1 /* 2 * edac_mc kernel module 3 * (C) 2005-2007 Linux Networx (http://lnxi.com) 4 * 5 * This file may be distributed under the terms of the 6 * GNU General Public License. 7 * 8 * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com 9 * 10 * (c) 2012-2013 - Mauro Carvalho Chehab 11 * The entire API were re-written, and ported to use struct device 12 * 13 */ 14 15 #include <linux/ctype.h> 16 #include <linux/slab.h> 17 #include <linux/edac.h> 18 #include <linux/bug.h> 19 #include <linux/pm_runtime.h> 20 #include <linux/uaccess.h> 21 22 #include "edac_mc.h" 23 #include "edac_module.h" 24 25 /* MC EDAC Controls, setable by module parameter, and sysfs */ 26 static int edac_mc_log_ue = 1; 27 static int edac_mc_log_ce = 1; 28 static int edac_mc_panic_on_ue; 29 static unsigned int edac_mc_poll_msec = 1000; 30 31 /* Getter functions for above */ 32 int edac_mc_get_log_ue(void) 33 { 34 return edac_mc_log_ue; 35 } 36 37 int edac_mc_get_log_ce(void) 38 { 39 return edac_mc_log_ce; 40 } 41 42 int edac_mc_get_panic_on_ue(void) 43 { 44 return edac_mc_panic_on_ue; 45 } 46 47 /* this is temporary */ 48 unsigned int edac_mc_get_poll_msec(void) 49 { 50 return edac_mc_poll_msec; 51 } 52 53 static int edac_set_poll_msec(const char *val, const struct kernel_param *kp) 54 { 55 unsigned int i; 56 int ret; 57 58 if (!val) 59 return -EINVAL; 60 61 ret = kstrtouint(val, 0, &i); 62 if (ret) 63 return ret; 64 65 if (i < 1000) 66 return -EINVAL; 67 68 *((unsigned int *)kp->arg) = i; 69 70 /* notify edac_mc engine to reset the poll period */ 71 edac_mc_reset_delay_period(i); 72 73 return 0; 74 } 75 76 /* Parameter declarations for above */ 77 module_param(edac_mc_panic_on_ue, int, 0644); 78 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on"); 79 module_param(edac_mc_log_ue, int, 0644); 80 MODULE_PARM_DESC(edac_mc_log_ue, 81 "Log uncorrectable error to console: 0=off 1=on"); 82 module_param(edac_mc_log_ce, int, 0644); 83 MODULE_PARM_DESC(edac_mc_log_ce, 84 "Log correctable error to console: 0=off 1=on"); 85 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_uint, 86 &edac_mc_poll_msec, 0644); 87 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds"); 88 89 static struct device *mci_pdev; 90 91 /* 92 * various constants for Memory Controllers 93 */ 94 static const char * const dev_types[] = { 95 [DEV_UNKNOWN] = "Unknown", 96 [DEV_X1] = "x1", 97 [DEV_X2] = "x2", 98 [DEV_X4] = "x4", 99 [DEV_X8] = "x8", 100 [DEV_X16] = "x16", 101 [DEV_X32] = "x32", 102 [DEV_X64] = "x64" 103 }; 104 105 static const char * const edac_caps[] = { 106 [EDAC_UNKNOWN] = "Unknown", 107 [EDAC_NONE] = "None", 108 [EDAC_RESERVED] = "Reserved", 109 [EDAC_PARITY] = "PARITY", 110 [EDAC_EC] = "EC", 111 [EDAC_SECDED] = "SECDED", 112 [EDAC_S2ECD2ED] = "S2ECD2ED", 113 [EDAC_S4ECD4ED] = "S4ECD4ED", 114 [EDAC_S8ECD8ED] = "S8ECD8ED", 115 [EDAC_S16ECD16ED] = "S16ECD16ED" 116 }; 117 118 #ifdef CONFIG_EDAC_LEGACY_SYSFS 119 /* 120 * EDAC sysfs CSROW data structures and methods 121 */ 122 123 #define to_csrow(k) container_of(k, struct csrow_info, dev) 124 125 /* 126 * We need it to avoid namespace conflicts between the legacy API 127 * and the per-dimm/per-rank one 128 */ 129 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \ 130 static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store) 131 132 struct dev_ch_attribute { 133 struct device_attribute attr; 134 unsigned int channel; 135 }; 136 137 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \ 138 static struct dev_ch_attribute dev_attr_legacy_##_name = \ 139 { __ATTR(_name, _mode, _show, _store), (_var) } 140 141 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel) 142 143 /* Set of more default csrow<id> attribute show/store functions */ 144 static ssize_t csrow_ue_count_show(struct device *dev, 145 