to_channel(mattr); 204 struct rank_info *rank = csrow->channels[chan]; 205 206 /* if field has not been initialized, there is nothing to send */ 207 if (!rank->dimm->label[0]) 208 return 0; 209 210 return snprintf(data, sizeof(rank->dimm->label) + 1, "%s\n", 211 rank->dimm->label); 212 } 213 214 static ssize_t channel_dimm_label_store(struct device *dev, 215 struct device_attribute *mattr, 216 const char *data, size_t count) 217 { 218 struct csrow_info *csrow = to_csrow(dev); 219 unsigned int chan = to_channel(mattr); 220 struct rank_info *rank = csrow->channels[chan]; 221 size_t copy_count = count; 222 223 if (count == 0) 224 return -EINVAL; 225 226 if (data[count - 1] == '\0' || data[count - 1] == '\n') 227 copy_count -= 1; 228 229 if (copy_count == 0 || copy_count >= sizeof(rank->dimm->label)) 230 return -EINVAL; 231 232 strncpy(rank->dimm->label, data, copy_count); 233 rank->dimm->label[copy_count] = '\0'; 234 235 return count; 236 } 237 238 /* show function for dynamic chX_ce_count attribute */ 239 static ssize_t channel_ce_count_show(struct device *dev, 240 struct device_attribute *mattr, char *data) 241 { 242 struct csrow_info *csrow = to_csrow(dev); 243 unsigned int chan = to_channel(mattr); 244 struct rank_info *rank = csrow->channels[chan]; 245 246 return sprintf(data, "%u\n", rank->ce_count); 247 } 248 249 /* cwrow<id>/attribute files */ 250 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL); 251 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL); 252 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL); 253 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL); 254 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL); 255 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL); 256 257 /* default attributes of the CSROW<id> object */ 258 static struct attribute *csrow_attrs[] = { 259 &dev_attr_legacy_dev_type.attr, 260 &dev_attr_legacy_mem_type.attr, 261 &dev_attr_legacy_edac_mode.attr, 262 &dev_attr_legacy_size_mb.attr, 263 &dev_attr_legacy_ue_count.attr, 264 &dev_attr_legacy_ce_count.attr, 265 NULL, 266 }; 267 268 static const struct attribute_group csrow_attr_grp = { 269 .attrs = csrow_attrs, 270 }; 271 272 static const struct attribute_group *csrow_attr_groups[] = { 273 &csrow_attr_grp, 274 NULL 275 }; 276 277 static const struct device_type csrow_attr_type = { 278 .groups = csrow_attr_groups, 279 }; 280 281 /* 282 * possible dynamic channel DIMM Label attribute files 283 * 284 */ 285 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR, 286 channel_dimm_label_show, channel_dimm_label_store, 0); 287 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR, 288 channel_dimm_label_show, channel_dimm_label_store, 1); 289 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR, 290 channel_dimm_label_show, channel_dimm_label_store, 2); 291 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR, 292 channel_dimm_label_show, channel_dimm_label_store, 3); 293 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR, 294 channel_dimm_label_show, channel_dimm_label_store, 4); 295 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR, 296 channel_dimm_label_show, channel_dimm_label_store, 5); 297 DEVICE_CHANNEL(ch6_dimm_label, S_IRUGO | S_IWUSR, 298 channel_dimm_label_show, channel_dimm_label_store, 6); 299 DEVICE_CHANNEL(ch7_dimm_label, S_IRUGO | S_IWUSR, 300 