1 /* 2 * edac_mc kernel module 3 * (C) 2005-2007 Linux Networx (http://lnxi.com) 4 * 5 * This file may be distributed under the terms of the 6 * GNU General Public License. 7 * 8 * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com 9 * 10 * (c) 2012-2013 - Mauro Carvalho Chehab 11 * The entire API were re-written, and ported to use struct device 12 * 13 */ 14 15 #include <linux/ctype.h> 16 #include <linux/slab.h> 17 #include <linux/edac.h> 18 #include <linux/bug.h> 19 #include <linux/pm_runtime.h> 20 #include <linux/uaccess.h> 21 22 #include "edac_mc.h" 23 #include "edac_module.h" 24 25 /* MC EDAC Controls, setable by module parameter, and sysfs */ 26 static int edac_mc_log_ue = 1; 27 static int edac_mc_log_ce = 1; 28 static int edac_mc_panic_on_ue; 29 static unsigned int edac_mc_poll_msec = 1000; 30 31 /* Getter functions for above */ 32 int edac_mc_get_log_ue(void) 33 { 34 return edac_mc_log_ue; 35 } 36 37 int edac_mc_get_log_ce(void) 38 { 39 return edac_mc_log_ce; 40 } 41 42 int edac_mc_get_panic_on_ue(void) 43 { 44 return edac_mc_panic_on_ue; 45 } 46 47 /* this is temporary */ 48 unsigned int edac_mc_get_poll_msec(void) 49 { 50 return edac_mc_poll_msec; 51 } 52 53 static int edac_set_poll_msec(const char *val, const struct kernel_param *kp) 54 { 55 unsigned int i; 56 int ret; 57 58 if (!val) 59 return -EINVAL; 60 61 ret = kstrtouint(val, 0, &i); 62 if (ret) 63 return ret; 64 65 if (i < 1000) 66 return -EINVAL; 67 68 *((unsigned int *)kp->arg) = i; 69 70 /* notify edac_mc engine to reset the poll period */ 71 edac_mc_reset_delay_period(i); 72 73 return 0; 74 } 75 76 /* Parameter declarations for above */ 77 module_param(edac_mc_panic_on_ue, int, 0644); 78 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on"); 79 module_param(edac_mc_log_ue, int, 0644); 80 MODULE_PARM_DESC(edac_mc_log_ue, 81 "Log uncorrectable error to console: 0=off 1=on"); 82 module_param(edac_mc_log_ce, int, 0644); 83 MODULE_PARM_DESC(edac_mc_log_ce, 84 "Log correctable error to console: 0=off 1=on"); 85 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_uint, 86 &edac_mc_poll_msec, 0644); 87 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds"); 88 89 static struct device *mci_pdev; 90 91 /* 92 * various constants for Memory Controllers 93 */ 94 static const char * const dev_types[] = { 95 [DEV_UNKNOWN] = "Unknown", 96 [DEV_X1] = "x1", 97 [DEV_X2] = "x2", 98 [DEV_X4] = "x4", 99 [DEV_X8] = "x8", 100 [DEV_X16] = "x16", 101 [DEV_X32] = "x32", 102 [DEV_X64] = "x64" 103 }; 104 105 static const char * const edac_caps[] = { 106 [EDAC_UNKNOWN] = "Unknown", 107 [EDAC_NONE] = "None", 108 [EDAC_RESERVED] = "Reserved", 109 [EDAC_PARITY] = "PARITY", 110 [EDAC_EC] = "EC", 111 [EDAC_SECDED] = "SECDED", 112 [EDAC_S2ECD2ED] = "S2ECD2ED", 113 [EDAC_S4ECD4ED] = "S4ECD4ED", 114 [EDAC_S8ECD8ED] = "S8ECD8ED", 115 [EDAC_S16ECD16ED] = "S16ECD16ED" 116 }; 117 118 #ifdef CONFIG_EDAC_LEGACY_SYSFS 119 /* 120 * EDAC sysfs CSROW data structures and methods 121 */ 122 123 #define to_csrow(k) container_of(k, struct csrow_info, dev) 124 125 /* 126 * We need it to avoid namespace conflicts between the legacy API 127 * and the per-dimm/per-rank one 128 */ 129 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \ 130 static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store) 131 132 struct dev_ch_attribute { 133 struct device_attribute attr; 134 unsigned int channel; 135 }; 136 137 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \ 138 static struct dev_ch_attribute dev_attr_legacy_##_name = \ 139 { __ATTR(_name, _mode, _show, _store), (_var) } 140 141 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel) 142 143 /* Set of more default csrow<id> attribute show/store functions */ 144 static ssize_t csrow_ue_count_show(struct device *dev, 145 struct device_attribute *mattr, char *data) 146 { 147 struct csrow_info *csrow = to_csrow(dev); 148 149 return sysfs_emit(data, "%u\n", csrow->ue_count); 