1 /* 2 * edac_mc kernel module 3 * (C) 2005-2007 Linux Networx (http://lnxi.com) 4 * 5 * This file may be distributed under the terms of the 6 * GNU General Public License. 7 * 8 * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com 9 * 10 * (c) 2012-2013 - Mauro Carvalho Chehab <mchehab@redhat.com> 11 * The entire API were re-written, and ported to use struct device 12 * 13 */ 14 15 #include <linux/ctype.h> 16 #include <linux/slab.h> 17 #include <linux/edac.h> 18 #include <linux/bug.h> 19 #include <linux/pm_runtime.h> 20 #include <linux/uaccess.h> 21 22 #include "edac_core.h" 23 #include "edac_module.h" 24 25 /* MC EDAC Controls, setable by module parameter, and sysfs */ 26 static int edac_mc_log_ue = 1; 27 static int edac_mc_log_ce = 1; 28 static int edac_mc_panic_on_ue; 29 static int edac_mc_poll_msec = 1000; 30 31 /* Getter functions for above */ 32 int edac_mc_get_log_ue(void) 33 { 34 return edac_mc_log_ue; 35 } 36 37 int edac_mc_get_log_ce(void) 38 { 39 return edac_mc_log_ce; 40 } 41 42 int edac_mc_get_panic_on_ue(void) 43 { 44 return edac_mc_panic_on_ue; 45 } 46 47 /* this is temporary */ 48 int edac_mc_get_poll_msec(void) 49 { 50 return edac_mc_poll_msec; 51 } 52 53 static int edac_set_poll_msec(const char *val, struct kernel_param *kp) 54 { 55 long l; 56 int ret; 57 58 if (!val) 59 return -EINVAL; 60 61 ret = strict_strtol(val, 0, &l); 62 if (ret == -EINVAL || ((int)l != l)) 63 return -EINVAL; 64 *((int *)kp->arg) = l; 65 66 /* notify edac_mc engine to reset the poll period */ 67 edac_mc_reset_delay_period(l); 68 69 return 0; 70 } 71 72 /* Parameter declarations for above */ 73 module_param(edac_mc_panic_on_ue, int, 0644); 74 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on"); 75 module_param(edac_mc_log_ue, int, 0644); 76 MODULE_PARM_DESC(edac_mc_log_ue, 77 "Log uncorrectable error to console: 0=off 1=on"); 78 module_param(edac_mc_log_ce, int, 0644); 79 MODULE_PARM_DESC(edac_mc_log_ce, 80 "Log correctable error to console: 0=off 1=on"); 81 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int, 82 &edac_mc_poll_msec, 0644); 83 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds"); 84 85 static struct device *mci_pdev; 86 87 /* 88 * various constants for Memory Controllers 89 */ 90 static const char *mem_types[] = { 91 [MEM_EMPTY] = "Empty", 92 [MEM_RESERVED] = "Reserved", 93 [MEM_UNKNOWN] = "Unknown", 94 [MEM_FPM] = "FPM", 95 [MEM_EDO] = "EDO", 96 [MEM_BEDO] = "BEDO", 97 [MEM_SDR] = "Unbuffered-SDR", 98 [MEM_RDR] = "Registered-SDR", 99 [MEM_DDR] = "Unbuffered-DDR", 100 [MEM_RDDR] = "Registered-DDR", 101 [MEM_RMBS] = "RMBS", 102 [MEM_DDR2] = "Unbuffered-DDR2", 103 [MEM_FB_DDR2] = "FullyBuffered-DDR2", 104 [MEM_RDDR2] = "Registered-DDR2", 105 [MEM_XDR] = "XDR", 106 [MEM_DDR3] = "Unbuffered-DDR3", 107 [MEM_RDDR3] = "Registered-DDR3" 108 }; 109 110 static const char *dev_types[] = { 111 [DEV_UNKNOWN] = "Unknown", 112 [DEV_X1] = "x1", 113 [DEV_X2] = "x2", 114 [DEV_X4] = "x4", 115 [DEV_X8] = "x8", 116 [DEV_X16] = "x16", 117 [DEV_X32] = "x32", 118 [DEV_X64] = "x64" 119 }; 120 121 static const char *edac_caps[] = { 122 [EDAC_UNKNOWN] = "Unknown", 123 [EDAC_NONE] = "None", 124 [EDAC_RESERVED] = "Reserved", 125 [EDAC_PARITY] = "PARITY", 126 [EDAC_EC] = "EC", 127 [EDAC_SECDED] = "SECDED", 128 [EDAC_S2ECD2ED] = "S2ECD2ED", 129 [EDAC_S4ECD4ED] = "S4ECD4ED", 130 [EDAC_S8ECD8ED] = "S8ECD8ED", 131 [EDAC_S16ECD16ED] = "S16ECD16ED" 132 }; 133 134 #ifdef CONFIG_EDAC_LEGACY_SYSFS 135 /* 136 * EDAC sysfs CSROW data structures and methods 137 */ 138 139 #define to_csrow(k) container_of(k, struct csrow_info, dev) 140 141 /* 142 * We need it to avoid namespace conflicts between the legacy API 143 * and the per-dimm/per-rank one 144 */ 145 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \ 146 struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store) 147 148 struct dev_ch_attribute { 149 struct device_attribute attr; 150 int channel; 151 }; 152 153 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \ 154 struct dev_ch_attribute dev_attr_legacy_##_name = \ 155 { __ATTR(_name, _mode, _show, _store), (_var) } 156 157 