channel_dimm_label_show, channel_dimm_label_store, 7); 301 302 /* Total possible dynamic DIMM Label attribute file table */ 303 static struct attribute *dynamic_csrow_dimm_attr[] = { 304 &dev_attr_legacy_ch0_dimm_label.attr.attr, 305 &dev_attr_legacy_ch1_dimm_label.attr.attr, 306 &dev_attr_legacy_ch2_dimm_label.attr.attr, 307 &dev_attr_legacy_ch3_dimm_label.attr.attr, 308 &dev_attr_legacy_ch4_dimm_label.attr.attr, 309 &dev_attr_legacy_ch5_dimm_label.attr.attr, 310 &dev_attr_legacy_ch6_dimm_label.attr.attr, 311 &dev_attr_legacy_ch7_dimm_label.attr.attr, 312 NULL 313 }; 314 315 /* possible dynamic channel ce_count attribute files */ 316 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO, 317 channel_ce_count_show, NULL, 0); 318 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO, 319 channel_ce_count_show, NULL, 1); 320 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO, 321 channel_ce_count_show, NULL, 2); 322 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO, 323 channel_ce_count_show, NULL, 3); 324 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO, 325 channel_ce_count_show, NULL, 4); 326 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO, 327 channel_ce_count_show, NULL, 5); 328 DEVICE_CHANNEL(ch6_ce_count, S_IRUGO, 329 channel_ce_count_show, NULL, 6); 330 DEVICE_CHANNEL(ch7_ce_count, S_IRUGO, 331 channel_ce_count_show, NULL, 7); 332 333 /* Total possible dynamic ce_count attribute file table */ 334 static struct attribute *dynamic_csrow_ce_count_attr[] = { 335 &dev_attr_legacy_ch0_ce_count.attr.attr, 336 &dev_attr_legacy_ch1_ce_count.attr.attr, 337 &dev_attr_legacy_ch2_ce_count.attr.attr, 338 &dev_attr_legacy_ch3_ce_count.attr.attr, 339 &dev_attr_legacy_ch4_ce_count.attr.attr, 340 &dev_attr_legacy_ch5_ce_count.attr.attr, 341 &dev_attr_legacy_ch6_ce_count.attr.attr, 342 &dev_attr_legacy_ch7_ce_count.attr.attr, 343 NULL 344 }; 345 346 static umode_t csrow_dev_is_visible(struct kobject *kobj, 347 struct attribute *attr, int idx) 348 { 349 struct device *dev = kobj_to_dev(kobj); 350 struct csrow_info *csrow = container_of(dev, struct csrow_info, dev); 351 352 if (idx >= csrow->nr_channels) 353 return 0; 354 355 if (idx >= ARRAY_SIZE(dynamic_csrow_ce_count_attr) - 1) { 356 WARN_ONCE(1, "idx: %d\n", idx); 357 return 0; 358 } 359 360 /* Only expose populated DIMMs */ 361 if (!csrow->channels[idx]->dimm->nr_pages) 362 return 0; 363 364 return attr->mode; 365 } 366 367 368 static const struct attribute_group csrow_dev_dimm_group = { 369 .attrs = dynamic_csrow_dimm_attr, 370 .is_visible = csrow_dev_is_visible, 371 }; 372 373 static const struct attribute_group csrow_dev_ce_count_group = { 374 .attrs = dynamic_csrow_ce_count_attr, 375 .is_visible = csrow_dev_is_visible, 376 }; 377 378 static const struct attribute_group *csrow_dev_groups[] = { 379 &csrow_dev_dimm_group, 380 &csrow_dev_ce_count_group, 381 NULL 382 }; 383 384 static void csrow_release(struct device *dev) 385 { 386 /* 387 * Nothing to do, just unregister sysfs here. The mci 388 * device owns the data and will also release it. 389 */ 390 } 391 392 static inline int nr_pages_per_csrow(struct csrow_info *csrow) 393 { 394 int chan, nr_pages = 0; 395 396 for (chan = 0; chan < csrow->nr_channels; chan++) 397 nr_pages += csrow->channels[chan]->dimm->nr_pages; 398 399 return nr_pages; 400 } 401 402 /* Create a CSROW object under specifed edac_mc_device */ 403 static int edac_create_csrow_object(struct mem_ctl_info *mci, 404 struct csrow_info *csrow, int index) 405 { 406 int err; 407 408 csrow->dev.type = &csrow_attr_type; 409 csrow->dev.groups = csrow_dev_groups; 410 csrow->dev.release = csrow_release; 411 device_initialize(&csrow->dev); 412 csrow->dev.parent = &mci->dev; 413 csrow->mci = mci; 414 dev_set_name(&csrow->dev, "csrow%d", index); 415 dev_set_drvdata(&csrow->dev, csrow); 416 417 err = device_add(&csrow->dev); 418 if (err) { 419 edac_dbg(1, "failure: create device %s\n", dev_name(&csrow->dev)); 420 put_device(&csrow->dev); 421 return err; 422 } 423 424 edac_dbg(0, "device %s created\n", dev_name(&csrow->dev)); 425 426 return 0; 427 } 428 429 /* Create a CSROW object under specifed edac_mc_device */ 430 static int edac_create_csrow_objects(struct mem_ctl_info *mci) 431 { 432 int err, i; 433 struct csrow_info *csrow; 434 435 for (i = 0; i < mci->nr_csrows; i++) { 436 csrow = mci->csrows[i]; 437 if (!nr_pages_per_csrow(csrow)) 438 continue; 439 err = edac_create_csrow_object(mci, mci->csrows[i], i); 440 if (err < 0) 441 goto error; 442 } 443 return 0; 444 445 error: 446 for (--i; i >= 0; i--) { 447 if (device_is_registered(&mci->csrows[i]->dev)) 448 device_unregister(&mci->csrows[i]->dev); 449 } 450 451 return err; 452 } 453 454 static void edac_delete_csrow_objects(struct mem_ctl_info *mci) 455 { 456 int i; 457 458 for (i = 0; i < mci->nr_csrows; i++) { 459 if (device_is_registered(&mci->csrows[i]->dev)) 460 device_unregister(&mci->csrows[i]->dev); 461 } 462 } 463 464 #endif 465 466 /* 467 * Per-dimm (or per-rank) devices 468 */ 469 470 #define to_dimm(k) container_of(k, struct dimm_info, dev) 471 472 /* show/store functions for DIMM Label attributes */ 473 static ssize_t dimmdev_location_show(struct device *dev, 474 struct device_attribute *mattr, char *data) 475 { 476 struct dimm_info *dimm = to_dimm(dev); 477 ssize_t count; 478 479 count = edac_dimm_info_location(dimm, data, PAGE_SIZE); 480 count += scnprintf(data + count, PAGE_SIZE - count, "\n"); 481 482 return count; 483 } 484 485 static ssize_t dimmdev_label_show(struct device *dev, 486 struct device_attribute *mattr, char *data) 487 { 488 struct dimm_info *dimm = to_dimm(dev); 489 490 /* if field has not been initialized, there is nothing to send */ 491 if (!dimm->label[0]) 492 return 0; 493 494 return snprintf(data, sizeof(dimm->label) + 1, "%s\n", dimm->label); 495 } 496 497 static ssize_t dimmdev_label_store(struct device *dev, 498 struct device_attribute *mattr, 499 const char *data, 500 size_t count) 501 { 502 struct dimm_info *dimm = to_dimm(dev); 503 size_t copy_count = count; 504 505 if (count == 0) 506 return -EINVAL; 507 508 if (data[count - 1] == '\0' || data[count - 1] == '\n') 509 copy_count -= 1; 510 511 if (copy_count == 0 || copy_count >= sizeof(dimm->label)) 512 return -EINVAL; 513 514 strncpy(dimm->label, data, copy_count); 515 dimm->label[copy_count] = '\0'; 516 517 return count; 518 } 519 520 static ssize_t dimmdev_size_show(struct device *dev, 521 struct device_attribute *mattr, char *data) 522 { 523 struct dimm_info *dimm = to_dimm(dev); 524 525 return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages)); 526 } 527 528 static ssize_t dimmdev_mem_type_show(struct device *dev, 529 struct device_attribute *mattr, char *data) 530 { 531 struct dimm_info *dimm = to_dimm(dev); 532 533 return sprintf(data, "%s\n", edac_mem_types[dimm->mtype]); 534 } 535 536 static ssize_t dimmdev_dev_type_show(struct device *dev, 537 struct device_attribute *mattr, char *data) 538 { 539 struct dimm_info *dimm = to_dimm(dev); 540 541 return sprintf(data, "%s\n", dev_types[dimm->dtype]); 542 } 543 544 static ssize_t dimmdev_edac_mode_show(struct device *dev, 545 struct device_attribute *mattr, 546 char *data) 547 { 548 struct dimm_info *dimm = to_dimm(dev); 549 550 return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]); 551 } 552 553 static ssize_t dimmdev_ce_count_show(struct device *dev, 554 struct device_attribute *mattr, 555 char *data) 556 { 557 struct dimm_info *dimm = to_dimm(dev); 558 559 return sprintf(data, "%u\n", dimm->ce_count); 560 } 561 562 static ssize_t dimmdev_ue_count_show(struct device *dev, 563 struct device_attribute *mattr, 564 char *data) 565 { 566 struct dimm_info *dimm = to_dimm(dev); 567 568 return sprintf(data, "%u\n", dimm->ue_count); 569 } 570 571 /* dimm/rank attribute files */ 572 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR, 573 dimmdev_label_show, dimmdev_label_store); 574 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL); 575 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL); 576 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL); 577 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL); 578 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL); 579 static DEVICE_ATTR(dimm_ce_count, S_IRUGO, dimmdev_ce_count_show, NULL); 580 static DEVICE_ATTR(dimm_ue_count, S_IRUGO, dimmdev_ue_count_show, NULL); 581 582 /* attributes of the dimm<id>/rank<id> object */ 583 static struct attribute *dimm_attrs[] = { 584 &dev_attr_dimm_label.attr, 585 &dev_attr_dimm_location.attr, 586 &dev_attr_size.attr, 587 &dev_attr_dimm_mem_type.attr, 588 &dev_attr_dimm_dev_type.attr, 589 &dev_attr_dimm_edac_mode.attr, 590 &dev_attr_dimm_ce_count.attr, 591 &dev_attr_dimm_ue_count.attr, 592 NULL, 593 }; 594 595 static const struct attribute_group dimm_attr_grp = { 596 .attrs = dimm_attrs, 597 }; 598 599 static const struct attribute_group *dimm_attr_groups[] = { 600 &dimm_attr_grp, 601 NULL 602 }; 603 604 static const struct device_type dimm_attr_type = { 605 .groups = dimm_attr_groups, 606 }; 607 608 static void dimm_release(struct device *dev) 609 { 610 /* 611 * Nothing to do, just unregister sysfs here. The mci 612 * device owns the data and will also release it. 613 */ 614 } 615 616 /* Create a DIMM object under specifed memory controller device */ 617 static int edac_create_dimm_object(struct mem_ctl_info *mci, 618 struct dimm_info *dimm) 619 { 620 int err; 621 dimm->mci = mci; 622 623 dimm->dev.type = &dimm_attr_type; 624 dimm->dev.release = dimm_release; 625 device_initialize(&dimm->dev); 626 627 dimm->dev.parent = &mci->dev; 628 if (mci->csbased) 629 dev_set_name(&dimm->dev, "rank%d", dimm->idx); 630 else 631 dev_set_name(&dimm->dev, "dimm%d", dimm->idx); 632 dev_set_drvdata(&dimm->dev, dimm); 633 pm_runtime_forbid(&mci->dev); 634 635 err = device_add(&dimm->dev); 636 if (err) { 637 edac_dbg(1, "failure: create device %s\n", dev_name(&dimm->dev)); 638 put_device(&dimm->dev); 639 return err; 640 } 641 642 if (IS_ENABLED(CONFIG_EDAC_DEBUG)) { 643 char location[80]; 644 645 edac_dimm_info_location(dimm, location, sizeof(location)); 646 