150 } 151 152 static ssize_t csrow_ce_count_show(struct device *dev, 153 struct device_attribute *mattr, char *data) 154 { 155 struct csrow_info *csrow = to_csrow(dev); 156 157 return sysfs_emit(data, "%u\n", csrow->ce_count); 158 } 159 160 static ssize_t csrow_size_show(struct device *dev, 161 struct device_attribute *mattr, char *data) 162 { 163 struct csrow_info *csrow = to_csrow(dev); 164 int i; 165 u32 nr_pages = 0; 166 167 for (i = 0; i < csrow->nr_channels; i++) 168 nr_pages += csrow->channels[i]->dimm->nr_pages; 169 return sysfs_emit(data, "%u\n", PAGES_TO_MiB(nr_pages)); 170 } 171 172 static ssize_t csrow_mem_type_show(struct device *dev, 173 struct device_attribute *mattr, char *data) 174 { 175 struct csrow_info *csrow = to_csrow(dev); 176 177 return sysfs_emit(data, "%s\n", edac_mem_types[csrow->channels[0]->dimm->mtype]); 178 } 179 180 static ssize_t csrow_dev_type_show(struct device *dev, 181 struct device_attribute *mattr, char *data) 182 { 183 struct csrow_info *csrow = to_csrow(dev); 184 185 return sysfs_emit(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]); 186 } 187 188 static ssize_t csrow_edac_mode_show(struct device *dev, 189 struct device_attribute *mattr, 190 char *data) 191 { 192 struct csrow_info *csrow = to_csrow(dev); 193 194 return sysfs_emit(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]); 195 } 196 197 /* show/store functions for DIMM Label attributes */ 198 static ssize_t channel_dimm_label_show(struct device *dev, 199 struct device_attribute *mattr, 200 char *data) 201 { 202 struct csrow_info *csrow = to_csrow(dev); 203 unsigned int chan = to_channel(mattr); 204 struct rank_info *rank = csrow->channels[chan]; 205 206 /* if field has not been initialized, there is nothing to send */ 207 if (!rank->dimm->label[0]) 208 return 0; 209 210 return sysfs_emit(data, "%s\n", rank->dimm->label); 211 } 212 213 static ssize_t channel_dimm_label_store(struct device *dev, 214 struct device_attribute *mattr, 215 const char *data, size_t count) 216 { 217 struct csrow_info *csrow = to_csrow(dev); 218 unsigned int chan = to_channel(mattr); 219 struct rank_info *rank = csrow->channels[chan]; 220 size_t copy_count = count; 221 222 if (count == 0) 223 return -EINVAL; 224 225 if (data[count - 1] == '\0' || data[count - 1] == '\n') 226 copy_count -= 1; 227 228 if (copy_count == 0 || copy_count >= sizeof(rank->dimm->label)) 229 return -EINVAL; 230 231 memcpy(rank->dimm->label, data, copy_count); 232 rank->dimm->label[copy_count] = '\0'; 233 234 return count; 235 } 236 237 /* show function for dynamic chX_ce_count attribute */ 238 static ssize_t channel_ce_count_show(struct device *dev, 239 struct device_attribute *mattr, char *data) 240 { 241 struct csrow_info *csrow = to_csrow(dev); 242 unsigned int chan = to_channel(mattr); 243 struct rank_info *rank = csrow->channels[chan]; 244 245 return sysfs_emit(data, "%u\n", rank->ce_count); 246 } 247 248 /* cwrow<id>/attribute files */ 249 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL); 250 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL); 251 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL); 252 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL); 253 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL); 254 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL); 255 256 /* default attributes of the CSROW<id> object */ 257 static struct attribute *csrow_attrs[] = { 258 &dev_attr_legacy_dev_type.attr, 259 &dev_attr_legacy_mem_type.attr, 260 &dev_attr_legacy_edac_mode.attr, 261 &dev_attr_legacy_size_mb.attr, 262 &dev_attr_legacy_ue_count.attr, 263 &dev_attr_legacy_ce_count.attr, 264 NULL, 265 }; 266 267 static const struct attribute_group csrow_attr_grp = { 268 .attrs = csrow_attrs, 269 }; 270 271 static const struct attribute_group *csrow_attr_groups[] = { 272 &csrow_attr_grp, 273 NULL 274 }; 275 276 static const struct device_type csrow_attr_type = { 277 .groups = csrow_attr_groups, 278 }; 279 280 /* 281 * possible dynamic channel DIMM Label attribute files 282 * 283 */ 284 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR, 285 channel_dimm_label_show, channel_dimm_label_store, 0); 286 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR, 287 channel_dimm_label_show, channel_dimm_label_store, 1); 288 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR, 289 channel_dimm_label_show, channel_dimm_label_store, 2); 290 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR, 291 channel_dimm_label_show, channel_dimm_label_store, 3); 292 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR, 293 channel_dimm_label_show, channel_dimm_label_store, 4); 294 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR, 295 channel_dimm_label_show, channel_dimm_label_store, 5); 296 DEVICE_CHANNEL(ch6_dimm_label, S_IRUGO | S_IWUSR, 297 channel_dimm_label_show, channel_dimm_label_store, 6); 298 DEVICE_CHANNEL(ch7_dimm_label, S_IRUGO | S_IWUSR, 299 channel_dimm_label_show, channel_dimm_label_store, 7); 300 DEVICE_CHANNEL(ch8_dimm_label, S_IRUGO | S_IWUSR, 301 channel_dimm_label_show, channel_dimm_label_store, 8); 302 DEVICE_CHANNEL(ch9_dimm_label, S_IRUGO | S_IWUSR, 303 channel_dimm_label_show, channel_dimm_label_store, 9); 304 DEVICE_CHANNEL(ch10_dimm_label, S_IRUGO | S_IWUSR, 305 channel_dimm_label_show, channel_dimm_label_store, 10); 306 DEVICE_CHANNEL(ch11_dimm_label, S_IRUGO | S_IWUSR, 307 channel_dimm_label_show, channel_dimm_label_store, 11); 308 DEVICE_CHANNEL(ch12_dimm_label, S_IRUGO | S_IWUSR, 309 channel_dimm_label_show, channel_dimm_label_store, 12); 310 DEVICE_CHANNEL(ch13_dimm_label, S_IRUGO | S_IWUSR, 311 channel_dimm_label_show, channel_dimm_label_store, 13); 312 DEVICE_CHANNEL(ch14_dimm_label, S_IRUGO | S_IWUSR, 313 channel_dimm_label_show, channel_dimm_label_store, 14); 314 DEVICE_CHANNEL(ch15_dimm_label, S_IRUGO | S_IWUSR, 315 channel_dimm_label_show, channel_dimm_label_store, 15); 316 317 /* Total possible dynamic DIMM Label attribute file table */ 318 static struct attribute *dynamic_csrow_dimm_attr[] = { 319 &dev_attr_legacy_ch0_dimm_label.attr.attr, 320 &dev_attr_legacy_ch1_dimm_label.attr.attr, 321 &dev_attr_legacy_ch2_dimm_label.attr.attr, 322 &dev_attr_legacy_ch3_dimm_label.attr.attr, 323 &dev_attr_legacy_ch4_dimm_label.attr.attr, 324 &dev_attr_legacy_ch5_dimm_label.attr.attr, 325 &dev_attr_legacy_ch6_dimm_label.attr.attr, 326 &dev_attr_legacy_ch7_dimm_label.attr.attr, 327 &dev_attr_legacy_ch8_dimm_label.attr.attr, 328 &dev_attr_legacy_ch9_dimm_label.attr.attr, 329 &dev_attr_legacy_ch10_dimm_label.attr.attr, 330 &dev_attr_legacy_ch11_dimm_label.attr.attr, 331 &dev_attr_legacy_ch12_dimm_label.attr.attr, 332 &dev_attr_legacy_ch13_dimm_label.attr.attr, 333 &dev_attr_legacy_ch14_dimm_label.attr.attr, 334 &dev_attr_legacy_ch15_dimm_label.attr.attr, 335 NULL 336 }; 337 338 /* possible dynamic channel ce_count attribute files */ 339 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO, 340 channel_ce_count_show, NULL, 0); 341 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO, 342 channel_ce_count_show, NULL, 1); 343 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO, 344 channel_ce_count_show, NULL, 2); 345 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO, 346 channel_ce_count_show, NULL, 3); 347 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO, 348 channel_ce_count_show, NULL, 4); 349 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO, 350 channel_ce_count_show, NULL, 5); 351 DEVICE_CHANNEL(ch6_ce_count, S_IRUGO, 352 channel_ce_count_show, NULL, 6); 353 DEVICE_CHANNEL(ch7_ce_count, S_IRUGO, 354 channel_ce_count_show, NULL, 7); 355 DEVICE_CHANNEL(ch8_ce_count, S_IRUGO, 356 channel_ce_count_show, NULL, 8); 357 DEVICE_CHANNEL(ch9_ce_count, S_IRUGO, 358 channel_ce_count_show, NULL, 9); 359 DEVICE_CHANNEL(ch10_ce_count, S_IRUGO, 360 channel_ce_count_show, NULL, 10); 361 