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel) 158 159 /* Set of more default csrow<id> attribute show/store functions */ 160 static ssize_t csrow_ue_count_show(struct device *dev, 161 struct device_attribute *mattr, char *data) 162 { 163 struct csrow_info *csrow = to_csrow(dev); 164 165 return sprintf(data, "%u\n", csrow->ue_count); 166 } 167 168 static ssize_t csrow_ce_count_show(struct device *dev, 169 struct device_attribute *mattr, char *data) 170 { 171 struct csrow_info *csrow = to_csrow(dev); 172 173 return sprintf(data, "%u\n", csrow->ce_count); 174 } 175 176 static ssize_t csrow_size_show(struct device *dev, 177 struct device_attribute *mattr, char *data) 178 { 179 struct csrow_info *csrow = to_csrow(dev); 180 int i; 181 u32 nr_pages = 0; 182 183 if (csrow->mci->csbased) 184 return sprintf(data, "%u\n", PAGES_TO_MiB(csrow->nr_pages)); 185 186 for (i = 0; i < csrow->nr_channels; i++) 187 nr_pages += csrow->channels[i]->dimm->nr_pages; 188 return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages)); 189 } 190 191 static ssize_t csrow_mem_type_show(struct device *dev, 192 struct device_attribute *mattr, char *data) 193 { 194 struct csrow_info *csrow = to_csrow(dev); 195 196 return sprintf(data, "%s\n", mem_types[csrow->channels[0]->dimm->mtype]); 197 } 198 199 static ssize_t csrow_dev_type_show(struct device *dev, 200 struct device_attribute *mattr, char *data) 201 { 202 struct csrow_info *csrow = to_csrow(dev); 203 204 return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]); 205 } 206 207 static ssize_t csrow_edac_mode_show(struct device *dev, 208 struct device_attribute *mattr, 209 char *data) 210 { 211 struct csrow_info *csrow = to_csrow(dev); 212 213 return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]); 214 } 215 216 /* show/store functions for DIMM Label attributes */ 217 static ssize_t channel_dimm_label_show(struct device *dev, 218 struct device_attribute *mattr, 219 char *data) 220 { 221 struct csrow_info *csrow = to_csrow(dev); 222 unsigned chan = to_channel(mattr); 223 struct rank_info *rank = csrow->channels[chan]; 224 225 /* if field has not been initialized, there is nothing to send */ 226 if (!rank->dimm->label[0]) 227 return 0; 228 229 return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n", 230 rank->dimm->label); 231 } 232 233 static ssize_t channel_dimm_label_store(struct device *dev, 234 struct device_attribute *mattr, 235 const char *data, size_t count) 236 { 237 struct csrow_info *csrow = to_csrow(dev); 238 unsigned chan = to_channel(mattr); 239 struct rank_info *rank = csrow->channels[chan]; 240 241 ssize_t max_size = 0; 242 243 max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1); 244 strncpy(rank->dimm->label, data, max_size); 245 rank->dimm->label[max_size] = '\0'; 246 247 return max_size; 248 } 249 250 /* show function for dynamic chX_ce_count attribute */ 251 static ssize_t channel_ce_count_show(struct device *dev, 252 struct device_attribute *mattr, char *data) 253 { 254 struct csrow_info *csrow = to_csrow(dev); 255 unsigned chan = to_channel(mattr); 256 struct rank_info *rank = csrow->channels[chan]; 257 258 return sprintf(data, "%u\n", rank->ce_count); 259 } 260 261 /* cwrow<id>/attribute files */ 262 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL); 263 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL); 264 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL); 265 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL); 266 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL); 267 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL); 268 269 /* default attributes of the CSROW<id> object */ 270 static struct attribute *csrow_attrs[] = { 271 &dev_attr_legacy_dev_type.attr, 272 &dev_attr_legacy_mem_type.attr, 273 &dev_attr_legacy_edac_mode.attr, 274 &dev_attr_legacy_size_mb.attr, 275 &dev_attr_legacy_ue_count.attr, 276 &dev_attr_legacy_ce_count.attr, 277 NULL, 278 }; 279 280 static struct attribute_group csrow_attr_grp = { 281 .attrs = csrow_attrs, 282 }; 283 284 static const struct attribute_group *csrow_attr_groups[] = { 285 &csrow_attr_grp, 286 NULL 287 }; 288 289 static void csrow_attr_release(struct device *dev) 290 { 291 struct csrow_info *csrow = container_of(dev, struct csrow_info, dev); 292 293 edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev)); 294 kfree(csrow); 295 } 296 297 static struct device_type csrow_attr_type = { 298 .groups = csrow_attr_groups, 299 .release = csrow_attr_release, 300 }; 301 302 /* 303 * possible dynamic channel DIMM Label attribute files 304 * 305 */ 306 307 #define EDAC_NR_CHANNELS 6 308 309 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR, 310 channel_dimm_label_show, channel_dimm_label_store, 0); 311 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR, 312 channel_dimm_label_show, channel_dimm_label_store, 1); 313 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR, 314 channel_dimm_label_show, channel_dimm_label_store, 2); 315 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR, 316 channel_dimm_label_show, channel_dimm_label_store, 3); 317 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR, 318 channel_dimm_label_show, channel_dimm_label_store, 4); 319 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR, 320 channel_dimm_label_show, channel_dimm_label_store, 5); 321 322 /* Total possible dynamic DIMM Label attribute file table */ 323 static struct device_attribute *dynamic_csrow_dimm_attr[] = { 324 &dev_attr_legacy_ch0_dimm_label.attr, 325 &dev_attr_legacy_ch1_dimm_label.attr, 326 &dev_attr_legacy_ch2_dimm_label.attr, 327 &dev_attr_legacy_ch3_dimm_label.attr, 328 &dev_attr_legacy_ch4_dimm_label.attr, 329 &dev_attr_legacy_ch5_dimm_label.attr 330 }; 331 332 /* possible dynamic channel ce_count attribute files */ 333 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO | S_IWUSR, 334 channel_ce_count_show, NULL, 0); 335 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO | S_IWUSR, 336 channel_ce_count_show, NULL, 1); 337 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO | S_IWUSR, 338 channel_ce_count_show, NULL, 2); 339 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO | S_IWUSR, 340 channel_ce_count_show, NULL, 3); 341 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO | S_IWUSR, 342 channel_ce_count_show, NULL, 4); 343 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO | S_IWUSR, 344 channel_ce_count_show, NULL, 5); 345 346 /* Total possible dynamic ce_count attribute file table */ 347 static struct device_attribute *dynamic_csrow_ce_count_attr[] = { 348 &dev_attr_legacy_ch0_ce_count.attr, 349 &dev_attr_legacy_ch1_ce_count.attr, 350 &dev_attr_legacy_ch2_ce_count.attr, 351 &dev_attr_legacy_ch3_ce_count.attr, 352 &dev_attr_legacy_ch4_ce_count.attr, 353 &dev_attr_legacy_ch5_ce_count.attr 354 }; 355 356 static inline int nr_pages_per_csrow(struct csrow_info *csrow) 357 { 358 int chan, nr_pages = 0; 359 360 for (chan = 0; chan < csrow->nr_channels; chan++) 361 nr_pages += csrow->channels[chan]->dimm->nr_pages; 362 363 return nr_pages; 364 } 365 366 /* Create a CSROW object under specifed edac_mc_device */ 367 static int edac_create_csrow_object(struct mem_ctl_info *mci, 368 struct csrow_info *csrow, int index) 369 { 370 int err, chan; 371 372 if (csrow->nr_channels >= EDAC_NR_CHANNELS) 373 return -ENODEV; 374 375 csrow->dev.type = &csrow_attr_type; 376 csrow->dev.bus = &mci->bus; 377 device_initialize(&csrow->dev); 378 csrow->dev.parent = &mci->dev; 379 csrow->mci = mci; 380 dev_set_name(&csrow->dev, "csrow%d", index); 381 dev_set_drvdata(&csrow->dev, csrow); 382 383 edac_dbg(0, "creating (virtual) csrow node %s\n", 384 dev_name(&csrow->dev)); 385 386 err = device_add(&csrow->dev); 387 if (err < 0) 388 return err; 389 390 for (chan = 0; chan < csrow->nr_channels; chan++) { 391 /* Only expose populated DIMMs */ 392 if (!csrow->channels[chan]->dimm->nr_pages) 393 continue; 394 err = device_create_file(&csrow->dev, 395 dynamic_csrow_dimm_attr[chan]); 396 if (err < 0) 397 goto error; 398 err = device_create_file(&csrow->dev, 399 dynamic_csrow_ce_count_attr[chan]); 400 if (err < 0) { 401 device_remove_file(&csrow->dev, 402 dynamic_csrow_dimm_attr[chan]); 403 goto error; 404 } 405 } 406 407 return 0; 408 409 