xref: /linux/drivers/edac/edac_mc_sysfs.c (revision a44e4f3ab16bc808590763a543a93b6fbf3abcc4)
1 /*
2  * edac_mc kernel module
3  * (C) 2005-2007 Linux Networx (http://lnxi.com)
4  *
5  * This file may be distributed under the terms of the
6  * GNU General Public License.
7  *
8  * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
9  *
10  * (c) 2012-2013 - Mauro Carvalho Chehab
11  *	The entire API were re-written, and ported to use struct device
12  *
13  */
14 
15 #include <linux/ctype.h>
16 #include <linux/slab.h>
17 #include <linux/edac.h>
18 #include <linux/bug.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/uaccess.h>
21 
22 #include "edac_mc.h"
23 #include "edac_module.h"
24 
25 /* MC EDAC Controls, setable by module parameter, and sysfs */
26 static int edac_mc_log_ue = 1;
27 static int edac_mc_log_ce = 1;
28 static int edac_mc_panic_on_ue;
29 static unsigned int edac_mc_poll_msec = 1000;
30 
31 /* Getter functions for above */
32 int edac_mc_get_log_ue(void)
33 {
34 	return edac_mc_log_ue;
35 }
36 
37 int edac_mc_get_log_ce(void)
38 {
39 	return edac_mc_log_ce;
40 }
41 
42 int edac_mc_get_panic_on_ue(void)
43 {
44 	return edac_mc_panic_on_ue;
45 }
46 
47 /* this is temporary */
48 unsigned int edac_mc_get_poll_msec(void)
49 {
50 	return edac_mc_poll_msec;
51 }
52 
53 static int edac_set_poll_msec(const char *val, const struct kernel_param *kp)
54 {
55 	unsigned int i;
56 	int ret;
57 
58 	if (!val)
59 		return -EINVAL;
60 
61 	ret = kstrtouint(val, 0, &i);
62 	if (ret)
63 		return ret;
64 
65 	if (i < 1000)
66 		return -EINVAL;
67 
68 	*((unsigned int *)kp->arg) = i;
69 
70 	/* notify edac_mc engine to reset the poll period */
71 	edac_mc_reset_delay_period(i);
72 
73 	return 0;
74 }
75 
76 /* Parameter declarations for above */
77 module_param(edac_mc_panic_on_ue, int, 0644);
78 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
79 module_param(edac_mc_log_ue, int, 0644);
80 MODULE_PARM_DESC(edac_mc_log_ue,
81 		 "Log uncorrectable error to console: 0=off 1=on");
82 module_param(edac_mc_log_ce, int, 0644);
83 MODULE_PARM_DESC(edac_mc_log_ce,
84 		 "Log correctable error to console: 0=off 1=on");
85 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_uint,
86 		  &edac_mc_poll_msec, 0644);
87 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
88 
89 static struct device *mci_pdev;
90 
91 /*
92  * various constants for Memory Controllers
93  */
94 static const char * const dev_types[] = {
95 	[DEV_UNKNOWN] = "Unknown",
96 	[DEV_X1] = "x1",
97 	[DEV_X2] = "x2",
98 	[DEV_X4] = "x4",
99 	[DEV_X8] = "x8",
100 	[DEV_X16] = "x16",
101 	[DEV_X32] = "x32",
102 	[DEV_X64] = "x64"
103 };
104 
105 static const char * const edac_caps[] = {
106 	[EDAC_UNKNOWN] = "Unknown",
107 	[EDAC_NONE] = "None",
108 	[EDAC_RESERVED] = "Reserved",
109 	[EDAC_PARITY] = "PARITY",
110 	[EDAC_EC] = "EC",
111 	[EDAC_SECDED] = "SECDED",
112 	[EDAC_S2ECD2ED] = "S2ECD2ED",
113 	[EDAC_S4ECD4ED] = "S4ECD4ED",
114 	[EDAC_S8ECD8ED] = "S8ECD8ED",
115 	[EDAC_S16ECD16ED] = "S16ECD16ED"
116 };
117 
118 #ifdef CONFIG_EDAC_LEGACY_SYSFS
119 /*
120  * EDAC sysfs CSROW data structures and methods
121  */
122 
123 #define to_csrow(k) container_of(k, struct csrow_info, dev)
124 
125 /*
126  * We need it to avoid namespace conflicts between the legacy API
127  * and the per-dimm/per-rank one
128  */
129 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
130 	static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
131 
132 struct dev_ch_attribute {
133 	struct device_attribute attr;
134 	unsigned int channel;
135 };
136 
137 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
138 	static struct dev_ch_attribute dev_attr_legacy_##_name = \
139 		{ __ATTR(_name, _mode, _show, _store), (_var) }