DEVICE_CHANNEL(ch11_ce_count, S_IRUGO, 362 channel_ce_count_show, NULL, 11); 363 DEVICE_CHANNEL(ch12_ce_count, S_IRUGO, 364 channel_ce_count_show, NULL, 12); 365 DEVICE_CHANNEL(ch13_ce_count, S_IRUGO, 366 channel_ce_count_show, NULL, 13); 367 DEVICE_CHANNEL(ch14_ce_count, S_IRUGO, 368 channel_ce_count_show, NULL, 14); 369 DEVICE_CHANNEL(ch15_ce_count, S_IRUGO, 370 channel_ce_count_show, NULL, 15); 371 372 /* Total possible dynamic ce_count attribute file table */ 373 static struct attribute *dynamic_csrow_ce_count_attr[] = { 374 &dev_attr_legacy_ch0_ce_count.attr.attr, 375 &dev_attr_legacy_ch1_ce_count.attr.attr, 376 &dev_attr_legacy_ch2_ce_count.attr.attr, 377 &dev_attr_legacy_ch3_ce_count.attr.attr, 378 &dev_attr_legacy_ch4_ce_count.attr.attr, 379 &dev_attr_legacy_ch5_ce_count.attr.attr, 380 &dev_attr_legacy_ch6_ce_count.attr.attr, 381 &dev_attr_legacy_ch7_ce_count.attr.attr, 382 &dev_attr_legacy_ch8_ce_count.attr.attr, 383 &dev_attr_legacy_ch9_ce_count.attr.attr, 384 &dev_attr_legacy_ch10_ce_count.attr.attr, 385 &dev_attr_legacy_ch11_ce_count.attr.attr, 386 &dev_attr_legacy_ch12_ce_count.attr.attr, 387 &dev_attr_legacy_ch13_ce_count.attr.attr, 388 &dev_attr_legacy_ch14_ce_count.attr.attr, 389 &dev_attr_legacy_ch15_ce_count.attr.attr, 390 NULL 391 }; 392 393 static umode_t csrow_dev_is_visible(struct kobject *kobj, 394 struct attribute *attr, int idx) 395 { 396 struct device *dev = kobj_to_dev(kobj); 397 struct csrow_info *csrow = container_of(dev, struct csrow_info, dev); 398 399 if (idx >= csrow->nr_channels) 400 return 0; 401 402 if (idx >= ARRAY_SIZE(dynamic_csrow_ce_count_attr) - 1) { 403 WARN_ONCE(1, "idx: %d\n", idx); 404 return 0; 405 } 406 407 /* Only expose populated DIMMs */ 408 if (!csrow->channels[idx]->dimm->nr_pages) 409 return 0; 410 411 return attr->mode; 412 } 413 414 415 static const struct attribute_group csrow_dev_dimm_group = { 416 .attrs = dynamic_csrow_dimm_attr, 417 .is_visible = csrow_dev_is_visible, 418 }; 419 420 static const struct attribute_group csrow_dev_ce_count_group = { 421 .attrs = dynamic_csrow_ce_count_attr, 422 .is_visible = csrow_dev_is_visible, 423 }; 424 425 static const struct attribute_group *csrow_dev_groups[] = { 426 &csrow_dev_dimm_group, 427 &csrow_dev_ce_count_group, 428 NULL 429 }; 430 431 static void csrow_release(struct device *dev) 432 { 433 /* 434 * Nothing to do, just unregister sysfs here. The mci 435 * device owns the data and will also release it. 436 */ 437 } 438 439 static inline int nr_pages_per_csrow(struct csrow_info *csrow) 440 { 441 int chan, nr_pages = 0; 442 443 for (chan = 0; chan < csrow->nr_channels; chan++) 444 nr_pages += csrow->channels[chan]->dimm->nr_pages; 445 446 return nr_pages; 447 } 448 449 /* Create a CSROW object under specified edac_mc_device */ 450 static int edac_create_csrow_object(struct mem_ctl_info *mci, 451 struct csrow_info *csrow, int index) 452 { 453 int err; 454 455 csrow->dev.type = &csrow_attr_type; 456 csrow->dev.groups = csrow_dev_groups; 457 csrow->dev.release = csrow_release; 458 device_initialize(&csrow->dev); 459 csrow->dev.parent = &mci->dev; 460 csrow->mci = mci; 461 dev_set_name(&csrow->dev, "csrow%d", index); 462 dev_set_drvdata(&csrow->dev, csrow); 463 464 err = device_add(&csrow->dev); 465 if (err) { 466 edac_dbg(1, "failure: create device %s\n", dev_name(&csrow->dev)); 467 put_device(&csrow->dev); 468 return err; 469 } 470 471 edac_dbg(0, "device %s created\n", dev_name(&csrow->dev)); 472 473 return 0; 474 } 475 476 /* Create a CSROW object under specified edac_mc_device */ 477 static int edac_create_csrow_objects(struct mem_ctl_info *mci) 478 { 479 int err, i; 480 struct csrow_info *csrow; 481 482 for (i = 0; i < mci->nr_csrows; i++) { 483 csrow = mci->csrows[i]; 484 if (!nr_pages_per_csrow(csrow)) 485 continue; 486 err = edac_create_csrow_object(mci, mci->csrows[i], i); 487 if (err < 0) 488 goto error; 489 } 490 return 0; 491 492 error: 493 for (--i; i >= 