error: 410 for (--chan; chan >= 0; chan--) { 411 device_remove_file(&csrow->dev, 412 dynamic_csrow_dimm_attr[chan]); 413 device_remove_file(&csrow->dev, 414 dynamic_csrow_ce_count_attr[chan]); 415 } 416 put_device(&csrow->dev); 417 418 return err; 419 } 420 421 /* Create a CSROW object under specifed edac_mc_device */ 422 static int edac_create_csrow_objects(struct mem_ctl_info *mci) 423 { 424 int err, i, chan; 425 struct csrow_info *csrow; 426 427 for (i = 0; i < mci->nr_csrows; i++) { 428 csrow = mci->csrows[i]; 429 if (!nr_pages_per_csrow(csrow)) 430 continue; 431 err = edac_create_csrow_object(mci, mci->csrows[i], i); 432 if (err < 0) { 433 edac_dbg(1, 434 "failure: create csrow objects for csrow %d\n", 435 i); 436 goto error; 437 } 438 } 439 return 0; 440 441 error: 442 for (--i; i >= 0; i--) { 443 csrow = mci->csrows[i]; 444 if (!nr_pages_per_csrow(csrow)) 445 continue; 446 for (chan = csrow->nr_channels - 1; chan >= 0; chan--) { 447 if (!csrow->channels[chan]->dimm->nr_pages) 448 continue; 449 device_remove_file(&csrow->dev, 450 dynamic_csrow_dimm_attr[chan]); 451 device_remove_file(&csrow->dev, 452 dynamic_csrow_ce_count_attr[chan]); 453 } 454 put_device(&mci->csrows[i]->dev); 455 } 456 457 return err; 458 } 459 460 static void edac_delete_csrow_objects(struct mem_ctl_info *mci) 461 { 462 int i, chan; 463 struct csrow_info *csrow; 464 465 for (i = mci->nr_csrows - 1; i >= 0; i--) { 466 csrow = mci->csrows[i]; 467 if (!nr_pages_per_csrow(csrow)) 468 continue; 469 for (chan = csrow->nr_channels - 1; chan >= 0; chan--) { 470 if (!csrow->channels[chan]->dimm->nr_pages) 471 continue; 472 edac_dbg(1, "Removing csrow %d channel %d sysfs nodes\n", 473 i, chan); 474 device_remove_file(&csrow->dev, 475 dynamic_csrow_dimm_attr[chan]); 476 device_remove_file(&csrow->dev, 477 dynamic_csrow_ce_count_attr[chan]); 478 } 479 device_unregister(&mci->csrows[i]->dev); 480 } 481 } 482 #endif 483 484 /* 485 * Per-dimm (or per-rank) devices 486 */ 487 488 #define to_dimm(k) container_of(k, struct dimm_info, dev) 489 490 /* show/store functions for DIMM Label attributes */ 491 static ssize_t dimmdev_location_show(struct device *dev, 492 struct device_attribute *mattr, char *data) 493 { 494 struct dimm_info *dimm = to_dimm(dev); 495 496 return edac_dimm_info_location(dimm, data, PAGE_SIZE); 497 } 498 499 static ssize_t dimmdev_label_show(struct device *dev, 500 struct device_attribute *mattr, char *data) 501 { 502 struct dimm_info *dimm = to_dimm(dev); 503 504 /* if field has not been initialized, there is nothing to send */ 505 if (!dimm->label[0]) 506 return 0; 507 508 return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n", dimm->label); 509 } 510 511 static ssize_t dimmdev_label_store(struct device *dev, 512 struct device_attribute *mattr, 513 const char *data, 514 size_t count) 515 { 516 struct dimm_info *dimm = to_dimm(dev); 517 518 ssize_t max_size = 0; 519 520 max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1); 521 strncpy(dimm->label, data, max_size); 522 dimm->label[max_size] = '\0'; 523 524 return max_size; 525 } 526 527 static ssize_t dimmdev_size_show(struct device *dev, 528 struct device_attribute *mattr, char *data) 529 { 530 struct dimm_info *dimm = to_dimm(dev); 531 532 return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages)); 533 } 534 535 static ssize_t dimmdev_mem_type_show(struct device *dev, 536 struct device_attribute *mattr, char *data) 537 { 538 struct dimm_info *dimm = to_dimm(dev); 539 540 return sprintf(data, "%s\n", mem_types[dimm->mtype]); 541 } 542 543 static ssize_t dimmdev_dev_type_show(struct device *dev, 544 struct device_attribute *mattr, char *data) 545 { 546 struct dimm_info *dimm = to_dimm(dev); 547 548 return sprintf(data, "%s\n", dev_types[dimm->dtype]); 549 } 550 551 static ssize_t dimmdev_edac_mode_show(struct device *dev, 552 struct device_attribute *mattr, 553 char *data) 554 { 555 struct dimm_info *dimm = to_dimm(dev); 556 557 return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]); 558 } 559 560 /* dimm/rank attribute files */ 561 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR, 