140 
141 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
142 
143 /* Set of more default csrow<id> attribute show/store functions */
144 static ssize_t csrow_ue_count_show(struct device *dev,
145 				   struct device_attribute *mattr, char *data)
146 {
147 	struct csrow_info *csrow = to_csrow(dev);
148 
149 	return sprintf(data, "%u\n", csrow->ue_count);
150 }
151 
152 static ssize_t csrow_ce_count_show(struct device *dev,
153 				   struct device_attribute *mattr, char *data)
154 {
155 	struct csrow_info *csrow = to_csrow(dev);
156 
157 	return sprintf(data, "%u\n", csrow->ce_count);
158 }
159 
160 static ssize_t csrow_size_show(struct device *dev,
161 			       struct device_attribute *mattr, char *data)
162 {
163 	struct csrow_info *csrow = to_csrow(dev);
164 	int i;
165 	u32 nr_pages = 0;
166 
167 	for (i = 0; i < csrow->nr_channels; i++)
168 		nr_pages += csrow->channels[i]->dimm->nr_pages;
169 	return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
170 }
171 
172 static ssize_t csrow_mem_type_show(struct device *dev,
173 				   struct device_attribute *mattr, char *data)
174 {
175 	struct csrow_info *csrow = to_csrow(dev);
176 
177 	return sprintf(data, "%s\n", edac_mem_types[csrow->channels[0]->dimm->mtype]);
178 }
179 
180 static ssize_t csrow_dev_type_show(struct device *dev,
181 				   struct device_attribute *mattr, char *data)
182 {
183 	struct csrow_info *csrow = to_csrow(dev);
184 
185 	return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
186 }
187 
188 static ssize_t csrow_edac_mode_show(struct device *dev,
189 				    struct device_attribute *mattr,
190 				    char *data)
191 {
192 	struct csrow_info *csrow = to_csrow(dev);
193 
194 	return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
195 }
196 
197 /* show/store functions for DIMM Label attributes */
198 static ssize_t channel_dimm_label_show(struct device *dev,
199 				       struct device_attribute *mattr,
200 				       char *data)
201 {
202 	struct csrow_info *csrow = to_csrow(dev);
203 	unsigned int chan = to_channel(mattr);
204 	struct rank_info *rank = csrow->channels[chan];
205 
206 	/* if field has not been initialized, there is nothing to send */
207 	if (!rank->dimm->label[0])
208 		return 0;
209 
210 	return snprintf(data, sizeof(rank->dimm->label) + 1, "%s\n",
211 			rank->dimm->label);
212 }
213 
214 static ssize_t channel_dimm_label_store(struct device *dev,
215 					struct device_attribute *mattr,
216 					const char *data, size_t count)
217 {
218 	struct csrow_info *csrow = to_csrow(dev);
219 	unsigned int chan = to_channel(mattr);
220 	struct rank_info *rank = csrow->channels[chan];
221 	size_t copy_count = count;
222 
223 	if (count == 0)
224 		return -EINVAL;
225 
226 	if (data[count - 1] == '\0' || data[count - 1] == '\n')
227 		copy_count -= 1;
228 
229 	if (copy_count == 0 || copy_count >= sizeof(rank->dimm->label))
230 		return -EINVAL;
231 
232 	strncpy(rank->dimm->label, data, copy_count);
233 	rank->dimm->label[copy_count] = '\0';
234 
235 	return count;
236 }
237 
238 /* show function for dynamic chX_ce_count attribute */
239 static ssize_t channel_ce_count_show(struct device *dev,
240 				     struct device_attribute *mattr, char *data)
241 {
242 	struct csrow_info *csrow = to_csrow(dev);
243 	unsigned int chan = to_channel(mattr);
244 	struct rank_info *rank = csrow->channels[chan];
245 
246 	return sprintf(data, "%u\n", rank->ce_count);
247 }
248 
249 /* cwrow<id>/attribute files */
250 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
251 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
252 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
253 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