struct device_attribute *mattr, char *data) 146 { 147 struct csrow_info *csrow = to_csrow(dev); 148 149 return sprintf(data, "%u\n", csrow->ue_count); 150 } 151 152 static ssize_t csrow_ce_count_show(struct device *dev, 153 struct device_attribute *mattr, char *data) 154 { 155 struct csrow_info *csrow = to_csrow(dev); 156 157 return sprintf(data, "%u\n", csrow->ce_count); 158 } 159 160 static ssize_t csrow_size_show(struct device *dev, 161 struct device_attribute *mattr, char *data) 162 { 163 struct csrow_info *csrow = to_csrow(dev); 164 int i; 165 u32 nr_pages = 0; 166 167 for (i = 0; i < csrow->nr_channels; i++) 168 nr_pages += csrow->channels[i]->dimm->nr_pages; 169 return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages)); 170 } 171 172 static ssize_t csrow_mem_type_show(struct device *dev, 173 struct device_attribute *mattr, char *data) 174 { 175 struct csrow_info *csrow = to_csrow(dev); 176 177 return sprintf(data, "%s\n", edac_mem_types[csrow->channels[0]->dimm->mtype]); 178 } 179 180 static ssize_t csrow_dev_type_show(struct device *dev, 181 struct device_attribute *mattr, char *data) 182 { 183 struct csrow_info *csrow = to_csrow(dev); 184 185 return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]); 186 } 187 188 static ssize_t csrow_edac_mode_show(struct device *dev, 189 struct device_attribute *mattr, 190 char *data) 191 { 192 struct csrow_info *csrow = to_csrow(dev); 193 194 return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]); 195 } 196 197 /* show/store functions for DIMM Label attributes */ 198 static ssize_t channel_dimm_label_show(struct device *dev, 199 struct device_attribute *mattr, 200 char *data) 201 { 202 struct csrow_info *csrow = to_csrow(dev); 203 unsigned int chan = to_channel(mattr); 204 struct rank_info *rank = csrow->channels[chan]; 205 206 /* if field has not been initialized, there is nothing to send */ 207 if (!rank->dimm->label[0]) 208 return 0; 209 210 return snprintf(data, sizeof(rank->dimm->label) + 1, "%s\n", 211 rank->dimm->label); 212 } 213 214 static ssize_t channel_dimm_label_store(struct device *dev, 215 struct device_attribute *mattr, 216 const char *data, size_t count) 217 { 218 struct csrow_info *csrow = to_csrow(dev); 219 unsigned int chan = to_channel(mattr); 220 struct rank_info *rank = csrow->channels[chan]; 221 size_t copy_count = count; 222 223 if (count == 0) 224 return -EINVAL; 225 226 if (data[count - 1] == '\0' || data[count - 1] == '\n') 227 copy_count -= 1; 228 229 if (copy_count == 0 || copy_count >= sizeof(rank->dimm->label)) 230 return -EINVAL; 231 232 memcpy(rank->dimm->label, data, copy_count); 233 rank->dimm->label[copy_count] = '\0'; 234 235 return count; 236 } 237 238 /* show function for dynamic chX_ce_count attribute */ 239 static ssize_t channel_ce_count_show(struct device *dev, 240 struct device_attribute *mattr, char *data) 241 { 242 struct csrow_info *csrow = to_csrow(dev); 243 unsigned int chan = to_channel(mattr); 244 struct rank_info *rank = csrow->channels[chan]; 245 246 return sprintf(data, "%u\n", rank->ce_count); 247 } 248 249 /* cwrow<id>/attribute files */ 250 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL); 251 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL); 252 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL); 253 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL); 254 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL); 255 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL); 256 257 /* default attributes of the CSROW<id> object */ 258 static struct attribute *csrow_attrs[] = { 259 &dev_attr_legacy_dev_type.attr, 260 &dev_attr_legacy_mem_type.attr, 261 &dev_attr_legacy_edac_mode.attr, 262 &dev_attr_legacy_size_mb.attr, 263 &dev_attr_legacy_ue_count.attr, 264 &dev_attr_legacy_ce_count.attr, 265 NULL, 266 }; 267 268 static const struct attribute_group csrow_attr_grp = { 269 .attrs = csrow_attrs, 270 }; 271 272 static const struct attribute_group *csrow_attr_groups[] = { 273 &csrow_attr_grp, 274 NULL 275 }; 276 277 static const struct device_type csrow_attr_type = { 278 .groups = csrow_attr_groups, 279 }; 280 281 /* 282 * possible dynamic channel DIMM Label attribute files 283 * 284 */ 285 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR, 286 channel_dimm_label_show, channel_dimm_label_store, 0); 287 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR, 288 channel_dimm_label_show, channel_dimm_label_store, 1); 289 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR, 290 channel_dimm_label_show, channel_dimm_label_store, 2); 291 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR, 292 channel_dimm_label_show, channel_dimm_label_store, 3); 293 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR, 294 channel_dimm_label_show, channel_dimm_label_store, 4); 295 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR, 296 channel_dimm_label_show, channel_dimm_label_store, 5); 297 DEVICE_CHANNEL(ch6_dimm_label, S_IRUGO | S_IWUSR, 298 channel_dimm_label_show, channel_dimm_label_store, 6); 299 DEVICE_CHANNEL(ch7_dimm_label, S_IRUGO | S_IWUSR, 300 channel_dimm_label_show, channel_dimm_label_store, 7); 301 DEVICE_CHANNEL(ch8_dimm_label, S_IRUGO | S_IWUSR, 302 channel_dimm_label_show, channel_dimm_label_store, 8); 303 DEVICE_CHANNEL(ch9_dimm_label, S_IRUGO | S_IWUSR, 304 channel_dimm_label_show, channel_dimm_label_store, 9); 305 DEVICE_CHANNEL(ch10_dimm_label, S_IRUGO | S_IWUSR, 306 channel_dimm_label_show, channel_dimm_label_store, 10); 307 DEVICE_CHANNEL(ch11_dimm_label, S_IRUGO | S_IWUSR, 308 channel_dimm_label_show, channel_dimm_label_store, 11); 309 310 /* Total possible dynamic DIMM Label attribute file table */ 311 static struct attribute *dynamic_csrow_dimm_attr[] = { 312 &dev_attr_legacy_ch0_dimm_label.attr.attr, 313 &dev_attr_legacy_ch1_dimm_label.attr.attr, 314 &dev_attr_legacy_ch2_dimm_label.attr.attr, 315 &dev_attr_legacy_ch3_dimm_label.attr.attr, 316 &dev_attr_legacy_ch4_dimm_label.attr.attr, 317 &dev_attr_legacy_ch5_dimm_label.attr.attr, 318 &dev_attr_legacy_ch6_dimm_label.attr.attr, 319 &dev_attr_legacy_ch7_dimm_label.attr.attr, 320 &dev_attr_legacy_ch8_dimm_label.attr.attr, 321 &dev_attr_legacy_ch9_dimm_label.attr.attr, 322 &dev_attr_legacy_ch10_dimm_label.attr.attr, 323 &dev_attr_legacy_ch11_dimm_label.attr.attr, 324 NULL 325 }; 326 327 /* possible dynamic channel ce_count attribute files */ 328 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO, 329 channel_ce_count_show, NULL, 0); 330 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO, 331 channel_ce_count_show, NULL, 1); 332 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO, 333 channel_ce_count_show, NULL, 2); 334 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO, 335 channel_ce_count_show, NULL, 3); 336 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO, 337 channel_ce_count_show, NULL, 4); 338 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO, 339 channel_ce_count_show, NULL, 5); 340 DEVICE_CHANNEL(ch6_ce_count, S_IRUGO, 341 channel_ce_count_show, NULL, 6); 342 DEVICE_CHANNEL(ch7_ce_count, S_IRUGO, 343 channel_ce_count_show, NULL, 7); 344 DEVICE_CHANNEL(ch8_ce_count, S_IRUGO, 345 channel_ce_count_show, NULL, 8); 346 DEVICE_CHANNEL(ch9_ce_count, S_IRUGO, 347 channel_ce_count_show, NULL, 9); 348 DEVICE_CHANNEL(ch10_ce_count, S_IRUGO, 349 channel_ce_count_show, NULL, 10); 350 DEVICE_CHANNEL(ch11_ce_count, S_IRUGO, 351 channel_ce_count_show, NULL, 11); 352 353 /* Total possible dynamic ce_count attribute file table */ 354 static struct attribute *dynamic_csrow_ce_count_attr[] = { 355 &dev_attr_legacy_ch0_ce_count.attr.attr, 356 &dev_attr_legacy_ch1_ce_count.attr.attr, 357 &dev_attr_legacy_ch2_ce_count.attr.attr, 358 &dev_attr_legacy_ch3_ce_count.attr.attr, 359 &dev_attr_legacy_ch4_ce_count.attr.attr, 360 &dev_attr_legacy_ch5_ce_count.attr.attr, 361 &dev_attr_legacy_ch6_ce_count.attr.attr, 362 &dev_attr_legacy_ch7_ce_count.attr.attr, 363 &dev_attr_legacy_ch8_ce_count.attr.attr, 364 &dev_attr_legacy_ch9_ce_count.attr.attr, 365 &dev_attr_legacy_ch10_ce_count.attr.attr, 366 &dev_attr_legacy_ch11_ce_count.attr.attr, 367 NULL 368 }; 369 370 static umode_t csrow_dev_is_visible(struct kobject *kobj, 371 struct attribute *attr, int idx) 372 { 373 struct device *dev = kobj_to_dev(kobj); 374 struct csrow_info *csrow = container_of(dev, struct csrow_info, dev); 375 376 if (idx >= csrow->nr_channels) 377 return 0; 378 379 if (idx >= ARRAY_SIZE(dynamic_csrow_ce_count_attr) - 1) { 380 WARN_ONCE(1, "idx: %d\n", idx); 381 return 0; 382 } 383 384 /* Only expose populated DIMMs */ 385 if (!csrow->channels[idx]->dimm->nr_pages) 386 return 0; 387 388 return attr->mode; 389 } 390 391 392 static const struct attribute_group csrow_dev_dimm_group = { 393 .attrs = dynamic_csrow_dimm_attr, 394 .is_visible = csrow_dev_is_visible, 395 }; 396 397 static const struct attribute_group csrow_dev_ce_count_group = { 398 .attrs = dynamic_csrow_ce_count_attr, 399 .is_visible = csrow_dev_is_visible, 400 }; 401 402 static const struct attribute_group *csrow_dev_groups[] = { 403 &csrow_dev_dimm_group, 404 &csrow_dev_ce_count_group, 405 NULL 406 }; 407 408 static void csrow_release(struct device *dev) 409 { 410 /* 411 * Nothing to do, just unregister sysfs here. The mci 412 * device owns the data and will also release it. 413 */ 414 } 415 416 static inline int nr_pages_per_csrow(struct csrow_info *csrow) 417 { 418 int chan, nr_pages = 0; 419 420 for (chan = 0; chan < csrow->nr_channels; chan++) 421 nr_pages += csrow->channels[chan]->dimm->nr_pages; 422 423 return nr_pages; 424 } 425 426 /* Create a CSROW object under specifed edac_mc_device */ 427 static int edac_create_csrow_object(struct mem_ctl_info *mci, 428 struct csrow_info *csrow, int index) 429 { 430 int err; 431 432 csrow->dev.type = &csrow_attr_type; 433 csrow->dev.groups = csrow_dev_groups; 434 csrow->dev.release = csrow_release; 435 device_initialize(&csrow->dev); 436 csrow->dev.parent = &mci->dev; 437 csrow->mci = mci; 438 dev_set_name(&csrow->dev, "csrow%d", index); 439 dev_set_drvdata(&csrow->dev, csrow); 440 441 err = device_add(&csrow->dev); 442 if (err) { 443 edac_dbg(1, "failure: create device %s\n", dev_name(&csrow->dev)); 444 put_device(&csrow->dev); 445 return err; 446 } 447 448 edac_dbg(0, "device %s created\n", dev_name(&csrow->dev)); 449 450 return 0; 451 } 452 453 /* Create a CSROW object under specifed edac_mc_device */ 454 static int edac_create_csrow_objects(struct mem_ctl_info *mci) 455 { 456 int err, i; 457 struct csrow_info *csrow; 458 459 for (i = 0; i < mci->nr_csrows; i++) { 460 csrow = mci->csrows[i]; 461 if (!nr_pages_per_csrow(csrow)) 462 continue; 463 err = edac_create_csrow_object(mci, mci->csrows[i], i); 464 if (err < 0) 465 goto error; 466 } 467 return 0; 468 469 error: 470 for (--i; i >= 0; i--) { 471 if (device_is_registered(&mci->csrows[i]->dev)) 472 device_unregister(&mci->csrows[i]->dev); 473 } 474 475 return err; 476 } 477 478 static void edac_delete_csrow_objects(struct mem_ctl_info *mci) 479 { 480 int i; 481 482 for (i = 0; i < mci->nr_csrows; i++) { 483 if (device_is_registered(&mci->csrows[i]->dev)) 484 device_unregister(&mci->csrows[i]->dev); 485 } 486 } 487 488 #endif 489 490 /* 491 * Per-dimm (or per-rank) devices 492 */ 493 494 #define to_dimm(k) container_of(k, struct dimm_info, dev) 495 496 /* show/store functions for DIMM