edac_dbg(0, "device %s created at location %s\n", 647 dev_name(&dimm->dev), location); 648 } 649 650 return 0; 651 } 652 653 /* 654 * Memory controller device 655 */ 656 657 #define to_mci(k) container_of(k, struct mem_ctl_info, dev) 658 659 static ssize_t mci_reset_counters_store(struct device *dev, 660 struct device_attribute *mattr, 661 const char *data, size_t count) 662 { 663 struct mem_ctl_info *mci = to_mci(dev); 664 struct dimm_info *dimm; 665 int row, chan; 666 667 mci->ue_mc = 0; 668 mci->ce_mc = 0; 669 mci->ue_noinfo_count = 0; 670 mci->ce_noinfo_count = 0; 671 672 for (row = 0; row < mci->nr_csrows; row++) { 673 struct csrow_info *ri = mci->csrows[row]; 674 675 ri->ue_count = 0; 676 ri->ce_count = 0; 677 678 for (chan = 0; chan < ri->nr_channels; chan++) 679 ri->channels[chan]->ce_count = 0; 680 } 681 682 mci_for_each_dimm(mci, dimm) { 683 dimm->ue_count = 0; 684 dimm->ce_count = 0; 685 } 686 687 mci->start_time = jiffies; 688 return count; 689 } 690 691 /* Memory scrubbing interface: 692 * 693 * A MC driver can limit the scrubbing bandwidth based on the CPU type. 694 * Therefore, ->set_sdram_scrub_rate should be made to return the actual 695 * bandwidth that is accepted or 0 when scrubbing is to be disabled. 696 * 697 * Negative value still means that an error has occurred while setting 698 * the scrub rate. 699 */ 700 static ssize_t mci_sdram_scrub_rate_store(struct device *dev, 701 struct device_attribute *mattr, 702 const char *data, size_t count) 703 { 704 struct mem_ctl_info *mci = to_mci(dev); 705 unsigned long bandwidth = 0; 706 int new_bw = 0; 707 708 if (kstrtoul(data, 10, &bandwidth) < 0) 709 return -EINVAL; 710 711 new_bw = mci->set_sdram_scrub_rate(mci, bandwidth); 712 if (new_bw < 0) { 713 edac_printk(KERN_WARNING, EDAC_MC, 714 "Error setting scrub rate to: %lu\n", bandwidth); 715 return -EINVAL; 716 } 717 718 return count; 719 } 720 721 /* 722 * ->get_sdram_scrub_rate() return value semantics same as above. 723 */ 724 static ssize_t mci_sdram_scrub_rate_show(struct device *dev, 725 struct device_attribute *mattr, 726 char *data) 727 { 728 struct mem_ctl_info *mci = to_mci(dev); 729 int bandwidth = 0; 730 731 bandwidth = mci->get_sdram_scrub_rate(mci); 732 if (bandwidth < 0) { 733 edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n"); 734 return bandwidth; 735 } 736 737 return sprintf(data, "%d\n", bandwidth); 738 } 739 740 /* default attribute files for the MCI object */ 741 static ssize_t mci_ue_count_show(struct device *dev, 742 struct device_attribute *mattr, 743 char *data) 744 { 745 struct mem_ctl_info *mci = to_mci(dev); 746 747 return sprintf(data, "%d\n", mci->ue_mc); 748 } 749 750 static ssize_t mci_ce_count_show(struct device *dev, 751 struct device_attribute *mattr, 752 char *data) 753 { 754 struct mem_ctl_info *mci = to_mci(dev); 755 756 return sprintf(data, "%d\n", mci->ce_mc); 757 } 758 759 static ssize_t mci_ce_noinfo_show(struct device *dev, 760 struct device_attribute *mattr, 761 char *data) 762 { 763 struct mem_ctl_info *mci = to_mci(dev); 764 765 return sprintf(data, "%d\n", mci->ce_noinfo_count); 766 } 767 768 static ssize_t mci_ue_noinfo_show(struct device *dev, 769 struct device_attribute *mattr, 770 char *data) 771 { 772 struct mem_ctl_info *mci = to_mci(dev); 773 774 return sprintf(data, "%d\n", mci->ue_noinfo_count); 775 } 776 777 static ssize_t