254 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
255 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
256 
257 /* default attributes of the CSROW<id> object */
258 static struct attribute *csrow_attrs[] = {
259 	&dev_attr_legacy_dev_type.attr,
260 	&dev_attr_legacy_mem_type.attr,
261 	&dev_attr_legacy_edac_mode.attr,
262 	&dev_attr_legacy_size_mb.attr,
263 	&dev_attr_legacy_ue_count.attr,
264 	&dev_attr_legacy_ce_count.attr,
265 	NULL,
266 };
267 
268 static const struct attribute_group csrow_attr_grp = {
269 	.attrs	= csrow_attrs,
270 };
271 
272 static const struct attribute_group *csrow_attr_groups[] = {
273 	&csrow_attr_grp,
274 	NULL
275 };
276 
277 static void csrow_attr_release(struct device *dev)
278 {
279 	struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
280 
281 	edac_dbg(1, "device %s released\n", dev_name(dev));
282 	kfree(csrow);
283 }
284 
285 static const struct device_type csrow_attr_type = {
286 	.groups		= csrow_attr_groups,
287 	.release	= csrow_attr_release,
288 };
289 
290 /*
291  * possible dynamic channel DIMM Label attribute files
292  *
293  */
294 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
295 	channel_dimm_label_show, channel_dimm_label_store, 0);
296 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
297 	channel_dimm_label_show, channel_dimm_label_store, 1);
298 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
299 	channel_dimm_label_show, channel_dimm_label_store, 2);
300 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
301 	channel_dimm_label_show, channel_dimm_label_store, 3);
302 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
303 	channel_dimm_label_show, channel_dimm_label_store, 4);
304 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
305 	channel_dimm_label_show, channel_dimm_label_store, 5);
306 DEVICE_CHANNEL(ch6_dimm_label, S_IRUGO | S_IWUSR,
307 	channel_dimm_label_show, channel_dimm_label_store, 6);
308 DEVICE_CHANNEL(ch7_dimm_label, S_IRUGO | S_IWUSR,
309 	channel_dimm_label_show, channel_dimm_label_store, 7);
310 
311 /* Total possible dynamic DIMM Label attribute file table */
312 static struct attribute *dynamic_csrow_dimm_attr[] = {
313 	&dev_attr_legacy_ch0_dimm_label.attr.attr,
314 	&dev_attr_legacy_ch1_dimm_label.attr.attr,
315 	&dev_attr_legacy_ch2_dimm_label.attr.attr,
316 	&dev_attr_legacy_ch3_dimm_label.attr.attr,
317 	&dev_attr_legacy_ch4_dimm_label.attr.attr,
318 	&dev_attr_legacy_ch5_dimm_label.attr.attr,
319 	&dev_attr_legacy_ch6_dimm_label.attr.attr,
320 	&dev_attr_legacy_ch7_dimm_label.attr.attr,
321 	NULL
322 };
323 
324 /* possible dynamic channel ce_count attribute files */
325 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO,
326 		   channel_ce_count_show, NULL, 0);
327 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO,
328 		   channel_ce_count_show, NULL, 1);
329 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO,
330 		   channel_ce_count_show, NULL, 2);
331 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO,
332 		   channel_ce_count_show, NULL, 3);
333 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO,
334 		   channel_ce_count_show, NULL, 4);
335 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO,
336 		   channel_ce_count_show, NULL, 5);
337 DEVICE_CHANNEL(ch6_ce_count, S_IRUGO,
338 		   channel_ce_count_show, NULL, 6);
339 DEVICE_CHANNEL(ch7_ce_count, S_IRUGO,
340 		   channel_ce_count_show, NULL, 7);
341 
342 /* Total possible dynamic ce_count attribute file table */
343 static struct attribute *dynamic_csrow_ce_count_attr[] = {
344 	&dev_attr_legacy_ch0_ce_count.attr.attr,
345 	&dev_attr_legacy_ch1_ce_count.attr.attr,
346 	&dev_attr_legacy_ch2_ce_count.attr.attr,
347 	&dev_attr_legacy_ch3_ce_count.attr.attr,
348 	&dev_attr_legacy_ch4_ce_count.attr.attr,