0; i--) { 494 if (device_is_registered(&mci->csrows[i]->dev)) 495 device_unregister(&mci->csrows[i]->dev); 496 } 497 498 return err; 499 } 500 501 static void edac_delete_csrow_objects(struct mem_ctl_info *mci) 502 { 503 int i; 504 505 for (i = 0; i < mci->nr_csrows; i++) { 506 if (device_is_registered(&mci->csrows[i]->dev)) 507 device_unregister(&mci->csrows[i]->dev); 508 } 509 } 510 511 #endif 512 513 /* 514 * Per-dimm (or per-rank) devices 515 */ 516 517 #define to_dimm(k) container_of(k, struct dimm_info, dev) 518 519 /* show/store functions for DIMM Label attributes */ 520 static ssize_t dimmdev_location_show(struct device *dev, 521 struct device_attribute *mattr, char *data) 522 { 523 struct dimm_info *dimm = to_dimm(dev); 524 ssize_t count; 525 526 count = edac_dimm_info_location(dimm, data, PAGE_SIZE); 527 count += scnprintf(data + count, PAGE_SIZE - count, "\n"); 528 529 return count; 530 } 531 532 static ssize_t dimmdev_label_show(struct device *dev, 533 struct device_attribute *mattr, char *data) 534 { 535 struct dimm_info *dimm = to_dimm(dev); 536 537 /* if field has not been initialized, there is nothing to send */ 538 if (!dimm->label[0]) 539 return 0; 540 541 return sysfs_emit(data, "%s\n", dimm->label); 542 } 543 544 static ssize_t dimmdev_label_store(struct device *dev, 545 struct device_attribute *mattr, 546 const char *data, 547 size_t count) 548 { 549 struct dimm_info *dimm = to_dimm(dev); 550 size_t copy_count = count; 551 552 if (count == 0) 553 return -EINVAL; 554 555 if (data[count - 1] == '\0' || data[count - 1] == '\n') 556 copy_count -= 1; 557 558 if (copy_count == 0 || copy_count >= sizeof(dimm->label)) 559 return -EINVAL; 560 561 memcpy(dimm->label, data, copy_count); 562 dimm->label[copy_count] = '\0'; 563 564 return count; 565 } 566 567 static ssize_t dimmdev_size_show(struct device *dev, 568 struct device_attribute *mattr, char *data) 569 { 570 struct dimm_info *dimm = to_dimm(dev); 571 572 return sysfs_emit(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages)); 573 } 574 575 static ssize_t dimmdev_mem_type_show(struct device *dev, 576 struct device_attribute *mattr, char *data) 577 { 578 struct dimm_info *dimm = to_dimm(dev); 579 580 return sysfs_emit(data, "%s\n", edac_mem_types[dimm->mtype]); 581 } 582 583 static ssize_t dimmdev_dev_type_show(struct device *dev, 584 struct device_attribute *mattr, char *data) 585 { 586 struct dimm_info *dimm = to_dimm(dev); 587 588 return sysfs_emit(data, "%s\n", dev_types[dimm->dtype]); 589 } 590 591 static ssize_t dimmdev_edac_mode_show(struct device *dev, 592 struct device_attribute *mattr, 593 char *data) 594 { 595 struct dimm_info *dimm = to_dimm(dev); 596 597 return sysfs_emit(data, "%s\n", edac_caps[dimm->edac_mode]); 598 } 599 600 static ssize_t dimmdev_ce_count_show(struct device *dev, 601 struct device_attribute *mattr, 602 char *data) 603 { 604 struct dimm_info *dimm = to_dimm(dev); 605 606 return sysfs_emit(data, "%u\n", dimm->ce_count); 607 } 608 609 static ssize_t dimmdev_ue_count_show(struct device *dev, 610 struct device_attribute *mattr, 611 char *data) 612 { 613 struct dimm_info *dimm = to_dimm(dev); 614 615 return sysfs_emit(data, "%u\n", dimm->ue_count); 616 } 617 618 /* dimm/rank attribute files */ 619 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR, 620 dimmdev_label_show, dimmdev_label_store); 621 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL); 622 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL); 623 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL); 624 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL); 625 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL); 626 static DEVICE_ATTR(dimm_ce_count, S_IRUGO, dimmdev_ce_count_show, NULL); 627 static DEVICE_ATTR(dimm_ue_count, S_IRUGO, dimmdev_ue_count_show, NULL); 628 629 /* attributes of the dimm<id>/rank<id> object */ 630 static struct attribute *dimm_attrs[] = { 631 &dev_attr_dimm_label.attr, 632 &dev_attr_dimm_location.attr, 633 &dev_attr_size.attr, 634 &dev_attr_dimm_mem_type.attr, 635 &dev_attr_dimm_dev_type.attr, 636 &dev_attr_dimm_edac_mode.attr, 637 &dev_attr_dimm_ce_count.attr, 638 &dev_attr_dimm_ue_count.attr, 639 NULL, 640 }; 641 642 static const struct attribute_group dimm_attr_grp = { 643 .attrs = dimm_attrs, 644 }; 645 646 static const struct attribute_group *dimm_attr_groups[] = { 647 &dimm_attr_grp, 648 NULL 649 }; 650 651 static const struct device_type dimm_attr_type = { 652 .groups = dimm_attr_groups, 653 }; 654 655 static void dimm_release(struct device *dev) 656 { 657 /* 658 * Nothing to do, just unregister sysfs here. The mci 659 * device owns the data and will also release it. 660 */ 661 } 662 663 /* Create a DIMM object under specified memory controller device */ 664 static int edac_create_dimm_object(struct mem_ctl_info *mci, 665 struct dimm_info *dimm) 666 { 667 int err; 668 dimm->mci = mci; 669 670 dimm->dev.type = &dimm_attr_type; 671 dimm->dev.release = dimm_release; 672 device_initialize(&dimm->dev); 673 674 dimm->dev.parent = &mci->dev; 675 if (mci->csbased) 676 dev_set_name(&dimm->dev, "rank%d", dimm->idx); 677 else 678 dev_set_name(&dimm->dev, "dimm%d", dimm->idx); 679 dev_set_drvdata(&dimm->dev, dimm); 680 pm_runtime_forbid(&mci->dev); 681 682 err = device_add(&dimm->dev); 683 if (err) { 684 edac_dbg(1, "failure: create device %s\n", dev_name(&dimm->dev)); 685 put_device(&dimm->dev); 686 return err; 687 } 688 689 if (IS_ENABLED(CONFIG_EDAC_DEBUG)) { 690 char location[80]; 691 692 edac_dimm_info_location(dimm, location, sizeof(location)); 693 edac_dbg(0, "device %s created at location %s\n", 694 dev_name(&dimm->dev), location); 695 } 696 697 return 0; 698 } 699 700 /* 701 * Memory controller device 702 */ 703 704 #define to_mci(k) container_of(k, struct mem_ctl_info, dev) 705 706 static ssize_t mci_reset_counters_store(struct device *dev, 707 struct device_attribute *mattr, 708 const char *data, size_t count) 709 { 710 struct mem_ctl_info *mci = to_mci(dev); 711 struct dimm_info *dimm; 712 int row, chan; 713 714 mci->ue_mc = 0; 715 mci->ce_mc = 0; 716 mci->ue_noinfo_count = 0; 717 mci->ce_noinfo_count = 0; 718 719 for (row = 0; row < mci->nr_csrows; row++) { 720 struct csrow_info *ri = mci->csrows[row]; 721 722 ri->ue_count = 0; 723 ri->ce_count = 0; 724 725 for (chan = 0; chan < ri->nr_channels; chan++) 726 ri->channels[chan]->ce_count = 0; 727 } 728 729 mci_for_each_dimm(mci, dimm) { 730 dimm->ue_count = 0; 731 dimm->ce_count = 0; 732 } 733 734 mci->start_time = jiffies; 735 return count; 736 } 737 738 /* Memory scrubbing interface: 739 * 740 * A MC driver can limit the scrubbing bandwidth based on the CPU type. 741 * Therefore, ->set_sdram_scrub_rate should be made to return the actual 742 * bandwidth that is accepted or 0 when scrubbing is to be disabled. 743 * 744 * Negative value still means that an error has occurred while setting 745 * the scrub rate. 746 */ 747 static ssize_t mci_sdram_scrub_rate_store(struct device *dev, 748 struct device_attribute *mattr, 749 const char *data, size_t count) 750 { 751 struct mem_ctl_info *mci = to_mci(dev); 752 unsigned long bandwidth = 0; 753 int new_bw = 0; 754 755 if (kstrtoul(data, 10, &bandwidth) < 0) 756 return -EINVAL; 757 758 new_bw = mci->set_sdram_scrub_rate(mci, bandwidth); 759 if (new_bw < 0) { 760 edac_printk(KERN_WARNING, EDAC_MC, 761 "Error setting scrub rate to: %lu\n", bandwidth); 762 return -EINVAL; 763 } 764 765 return count; 766 } 767 768 /* 769 * ->get_sdram_scrub_rate() return value semantics same as above. 