mci_seconds_show(struct device *dev, 778 struct device_attribute *mattr, 779 char *data) 780 { 781 struct mem_ctl_info *mci = to_mci(dev); 782 783 return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ); 784 } 785 786 static ssize_t mci_ctl_name_show(struct device *dev, 787 struct device_attribute *mattr, 788 char *data) 789 { 790 struct mem_ctl_info *mci = to_mci(dev); 791 792 return sprintf(data, "%s\n", mci->ctl_name); 793 } 794 795 static ssize_t mci_size_mb_show(struct device *dev, 796 struct device_attribute *mattr, 797 char *data) 798 { 799 struct mem_ctl_info *mci = to_mci(dev); 800 int total_pages = 0, csrow_idx, j; 801 802 for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) { 803 struct csrow_info *csrow = mci->csrows[csrow_idx]; 804 805 for (j = 0; j < csrow->nr_channels; j++) { 806 struct dimm_info *dimm = csrow->channels[j]->dimm; 807 808 total_pages += dimm->nr_pages; 809 } 810 } 811 812 return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages)); 813 } 814 815 static ssize_t mci_max_location_show(struct device *dev, 816 struct device_attribute *mattr, 817 char *data) 818 { 819 struct mem_ctl_info *mci = to_mci(dev); 820 int len = PAGE_SIZE; 821 char *p = data; 822 int i, n; 823 824 for (i = 0; i < mci->n_layers; i++) { 825 n = scnprintf(p, len, "%s %d ", 826 edac_layer_name[mci->layers[i].type], 827 mci->layers[i].size - 1); 828 len -= n; 829 if (len <= 0) 830 goto out; 831 832 p += n; 833 } 834 835 p += scnprintf(p, len, "\n"); 836 out: 837 return p - data; 838 } 839 840 /* default Control file */ 841 static DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store); 842 843 /* default Attribute files */ 844 static DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL); 845 static DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL); 846 static DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL); 847 static DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL); 848 static DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL); 849 static DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL); 850 static DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL); 851 static DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL); 852 853 /* memory scrubber attribute file */ 854 static DEVICE_ATTR(sdram_scrub_rate, 0, mci_sdram_scrub_rate_show, 855 mci_sdram_scrub_rate_store); /* umode set later in is_visible */ 856 857 static struct attribute *mci_attrs[] = { 858 &dev_attr_reset_counters.attr, 859 &dev_attr_mc_name.attr, 860 &dev_attr_size_mb.attr, 861 &dev_attr_seconds_since_reset.attr, 862 &dev_attr_ue_noinfo_count.attr, 863 &dev_attr_ce_noinfo_count.attr, 864 &dev_attr_ue_count.attr, 865 &dev_attr_ce_count.attr, 866 &dev_attr_max_location.attr, 867 &dev_attr_sdram_scrub_rate.attr, 868 NULL 869 }; 870 871 static umode_t mci_attr_is_visible(struct kobject *kobj, 872 struct attribute *attr, int idx) 873 { 874 struct device *dev = kobj_to_dev(kobj); 875 struct mem_ctl_info *mci = to_mci(dev); 876 umode_t mode = 0; 877 878 if (attr != &dev_attr_sdram_scrub_rate.attr) 879 return attr->mode; 880 if (mci->get_sdram_scrub_rate) 881 mode |= S_IRUGO; 882 if (mci->set_sdram_scrub_rate) 883 mode |= S_IWUSR; 884 return mode; 885 } 886 887 static const struct attribute_group mci_attr_grp = { 888 .attrs = mci_attrs, 889 .is_visible = mci_attr_is_visible, 890 }; 891 892 