562 dimmdev_label_show, dimmdev_label_store); 563 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL); 564 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL); 565 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL); 566 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL); 567 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL); 568 569 /* attributes of the dimm<id>/rank<id> object */ 570 static struct attribute *dimm_attrs[] = { 571 &dev_attr_dimm_label.attr, 572 &dev_attr_dimm_location.attr, 573 &dev_attr_size.attr, 574 &dev_attr_dimm_mem_type.attr, 575 &dev_attr_dimm_dev_type.attr, 576 &dev_attr_dimm_edac_mode.attr, 577 NULL, 578 }; 579 580 static struct attribute_group dimm_attr_grp = { 581 .attrs = dimm_attrs, 582 }; 583 584 static const struct attribute_group *dimm_attr_groups[] = { 585 &dimm_attr_grp, 586 NULL 587 }; 588 589 static void dimm_attr_release(struct device *dev) 590 { 591 struct dimm_info *dimm = container_of(dev, struct dimm_info, dev); 592 593 edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev)); 594 kfree(dimm); 595 } 596 597 static struct device_type dimm_attr_type = { 598 .groups = dimm_attr_groups, 599 .release = dimm_attr_release, 600 }; 601 602 /* Create a DIMM object under specifed memory controller device */ 603 static int edac_create_dimm_object(struct mem_ctl_info *mci, 604 struct dimm_info *dimm, 605 int index) 606 { 607 int err; 608 dimm->mci = mci; 609 610 dimm->dev.type = &dimm_attr_type; 611 dimm->dev.bus = &mci->bus; 612 device_initialize(&dimm->dev); 613 614 dimm->dev.parent = &mci->dev; 615 if (mci->mem_is_per_rank) 616 dev_set_name(&dimm->dev, "rank%d", index); 617 else 618 dev_set_name(&dimm->dev, "dimm%d", index); 619 dev_set_drvdata(&dimm->dev, dimm); 620 pm_runtime_forbid(&mci->dev); 621 622 err = device_add(&dimm->dev); 623 624 edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev)); 625 626 return err; 627 } 628 629 /* 630 * Memory controller device 631 */ 632 633 #define to_mci(k) container_of(k, struct mem_ctl_info, dev) 634 635 static ssize_t mci_reset_counters_store(struct device *dev, 636 struct device_attribute *mattr, 637 const char *data, size_t count) 638 { 639 struct mem_ctl_info *mci = to_mci(dev); 640 int cnt, row, chan, i; 641 mci->ue_mc = 0; 642 mci->ce_mc = 0; 643 mci->ue_noinfo_count = 0; 644 mci->ce_noinfo_count = 0; 645 646 for (row = 0; row < mci->nr_csrows; row++) { 647 struct csrow_info *ri = mci->csrows[row]; 648 649 ri->ue_count = 0; 650 ri->ce_count = 0; 651 652 for (chan = 0; chan < ri->nr_channels; chan++) 653 ri->channels[chan]->ce_count = 0; 654 } 655 656 cnt = 1; 657 for (i = 0; i < mci->n_layers; i++) { 658 cnt *= mci->layers[i].size; 659 memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32)); 660 memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32)); 661 } 662 663 mci->start_time = jiffies; 664 return count; 665 } 666 667 /* Memory scrubbing interface: 668 * 669 * A MC driver can limit the scrubbing bandwidth based on the CPU type. 670 * Therefore, ->set_sdram_scrub_rate should be made to return the actual 671 * bandwidth that is accepted or 0 when scrubbing is to be disabled. 672 * 673 * Negative value still means that an error has occurred while setting 674 * the scrub rate. 675 */ 676 static ssize_t mci_sdram_scrub_rate_store(struct device *dev, 677 struct device_attribute *mattr, 678 const char *data, size_t count) 679 { 680 struct mem_ctl_info *mci = to_mci(dev); 681 unsigned long bandwidth = 0; 682 int new_bw = 0; 683 684 if (strict_strtoul(data, 10, &bandwidth) < 0) 685 return -EINVAL; 686 687 new_bw = mci->set_sdram_scrub_rate(mci, bandwidth); 688 if (new_bw < 0) { 689 edac_printk(KERN_WARNING, EDAC_MC, 690 "Error setting scrub rate to: %lu\n", bandwidth); 691 return -EINVAL; 692 } 693 694 return count; 695 } 696 697 /* 698 * ->get_sdram_scrub_rate() return value semantics same as above. 