770 */ 771 static ssize_t mci_sdram_scrub_rate_show(struct device *dev, 772 struct device_attribute *mattr, 773 char *data) 774 { 775 struct mem_ctl_info *mci = to_mci(dev); 776 int bandwidth = 0; 777 778 bandwidth = mci->get_sdram_scrub_rate(mci); 779 if (bandwidth < 0) { 780 edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n"); 781 return bandwidth; 782 } 783 784 return sysfs_emit(data, "%d\n", bandwidth); 785 } 786 787 /* default attribute files for the MCI object */ 788 static ssize_t mci_ue_count_show(struct device *dev, 789 struct device_attribute *mattr, 790 char *data) 791 { 792 struct mem_ctl_info *mci = to_mci(dev); 793 794 return sysfs_emit(data, "%u\n", mci->ue_mc); 795 } 796 797 static ssize_t mci_ce_count_show(struct device *dev, 798 struct device_attribute *mattr, 799 char *data) 800 { 801 struct mem_ctl_info *mci = to_mci(dev); 802 803 return sysfs_emit(data, "%u\n", mci->ce_mc); 804 } 805 806 static ssize_t mci_ce_noinfo_show(struct device *dev, 807 struct device_attribute *mattr, 808 char *data) 809 { 810 struct mem_ctl_info *mci = to_mci(dev); 811 812 return sysfs_emit(data, "%u\n", mci->ce_noinfo_count); 813 } 814 815 static ssize_t mci_ue_noinfo_show(struct device *dev, 816 struct device_attribute *mattr, 817 char *data) 818 { 819 struct mem_ctl_info *mci = to_mci(dev); 820 821 return sysfs_emit(data, "%u\n", mci->ue_noinfo_count); 822 } 823 824 static ssize_t mci_seconds_show(struct device *dev, 825 struct device_attribute *mattr, 826 char *data) 827 { 828 struct mem_ctl_info *mci = to_mci(dev); 829 830 return sysfs_emit(data, "%ld\n", (jiffies - mci->start_time) / HZ); 831 } 832 833 static ssize_t mci_ctl_name_show(struct device *dev, 834 struct device_attribute *mattr, 835 char *data) 836 { 837 struct mem_ctl_info *mci = to_mci(dev); 838 839 return sysfs_emit(data, "%s\n", mci->ctl_name); 840 } 841 842 static ssize_t mci_size_mb_show(struct device *dev, 843 struct device_attribute *mattr, 844 char *data) 845 { 846 struct mem_ctl_info *mci = to_mci(dev); 847 int total_pages = 0, csrow_idx, j; 848 849 for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) { 850 struct csrow_info *csrow = mci->csrows[csrow_idx]; 851 852 for (j = 0; j < csrow->nr_channels; j++) { 853 struct dimm_info *dimm = csrow->channels[j]->dimm; 854 855 total_pages += dimm->nr_pages; 856 } 857 } 858 859 return sysfs_emit(data, "%u\n", PAGES_TO_MiB(total_pages)); 860 } 861 862 static ssize_t mci_max_location_show(struct device *dev, 863 struct device_attribute *mattr, 864 char *data) 865 { 866 struct mem_ctl_info *mci = to_mci(dev); 867 int len = PAGE_SIZE; 868 char *p = data; 869 int i, n; 870 871 for (i = 0; i < mci->n_layers; i++) { 872 n = scnprintf(p, len, "%s %d ", 873 edac_layer_name[mci->layers[i].type], 874 mci->layers[i].size - 1); 875 len -= n; 876 if (len <= 0) 877 goto out; 878 879 p += n; 880 } 881 882 p += scnprintf(p, len, "\n"); 883 out: 884 return p - data; 885 } 886 887 /* default Control file */ 888 static DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store); 889 890 /* default Attribute files */ 891 static DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL); 892 static DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL); 893 static DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL); 894 static DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL); 895 static DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL); 896 static DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL); 897 static DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL); 898 static DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL); 899 900 /* memory scrubber attribute file */ 901 static DEVICE_ATTR(sdram_scrub_rate, 0, mci_sdram_scrub_rate_show, 902 mci_sdram_scrub_rate_store); /* umode set later in is_visible */ 903 904 static struct attribute *mci_attrs[] = { 905 &dev_attr_reset_counters.attr, 906 &dev_attr_mc_name.attr, 907 &dev_attr_size_mb.attr, 908 &dev_attr_seconds_since_reset.attr, 909 &dev_attr_ue_noinfo_count.attr, 910 &dev_attr_ce_noinfo_count.attr, 911 &dev_attr_ue_count.attr, 912 &dev_attr_ce_count.attr, 913 &dev_attr_max_location.attr, 914 &dev_attr_sdram_scrub_rate.attr, 915 NULL 916 }; 917 918 static umode_t mci_attr_is_visible(struct