static const struct attribute_group *mci_attr_groups[] = { 893 &mci_attr_grp, 894 NULL 895 }; 896 897 static const struct device_type mci_attr_type = { 898 .groups = mci_attr_groups, 899 }; 900 901 /* 902 * Create a new Memory Controller kobject instance, 903 * mc<id> under the 'mc' directory 904 * 905 * Return: 906 * 0 Success 907 * !0 Failure 908 */ 909 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci, 910 const struct attribute_group **groups) 911 { 912 struct dimm_info *dimm; 913 int err; 914 915 /* get the /sys/devices/system/edac subsys reference */ 916 mci->dev.type = &mci_attr_type; 917 mci->dev.parent = mci_pdev; 918 mci->dev.groups = groups; 919 dev_set_name(&mci->dev, "mc%d", mci->mc_idx); 920 dev_set_drvdata(&mci->dev, mci); 921 pm_runtime_forbid(&mci->dev); 922 923 err = device_add(&mci->dev); 924 if (err < 0) { 925 edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev)); 926 /* no put_device() here, free mci with _edac_mc_free() */ 927 return err; 928 } 929 930 edac_dbg(0, "device %s created\n", dev_name(&mci->dev)); 931 932 /* 933 * Create the dimm/rank devices 934 */ 935 mci_for_each_dimm(mci, dimm) { 936 /* Only expose populated DIMMs */ 937 if (!dimm->nr_pages) 938 continue; 939 940 err = edac_create_dimm_object(mci, dimm); 941 if (err) 942 goto fail; 943 } 944 945 #ifdef CONFIG_EDAC_LEGACY_SYSFS 946 err = edac_create_csrow_objects(mci); 947 if (err < 0) 948 goto fail; 949 #endif 950 951 edac_create_debugfs_nodes(mci); 952 return 0; 953 954 fail: 955 edac_remove_sysfs_mci_device(mci); 956 957 return err; 958 } 959 960 /* 961 * remove a Memory Controller instance 962 */ 963 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci) 964 { 965 struct dimm_info *dimm; 966 967 if (!device_is_registered(&mci->dev)) 968 return; 969 970 edac_dbg(0, "\n"); 971 972 #ifdef CONFIG_EDAC_DEBUG 973 edac_debugfs_remove_recursive(mci->debugfs); 974 #endif 975 #ifdef CONFIG_EDAC_LEGACY_SYSFS 976 edac_delete_csrow_objects(mci); 977 #endif 978 979 mci_for_each_dimm(mci, dimm) { 980 if (!device_is_registered(&dimm->dev)) 981 continue; 982 edac_dbg(1, "unregistering device %s\n", dev_name(&dimm->dev)); 983 device_unregister(&dimm->dev); 984 } 985 986 /* only remove the device, but keep mci */ 987 device_del(&mci->dev); 988 } 989 990 static void mc_attr_release(struct device *dev) 991 { 992 /* 993 * There's no container structure here, as this is just the mci 994 * parent device, used to create the /sys/devices/mc sysfs node. 995 * So, there are no attributes on it. 996 */ 997 edac_dbg(1, "device %s released\n", dev_name(dev)); 998 kfree(dev); 999 } 1000 1001 /* 1002 * Init/exit code for the module. Basically, creates/removes /sys/class/rc 1003 */ 1004 int __init edac_mc_sysfs_init(void) 1005 { 1006 int err; 1007 1008 mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL); 1009 if (!mci_pdev) 1010 return -ENOMEM; 1011 1012 mci_pdev->bus = edac_get_sysfs_subsys(); 1013 mci_pdev->release = mc_attr_release; 1014 mci_pdev->init_name = "mc"; 1015 1016 err = device_register(mci_pdev); 1017 if (err < 0) { 1018 edac_dbg(1, "failure: create device %s\n", dev_name(mci_pdev)); 1019 put_device(mci_pdev); 1020 return err; 1021 } 1022 1023 edac_dbg(0, "device %s created\n", dev_name(mci_pdev)); 1024 1025 return 0; 1026 } 1027 1028 void edac_mc_sysfs_exit(void) 1029 { 1030 device_unregister(mci_pdev); 1031 } 1032