349 	&dev_attr_legacy_ch5_ce_count.attr.attr,
350 	&dev_attr_legacy_ch6_ce_count.attr.attr,
351 	&dev_attr_legacy_ch7_ce_count.attr.attr,
352 	NULL
353 };
354 
355 static umode_t csrow_dev_is_visible(struct kobject *kobj,
356 				    struct attribute *attr, int idx)
357 {
358 	struct device *dev = kobj_to_dev(kobj);
359 	struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
360 
361 	if (idx >= csrow->nr_channels)
362 		return 0;
363 
364 	if (idx >= ARRAY_SIZE(dynamic_csrow_ce_count_attr) - 1) {
365 		WARN_ONCE(1, "idx: %d\n", idx);
366 		return 0;
367 	}
368 
369 	/* Only expose populated DIMMs */
370 	if (!csrow->channels[idx]->dimm->nr_pages)
371 		return 0;
372 
373 	return attr->mode;
374 }
375 
376 
377 static const struct attribute_group csrow_dev_dimm_group = {
378 	.attrs = dynamic_csrow_dimm_attr,
379 	.is_visible = csrow_dev_is_visible,
380 };
381 
382 static const struct attribute_group csrow_dev_ce_count_group = {
383 	.attrs = dynamic_csrow_ce_count_attr,
384 	.is_visible = csrow_dev_is_visible,
385 };
386 
387 static const struct attribute_group *csrow_dev_groups[] = {
388 	&csrow_dev_dimm_group,
389 	&csrow_dev_ce_count_group,
390 	NULL
391 };
392 
393 static inline int nr_pages_per_csrow(struct csrow_info *csrow)
394 {
395 	int chan, nr_pages = 0;
396 
397 	for (chan = 0; chan < csrow->nr_channels; chan++)
398 		nr_pages += csrow->channels[chan]->dimm->nr_pages;
399 
400 	return nr_pages;
401 }
402 
403 /* Create a CSROW object under specifed edac_mc_device */
404 static int edac_create_csrow_object(struct mem_ctl_info *mci,
405 				    struct csrow_info *csrow, int index)
406 {
407 	int err;
408 
409 	csrow->dev.type = &csrow_attr_type;
410 	csrow->dev.groups = csrow_dev_groups;
411 	device_initialize(&csrow->dev);
412 	csrow->dev.parent = &mci->dev;
413 	csrow->mci = mci;
414 	dev_set_name(&csrow->dev, "csrow%d", index);
415 	dev_set_drvdata(&csrow->dev, csrow);
416 
417 	err = device_add(&csrow->dev);
418 	if (err) {
419 		edac_dbg(1, "failure: create device %s\n", dev_name(&csrow->dev));
420 		put_device(&csrow->dev);
421 		return err;
422 	}
423 
424 	edac_dbg(0, "device %s created\n", dev_name(&csrow->dev));
425 
426 	return 0;
427 }
428 
429 /* Create a CSROW object under specifed edac_mc_device */
430 static int edac_create_csrow_objects(struct mem_ctl_info *mci)
431 {
432 	int err, i;
433 	struct csrow_info *csrow;
434 
435 	for (i = 0; i < mci->nr_csrows; i++) {
436 		csrow = mci->csrows[i];
437 		if (!nr_pages_per_csrow(csrow))
438 			continue;
439 		err = edac_create_csrow_object(mci, mci->csrows[i], i);
440 		if (err < 0)
441 			goto error;
442 	}
443 	return 0;
444 
445 error:
446 	for (--i; i >= 0; i--) {
447 		csrow = mci->csrows[i];
448 		if (!nr_pages_per_csrow(csrow))
449 			continue;
450 
451 		device_del(&mci->csrows[i]->dev);
452 	}
453 
454 	return err;
455 }
456 
457 static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
458 {
459 	int i;
460 	struct csrow_info *csrow;
461 
462 	for (i = mci->nr_csrows - 1; i >= 0; i--) {
463 		csrow = mci->csrows[i];
464 		if (!nr_pages_per_csrow(csrow))
465 			continue;
466 		device_unregister(&mci->csrows[i]->dev);
467 	}
468 }
469 #endif
470 
471 /*
472  * Per-dimm (or per-rank) devices
473  */
474 
475 #define to_dimm(k) container_of(k, struct dimm_info, dev)
476 
477 /* show/store functions for DIMM Label attributes */
478 static ssize_t dimmdev_location_show(struct device *dev,
479 				     struct device_attribute *mattr, char *data)
480 {
481 	struct dimm_info *dimm = to_dimm(dev);
482 
483 	return edac_dimm_info_location(dimm, data, PAGE_SIZE);
484 }
485 
486 static ssize_t dimmdev_label_show(struct device *dev,
487 				  struct device_attribute *mattr, char *data)