699 */ 700 static ssize_t mci_sdram_scrub_rate_show(struct device *dev, 701 struct device_attribute *mattr, 702 char *data) 703 { 704 struct mem_ctl_info *mci = to_mci(dev); 705 int bandwidth = 0; 706 707 bandwidth = mci->get_sdram_scrub_rate(mci); 708 if (bandwidth < 0) { 709 edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n"); 710 return bandwidth; 711 } 712 713 return sprintf(data, "%d\n", bandwidth); 714 } 715 716 /* default attribute files for the MCI object */ 717 static ssize_t mci_ue_count_show(struct device *dev, 718 struct device_attribute *mattr, 719 char *data) 720 { 721 struct mem_ctl_info *mci = to_mci(dev); 722 723 return sprintf(data, "%d\n", mci->ue_mc); 724 } 725 726 static ssize_t mci_ce_count_show(struct device *dev, 727 struct device_attribute *mattr, 728 char *data) 729 { 730 struct mem_ctl_info *mci = to_mci(dev); 731 732 return sprintf(data, "%d\n", mci->ce_mc); 733 } 734 735 static ssize_t mci_ce_noinfo_show(struct device *dev, 736 struct device_attribute *mattr, 737 char *data) 738 { 739 struct mem_ctl_info *mci = to_mci(dev); 740 741 return sprintf(data, "%d\n", mci->ce_noinfo_count); 742 } 743 744 static ssize_t mci_ue_noinfo_show(struct device *dev, 745 struct device_attribute *mattr, 746 char *data) 747 { 748 struct mem_ctl_info *mci = to_mci(dev); 749 750 return sprintf(data, "%d\n", mci->ue_noinfo_count); 751 } 752 753 static ssize_t mci_seconds_show(struct device *dev, 754 struct device_attribute *mattr, 755 char *data) 756 { 757 struct mem_ctl_info *mci = to_mci(dev); 758 759 return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ); 760 } 761 762 static ssize_t mci_ctl_name_show(struct device *dev, 763 struct device_attribute *mattr, 764 char *data) 765 { 766 struct mem_ctl_info *mci = to_mci(dev); 767 768 return sprintf(data, "%s\n", mci->ctl_name); 769 } 770 771 static ssize_t mci_size_mb_show(struct device *dev, 772 struct device_attribute *mattr, 773 char *data) 774 { 775 struct mem_ctl_info *mci = to_mci(dev); 776 int total_pages = 0, csrow_idx, j; 777 778 for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) { 779 struct csrow_info *csrow = mci->csrows[csrow_idx]; 780 781 if (csrow->mci->csbased) { 782 total_pages += csrow->nr_pages; 783 } else { 784 for (j = 0; j < csrow->nr_channels; j++) { 785 struct dimm_info *dimm = csrow->channels[j]->dimm; 786 787 total_pages += dimm->nr_pages; 788 } 789 } 790 } 791 792 return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages)); 793 } 794 795 static ssize_t mci_max_location_show(struct device *dev, 796 struct device_attribute *mattr, 797 char *data) 798 { 799 struct mem_ctl_info *mci = to_mci(dev); 800 int i; 801 char *p = data; 802 803 for (i = 0; i < mci->n_layers; i++) { 804 p += sprintf(p, "%s %d ", 805 edac_layer_name[mci->layers[i].type], 806 mci->layers[i].size - 1); 807 } 808 809 return p - data; 810 } 811 812 #ifdef CONFIG_EDAC_DEBUG 813 static ssize_t edac_fake_inject_write(struct file *file, 814 const char __user *data, 815 size_t count, loff_t *ppos) 816 { 817 struct device *dev = file->private_data; 818 struct mem_ctl_info *mci = to_mci(dev); 819 static enum hw_event_mc_err_type type; 820 u16 errcount = mci->fake_inject_count; 821 822 if (!errcount) 823 errcount = 1; 824 825 type = mci->fake_inject_ue ? HW_EVENT_ERR_UNCORRECTED 826 : HW_EVENT_ERR_CORRECTED; 827 828 printk(KERN_DEBUG 829 "Generating %d %s fake error%s to %d.%d.%d to test core handling. NOTE: this won't test the driver-specific decoding logic.\n", 830 errcount, 831 (type == HW_EVENT_ERR_UNCORRECTED) ? "UE" : "CE", 832 errcount > 1 ? "s" : "", 833 mci->fake_inject_layer[0], 834 mci->fake_inject_layer[1], 835 mci->fake_inject_layer[2] 836 ); 837 edac_mc_handle_error(type, mci, errcount, 0, 0, 0, 838 mci->fake_inject_layer[0], 839 mci->fake_inject_layer[1], 840 mci->fake_inject_layer[2], 841 "FAKE ERROR", "for EDAC testing only"); 842 843 return count; 844 } 845 846 static const struct file_operations debug_fake_inject_fops = { 847 .open = simple_open, 848 .write = edac_fake_inject_write, 849 .llseek = generic_file_llseek, 850 }; 851 #endif 852 853 /* default Control file */ 854 DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store); 855 856 /* default Attribute files */ 857 DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL); 858 DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL); 