Label attributes */ 497 static ssize_t dimmdev_location_show(struct device *dev, 498 struct device_attribute *mattr, char *data) 499 { 500 struct dimm_info *dimm = to_dimm(dev); 501 ssize_t count; 502 503 count = edac_dimm_info_location(dimm, data, PAGE_SIZE); 504 count += scnprintf(data + count, PAGE_SIZE - count, "\n"); 505 506 return count; 507 } 508 509 static ssize_t dimmdev_label_show(struct device *dev, 510 struct device_attribute *mattr, char *data) 511 { 512 struct dimm_info *dimm = to_dimm(dev); 513 514 /* if field has not been initialized, there is nothing to send */ 515 if (!dimm->label[0]) 516 return 0; 517 518 return snprintf(data, sizeof(dimm->label) + 1, "%s\n", dimm->label); 519 } 520 521 static ssize_t dimmdev_label_store(struct device *dev, 522 struct device_attribute *mattr, 523 const char *data, 524 size_t count) 525 { 526 struct dimm_info *dimm = to_dimm(dev); 527 size_t copy_count = count; 528 529 if (count == 0) 530 return -EINVAL; 531 532 if (data[count - 1] == '\0' || data[count - 1] == '\n') 533 copy_count -= 1; 534 535 if (copy_count == 0 || copy_count >= sizeof(dimm->label)) 536 return -EINVAL; 537 538 memcpy(dimm->label, data, copy_count); 539 dimm->label[copy_count] = '\0'; 540 541 return count; 542 } 543 544 static ssize_t dimmdev_size_show(struct device *dev, 545 struct device_attribute *mattr, char *data) 546 { 547 struct dimm_info *dimm = to_dimm(dev); 548 549 return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages)); 550 } 551 552 static ssize_t dimmdev_mem_type_show(struct device *dev, 553 struct device_attribute *mattr, char *data) 554 { 555 struct dimm_info *dimm = to_dimm(dev); 556 557 return sprintf(data, "%s\n", edac_mem_types[dimm->mtype]); 558 } 559 560 static ssize_t dimmdev_dev_type_show(struct device *dev, 561 struct device_attribute *mattr, char *data) 562 { 563 struct dimm_info *dimm = to_dimm(dev); 564 565 return sprintf(data, "%s\n", dev_types[dimm->dtype]); 566 } 567 568 static ssize_t dimmdev_edac_mode_show(struct device *dev, 569 struct device_attribute *mattr, 570 char *data) 571 { 572 struct dimm_info *dimm = to_dimm(dev); 573 574 return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]); 575 } 576 577 static ssize_t dimmdev_ce_count_show(struct device *dev, 578 struct device_attribute *mattr, 579 char *data) 580 { 581 struct dimm_info *dimm = to_dimm(dev); 582 583 return sprintf(data, "%u\n", dimm->ce_count); 584 } 585 586 static ssize_t dimmdev_ue_count_show(struct device *dev, 587 struct device_attribute *mattr, 588 char *data) 589 { 590 struct dimm_info *dimm = to_dimm(dev); 591 592 return sprintf(data, "%u\n", dimm->ue_count); 593 } 594 595 /* dimm/rank attribute files */ 596 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR, 597 dimmdev_label_show, dimmdev_label_store); 598 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL); 599 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL); 600 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL); 601 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL); 602 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL); 603 static DEVICE_ATTR(dimm_ce_count, S_IRUGO, dimmdev_ce_count_show, NULL); 604 static DEVICE_ATTR(dimm_ue_count, S_IRUGO, dimmdev_ue_count_show, NULL); 605 606 /* attributes of the dimm<id>/rank<id> object */ 607 static struct attribute *dimm_attrs[] = { 608 &dev_attr_dimm_label.attr, 609 &dev_attr_dimm_location.attr, 610 &dev_attr_size.attr, 611 &dev_attr_dimm_mem_type.attr, 612 &dev_attr_dimm_dev_type.attr, 613 &dev_attr_dimm_edac_mode.attr, 614 &dev_attr_dimm_ce_count.attr, 615 &dev_attr_dimm_ue_count.attr, 616 NULL, 617 }; 618 619 static const struct attribute_group dimm_attr_grp = { 620 .attrs = dimm_attrs, 621 }; 622 623 static const struct attribute_group *dimm_attr_groups[] = { 624 &dimm_attr_grp, 625 NULL 626 }; 627 628 static const struct device_type dimm_attr_type = { 629 .groups = dimm_attr_groups, 630 }; 631 632 static void dimm_release(struct device *dev) 633 { 634 /* 635 * Nothing to do, just unregister sysfs here. The mci 636 * device owns the data and will also release it. 637 */ 638 } 639 640 /* Create a DIMM object under specifed memory controller device */ 641 static int edac_create_dimm_object(struct mem_ctl_info *mci, 642 struct dimm_info *dimm) 643 { 644 int err; 645 dimm->mci = mci; 646 647 dimm->dev.type = &dimm_attr_type; 648 dimm->dev.release = dimm_release; 649 device_initialize(&dimm->dev); 650 651 dimm->dev.parent = &mci->dev; 652 if (mci->csbased) 653 dev_set_name(&dimm->dev, "rank%d", dimm->idx); 654 else 655 dev_set_name(&dimm->dev, "dimm%d", dimm->idx); 656 dev_set_drvdata(&dimm->dev, dimm); 657 pm_runtime_forbid(&mci->dev); 658 659 err = device_add(&dimm->dev); 660 if (err) { 661 edac_dbg(1, "failure: create device %s\n", dev_name(&dimm->dev)); 662 put_device(&dimm->dev); 663 return err; 664 } 665 666 if (IS_ENABLED(CONFIG_EDAC_DEBUG)) { 667 char location[80]; 668 669 edac_dimm_info_location(dimm, location, sizeof(location)); 670 edac_dbg(0, "device %s created at location %s\n", 671 dev_name(&dimm->dev), location); 672 } 673 674 return 0; 675 } 676 677 /* 678 * Memory controller device 679 */ 680 681 #define to_mci(k) container_of(k, struct mem_ctl_info, dev) 682 683 static ssize_t mci_reset_counters_store(struct device *dev, 684 struct device_attribute *mattr, 685 const char *data, size_t count) 686 { 687 struct mem_ctl_info *mci = to_mci(dev); 688 struct dimm_info *dimm; 689 int row, chan; 690 691 mci->ue_mc = 0; 692 mci->ce_mc = 0; 693 mci->ue_noinfo_count = 0; 694 mci->ce_noinfo_count = 0; 695 696 for (row = 0; row < mci->nr_csrows; row++) { 697 struct csrow_info *ri = mci->csrows[row]; 698 699 ri->ue_count = 0; 700 ri->ce_count = 0; 701 702 for (chan = 0; chan < ri->nr_channels; chan++) 703 ri->channels[chan]->ce_count = 0; 704 } 705 706 mci_for_each_dimm(mci, dimm) { 707 dimm->ue_count = 0; 708 dimm->ce_count = 0; 709 } 710 711 mci->start_time = jiffies; 712 return count; 713 } 714 715 /* Memory scrubbing interface: 716 * 717 * A MC driver can limit the scrubbing bandwidth based on the CPU type. 718 * Therefore, ->set_sdram_scrub_rate should be made to return the actual 719 * bandwidth that is accepted or 0 when scrubbing is to be disabled. 720 * 721 * Negative value still means that an error has occurred while setting 722 * the scrub rate. 723 */ 724 static ssize_t mci_sdram_scrub_rate_store(struct device *dev, 725 struct device_attribute *mattr, 726 const char *data, size_t count) 727 { 728 struct mem_ctl_info *mci = to_mci(dev); 729 unsigned long bandwidth = 0; 730 int new_bw = 0; 731 732 if (kstrtoul(data, 10, &bandwidth) < 0) 733 return -EINVAL; 734 735 new_bw = mci->set_sdram_scrub_rate(mci, bandwidth); 736 if (new_bw < 0) { 737 edac_printk(KERN_WARNING, EDAC_MC, 738 "Error setting scrub rate to: %lu\n", bandwidth); 739 return -EINVAL; 740 } 741 742 return count; 743 } 744 745 /* 746 * ->get_sdram_scrub_rate() return value semantics same as above. 747 */ 748 static ssize_t mci_sdram_scrub_rate_show(struct device *dev, 749 struct device_attribute *mattr, 750 char *data) 751 { 752 struct mem_ctl_info *mci = to_mci(dev); 753 int bandwidth = 0; 754 755 bandwidth = mci->get_sdram_scrub_rate(mci); 756 if (bandwidth < 0) { 757 edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n"); 758 return bandwidth; 759 } 760 761 return sprintf(data, "%d\n", bandwidth); 762 } 763 764 /* default attribute files for the MCI object */ 765 static ssize_t mci_ue_count_show(struct device *dev, 766 struct device_attribute *mattr, 767 char *data) 768 { 769 struct mem_ctl_info *mci = to_mci(dev); 770 771 return sprintf(data, "%u\n", mci->ue_mc); 772 } 773 774 static ssize_t mci_ce_count_show(struct device *dev, 775 struct device_attribute *mattr, 776 char *data) 777 { 778 struct mem_ctl_info *mci = to_mci(dev); 779 780 return sprintf(data, "%u\n", mci->ce_mc); 781 } 782 783 static ssize_t mci_ce_noinfo_show(struct device *dev, 784 struct device_attribute *mattr, 785 char *data) 786 { 787 struct mem_ctl_info *mci = to_mci(dev); 788 789 return sprintf(data, "%u\n", mci->ce_noinfo_count); 790 } 791 792 static ssize_t mci_ue_noinfo_show(struct device *dev, 793 struct device_attribute *mattr, 794 char *data) 795 { 796 struct mem_ctl_info *mci = to_mci(dev); 797 798 return sprintf(data, "%u\n", mci->ue_noinfo_count); 799 } 800 801 static ssize_t mci_seconds_show(struct device *dev, 802 struct device_attribute *mattr, 803 char *data) 804 { 805 struct mem_ctl_info *mci = to_mci(dev); 806 807 return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ); 808 } 809 810 static ssize_t mci_ctl_name_show(struct device *dev, 811 struct device_attribute *mattr, 812 char *data) 813 { 814 struct mem_ctl_info *mci = to_mci(dev); 815 816 return sprintf(data, "%s\n", mci->ctl_name); 817 } 818 819 static ssize_t mci_size_mb_show(struct device *dev, 820 struct device_attribute *mattr, 821 char *data) 822 { 823 struct mem_ctl_info *mci = to_mci(dev); 824 int total_pages = 0, csrow_idx, j; 825 826 for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) { 827 struct csrow_info *csrow = mci->csrows[csrow_idx]; 828 829 for (j = 0; j < csrow->nr_channels; j++) { 830 struct dimm_info *dimm = csrow->channels[j]->dimm; 831 832 total_pages += dimm->nr_pages; 833 } 834 } 835 836 return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages)); 837 } 838 839 static ssize_t mci_max_location_show(struct device *dev, 840 struct device_attribute *mattr, 841 char *data) 842 { 843 struct mem_ctl_info *mci = to_mci(dev); 844 int len = PAGE_SIZE; 845 char *p = data; 846 int i, n; 847 848 for (i = 0; i < mci->n_layers; i++) { 849 n = scnprintf(p, len, "%s %d ", 850 edac_layer_name[mci->layers[i].type], 851 mci->layers[i].size - 1); 852 len -= n; 853 if (len <= 0) 854 goto out; 855 856 p += n; 857 } 858 859 p += scnprintf(p, len, "\n"); 860 out: 861 return p - data; 862 } 863 864 /* default Control file */ 865 static DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store); 866 867 /* default Attribute files */ 868 static DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL); 869 static DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL); 870 static DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL); 871 static DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL); 872 static DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL); 873 static DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL); 874 static DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL); 875 static DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL); 876 877 /* memory scrubber attribute file */ 878 static DEVICE_ATTR(sdram_scrub_rate, 0, mci_sdram_scrub_rate_show, 879 mci_sdram_scrub_rate_store); /* umode set later in is_visible */ 880 881 static struct attribute *mci_attrs[] = { 882 &dev_attr_reset_counters.attr, 883 &dev_attr_mc_name.attr, 884 &dev_attr_size_mb.attr, 885 &dev_attr_seconds_since_reset.attr, 886 &dev_attr_ue_noinfo_count.attr, 887 &dev_attr_ce_noinfo_count.attr, 888 &dev_attr_ue_count.attr, 889 &dev_attr_ce_count.attr, 890 &dev_attr_max_location.attr, 891 &dev_attr_sdram_scrub_rate.attr, 892 NULL 893 }; 894 895 static umode_t mci_attr_is_visible(struct kobject *kobj, 896 struct attribute *attr, int idx) 897 { 898 struct device *dev = kobj_to_dev(kobj); 899 struct mem_ctl_info *mci = to_mci(dev); 900 umode_t mode = 0; 901 902 if (attr != &dev_attr_sdram_scrub_rate.attr) 903 return attr->mode; 904 if (mci->get_sdram_scrub_rate) 905 mode |= S_IRUGO; 906 if (mci->set_sdram_scrub_rate) 907 mode |= S_IWUSR; 908 return mode; 909 } 910 911 static const struct attribute_group mci_attr_grp = { 912 .attrs = mci_attrs, 913 .is_visible = mci_attr_is_visible, 914 }; 915 916 static const struct attribute_group *mci_attr_groups[] = { 917 &mci_attr_grp, 918 NULL 919 }; 920 921 static const struct device_type mci_attr_type = { 922 .groups = mci_attr_groups, 923 }; 924 925 /* 926 * Create a new Memory Controller kobject instance, 927 * mc<id> under the 'mc' directory 928 * 929 * Return: 930 * 0 Success 931 * !0 Failure 932 */ 933 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci, 934 const struct attribute_group **groups) 935 { 936 struct dimm_info *dimm; 937 int err; 938 939 /* get the /sys/devices/system/edac subsys reference */ 940 mci->dev.type = &mci_attr_type; 941 mci->dev.parent = mci_pdev; 942 mci->dev.groups = groups; 943 dev_set_name(&mci->dev, "mc%d", mci->mc_idx); 944 dev_set_drvdata(&mci->dev, mci); 945 pm_runtime_forbid(&mci->dev); 946 947 err = device_add(&mci->dev); 948 if (err < 0) { 949 edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev)); 950 /* no put_device() here, free mci with _edac_mc_free() */ 951 return err; 952 } 953 954 edac_dbg(0, "device %s created\n", dev_name(&mci->dev)); 955 956 /* 957 * Create the dimm/rank devices 958 */ 959 mci_for_each_dimm(mci, dimm) { 960 /* Only expose populated DIMMs */ 961 if (!dimm->nr_pages) 962 continue; 963 964 err = edac_create_dimm_object(mci, dimm); 965 if (err) 966 goto fail; 967 } 968 969 #ifdef CONFIG_EDAC_LEGACY_SYSFS 970 err = edac_create_csrow_objects(mci); 971 if (err < 0) 972 goto fail; 973 #endif 974 975 edac_create_debugfs_nodes(mci); 976 return 0; 977 978 fail: 979 edac_remove_sysfs_mci_device(mci); 980 981 return err; 982 } 983 984 /* 985 * remove a Memory Controller instance 986 */ 987 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci) 988 { 989 struct dimm_info *dimm; 990 991 if (!device_is_registered(&mci->dev)) 992 return; 993 994 edac_dbg(0, "\n"); 995 996 #ifdef CONFIG_EDAC_DEBUG 997 edac_debugfs_remove_recursive(mci->debugfs); 998 #endif 999 #ifdef CONFIG_EDAC_LEGACY_SYSFS 1000 edac_delete_csrow_objects(mci); 1001 #endif 1002 1003 mci_for_each_dimm(mci, dimm) { 1004 if (!device_is_registered(&dimm->dev)) 1005 continue; 1006 edac_dbg(1, "unregistering device %s\n", dev_name(&dimm->dev)); 1007 device_unregister(&dimm->dev); 1008 } 1009 1010 /* only remove the device, but keep mci */ 1011 device_del(&mci->dev); 1012 } 1013 1014 static void mc_attr_release(struct device *dev) 1015 { 1016 /* 1017 * There's no container structure here, as this is just the mci 1018 * parent device, used to create the /sys/devices/mc sysfs node. 1019 * So, there are no attributes on it. 1020 */ 1021 edac_dbg(1, "device %s released\n", dev_name(dev)); 1022 kfree(dev); 1023 } 1024 1025 /* 1026 * Init/exit code for the module. Basically, creates/removes /sys/class/rc 1027 */ 1028 int __init edac_mc_sysfs_init(void) 1029 { 1030 int err; 1031 1032 mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL); 1033 if (!mci_pdev) 1034 return -ENOMEM; 1035 1036 mci_pdev->bus = edac_get_sysfs_subsys(); 1037 mci_pdev->release = mc_attr_release; 1038 mci_pdev->init_name = "mc"; 1039 1040 err = device_register(mci_pdev); 1041 if (err < 0) { 1042 edac_dbg(1, "failure: create device %s\n", dev_name(mci_pdev)); 1043 put_device(mci_pdev); 1044 return err; 1045 } 1046 1047 edac_dbg(0, "device %s created\n", dev_name(mci_pdev)); 1048 1049 return 0; 1050 } 1051 1052 void edac_mc_sysfs_exit(void) 1053 { 1054 device_unregister(mci_pdev); 1055 } 1056