488 {
489 	struct dimm_info *dimm = to_dimm(dev);
490 
491 	/* if field has not been initialized, there is nothing to send */
492 	if (!dimm->label[0])
493 		return 0;
494 
495 	return snprintf(data, sizeof(dimm->label) + 1, "%s\n", dimm->label);
496 }
497 
498 static ssize_t dimmdev_label_store(struct device *dev,
499 				   struct device_attribute *mattr,
500 				   const char *data,
501 				   size_t count)
502 {
503 	struct dimm_info *dimm = to_dimm(dev);
504 	size_t copy_count = count;
505 
506 	if (count == 0)
507 		return -EINVAL;
508 
509 	if (data[count - 1] == '\0' || data[count - 1] == '\n')
510 		copy_count -= 1;
511 
512 	if (copy_count == 0 || copy_count >= sizeof(dimm->label))
513 		return -EINVAL;
514 
515 	strncpy(dimm->label, data, copy_count);
516 	dimm->label[copy_count] = '\0';
517 
518 	return count;
519 }
520 
521 static ssize_t dimmdev_size_show(struct device *dev,
522 				 struct device_attribute *mattr, char *data)
523 {
524 	struct dimm_info *dimm = to_dimm(dev);
525 
526 	return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
527 }
528 
529 static ssize_t dimmdev_mem_type_show(struct device *dev,
530 				     struct device_attribute *mattr, char *data)
531 {
532 	struct dimm_info *dimm = to_dimm(dev);
533 
534 	return sprintf(data, "%s\n", edac_mem_types[dimm->mtype]);
535 }
536 
537 static ssize_t dimmdev_dev_type_show(struct device *dev,
538 				     struct device_attribute *mattr, char *data)
539 {
540 	struct dimm_info *dimm = to_dimm(dev);
541 
542 	return sprintf(data, "%s\n", dev_types[dimm->dtype]);
543 }
544 
545 static ssize_t dimmdev_edac_mode_show(struct device *dev,
546 				      struct device_attribute *mattr,
547 				      char *data)
548 {
549 	struct dimm_info *dimm = to_dimm(dev);
550 
551 	return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
552 }
553 
554 static ssize_t dimmdev_ce_count_show(struct device *dev,
555 				      struct device_attribute *mattr,
556 				      char *data)
557 {
558 	struct dimm_info *dimm = to_dimm(dev);
559 	u32 count;
560 	int off;
561 
562 	off = EDAC_DIMM_OFF(dimm->mci->layers,
563 			    dimm->mci->n_layers,
564 			    dimm->location[0],
565 			    dimm->location[1],
566 			    dimm->location[2]);
567 	count = dimm->mci->ce_per_layer[dimm->mci->n_layers-1][off];
568 	return sprintf(data, "%u\n", count);
569 }
570 
571 static ssize_t dimmdev_ue_count_show(struct device *dev,
572 				      struct device_attribute *mattr,
573 				      char *data)
574 {
575 	struct dimm_info *dimm = to_dimm(dev);
576 	u32 count;
577 	int off;
578 
579 	off = EDAC_DIMM_OFF(dimm->mci->layers,
580 			    dimm->mci->n_layers,
581 			    dimm->location[0],
582 			    dimm->location[1],
583 			    dimm->location[2]);
584 	count = dimm->mci->ue_per_layer[dimm->mci->n_layers-1][off];
585 	return sprintf(data, "%u\n", count);
586 }
587 
588 /* dimm/rank attribute files */
589 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
590 		   dimmdev_label_show, dimmdev_label_store);
591 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
592 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
593 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
594 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
595 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
596 static DEVICE_ATTR(dimm_ce_count, S_IRUGO, dimmdev_ce_count_show, NULL);
597 static DEVICE_ATTR(dimm_ue_count, S_IRUGO, dimmdev_ue_count_show, NULL);
598 
599 /* attributes of the dimm<id>/rank<id> object */
600 static struct attribute *dimm_attrs[] = {
601 	&dev_attr_dimm_label.attr,
602 	&dev_attr_dimm_location.attr,
603 	&dev_attr_size.attr,
604 	&dev_attr_dimm_mem_type.attr,
605 	&dev_attr_dimm_dev_type.attr,
606 	&dev_attr_dimm_edac_mode.attr,