859 DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL); 860 DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL); 861 DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL); 862 DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL); 863 DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL); 864 DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL); 865 866 /* memory scrubber attribute file */ 867 DEVICE_ATTR(sdram_scrub_rate, 0, NULL, NULL); 868 869 static struct attribute *mci_attrs[] = { 870 &dev_attr_reset_counters.attr, 871 &dev_attr_mc_name.attr, 872 &dev_attr_size_mb.attr, 873 &dev_attr_seconds_since_reset.attr, 874 &dev_attr_ue_noinfo_count.attr, 875 &dev_attr_ce_noinfo_count.attr, 876 &dev_attr_ue_count.attr, 877 &dev_attr_ce_count.attr, 878 &dev_attr_max_location.attr, 879 NULL 880 }; 881 882 static struct attribute_group mci_attr_grp = { 883 .attrs = mci_attrs, 884 }; 885 886 static const struct attribute_group *mci_attr_groups[] = { 887 &mci_attr_grp, 888 NULL 889 }; 890 891 static void mci_attr_release(struct device *dev) 892 { 893 struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev); 894 895 edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev)); 896 kfree(mci); 897 } 898 899 static struct device_type mci_attr_type = { 900 .groups = mci_attr_groups, 901 .release = mci_attr_release, 902 }; 903 904 #ifdef CONFIG_EDAC_DEBUG 905 static struct dentry *edac_debugfs; 906 907 int __init edac_debugfs_init(void) 908 { 909 edac_debugfs = debugfs_create_dir("edac", NULL); 910 if (IS_ERR(edac_debugfs)) { 911 edac_debugfs = NULL; 912 return -ENOMEM; 913 } 914 return 0; 915 } 916 917 void __exit edac_debugfs_exit(void) 918 { 919 debugfs_remove(edac_debugfs); 920 } 921 922 int edac_create_debug_nodes(struct mem_ctl_info *mci) 923 { 924 struct dentry *d, *parent; 925 char name[80]; 926 int i; 927 928 if (!edac_debugfs) 929 return -ENODEV; 930 931 d = debugfs_create_dir(mci->dev.kobj.name, edac_debugfs); 932 if (!d) 933 return -ENOMEM; 934 parent = d; 935 936 for (i = 0; i < mci->n_layers; i++) { 937 sprintf(name, "fake_inject_%s", 938 edac_layer_name[mci->layers[i].type]); 939 d = debugfs_create_u8(name, S_IRUGO | S_IWUSR, parent, 940 &mci->fake_inject_layer[i]); 941 if (!d) 942 goto nomem; 943 } 944 945 d = debugfs_create_bool("fake_inject_ue", S_IRUGO | S_IWUSR, parent, 946 &mci->fake_inject_ue); 947 if (!d) 948 goto nomem; 949 950 d = debugfs_create_u16("fake_inject_count", S_IRUGO | S_IWUSR, parent, 951 &mci->fake_inject_count); 952 if (!d) 953 goto nomem; 954 955 d = debugfs_create_file("fake_inject", S_IWUSR, parent, 956 &mci->dev, 957 &debug_fake_inject_fops); 958 if (!d) 959 goto nomem; 960 961 mci->debugfs = parent; 962 return 0; 963 nomem: 964 debugfs_remove(mci->debugfs); 965 return -ENOMEM; 966 } 967 #endif 968 969 /* 970 * Create a new Memory Controller kobject instance, 971 * mc<id> under the 'mc' directory 972 * 973 * Return: 974 * 0 Success 975 * !0 Failure 976 */ 977 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci) 978 { 979 int i, err; 980 981 /* 982 * The memory controller needs its own bus, in order to avoid 983 * namespace conflicts at /sys/bus/edac. 984 */ 985 mci->bus.name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx); 986 if (!mci->bus.name) 987 return -ENOMEM; 988 edac_dbg(0, "creating bus %s\n", mci->bus.name); 989 err = bus_register(&mci->bus); 990 if (err < 0) 991 return err; 992 993 /* get the /sys/devices/system/edac subsys reference */ 994 mci->dev.type = &mci_attr_type; 995 device_initialize(&mci->dev); 996 997 mci->dev.parent = mci_pdev; 998 mci->dev.bus = &mci->bus; 999 dev_set_name(&mci->dev, "mc%d", mci->mc_idx); 1000 dev_set_drvdata(&mci->dev, mci); 1001 pm_runtime_forbid(&mci->dev); 1002 1003 edac_dbg(0, "creating device %s\n", dev_name(&mci->dev)); 1004 err = device_add(&mci->dev); 1005 if (err < 0) { 1006 edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev)); 1007 bus_unregister(&mci->bus); 1008 kfree(mci->bus.name); 1009 return err; 1010 } 1011 1012 if (mci->set_sdram_scrub_rate || mci->get_sdram_scrub_rate) { 1013 if (mci->get_sdram_scrub_rate) { 