kobject *kobj, 919 struct attribute *attr, int idx) 920 { 921 struct device *dev = kobj_to_dev(kobj); 922 struct mem_ctl_info *mci = to_mci(dev); 923 umode_t mode = 0; 924 925 if (attr != &dev_attr_sdram_scrub_rate.attr) 926 return attr->mode; 927 if (mci->get_sdram_scrub_rate) 928 mode |= S_IRUGO; 929 if (mci->set_sdram_scrub_rate) 930 mode |= S_IWUSR; 931 return mode; 932 } 933 934 static const struct attribute_group mci_attr_grp = { 935 .attrs = mci_attrs, 936 .is_visible = mci_attr_is_visible, 937 }; 938 939 static const struct attribute_group *mci_attr_groups[] = { 940 &mci_attr_grp, 941 NULL 942 }; 943 944 static const struct device_type mci_attr_type = { 945 .groups = mci_attr_groups, 946 }; 947 948 /* 949 * Create a new Memory Controller kobject instance, 950 * mc<id> under the 'mc' directory 951 * 952 * Return: 953 * 0 Success 954 * !0 Failure 955 */ 956 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci, 957 const struct attribute_group **groups) 958 { 959 struct dimm_info *dimm; 960 int err; 961 962 /* get the /sys/devices/system/edac subsys reference */ 963 mci->dev.type = &mci_attr_type; 964 mci->dev.parent = mci_pdev; 965 mci->dev.groups = groups; 966 dev_set_name(&mci->dev, "mc%d", mci->mc_idx); 967 dev_set_drvdata(&mci->dev, mci); 968 pm_runtime_forbid(&mci->dev); 969 970 err = device_add(&mci->dev); 971 if (err < 0) { 972 edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev)); 973 /* no put_device() here, free mci with _edac_mc_free() */ 974 return err; 975 } 976 977 edac_dbg(0, "device %s created\n", dev_name(&mci->dev)); 978 979 /* 980 * Create the dimm/rank devices 981 */ 982 mci_for_each_dimm(mci, dimm) { 983 /* Only expose populated DIMMs */ 984 if (!dimm->nr_pages) 985 continue; 986 987 err = edac_create_dimm_object(mci, dimm); 988 if (err) 989 goto fail; 990 } 991 992 #ifdef CONFIG_EDAC_LEGACY_SYSFS 993 err = edac_create_csrow_objects(mci); 994 if (err < 0) 995 goto fail; 996 #endif 997 998 edac_create_debugfs_nodes(mci); 999 return 0; 1000 1001 fail: 1002 edac_remove_sysfs_mci_device(mci); 1003 1004 return err; 1005 } 1006 1007 /* 1008 * remove a Memory Controller instance 1009 */ 1010 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci) 1011 { 1012 struct dimm_info *dimm; 1013 1014 if (!device_is_registered(&mci->dev)) 1015 return; 1016 1017 edac_dbg(0, "\n"); 1018 1019 #ifdef CONFIG_EDAC_DEBUG 1020 edac_debugfs_remove_recursive(mci->debugfs); 1021 #endif 1022 #ifdef CONFIG_EDAC_LEGACY_SYSFS 1023 edac_delete_csrow_objects(mci); 1024 #endif 1025 1026 mci_for_each_dimm(mci, dimm) { 1027 if (!device_is_registered(&dimm->dev)) 1028 continue; 1029 edac_dbg(1, "unregistering device %s\n", dev_name(&dimm->dev)); 1030 device_unregister(&dimm->dev); 1031 } 1032 1033 /* only remove the device, but keep mci */ 1034 device_del(&mci->dev); 1035 } 1036 1037 static void mc_attr_release(struct device *dev) 1038 { 1039 /* 1040 * There's no container structure here, as this is just the mci 1041 * parent device, used to create the /sys/devices/mc sysfs node. 1042 * So, there are no attributes on it. 1043 */ 1044 edac_dbg(1, "device %s released\n", dev_name(dev)); 1045 kfree(dev); 1046 } 1047 1048 /* 1049 * Init/exit code for the module. Basically, creates/removes /sys/class/rc 1050 */ 1051 int __init edac_mc_sysfs_init(void) 1052 { 1053 int err; 1054 1055 mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL); 1056 if (!mci_pdev) 1057 return -ENOMEM; 1058 1059 mci_pdev->bus = edac_get_sysfs_subsys(); 1060 mci_pdev->release = mc_attr_release; 1061 mci_pdev->init_name = "mc"; 1062 1063 err = device_register(mci_pdev); 1064 if (err < 0) { 1065 edac_dbg(1, "failure: create device %s\n", dev_name(mci_pdev)); 1066 put_device(mci_pdev); 1067 return err; 1068 } 1069 1070 edac_dbg(0, "device %s created\n", dev_name(mci_pdev)); 1071 1072 return 0; 1073 } 1074 1075 void edac_mc_sysfs_exit(void) 1076 { 1077 device_unregister(mci_pdev); 1078 } 1079