607 	&dev_attr_dimm_ce_count.attr,
608 	&dev_attr_dimm_ue_count.attr,
609 	NULL,
610 };
611 
612 static const struct attribute_group dimm_attr_grp = {
613 	.attrs	= dimm_attrs,
614 };
615 
616 static const struct attribute_group *dimm_attr_groups[] = {
617 	&dimm_attr_grp,
618 	NULL
619 };
620 
621 static void dimm_attr_release(struct device *dev)
622 {
623 	struct dimm_info *dimm = container_of(dev, struct dimm_info, dev);
624 
625 	edac_dbg(1, "device %s released\n", dev_name(dev));
626 	kfree(dimm);
627 }
628 
629 static const struct device_type dimm_attr_type = {
630 	.groups		= dimm_attr_groups,
631 	.release	= dimm_attr_release,
632 };
633 
634 /* Create a DIMM object under specifed memory controller device */
635 static int edac_create_dimm_object(struct mem_ctl_info *mci,
636 				   struct dimm_info *dimm,
637 				   int index)
638 {
639 	int err;
640 	dimm->mci = mci;
641 
642 	dimm->dev.type = &dimm_attr_type;
643 	device_initialize(&dimm->dev);
644 
645 	dimm->dev.parent = &mci->dev;
646 	if (mci->csbased)
647 		dev_set_name(&dimm->dev, "rank%d", index);
648 	else
649 		dev_set_name(&dimm->dev, "dimm%d", index);
650 	dev_set_drvdata(&dimm->dev, dimm);
651 	pm_runtime_forbid(&mci->dev);
652 
653 	err = device_add(&dimm->dev);
654 	if (err) {
655 		edac_dbg(1, "failure: create device %s\n", dev_name(&dimm->dev));
656 		put_device(&dimm->dev);
657 		return err;
658 	}
659 
660 	if (IS_ENABLED(CONFIG_EDAC_DEBUG)) {
661 		char location[80];
662 
663 		edac_dimm_info_location(dimm, location, sizeof(location));
664 		edac_dbg(0, "device %s created at location %s\n",
665 			dev_name(&dimm->dev), location);
666 	}
667 
668 	return 0;
669 }
670 
671 /*
672  * Memory controller device
673  */
674 
675 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
676 
677 static ssize_t mci_reset_counters_store(struct device *dev,
678 					struct device_attribute *mattr,
679 					const char *data, size_t count)
680 {
681 	struct mem_ctl_info *mci = to_mci(dev);
682 	int cnt, row, chan, i;
683 	mci->ue_mc = 0;
684 	mci->ce_mc = 0;
685 	mci->ue_noinfo_count = 0;
686 	mci->ce_noinfo_count = 0;
687 
688 	for (row = 0; row < mci->nr_csrows; row++) {
689 		struct csrow_info *ri = mci->csrows[row];
690 
691 		ri->ue_count = 0;
692 		ri->ce_count = 0;
693 
694 		for (chan = 0; chan < ri->nr_channels; chan++)
695 			ri->channels[chan]->ce_count = 0;
696 	}
697 
698 	cnt = 1;
699 	for (i = 0; i < mci->n_layers; i++) {
700 		cnt *= mci->layers[i].size;
701 		memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
702 		memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
703 	}
704 
705 	mci->start_time = jiffies;
706 	return count;
707 }
708 
709 /* Memory scrubbing interface:
710  *
711  * A MC driver can limit the scrubbing bandwidth based on the CPU type.
712  * Therefore, ->set_sdram_scrub_rate should be made to return the actual
713  * bandwidth that is accepted or 0 when scrubbing is to be disabled.
714  *
715  * Negative value still means that an error has occurred while setting
716  * the scrub rate.
717  */
718 static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
719 					  struct device_attribute *mattr,
720 					  const char *data, size_t count)
721 {
722 	struct mem_ctl_info *mci = to_mci(dev);
723 	unsigned long bandwidth = 0;
724 	int new_bw = 0;
725 
726 	if (kstrtoul(data, 10, &bandwidth) < 0)
727 		return -EINVAL;
728 
729 	new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
730 	if (new_bw < 0) {
731 		edac_printk(KERN_WARNING, EDAC_MC,
732 			    "Error setting scrub rate to: %lu\n", bandwidth);
733 		return -EINVAL;
734 	}
735 
736 	return count;
737 }
738 
739 /*
740  * ->get_sdram_scrub_rate() return value semantics same as above.