1014 dev_attr_sdram_scrub_rate.attr.mode |= S_IRUGO; 1015 dev_attr_sdram_scrub_rate.show = &mci_sdram_scrub_rate_show; 1016 } 1017 if (mci->set_sdram_scrub_rate) { 1018 dev_attr_sdram_scrub_rate.attr.mode |= S_IWUSR; 1019 dev_attr_sdram_scrub_rate.store = &mci_sdram_scrub_rate_store; 1020 } 1021 err = device_create_file(&mci->dev, 1022 &dev_attr_sdram_scrub_rate); 1023 if (err) { 1024 edac_dbg(1, "failure: create sdram_scrub_rate\n"); 1025 goto fail2; 1026 } 1027 } 1028 /* 1029 * Create the dimm/rank devices 1030 */ 1031 for (i = 0; i < mci->tot_dimms; i++) { 1032 struct dimm_info *dimm = mci->dimms[i]; 1033 /* Only expose populated DIMMs */ 1034 if (dimm->nr_pages == 0) 1035 continue; 1036 #ifdef CONFIG_EDAC_DEBUG 1037 edac_dbg(1, "creating dimm%d, located at ", i); 1038 if (edac_debug_level >= 1) { 1039 int lay; 1040 for (lay = 0; lay < mci->n_layers; lay++) 1041 printk(KERN_CONT "%s %d ", 1042 edac_layer_name[mci->layers[lay].type], 1043 dimm->location[lay]); 1044 printk(KERN_CONT "\n"); 1045 } 1046 #endif 1047 err = edac_create_dimm_object(mci, dimm, i); 1048 if (err) { 1049 edac_dbg(1, "failure: create dimm %d obj\n", i); 1050 goto fail; 1051 } 1052 } 1053 1054 #ifdef CONFIG_EDAC_LEGACY_SYSFS 1055 err = edac_create_csrow_objects(mci); 1056 if (err < 0) 1057 goto fail; 1058 #endif 1059 1060 #ifdef CONFIG_EDAC_DEBUG 1061 edac_create_debug_nodes(mci); 1062 #endif 1063 return 0; 1064 1065 fail: 1066 for (i--; i >= 0; i--) { 1067 struct dimm_info *dimm = mci->dimms[i]; 1068 if (dimm->nr_pages == 0) 1069 continue; 1070 device_unregister(&dimm->dev); 1071 } 1072 fail2: 1073 device_unregister(&mci->dev); 1074 bus_unregister(&mci->bus); 1075 kfree(mci->bus.name); 1076 return err; 1077 } 1078 1079 /* 1080 * remove a Memory Controller instance 1081 */ 1082 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci) 1083 { 1084 int i; 1085 1086 edac_dbg(0, "\n"); 1087 1088 #ifdef CONFIG_EDAC_DEBUG 1089 debugfs_remove(mci->debugfs); 1090 #endif 1091 #ifdef CONFIG_EDAC_LEGACY_SYSFS 1092 edac_delete_csrow_objects(mci); 1093 #endif 1094 1095 for (i = 0; i < mci->tot_dimms; i++) { 1096 struct dimm_info *dimm = mci->dimms[i]; 1097 if (dimm->nr_pages == 0) 1098 continue; 1099 edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev)); 1100 device_unregister(&dimm->dev); 1101 } 1102 } 1103 1104 void edac_unregister_sysfs(struct mem_ctl_info *mci) 1105 { 1106 edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev)); 1107 device_unregister(&mci->dev); 1108 bus_unregister(&mci->bus); 1109 kfree(mci->bus.name); 1110 } 1111 1112 static void mc_attr_release(struct device *dev) 1113 { 1114 /* 1115 * There's no container structure here, as this is just the mci 1116 * parent device, used to create the /sys/devices/mc sysfs node. 1117 * So, there are no attributes on it. 1118 */ 1119 edac_dbg(1, "Releasing device %s\n", dev_name(dev)); 1120 kfree(dev); 1121 } 1122 1123 static struct device_type mc_attr_type = { 1124 .release = mc_attr_release, 1125 }; 1126 /* 1127 * Init/exit code for the module. Basically, creates/removes /sys/class/rc 1128 */ 1129 int __init edac_mc_sysfs_init(void) 1130 { 1131 struct bus_type *edac_subsys; 1132 int err; 1133 1134 /* get the /sys/devices/system/edac subsys reference */ 1135 edac_subsys = edac_get_sysfs_subsys(); 1136 if (edac_subsys == NULL) { 1137 edac_dbg(1, "no edac_subsys\n"); 1138 err = -EINVAL; 1139 goto out; 1140 } 1141 1142 mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL); 1143 if (!mci_pdev) { 1144 err = -ENOMEM; 1145 goto out_put_sysfs; 1146 } 1147 1148 mci_pdev->bus = edac_subsys; 1149 mci_pdev->type = &mc_attr_type; 1150 device_initialize(mci_pdev); 1151 dev_set_name(mci_pdev, "mc"); 1152 1153 err = device_add(mci_pdev); 1154 if (err < 0) 1155 goto out_dev_free; 1156 1157 edac_dbg(0, "device %s created\n", dev_name(mci_pdev)); 1158 1159 return 0; 1160 1161 out_dev_free: 1162 kfree(mci_pdev); 1163 out_put_sysfs: 1164 edac_put_sysfs_subsys(); 1165 out: 1166 return err; 1167 } 1168 1169 void __exit edac_mc_sysfs_exit(void) 1170 { 1171 device_unregister(mci_pdev); 1172 edac_put_sysfs_subsys(); 1173 } 1174