741  */
742 static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
743 					 struct device_attribute *mattr,
744 					 char *data)
745 {
746 	struct mem_ctl_info *mci = to_mci(dev);
747 	int bandwidth = 0;
748 
749 	bandwidth = mci->get_sdram_scrub_rate(mci);
750 	if (bandwidth < 0) {
751 		edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
752 		return bandwidth;
753 	}
754 
755 	return sprintf(data, "%d\n", bandwidth);
756 }
757 
758 /* default attribute files for the MCI object */
759 static ssize_t mci_ue_count_show(struct device *dev,
760 				 struct device_attribute *mattr,
761 				 char *data)
762 {
763 	struct mem_ctl_info *mci = to_mci(dev);
764 
765 	return sprintf(data, "%d\n", mci->ue_mc);
766 }
767 
768 static ssize_t mci_ce_count_show(struct device *dev,
769 				 struct device_attribute *mattr,
770 				 char *data)
771 {
772 	struct mem_ctl_info *mci = to_mci(dev);
773 
774 	return sprintf(data, "%d\n", mci->ce_mc);
775 }
776 
777 static ssize_t mci_ce_noinfo_show(struct device *dev,
778 				  struct device_attribute *mattr,
779 				  char *data)
780 {
781 	struct mem_ctl_info *mci = to_mci(dev);
782 
783 	return sprintf(data, "%d\n", mci->ce_noinfo_count);
784 }
785 
786 static ssize_t mci_ue_noinfo_show(struct device *dev,
787 				  struct device_attribute *mattr,
788 				  char *data)
789 {
790 	struct mem_ctl_info *mci = to_mci(dev);
791 
792 	return sprintf(data, "%d\n", mci->ue_noinfo_count);
793 }
794 
795 static ssize_t mci_seconds_show(struct device *dev,
796 				struct device_attribute *mattr,
797 				char *data)
798 {
799 	struct mem_ctl_info *mci = to_mci(dev);
800 
801 	return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
802 }
803 
804 static ssize_t mci_ctl_name_show(struct device *dev,
805 				 struct device_attribute *mattr,
806 				 char *data)
807 {
808 	struct mem_ctl_info *mci = to_mci(dev);
809 
810 	return sprintf(data, "%s\n", mci->ctl_name);
811 }
812 
813 static ssize_t mci_size_mb_show(struct device *dev,
814 				struct device_attribute *mattr,
815 				char *data)
816 {
817 	struct mem_ctl_info *mci = to_mci(dev);
818 	int total_pages = 0, csrow_idx, j;
819 
820 	for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
821 		struct csrow_info *csrow = mci->csrows[csrow_idx];
822 
823 		for (j = 0; j < csrow->nr_channels; j++) {
824 			struct dimm_info *dimm = csrow->channels[j]->dimm;
825 
826 			total_pages += dimm->nr_pages;
827 		}
828 	}
829 
830 	return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
831 }
832 
833 static ssize_t mci_max_location_show(struct device *dev,
834 				     struct device_attribute *mattr,
835 				     char *data)
836 {
837 	struct mem_ctl_info *mci = to_mci(dev);
838 	int i;
839 	char *p = data;
840 
841 	for (i = 0; i < mci->n_layers; i++) {
842 		p += sprintf(p, "%s %d ",
843 			     edac_layer_name[mci->layers[i].type],
844 			     mci->layers[i].size - 1);
845 	}
846 
847 	return p - data;
848 }
849 
850 /* default Control file */
851 static DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
852 
853 /* default Attribute files */
854 static DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
855 static DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
856 static DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
857 static DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
858 static DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
859 static DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
860 static DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
861 static DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
862 
863 /* memory scrubber attribute file */
864 static DEVICE_ATTR(sdram_scrub_rate, 0, mci_sdram_scrub_rate_show,
865 	    mci_sdram_scrub_rate_store); /* umode set later in is_visible */
866 
867 static struct attribute *mci_attrs[] = {
868 	&dev_attr_reset_counters.attr,
869 	&dev_attr_mc_name.attr,
870 	&dev_attr_size_mb.attr,
871 	&dev_attr_seconds_since_reset.attr,
872 	&dev_attr_ue_noinfo_count.attr,
873 	&dev_attr_ce_noinfo_count.attr,
874 	&dev_attr_ue_count.attr,
875 	&dev_attr_ce_count.attr,
876 	&dev_attr_max_location.attr,
877 	&dev_attr_sdram_scrub_rate.attr,
878 	NULL
879 };
880 
881 static umode_t mci_attr_is_visible(struct kobject *kobj,
882 				   struct attribute *attr, int idx)
883 {
884 	struct device *dev = kobj_to_dev(kobj);
885 	struct mem_ctl_info *mci = to_mci(dev);
886 	umode_t mode = 0;
887 
888 	if (attr != &dev_attr_sdram_scrub_rate.attr)
889 		return attr->mode;
890 	if (mci->get_sdram_scrub_rate)
891 		mode |= S_IRUGO;
892 	if (mci->set_sdram_scrub_rate)
893 		mode |= S_IWUSR;
894 	return mode;
895 }
896 
897 static const struct attribute_group mci_attr_grp = {
898 	.attrs	= mci_attrs,
899 	.is_visible = mci_attr_is_visible,
900 };
901 
902 static const struct attribute_group *mci_attr_groups[] = {
903 	&mci_attr_grp,
904 	NULL
905 };
906 
907 static void mci_attr_release(struct device *dev)
908 {
909 	struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
910 
911 	edac_dbg(1, "device %s released\n", dev_name(dev));
912 	kfree(mci);
913 }
914 
915 static const struct device_type mci_attr_type = {
916 	.groups		= mci_attr_groups,
917 	.release	= mci_attr_release,
918 };
919 
920 /*
921  * Create a new Memory Controller kobject instance,
922  *	mc<id> under the 'mc' directory
923  *
924  * Return:
925  *	0	Success
926  *	!0	Failure
927  */
928 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci,
929 				 const struct attribute_group **groups)
930 {
931 	int i, err;
932 
933 	/* get the /sys/devices/system/edac subsys reference */
934 	mci->dev.type = &mci_attr_type;
935 	device_initialize(&mci->dev);
936 
937 	mci->dev.parent = mci_pdev;
938 	mci->dev.groups = groups;
939 	dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
940 	dev_set_drvdata(&mci->dev, mci);
941 	pm_runtime_forbid(&mci->dev);
942 
943 	err = device_add(&mci->dev);
944 	if (err < 0) {
945 		edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev));
946 		put_device(&mci->dev);
947 		return err;
948 	}
949 
950 	edac_dbg(0, "device %s created\n", dev_name(&mci->dev));
951 
952 	/*
953 	 * Create the dimm/rank devices
954 	 */
955 	for (i = 0; i < mci->tot_dimms; i++) {
956 		struct dimm_info *dimm = mci->dimms[i];
957 		/* Only expose populated DIMMs */
958 		if (!dimm->nr_pages)
959 			continue;
960 
961 		err = edac_create_dimm_object(mci, dimm, i);
962 		if (err)
963 			goto fail_unregister_dimm;
964 	}
965 
966 #ifdef CONFIG_EDAC_LEGACY_SYSFS
967 	err = edac_create_csrow_objects(mci);
968 	if (err < 0)
969 		goto fail_unregister_dimm;
970 #endif
971 
972 	edac_create_debugfs_nodes(mci);
973 	return 0;
974 
975 fail_unregister_dimm:
976 	for (i--; i >= 0; i--) {
977 		struct dimm_info *dimm = mci->dimms[i];
978 		if (!dimm->nr_pages)
979 			continue;
980 
981 		device_unregister(&dimm->dev);
982 	}
983 	device_unregister(&mci->dev);
984 
985 	return err;
986 }
987 
988 /*
989  * remove a Memory Controller instance
990  */
991 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
992 {
993 	int i;
994 
995 	edac_dbg(0, "\n");
996 
997 #ifdef CONFIG_EDAC_DEBUG
998 	edac_debugfs_remove_recursive(mci->debugfs);
999 #endif
1000 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1001 	edac_delete_csrow_objects(mci);
1002 #endif
1003 
1004 	for (i = 0; i < mci->tot_dimms; i++) {
1005 		struct dimm_info *dimm = mci->dimms[i];
1006 		if (dimm->nr_pages == 0)
1007 			continue;
1008 		edac_dbg(1, "unregistering device %s\n", dev_name(&dimm->dev));
1009 		device_unregister(&dimm->dev);
1010 	}
1011 }
1012 
1013 void edac_unregister_sysfs(struct mem_ctl_info *mci)
1014 {
1015 	edac_dbg(1, "unregistering device %s\n", dev_name(&mci->dev));
1016 	device_unregister(&mci->dev);
1017 }
1018 
1019 static void mc_attr_release(struct device *dev)
1020 {
1021 	/*
1022 	 * There's no container structure here, as this is just the mci
1023 	 * parent device, used to create the /sys/devices/mc sysfs node.
1024 	 * So, there are no attributes on it.
1025 	 */
1026 	edac_dbg(1, "device %s released\n", dev_name(dev));
1027 	kfree(dev);
1028 }
1029 
1030 static const struct device_type mc_attr_type = {
1031 	.release	= mc_attr_release,
1032 };
1033 /*
1034  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1035  */
1036 int __init edac_mc_sysfs_init(void)
1037 {
1038 	int err;
1039 
1040 	mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1041 	if (!mci_pdev)
1042 		return -ENOMEM;
1043 
1044 	mci_pdev->bus = edac_get_sysfs_subsys();
1045 	mci_pdev->type = &mc_attr_type;
1046 	device_initialize(mci_pdev);
1047 	dev_set_name(mci_pdev, "mc");
1048 
1049 	err = device_add(mci_pdev);
1050 	if (err < 0) {
1051 		edac_dbg(1, "failure: create device %s\n", dev_name(mci_pdev));
1052 		put_device(mci_pdev);
1053 		return err;
1054 	}
1055 
1056 	edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1057 
1058 	return 0;
1059 }
1060 
1061 void edac_mc_sysfs_exit(void)
1062 {
1063 	device_unregister(mci_pdev);
1064 }
1065